1
|
Abstract
Neuropeptide Y (NPY) is implicated in many pathological conditions including obesity, diabetes, and insulin resistance. However, a pathogenic role of NPY in kidney disease has not been described. We found that NPY is produced by the podocyte in the glomerulus, and this production decreases in renal disease, in contrast to an increase in circulating NPY levels. In the glomerulus, NPY signals via the NPY receptor 2 (NPY2R) and modulates PI3K, MAPK, and NFAT signaling, along with RNA processing and cell migration and, if prolonged, predicted nephrotoxicity. The pharmacological inhibition of NPY-NPY2R signaling also protected against albuminuria and kidney disease in a mouse model of glomerulosclerosis, suggesting that inhibiting this pathway may be therapeutically beneficial in the prevention of kidney disease. Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.
Collapse
|
2
|
Abstract
Dipeptidyl peptidase IV (DPP-IV) is a unique serine protease that exists in a membrane bound state and in a soluble state in most tissues in the body. DPP-IV has multiple targets including cytokines, neuropeptides, and incretin hormones, and plays an important role in health and disease. Recent work suggests that skeletal muscle releases DPP-IV as a myokine and participates in control of muscle blood flow. However, few of the functions of DPP-IV as a myokine have been investigated to date and there is a poor understanding about what causes DPP-IV to be released from muscle.
Collapse
Affiliation(s)
- Heidi A Kluess
- School of Kinesiology, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Zhang J, Chen Q, Zhong J, Liu C, Zheng B, Gong Q. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front Immunol 2019; 10:1050. [PMID: 31134095 PMCID: PMC6526751 DOI: 10.3389/fimmu.2019.01050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) is an important protease that is widely expressed on the surface of human cells and plays a key role in immune-regulation, inflammation, oxidative stress, cell adhesion, and apoptosis by targeting different substrates. DPP-4 inhibitors (DPP-4i) are commonly used as hypoglycemic agents. However, in addition to their hypoglycemic effect, DPP-4i have also shown potent activities in the cardiovascular system, particularly in the regulation of blood pressure (BP). Previous studies have shown that the regulatory actions of DPP-4i in controlling BP are complex and that the mechanisms involved include the functional activities of the nerves, kidneys, hormones, blood vessels, and insulin. Recent work has also shown that inflammation is closely associated with the elevation of BP, and that the inhibition of DPP-4 can reduce BP by regulating the function of the immune system, by reducing inflammatory reactions and by improving oxidative stress. In this review, we describe the potential anti-hypertensive effects of DPP-4i and discuss potential new anti-hypertensive therapies. Our analysis indicated that DPP-4i treatment has a mild anti-hypertensive effect as a monotherapy and causes a significant reduction in BP when used in combined treatments. However, the combination of DPP-4i with high-dose angiotensin converting enzyme inhibitors (ACEI) can lead to increased BP. We suggest that DPP-4i improves vascular endothelial function in hypertensive patients by suppressing inflammatory responses and by alleviating oxidative stress. In addition, DPP-4i can also regulate BP by activating the sympathetic nervous system, interfering with the renin angiotensin aldosterone system (RAAS), regulating Na/H2O metabolism, and attenuating insulin resistance (IR).
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Zhu X, Jackson EK. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2017; 312:F565-F576. [PMID: 28100502 PMCID: PMC5407068 DOI: 10.1152/ajprenal.00547.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits αq (Gαq; released by ANG II) and βγ (Gβγ; released by Gi-coupled receptors) to active phospholipase C (PLC). Here we investigated the molecular basis for the enhanced coincident signaling between Gβγ and Gαq in SHR preglomerular vascular smooth muscle cells (PGVSMCs). Because receptor for activated C kinase 1 (RACK1; a scaffolding protein) organizes interactions between Gβγ, Gαq, and PLC, we included RACK1 in this investigation. Cell fractionation studies demonstrated increased levels of membrane (but not cytosolic) Gβ, Gαq, PLCβ3, and RACK1 in SHR PGVSMCs compared with Wistar-Kyoto rat PGVSMCs. In SHR PGVSMCs, coimmunoprecipitation demonstrated RACK1 binding to Gβ and PLCβ3, but only at cell membranes. Pertussis toxin (which blocks Gβγ) and U73122 (which blocks PLC) reduced membrane RACK1; however, RACK1 knockdown (shRNA) did not affect membrane levels of Gβ, Gαq, or PLCβ3 In a novel gel contraction assay, RACK1 knockdown in SHR PGVSMCs attenuated contractions to ANG II and abrogated the ability of neuropeptide Y (which signals via Gβγ) to enhance ANG II-induced contractions. We conclude that in SHR PGVSMCs the enlarged pool of Gβγ and PLCβ3 recruits RACK1 to membranes and RACK1 then organizes signaling. Consequently, knockdown of RACK1 prevents coincident signaling between ANG II and the Gi pathway. This is the first study to implicate RACK1 in vascular smooth muscle cell contraction and suggests that RACK1 inhibitors could be effective cardiovascular drugs.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Hypertension/enzymology
- Hypertension/physiopathology
- Juxtaglomerular Apparatus/blood supply
- Male
- Microvessels/enzymology
- Microvessels/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Neuropeptide Y/metabolism
- Phospholipase C beta/metabolism
- Protein Binding
- Protein Transport
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors for Activated C Kinase
- Signal Transduction/drug effects
- Transfection
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Zhu P, Sun W, Zhang C, Song Z, Lin S. The role of neuropeptide Y in the pathophysiology of atherosclerotic cardiovascular disease. Int J Cardiol 2016; 220:235-41. [DOI: 10.1016/j.ijcard.2016.06.138] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
|
6
|
Zhu X, Gillespie DG, Jackson EK. NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am J Physiol Heart Circ Physiol 2015; 309:H1528-42. [PMID: 26371160 DOI: 10.1152/ajpheart.00070.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Cardiac sympathetic nerves release neuropeptide Y (NPY)1-36, and peptide YY (PYY)1-36 is a circulating peptide; therefore, these PP-fold peptides could affect cardiac fibroblasts (CFs). We examined the effects of NPY1-36 and PYY1-36 on the proliferation of and collagen production ([(3)H]proline incorporation) by CFs isolated from Wistar-Kyoto (WKY) normotensive rats and spontaneously hypertensive rats (SHRs). Experiments were performed with and without sitagliptin, an inhibitor of dipeptidyl peptidase 4 [DPP4; an ectoenzyme that metabolizes NPY1-36 and PYY1-36 (Y1 receptor agonists) to NPY3-36 and PYY3-36 (inactive at Y1 receptors), respectively]. NPY1-36 and PYY1-36, but not NPY3-36 or PYY3-36, stimulated proliferation of CFs, and these effects were more potent than ANG II, enhanced by sitagliptin, blocked by BIBP3226 (Y1 receptor antagonist), and greater in SHR CFs. SHR CF membranes expressed more receptor for activated C kinase (RACK)1 [which scaffolds the Gi/phospholipase C (PLC)/PKC pathway] compared with WKY CF membranes. RACK1 knockdown (short hairpin RNA) and inhibition of Gi (pertussis toxin), PLC (U73122), and PKC (GF109203X) blocked the proliferative effects of NPY1-36. NPY1-36 and PYY1-36 stimulated collagen production more potently than did ANG II, and this was enhanced by sitagliptin and greater in SHR CFs. In conclusion, 1) NPY1-36 and PYY1-36, via the Y1 receptor/Gi/PLC/PKC pathway, activate CFs, and this pathway is enhanced in SHR CFs due to increased localization of RACK1 in membranes; and 2) DPP4 inhibition enhances the effects of NPY1-36 and PYY1-36 on CFs, likely by inhibiting the metabolism of NPY1-36 and PYY1-36. The implications are that endogenous NPY1-36 and PYY1-36 could adversely affect cardiac structure/function by activating CFs, and this may be exacerbated in genetic hypertension and by DPP4 inhibitors.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Jackson EK, Mi Z, Tofovic SP, Gillespie DG. Effect of dipeptidyl peptidase 4 inhibition on arterial blood pressure is context dependent. Hypertension 2015; 65:238-49. [PMID: 25368027 PMCID: PMC4268428 DOI: 10.1161/hypertensionaha.114.04631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Because the effects of dipeptidyl peptidase 4 (DPP4) inhibitors on blood pressure are controversial, we examined the long-term effects of sitagliptin (80 mg/kg per day) on blood pressure (radiotelemetry) in spontaneously hypertensive rats (SHR), Wistar-Kyoto rats, and Zucker Diabetic-Sprague Dawley rats (metabolic syndrome model). In SHR, chronic (3 weeks) sitagliptin significantly increased systolic, mean, and diastolic blood pressures by 10.3, 9.2, and 7.9 mm Hg, respectively, a response abolished by coadministration of BIBP3226 (2 mg/kg per day; selective Y1-receptor antagonist). Sitagliptin also significantly increased blood pressure in SHR treated with hydralazine (vasodilator; 25 mg/kg per day) or enalapril (angiotensin-converting enzyme inhibitor; 10 mg/kg per day). In Wistar-Kyoto rats, chronic sitagliptin slightly decreased systolic, mean, and diastolic blood pressures (-1.8, -1.1, and -0.4 mm Hg, respectively). In Zucker Diabetic-Sprague Dawley rats, chronic sitagliptin decreased systolic, mean, and diastolic blood pressures by -7.7, -5.8, and -4.3 mm Hg, respectively, and did not alter the antihypertensive effects of chronic enalapril. Because DPP4 inhibitors impair the metabolism of neuropeptide Y1-36 (NPY1-36; Y1-receptor agonist) and glucagon-like peptide (GLP)-1(7-36)NH2 (GLP-1 receptor agonist), we examined renovascular responses to NPY1-36 and GLP-1(7-36)NH2 in isolated perfused SHR and Zucker Diabetic-Sprague Dawley kidneys pretreated with norepinephrine (to induce basal tone). In Zucker Diabetic-Sprague Dawley kidneys, NPY1-36 and GLP-1(7-36)NH2 exerted little, if any, effect on renovascular tone. In contrast, in SHR kidneys, both NPY1-36 and GLP-1(7-36)NH2 elicited potent and efficacious vasoconstriction. IN CONCLUSION (1) The effects of DPP4 inhibitors on blood pressure are context dependent; (2) The context-dependent effects of DPP4 inhibitors are due in part to differential renovascular responses to DPP4’s most important substrates (NPY1–36 and GLP-1(7–36)NH2) [corrected]; (3) Y1 receptor antagonists may prevent the prohypertensive and possibly augment the antihypertensive effects of DPP4 inhibitors.
Collapse
Affiliation(s)
- Edwin K Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA.
| | - Zaichuan Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| | - Stevan P Tofovic
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| | - Delbert G Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, PA
| |
Collapse
|
8
|
Cheng D, Zhu X, Gillespie DG, Jackson EK. Role of RACK1 in the differential proliferative effects of neuropeptide Y(1-36) and peptide YY(1-36) in SHR vs. WKY preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2013; 304:F770-80. [PMID: 23303411 DOI: 10.1152/ajprenal.00646.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies show that neuropeptide Y(1-36) (NPY(1-36)) and peptide YY(1-36) (PYY(1-36)), by engaging Y1 receptors, stimulate proliferation of spontaneous hypertensive rat (SHR) preglomerular vascular smooth muscle cells (PGVSMCs). In contrast, these peptides have little effect on proliferation of Wistar-Kyoto (WKY) PGVSMCs. Why SHR and WKY PGVSMCs differ in this regard is unknown. Because receptor for activated C kinase 1 (RACK1) can modulate cell proliferation, we tested the hypothesis that differences in RACK1 levels/localization may explain the differential response of SHR vs. WKY PGVSMCs to NPY(1-36) and PYY(1-36). Western blotting for RACK1 in subcellular fractions of cultured SHR and WKY PGVSMCs demonstrated increased levels of RACK1 in the membrane and cytoskeletal subcellular fractions of SHR vs. WKY PGVSMCs. NPY(1-36) and PYY(1-36) stimulated proliferation of SHR PGVSMCs, and siRNA knockdown of RACK1 abrogated this effect. Neither NPY(1-36) nor PYY(1-36) stimulated the proliferation of WKY PGVSMCs. However, in WKY PGVSMCs treated with a RACK1 plasmid, both NPY(1-36) and PYY(1-36) stimulated proliferation. In SHR PGVSMCs, inhibitors of the G(i)/phospholipase C/PKC pathway (a pathway known to be organized by RACK1) attenuated the ability of NPY(1-36) to stimulate the proliferation of SHR PGVSMCs. Our results suggest that RACK1 modulates the ability of PGVSMCs to respond to the proliferative actions of NPY(1-36) and PYY(1-36)and differences in RACK1 levels/localization account for, in part, differential proliferative responses to NPY(1-36) and PYY(1-36) in SHR vs. WKY PGVSMCs. Because dipeptidyl peptidase IV inhibitors increase NPY(1-36) and PYY(1-36) levels, our findings have implications for the use of such drugs in diabetic patients.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | | | |
Collapse
|
9
|
Hocher B, Reichetzeder C, Alter ML. Renal and cardiac effects of DPP4 inhibitors--from preclinical development to clinical research. Kidney Blood Press Res 2012; 36:65-84. [PMID: 22947920 DOI: 10.1159/000339028] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/18/2022] Open
Abstract
Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials - beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Berthold Hocher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| | | | | |
Collapse
|
10
|
Jackson EK, Kochanek SJ, Gillespie DG. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells. Hypertension 2012; 60:757-64. [PMID: 22802229 DOI: 10.1161/hypertensionaha.112.196501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to investigate the role of dipeptidyl peptidase IV in regulating the effects of 2 of its substrates, neuropeptide Y(1-36) and peptide YY(1-36), on proliferation of and collagen production by preglomerular vascular smooth muscle and glomerular mesangial cells from spontaneously hypertensive and normotensive rats. In cells from hypertensive rats, neuropeptide Y(1-36) and peptide YY(1-36) stimulated [(3)H]-thymidine incorporation (cell proliferation index), cell number, and [(3)H]-proline incorporation (index of collagen synthesis); and sitagliptin (dipeptidyl peptidase IV inhibitor) significantly enhanced most of these effects. Neuropeptide Y(3-36) and peptide YY(3-36) (products of dipeptidyl peptidase IV) had little effect on [(3)H]-thymidine incorporation, and sitagliptin did not enhance the effects of either peptide. BIBP3226 (Y(1) receptor antagonist) blocked the effects of neuropeptide Y(1-36) and peptide YY(1-36) on [(3)H]-thymidine incorporation in the absence and presence of sitagliptin. Neuropeptide Y(1-36) and peptide YY(1-36) stimulated [(3)H]-thymidine and [(3)H]-proline incorporation and cell number in cells from normotensive rats; however, the effects were weak and mostly not affected by sitagliptin. Real-time PCR and Western blotting showed similar dipeptidyl peptidase IV mRNA and protein levels in cells from hypertensive versus normotensive rats, with greater levels in smooth muscle versus mesangial cells. Both cell types converted peptide YY(1-36) to peptide YY(3-36) in a concentration-dependent manner that was attenuated by sitagliptin, and dipeptidyl peptidase IV activity was greater in smooth muscle versus mesangial cells. In conclusion, dipeptidyl peptidase IV inhibitors might entail a risk of renal dysfunction because of abnormal proliferation of cells in the preglomerular microcirculation and glomeruli.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
11
|
Jackson EK, Cheng D, Tofovic SP, Mi Z. Endogenous adenosine contributes to renal sympathetic neurotransmission via postjunctional A1 receptor-mediated coincident signaling. Am J Physiol Renal Physiol 2011; 302:F466-76. [PMID: 22114202 DOI: 10.1152/ajprenal.00495.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine A(1) receptor antagonists have diuretic/natriuretic activity and may be useful for treating sodium-retaining diseases, many of which are associated with increased renal sympathetic tone. Therefore, it is important to determine whether A(1) receptor antagonists alter renal sympathetic neurotransmission. In isolated, perfused rat kidneys, renal vasoconstriction induced by renal sympathetic nerve simulation was attenuated by 1) 1,3-dipropyl-8-p-sulfophenylxanthine (xanthine analog that is a nonselective adenosine receptor antagonist, but is cell membrane impermeable and thus does not block intracellular phosphodiesterases), 2) xanthine amine congener (xanthine analog that is a selective A(1) receptor antagonist), 3) 1,3-dipropyl-8-cyclopentylxanthine (xanthine analog that is a highly selective A(1) receptor antagonist), and 4) FK453 (nonxanthine analog that is a highly selective A(1) receptor antagonist). In contrast, FR113452 (enantiomer of FK453 that does not block A(1) receptors), MRS-1754 (selective A(2B) receptor antagonist), and VUF-5574 (selective A(3) receptor antagonist) did not alter responses to renal sympathetic nerve stimulation, and ZM-241385 (selective A(2A) receptor antagonist) enhanced responses. Antagonism of A(1) receptors did not alter renal spillover of norepinephrine. 2-Chloro-N(6)-cyclopentyladenosine (highly selective A(1) receptor agonist) increased renal vasoconstriction induced by exogenous norepinephrine, an effect that was blocked by 1,3-dipropyl-8-cyclopentylxanthine, U73122 (phospholipase C inhibitor), GF109203X (protein kinase C inhibitor), PP1 (c-src inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), and OSU-03012 (3-phosphoinositide-dependent protein kinase-1 inhibitor). These results indicate that adenosine formed during renal sympathetic nerve stimulation enhances the postjunctional effects of released norepinephrine via coincident signaling and contributes to renal sympathetic neurotransmission. Likely, the coincident signaling pathway is: phospholipase C → protein kinase C → c-src → phosphatidylinositol 3-kinase → 3-phosphoinositide-dependent protein kinase-1.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Dr., Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|
12
|
Tofovic DS, Bilan VP, Jackson EK. Sitagliptin augments angiotensin II-induced renal vasoconstriction in kidneys from rats with metabolic syndrome. Clin Exp Pharmacol Physiol 2010; 37:689-91. [PMID: 20374254 DOI: 10.1111/j.1440-1681.2010.05389.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Dipeptidyl peptidase (DPP) IV inhibitors enhance renovascular responses to angiotensin (Ang) II in spontaneously hypertensive rats (SHR), but not Wistar-Kyoto rats. Because DPPIV inhibitors are often used in metabolic syndrome, it is important to determine whether DPPIV inhibition in this setting enhances renovascular responses to AngII. 2. Six-week-old Lean-ZSF1 rats (harbouring SHR genes, but without metabolic syndrome; n = 11) and Obese-ZSF1 rats (harbouring SHR genes and expressing metabolic syndrome; n = 10) were provided food and water ad libitum, and metabolic parameters and renovascular responses to AngII were assessed when the animals were 7 and 8 weeks of age, respectively. 3. At 7 weeks of age, compared with Lean-ZSF1, Obese-ZSF1 demonstrated significant (P < 0.05) increases in bodyweight (262 +/- 8 vs 310 +/- 13 g), plasma glucose (112 +/- 4 vs 153 +/- 9 mg/dL), haemoglobin A1c (4.7 +/- 0.1 vs 5.8 +/- 0.4%), urinary glucose excretion (0.021 +/- 0.003 vs 6.70 +/- 1.80 g/kg bodyweight per 24 h) and urinary protein excretion (100 +/- 7 vs 313 +/- 77 mg/kg bodyweight per 24 h). Mean blood pressure was high (133 +/- 7 mmHg) in both strains. 4. At 8 weeks of age, kidneys were isolated and perfused. In Lean-ZSF1 rats, renovascular responses (i.e. changes in perfusion pressure) to physiological levels of AngII (0.1 nmol/L) were 3.4 +/- 1.3 and 18.2 +/- 5.9 mmHg in untreated (n = 5) and 1 micromol/L sitagliptin-treated (n = 6) kidneys, respectively. In Obese-ZSF1 rats, renovascular responses to AngII were 5.5 +/- 1.3 and 17.8 +/- 8.2 mmHg in untreated (n = 4) and sitagliptin-treated (n = 6) kidneys, respectively. Analysis of variance revealed a significant (P = 0.0367) effect of sitagliptin on renovascular responses to AngII that was independent of strain. 5. In conclusion, sitagliptin enhances renovascular responses to AngII in rats harbouring SHR genes and this effect persists in rats with diabetic nephropathy and metabolic syndrome.
Collapse
Affiliation(s)
- David S Tofovic
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
13
|
Jackson EK, Mi Z. Sitagliptin augments sympathetic enhancement of the renovascular effects of angiotensin II in genetic hypertension. Hypertension 2008; 51:1637-42. [PMID: 18443229 DOI: 10.1161/hypertensionaha.108.112532] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dipeptidyl peptidase IV converts neuropeptide Y(1-36) (Y(1)-receptor agonist released from renal sympathetic nerves) to neuropeptide Y(3-36) (selective Y(2)-receptor agonist). Previous studies suggest that Y(1), but not Y(2), receptors enhance renovascular responses to angiotensin II in kidneys from genetically-susceptible animals. Therefore, we hypothesized that inhibition of dipeptidyl peptidase IV with sitagliptin (antidiabetic drug) would augment the ability of exogenous and endogenous neuropeptide Y(1-36) to enhance renal vascular responses to angiotensin II in kidneys from spontaneously hypertensive rats. This hypothesis was tested using 3 protocols in isolated perfused kidneys. Results from Protocol 1: Exogenous neuropeptide Y(1-36) enhanced renovascular responses to angiotensin II. This effect of neuropeptide Y(1-36) was blocked by BIBP3226 (selective Y(1) receptor antagonist); Exogenous neuropeptide Y(3-36) did not enhance renovascular responses to angiotensin II. Results from Protocol 2: Sitagliptin augmented the ability of exogenous neuropeptide Y(1-36) to enhance renovascular responses to angiotensin II. This effect of sitagliptin was blocked by BIBP3226. Results from Protocol 3: Renal sympathetic nerve stimulation enhanced renovascular responses to angiotensin II; this enhancement was augmented by sitagliptin and abolished by BIBP3226. Neuropeptide Y(1-36) via Y(1) receptors enhances renovascular responses to angiotensin II in kidneys from genetically hypertensive animals. Sitagliptin, by blocking dipeptidyl peptidase IV, prevents metabolism of neuropeptide Y(1-36) and thereby increases the effects of neuropeptide Y(1-36) released from renal sympathetic nerves on Y(1) receptors leading to augmentation of neuropeptide Y(1-36)-induced enhancement of the renovascular effects of angiotensin II. The renal effects of dipeptidyl peptidase IV inhibitors in hypertensive diabetic patients merit a closer examination.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology, Center for Clinical Pharmacology, University of Pittsburgh, School of Medicine, PA 15219, USA.
| | | |
Collapse
|
14
|
Jackson EK, Dubinion JH, Mi Z. Effects of dipeptidyl peptidase iv inhibition on arterial blood pressure. Clin Exp Pharmacol Physiol 2008; 35:29-34. [PMID: 18047624 DOI: 10.1111/j.1440-1681.2007.04737.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of the present study was to determine whether inhibition of dipeptidyl peptidase IV (DPP IV) elevates arterial blood pressure and whether any such effect is dependent on genetic background, the sympathetic nervous system and Y(1) receptors. The rationale behind this study was that: (i) neuropeptide (NP) Y(1-36) and peptide YY(1-36) (PYY(1-36)) are endogenous Y(1) receptor agonists and are metabolised by DPP IV to NPY(3-36) and PYY(3-36), which are not Y(1) but rather selective Y(2) receptor agonists; (ii) Y(1) receptors mediate vasoconstriction, whereas Y(2) receptors have little effect on vascular tone; (iii) vaso-constrictor effect of the Y(1) receptor is enhanced in spontaneously hypertensive rats (SHR) compared with normotensive Wistar-Kyoto (WKY) rats; and (iv) NPY(1-36) is released from sympathetic nerve terminals. 2. We examined the effects of acute administration of 3-N-[(2S,3S)-2-amino-3-methylpentanoyl]-1,3-thiazolidine (P32/98; a DPP IV inhibitor) on arterial blood pressure in anaesthetized adult SHR and WKY rats in the absence and presence of either captopril, hydralazine or chlorisondamine to lower basal mean arterial blood pressure (MABP) by different mechanisms (inhibition of angiotensin-converting enzyme, direct vasodilation and ganglionic blockade, respectively). 3. In naïve SHR with severely elevated basal blood pressures (MABP = 176 +/- 3 mmHg; n = 4), i.v. boluses (1, 3 and 10 mg/kg) of P32/98 did not affect blood pressure. 4. When basal blood pressure was reduced by pretreatment of SHR with either captopril (30 mg/kg, i.v.; MABP = 116 +/- 3 mmHg; n = 9) or hydralazine (5 mg/kg, i.p.; MABP = 84 +/- 3 mmHg; n = 7), P32/98 (1, 3 and 10 mg/kg) caused significant dose-related increases in arterial blood pressure (4 +/- 2, 10 +/- 2 and 12 +/- 3 mmHg in the captopril-pretreated group, respectively (P < 0.01); 5 +/- 2, 8 +/- 3 and 11 +/- 4 mmHg in the hydralazine-pretreated group, respectively (P < 0.01)). 5. The increases in arterial blood pressure induced by P32/98 in captopril- or hydralazine-pretreated SHR were entirely blocked by pretreatment with the selective Y(1) receptor antagonist N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-d-arginine amide (BIBP 3226; 6 mg/kg per h). 6. When basal blood pressure was reduced in SHR by pretreatment with chlorisondamine (10 mg/kg, s.c.; MABP = 108 +/- 4 mmHg; n = 7), inhibition of DPP IV with P32/98 did not affect arterial blood pressure. Basal heart rate in chlorisondamine-treated SHR was significantly reduced compared with naïve SHR, captopril-pretreated SHR and hydralazine-pretreated SHR, indicating effectiveness of ganglionic blockade. 7. Unlike the results in genetically hypertensive animals, in normotensive WKY rats pretreated with captopril (30 mg/kg, i.v.; MABP = 81 +/- 4 mmHg; n = 6), or hydralazine (5 mg/kg, i.p.; MABP = 63 +/- 4 mmHg; n = 4) or chlorisondamine (10 mg/kg, s.c.; MABP = 63 +/- 4 mmHg; n = 5), P32/98 did not affect arterial blood pressure. 8. We conclude that, in genetically susceptible animals, inhibition of DPP IV increases arterial blood pressure via Y(1) receptors when elevated blood pressure is reduced with antihypertensive drugs provided that the sympathetic nervous system is functional. The results suggest vigilance because DPP IV inhibitors are used more widely in hypertensive patients treated with antihypertensive drugs.
Collapse
Affiliation(s)
- Edwin K Jackson
- Center for Clinical Pharmacology, Department of Pharmacology, University of Pittsburgh School of Medicine, 100 Technology Drive, Suite 450, Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
15
|
Jackson EK, Zhang M, Liu W, Mi Z. Inhibition of renal dipeptidyl peptidase IV enhances peptide YY1-36-induced potentiation of angiotensin II-mediated renal vasoconstriction in spontaneously hypertensive rats. J Pharmacol Exp Ther 2007; 323:431-7. [PMID: 17726157 DOI: 10.1124/jpet.107.126847] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dipeptidyl peptidase IV inhibitors are a new class of antidiabetic drugs. It is urgent, therefore, to fully understand the pharmacology of these inhibitors. Although dipeptidyl peptidase IV metabolizes at least 24 endogenous substrates, the pharmacological consequences of inhibiting the metabolism of most of these substrates is unknown. Our previous results show that Y(1) receptors, but not Y(2) receptors, enhance renovascular responses to angiotensin II in kidneys from genetically susceptible animals (spontaneously hypertensive rats). Dipeptidyl peptidase IV converts peptide YY(1-36) (circulating hormone) to peptide YY(3-36), and peptide YY(1-36) is a Y(1)-receptor agonist, whereas peptide YY(3-36) is a selective Y(2)-receptor agonist. Therefore, it is conceivable that inhibition of dipeptidyl peptidase IV in genetically susceptible kidneys may increase the ability of peptide YY(1-36) to potentiate angiotensin II-induced renal vasoconstriction. Here we demonstrate that in kidneys from spontaneously hypertensive rats 1) peptide YY(1-36) potentiates renovascular responses to angiotensin II, whereas peptide YY(3-36) has little effect, 2) 3-N-[(2S,3S)-2-amino-3-methylpentanoyl]-1,3-thiazolidine (P32/98) (dipeptidyl peptidase IV inhibitor) augments the ability of peptide YY(1-36) to enhance renovascular responses to angiotensin II, 3) dipeptidyl peptidase IV is expressed in preglomerular microvessels and glomeruli, 4) kidneys metabolize arterial PYY(1-36) to PYY(3-36) via a mechanism blocked by P32/98, and 5) preglomerular microvessels and glomeruli convert peptide YY(1-36) to peptide YY(3-36), and this conversion is inhibited by P32/98. We conclude that dipeptidyl peptidase IV is expressed in the renal microcirculation and inhibition of this ecto-enzyme causes arterial PYY(1-36) to more effectively enhance angiotensin II-induced renal vasoconstriction in genetically susceptible kidneys.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Center for Clinical Pharmacology, 100 Technology Dr., Suite 450, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. edj+@pitt.edu
| | | | | | | |
Collapse
|
16
|
Hanusch-Enserer U, Ghatei MA, Cauza E, Bloom SR, Prager R, Roden M. Relation of fasting plasma peptide YY to glucose metabolism and cardiovascular risk factors after restrictive bariatric surgery. Wien Klin Wochenschr 2007; 119:291-6. [PMID: 17571233 DOI: 10.1007/s00508-007-0776-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 12/12/2006] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Surgically induced weight loss results in reduction of comorbidities in severely obese humans. Reversal of abnormal secretion of appetite-regulating gut hormones such as peptide YY (PYY) could be contributing to the improvement of cardiovascular risk factors. METHODS Severely obese patients (n = 42, BMI = 45.7 +/- 5.3 kg/m(2)) underwent clinical examination and blood sampling for measurement of PYY, plasma lipids, oral glucose tolerance testing and assessment of insulin secretion (HOMA-%B) and action (HOMA-R, QUICKI) before and during 12 months following gastric banding. Comparisons were made at each time point of the study as well as across the total study period. RESULTS Weight loss after bariatric surgery resulted in improvement of insulin resistance by 54% (p < 0.03) and plasma triglycerides by 26% (p < 0.01) without changes in fasting PYY (16.2 +/- 8.7 pmol/l at baseline, 15.1 +/- 6.3 pmol/l at 12 months). Fasting PYY correlated negatively with plasma total cholesterol at baseline (p = 0.02) but was not associated with body weight, body mass or abdominal diameter. Individual changes in PYY (DeltaPYY) related to changes in insulin (Deltafasting insulin) at 12 months (r = -0.582, p = 0.02) and HOMA-B at 6 months (r = -0.677, p = 0.006) and 12 months (r = -0.660, p = 0.007). Diabetic status had no impact on these correlations. DISCUSSION PYY correlates with a major cardiovascular risk factor and surrogate parameters of insulin secretion but not to weight loss or body mass in severe obesity.
Collapse
|
17
|
Gradin KA, Buus CL, Li JY, Frøbert O, Simonsen U. Neuropeptide Y2 receptors are involved in enhanced neurogenic vasoconstriction in spontaneously hypertensive rats. Br J Pharmacol 2006; 148:703-13. [PMID: 16715120 PMCID: PMC1751866 DOI: 10.1038/sj.bjp.0706774] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/24/2006] [Accepted: 04/03/2006] [Indexed: 11/09/2022] Open
Abstract
1. The present study addressed the role of neuropeptide (NPY) Y2 receptors in neurogenic contraction of mesenteric resistance arteries from female spontaneously hypertensive rats (SHR). Arteries were suspended in microvascular myographs, electrical field stimulation (EFS) was performed, and protein evaluated by Western blotting and immunohistochemistry. 2. In vasopressin-activated endothelium-intact arteries, NPY and fragments with selectivity for Y1 receptors, [Leu31,Pro34]NPY, Y2 receptors, NPY(13-36), and rat pancreatic polypeptide evoked more pronounced contractions in segments from SHR than in Wistar Kyoto (WKY) arteries, even in the presence of the Y1 receptor antagonist, BIBP3226 (0.3 microM, (R)-N(2)-(diphenacetyl)-N-[(4-hydroxyphenyl)methyl]D-arginineamide). 3. In the presence of prazosin and during vasopressin activation, EFS-evoked contractions were larger in arteries from SHR compared to WKY. EFS contractions were enhanced by the Y2 receptor selective antagonist BIIE0246TF (0.5 microM, (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-y1]-1-piperazinyl]-2-oxoethyl]cyclo-pentyl-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide), reduced by BIBP3226, and abolished by the combination of BIBP3226 and BIIE0246TF. 4. Immunoblotting showed NPY Y1 and Y2 receptor expression to be similar in arteries from WKY and SHR, although a specific Y2 receptor band at 80 kDa was detected only in arteries from WKY. 5. Immunoreaction for NPY was enhanced in arteries from SHR. In contrast to arteries from WKY, BIIE0246TF increased NPY immunoreactivity in EFS-stimulated arteries from SHR. 6. The present results suggest that postjunctional neuropeptide Y1 and Y2 receptors contribute to neurogenic contraction of mesenteric small arteries. Moreover, both enhanced NPY content and altered neuropeptide Y1 and Y2 receptor activation apparently contribute to the enhanced neurogenic contraction of arteries from SHR.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Institute for Neuroscience and Physiology, University of Göteborg, Göteborg, Sweden
| | - Carsten L Buus
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Jia-Yi Li
- Neuronal Survival Unit, Wallenberg Neuroscience Center, University of Lund, Lund, Sweden
| | - Ole Frøbert
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Dubinion JH, Mi Z, Jackson EK. Role of renal sympathetic nerves in regulating renovascular responses to angiotensin II in spontaneously hypertensive rats. J Pharmacol Exp Ther 2006; 317:1330-6. [PMID: 16537795 DOI: 10.1124/jpet.106.101279] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to test the hypothesis that renal sympathetic nerves modulate angiotensin II-induced renal vasoconstriction in kidneys from genetically hypertensive rats via Y1 receptors activating the Gi pathway. In isolated, perfused kidneys from spontaneously hypertensive rats, the naturally occurring renal sympathetic cotransmitter neuropeptide Y at 6 nM enhanced angiotensin II (0.3 nM)-induced changes in perfusion pressure by 47 +/- 7 mm Hg, and this effect was inhibited by BIBP3226 [N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-D-arginine amide)], a selective Y1 receptor antagonist (1 microM). We next examined whether periarterial nerve stimulation (5 Hz) enhances renal vascular responses to a physiological level of angiotensin II (100 pM). Kidneys were pretreated with prazosin (a selective alpha1-adrenoceptor antagonist) to block nerve stimulation-induced changes in perfusion pressure. In kidneys from spontaneously hypertensive rats, but not normotensive rats, periarterial nerve stimulation significantly augmented angiotensin II-induced changes in perfusion pressure (177 +/- 26% of response in absence of stimulation). BIBP3226, but not rauwolscine (a selective alpha2-adrenoceptor antagonist), abolished periarterial nerve stimulation-induced enhancement of angiotensin II-mediated renal vasoconstriction. Pretreatment of hypertensive animals with pertussis toxin 3 days prior to kidney perfusion significantly (p < 0.000001) decreased mean blood pressure (203 +/- 2 versus 145 +/- 6 mm Hg in nonpretreated versus pertussis toxin-pretreated spontaneously hypertensive rats) and abolished periarterial nerve stimulation-induced enhancement of angiotensin II-mediated renal vasoconstriction. We conclude that, in spontaneously hypertensive rats but not normotensive rats, sympathetic nerve stimulation enhances renal vascular responses to physiological levels of angiotensin II via a mechanism mainly involving Y1 receptors coupled to Gi proteins.
Collapse
Affiliation(s)
- John H Dubinion
- Center for Clinical Pharmacology, 100 Technology Drive, Suite 450, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | |
Collapse
|