1
|
Wass AB, Krishna BA, Herring LE, Gilbert TSK, Nukui M, Groves IJ, Dooley AL, Kulp KH, Matthews SM, Rotroff DM, Graves LM, O’Connor CM. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. SCIENCE ADVANCES 2022; 8:eadd1168. [PMID: 36288299 PMCID: PMC9604534 DOI: 10.1126/sciadv.add1168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.
Collapse
Affiliation(s)
- Amanda B. Wass
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benjamin A. Krishna
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S. K. Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masatoshi Nukui
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ian J. Groves
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abigail L. Dooley
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katherine H. Kulp
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stephen M. Matthews
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lee M. Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine M. O’Connor
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Infection Biology Program, Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Pereira-Acácio A, Veloso-Santos JPM, Nossar LF, Costa-Sarmento G, Muzi-Filho H, Vieyra A. Angiotensin-(3–4) normalizes the elevated arterial blood pressure and abnormal Na+/energy handling associated with chronic undernutrition by counteracting the effects mediated by type 1 angiotensin II receptors. PLoS One 2022; 17:e0273385. [PMID: 35984814 PMCID: PMC9390919 DOI: 10.1371/journal.pone.0273385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms by which chronic administration of a multideficient diet after weaning alters bodily Na+ handling, and culminates in high systolic blood pressure (SBP) at a juvenile age. From 28 to 92 days of age, weaned male Wistar rats were given a diet with low content and poor-quality protein, and low lipid, without vitamin supplementation, which mimics the diets consumed in impoverished regions worldwide. We measured food, energy and Na+ ingestion, together with urinary Na+ excretion, Na+ density (Na+ intake/energy intake), plasma Na+ concentration, SBP, and renal proximal tubule Na+-transporting ATPases. Undernourished rats aged 92 days had only one-third of the control body mass, lower plasma albumin, higher SBP, higher energy intake, and higher positive Na+ balance accompanied by decreased plasma Na+ concentration. Losartan or Ang-(3–4) normalized SBP, and the combination of the 2 substances induced an accentuated negative Na+ balance as a result of strong inhibition of Na+ ingestion. Na+ density in undernourished rats was higher than in control, irrespective of the treatment, and they had downregulated (Na++K+)ATPase and upregulated Na+-ATPase in proximal tubule cells, which returned to control levels after Losartan or Ang-(3–4). We conclude that Na+ density, not only Na+ ingestion, plays a central role in the pathophysiology of elevated SBP in chronically undernourished rats. The observations that Losartan and Ang-(3–4) normalized SBP together with negative Na+ balance give support to the proposal that Ang II⇒AT1R and Ang II⇒AT2R axes have opposite roles within the renin-angiotensin-aldosterone system of undernourished juvenile rats.
Collapse
Affiliation(s)
- Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P. M. Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F. Nossar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
3
|
Abstract
Gonadotropin receptors include the follicle stimulating hormone receptor (FSHR) and the luteinizing hormone/choriogonadotropin receptor (LHCGR), both belong to the G protein-coupled receptor (GPCR) superfamily and are essential to reproduction. FSHR is activated by follicle stimulating hormone (FSH) while LHCGR is activated by either luteinizing hormone (LH) or choriogonadotropin (CG). Upon ligand binding, gonadotropin receptors undergo conformational changes that lead to the activation of the heterotrimeric G protein, resulting in the production of different second messengers. Gonadotropin receptors can also recruit and bind β-arrestins. This particular class of scaffold proteins were initially identified to mediate GPCRs desensitization and recycling, but it is now well established that β-arrestins can also initiate Gs-independent signaling by assembling signaling modules. Furthermore, new advances in structural biology and biophysical techniques have revealed novel activation mechanisms allowing β-arrestins and G proteins to control signaling in time and space. The ability of different ligands to preferentially elicit G- or β-arrestin-mediated signaling is known as functional selectivity or biased signaling. This new concept has switched the view of pharmacology efficacy from monodimensional to multidimensional. Biased signaling offers the possibility to separate therapeutic benefits of a drug from its adverse effects. The proof of concept that gonadotropin receptors can be subjected to biased signaling is now established. The challenge will now be the design of molecules that can specifically activate beneficial signaling pathway at gonadotropin receptors while reducing or abolishing those leading to side effects. Such strategy could for instance lead to improved treatments for infertility.
Collapse
Affiliation(s)
| | - Eric Reiter
- PCR, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France -
| |
Collapse
|
4
|
A preliminary study on the interaction between Asn-Gly-Arg (NGR)-modified multifunctional nanoparticles and vascular epithelial cells. Acta Pharm Sin B 2017; 7:361-372. [PMID: 28540174 PMCID: PMC5430811 DOI: 10.1016/j.apsb.2017.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/29/2016] [Accepted: 12/29/2016] [Indexed: 01/21/2023] Open
Abstract
Previously developed Asn-Gly-Arg (NGR) peptide-modified multifunctional poly(ethyleneimine)–poly(ethylene glycol) (PEI–PEG)-based nanoparticles (TPIC) have been considered to be promising carriers for the co-delivery of DNA and doxorubicin (DOX). As a continued effort, the aim of the present study was to further evaluate the interaction between TPIC and human umbilical vein endothelial cells (HUVEC) to better understand the cellular entry mechanism. In the present investigation, experiments relevant to co-localization, endocytosis inhibitors and factors influencing the internalization were performed. Without any treatment, there was no co-localization between aminopeptidase N/CD13 (APN/CD13) and caveolin 1 (CAV1). However, co-localization between CD13 and CAV1 was observed when cells were incubated with an anti-CD13 antibody or TPIC. As compared with antibody treatment, TPIC accelerated the speed and enhanced the degree of co-localization. TPIC entered HUVEC not only together with CD13 but also together with CAV1. However, this internalization was not dependent on the enzyme activity of CD13 but could be inhibited by methyl-β-eyclodextfin (MβCD), further identifying the involvement of caveolae-mediated endocytosis (CvME). This conclusion was also verified by endocytosis inhibitor experiments.
Collapse
|
5
|
Coleman JLJ, Ngo T, Smith NJ. The G protein-coupled receptor N-terminus and receptor signalling: N-tering a new era. Cell Signal 2017; 33:1-9. [PMID: 28188824 DOI: 10.1016/j.cellsig.2017.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 01/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are a vast family of membrane-traversing proteins, essential to the ability of eukaryotic life to detect, and mount an intracellular response to, a diverse range of extracellular stimuli. GPCRs have evolved with archetypal features including an extracellular N-terminus and intracellular C-terminus that flank a transmembrane structure of seven sequential helices joined by intracellular and extracellular loops. These structural domains contribute to the ability of a GPCR to be correctly synthesised and inserted into the cell membrane, to interact with its cognate ligand(s) and to couple with signal-transducing heterotrimeric G proteins, allowing the activated receptor to selectively modulate a number of signalling cascades. Whilst well known for its importance in receptor translation and trafficking, the GPCR N-terminus is underexplored as a participant in receptor signalling. This review aims to discuss and integrate recent advances in knowledge of the vital roles of the GPCR N-terminus in receptor signalling.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Tony Ngo
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola J Smith
- Molecular Pharmacology Group, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
6
|
Morinelli TA, Luttrell LM, Strungs EG, Ullian ME. Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol 2016; 77:240-50. [PMID: 27167177 PMCID: PMC5038354 DOI: 10.1016/j.biocel.2016.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
Abstract
The vasoactive hormone angiotensin II initiates its major hemodynamic effects through interaction with AT1 receptors, a member of the class of G protein-coupled receptors. Acting through its AT1R, angiotensin II regulates blood pressure and renal salt and water balance. Recent evidence points to additional pathological influences of activation of AT1R, in particular inflammation, fibrosis and atherosclerosis. The transcription factor nuclear factor κB, a key mediator in inflammation and atherosclerosis, can be activated by angiotensin II through a mechanism that may involve arrestin-dependent AT1 receptor internalization. Peritoneal dialysis is a therapeutic modality for treating patients with end-stage kidney disease. The effectiveness of peritoneal dialysis at removing waste from the circulation is compromised over time as a consequence of peritoneal dialysis-induced peritoneal fibrosis. The non-physiological dialysis solution used in peritoneal dialysis, i.e. highly concentrated, hyperosmotic glucose, acidic pH as well as large volumes infused into the peritoneal cavity, contributes to the development of fibrosis. Numerous trials have been conducted altering certain components of the peritoneal dialysis fluid in hopes of preventing or delaying the fibrotic response with limited success. We hypothesize that structural activation of AT1R by hyperosmotic peritoneal dialysis fluid activates the internalization process and subsequent signaling through the transcription factor nuclear factor κB, resulting in the generation of pro-fibrotic/pro-inflammatory mediators producing peritoneal fibrosis.
Collapse
Affiliation(s)
- Thomas A Morinelli
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Louis M Luttrell
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| | - Erik G Strungs
- Division of Endocrinology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Michael E Ullian
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, United States
| |
Collapse
|
7
|
Coleman JLJ, Ngo T, Schmidt J, Mrad N, Liew CK, Jones NM, Graham RM, Smith NJ. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity. Sci Signal 2016; 9:ra36. [PMID: 27072655 DOI: 10.1126/scisignal.aad1089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue.
Collapse
Affiliation(s)
- James L J Coleman
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Tony Ngo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Johannes Schmidt
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nadine Mrad
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chu Kong Liew
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Kensington, New South Wales 2033, Australia
| | - Robert M Graham
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Nicola J Smith
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia. St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia.
| |
Collapse
|
8
|
Urokinase Receptor Promotes Skin Tumor Formation by Preventing Epithelial Cell Activation of Notch1. Cancer Res 2015; 75:4895-909. [DOI: 10.1158/0008-5472.can-15-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
|
9
|
Tan S, Li L, Chen T, Chen X, Tao L, Lin X, Tao J, Huang X, Jiang J, Liu H, Wu B. β-Arrestin-1 protects against endoplasmic reticulum stress/p53-upregulated modulator of apoptosis-mediated apoptosis via repressing p-p65/inducible nitric oxide synthase in portal hypertensive gastropathy. Free Radic Biol Med 2015; 87:69-83. [PMID: 26119788 DOI: 10.1016/j.freeradbiomed.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/12/2023]
Abstract
Portal hypertensive gastropathy (PHG) is a serious cause of bleeding in patients, and is associated with portal hypertension. β-Arrestins (β-arrestin-1 and β-arrestin-2) are well-established mediators of endocytosis of G-protein-coupled receptors (GPCRs), ubiquitination, and G-protein-independent signaling. The role of β-arrestin-1 (β-arr1) in mucosal apoptosis in PHG remains unclear. The aim of this study was to investigate the involvement of β-arr1 in PHG via its regulation of endoplasmic reticulum (ER) stress/p53-upregulated modulator of apoptosis (PUMA) apoptotic signaling. Gastric mucosal injury and apoptosis were studied in PHG patients and in PHG mouse models. The induction of β-arr1 and the ER stress/PUMA signaling pathway were investigated, and the mechanisms of β-arr1-regulated gastric mucosal apoptosis were analyzed in vivo and in vitro experiments. β-arr1 and ER stress/PUMA signaling elements were markedly induced in the gastric mucosa of PHG patients and mouse models. Blockage of ER stress demonstrably attenuated the mucosal apoptosis of PHG, while targeted deletion of β-arr1 significantly aggravated the injury and ER stress/PUMA-mediated apoptosis. β-arr1 limited the activation of p65 to repress TNF-α-induced inducible nitric oxide synthase (iNOS) expression and NO release, which could regulate ER stress/PUMA-mediated mucosal apoptosis in PHG. In vivo and in vitro experiments further demonstrated that β-arr1 protected against mucosal apoptosis by repressing TNF-α-induced iNOS expression via inhibiting the activation of p65. These results indicated that β-arr1 regulated ER stress/PUMA-induced mucosal epithelial apoptosis through suppression of the TNF-α/p65/iNOS signaling pathway activation and that β-arr1 is a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leijia Li
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tingting Chen
- Department of Gastroenterology, The No. 2 Hospital of Xiamen, Xiamen, China
| | - Xiaoliang Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xianyi Lin
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoli Huang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
11
|
Takaguri A, Kamato M, Satoh Y, Ohtsuki K, Satoh K. Effect of alteration of caveolin-1 expression on doxorubicin-induced apoptosis in H9c2 cardiac cells. Cell Biol Int 2015; 39:1053-60. [DOI: 10.1002/cbin.10478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/31/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Akira Takaguri
- Division of Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka Otaru 047-0264 Japan
| | - Maiko Kamato
- Division of Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka Otaru 047-0264 Japan
| | - Yoshiaki Satoh
- Division of Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka Otaru 047-0264 Japan
| | - Kazuaki Ohtsuki
- Division of Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka Otaru 047-0264 Japan
| | - Kumi Satoh
- Division of Pharmacology; Hokkaido Pharmaceutical University School of Pharmacy; 7-1 Katsuraoka Otaru 047-0264 Japan
| |
Collapse
|
12
|
Chen Y, Palczewski K. Systems Pharmacology Links GPCRs with Retinal Degenerative Disorders. Annu Rev Pharmacol Toxicol 2015; 56:273-98. [PMID: 25839098 DOI: 10.1146/annurev-pharmtox-010715-103033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In most biological systems, second messengers and their key regulatory and effector proteins form links between multiple cellular signaling pathways. Such signaling nodes can integrate the deleterious effects of genetic aberrations, environmental stressors, or both in complex diseases, leading to cell death by various mechanisms. Here we present a systems (network) pharmacology approach that, together with transcriptomics analyses, was used to identify different G protein-coupled receptors that experimentally protected against cellular stress and death caused by linked signaling mechanisms. We describe the application of this concept to degenerative and diabetic retinopathies in appropriate mouse models as an example. Systems pharmacology also provides an attractive framework for devising strategies to combat complex diseases by using (repurposing) US Food and Drug Administration-approved pharmacological agents.
Collapse
Affiliation(s)
- Yu Chen
- Yueyang Hospital and.,Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106;
| |
Collapse
|
13
|
Eishingdrelo H, Sun W, Li H, Wang L, Eishingdrelo A, Dai S, McKew JC, Zheng W. ERK and β-arrestin interaction: a converging point of signaling pathways for multiple types of cell surface receptors. ACTA ACUST UNITED AC 2014; 20:341-9. [PMID: 25361946 DOI: 10.1177/1087057114557233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
β-Arrestin, a signal adaptor protein, mediates intracellular signal transductions through protein-protein interactions by bringing two or more proteins in proximity. Extracellular signal-regulated kinase (ERK), a protein kinase in the family of mitogen-activated protein kinases (MAPKs), is involved in various receptor signal pathways. Interaction of ERK with β-arrestin or formation of ERK/β-arrestin signal complex occurs in response to activation of a variety of cell surface receptors. The ERK/β-arrestin signal complex may be a common transducer to converge a variety of extracellular stimuli to similar downstream intracellular signaling pathways. By using a cell-based protein-protein interaction LinkLight assay technology, we demonstrate a direct interaction between ERK and β-arrestin in response to extracellular stimuli, which can be sensitively and quantitatively monitored. Activations of G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs), and cytokine receptors promote formation of the ERK/β-arrestin signal complex. Our data indicate that the ERK/β-arrestin signal complex is a common transducer that participates in a variety of receptor signaling pathways. Furthermore, we demonstrate that receptor antagonists or kinase inhibitors can block the agonist-induced ERK and β-arrestin interaction. Thus, the ERK/β-arrestin interaction assay is useful for screening of new receptor modulators.
Collapse
Affiliation(s)
| | - Wei Sun
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Hua Li
- BioInvenu Corp., East Hanover, NJ, USA
| | - Li Wang
- BioInvenu Corp., East Hanover, NJ, USA
| | | | - Sheng Dai
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - John C McKew
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Hennenberg M, Stief CG, Gratzke C. Prostatic α1-adrenoceptors: New concepts of function, regulation, and intracellular signaling. Neurourol Urodyn 2013; 33:1074-85. [DOI: 10.1002/nau.22467] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Hennenberg
- Department of Urology; Ludwig-Maximilians-University; Munich Germany
| | | | - Christian Gratzke
- Department of Urology; Ludwig-Maximilians-University; Munich Germany
| |
Collapse
|
15
|
O-Uchi J, Komukai K, Kusakari Y, Morimoto S, Kawai M, Jhun BS, Hurst S, Hongo K, Sheu SS, Kurihara S. Alpha1-adrenenoceptor stimulation inhibits cardiac excitation-contraction coupling through tyrosine phosphorylation of beta1-adrenoceptor. Biochem Biophys Res Commun 2013; 433:188-93. [PMID: 23454381 DOI: 10.1016/j.bbrc.2013.02.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/25/2022]
Abstract
Adrenoceptor stimulation is a key determinant of cardiac excitation-contraction coupling mainly through the activation of serine/threonine kinases. However, little is known about the role of protein tyrosine kinases (PTKs) activated by adrenergic signaling on cardiac excitation-contraction coupling. A cytoplasmic tyrosine residue in β1-adrenoceptor is estimated to regulate Gs-protein binding affinity from crystal structure studies, but the signaling pathway leading to the phosphorylation of these residues is unknown. Here we show α1-adrenergic signaling inhibits β-adrenergically activated Ca(2+) current, Ca(2+) transients and contractile force through phosphorylation of tyrosine residues in β1-adrenoceptor by PTK. Our results indicate that inhibition of β-adrenoceptor-mediated Ca(2+) elevation by α1-adrenoceptor-PTK signaling serves as an important regulatory feedback mechanism when the catecholamine level increases to protect cardiomyocytes from cytosolic Ca(2+) overload.
Collapse
Affiliation(s)
- Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Endothelin-1 stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by endothelin receptor transactivation of the transforming growth factor-[beta] type I receptor. J Cardiovasc Pharmacol 2011; 56:360-8. [PMID: 20625315 DOI: 10.1097/fjc.0b013e3181ee6811] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We utilized human vascular smooth muscle cells to address the question if a G-protein-coupled receptor, the endothelin (ET) receptor, could transactivate a serine/threonine kinase receptor, specifically the transforming growth factor (TGF)-[beta] receptor, T[beta]RI. Functionality of the interaction was addressed by studying endothelin-1-stimulated proteoglycan synthesis. Signaling molecules were assessed by Western blotting and proteoglycan synthesis by [35S]sulfate and 35S-met/cys incorporation and molecular size by SDS-PAGE. Endothelin-1 treatment led to a time- and concentration-dependent increase in cytosolic phosphoSmad2C, which was inhibited by the mixed endothelin receptor antagonist bosentan and the T[beta]RI antagonist SB431542. Endothelin-1 treatment led to a time-dependent increase in nuclear phosphoSmad2C. Endothelin-1-stimulated proteoglycan synthesis was partially inhibited (40%) by SB431542 and completely blocked by bosentan. The effect of endothelin-1 to stimulate an increase in glycosaminoglycan size on biglycan was also blocked in a concentration-dependent manner by SB431542. These data extend the current paradigm of G-protein coupled receptor signaling to include the transactivation of the serine kinase receptor for TGF-[beta] (T[beta]RI). This response should be considered in the context of response to endothelin-1, and the options for therapeutically targeting endothelin-1 are accordingly broadened to include downstream signaling otherwise associated with TGF-[beta] receptor activation.
Collapse
|
17
|
Smith NJ, Bennett KA, Milligan G. When simple agonism is not enough: emerging modalities of GPCR ligands. Mol Cell Endocrinol 2011; 331:241-7. [PMID: 20654693 DOI: 10.1016/j.mce.2010.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/03/2023]
Abstract
Recent advances in G protein-coupled receptors have challenged traditional definitions of agonism, antagonism, affinity and efficacy. The discovery of agonist functional selectivity and receptor allosterism has meant researchers have an expanded canvas for designing and discovering novel drugs. Here we describe modes of agonism emerging from the discovery of functional selectivity and allosterism. We discuss the concept of ago-allosterism, where ligands can initiate signaling by themselves and influence the actions of another ligand at the same receptor. We introduce the concept of dualsteric ligands that consist of distinct elements which bind to each of the orthosteric and an allosteric domain on a single receptor to enhance subtype selectivity. Finally, the concept that efficacy should be defined by the activity of an endogenous ligand will be challenged by the discovery that some ligands act as 'super-agonists' in specific pathways or at certain receptor mutations.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | |
Collapse
|
18
|
Pétrin D, Robitaille M, Hébert TE. Real-time BRET assays to measure G protein/effector interactions. Methods Mol Biol 2011; 756:245-261. [PMID: 21870230 DOI: 10.1007/978-1-61779-160-4_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Advances in imaging assays based on resonance energy transfer (RET) have made it possible to study protein/protein interactions in living cells under physiological conditions. It is now possible to measure the kinetics of changes in these interactions in response to ligand stimulation in real time. Here we describe protocols for these assays focusing on the basal and ligand-stimulated interaction between tagged Gβγ subunits and adenylyl cyclase II. We describe relevant positive and negative controls and various experimental considerations for optimization of these experiments.
Collapse
Affiliation(s)
- Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | |
Collapse
|
19
|
Takaguri A, Shirai H, Kimura K, Hinoki A, Eguchi K, Carlile-Klusacek M, Yang B, Rizzo V, Eguchi S. Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 2010; 50:545-51. [PMID: 21172357 DOI: 10.1016/j.yjmcc.2010.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
A metalloprotease, ADAM17, mediates the generation of mature ligands for the epidermal growth factor receptor (EGFR). This is the key signaling step by which angiotensin II (AngII) induces EGFR transactivation leading to hypertrophy and migration of vascular smooth muscle cells (VSMCs). However, the regulatory mechanism of ADAM17 activity remains largely unclear. Here we hypothesized that caveolin-1 (Cav1), the major structural protein of a caveolae, a membrane microdomain, is involved in the regulation of ADAM17. In cultured VSMCs, infection of adenovirus encoding Cav1 markedly inhibited AngII-induced EGFR ligand shedding, EGFR transactivation, ERK activation, hypertrophy and migration, but not intracellular Ca(2+) elevation. Methyl-β-cyclodextrin and filipin, reagents that disrupt raft structure, both stimulated an EGFR ligand shedding and EGFR transactivation in VSMCs. In addition, non-detergent sucrose gradient membrane fractionations revealed that ADAM17 cofractionated with Cav1 in lipid rafts. These results suggest that lipid rafts and perhaps caveolae provide a negative regulatory environment for EGFR transactivation linked to vascular remodeling induced by AngII. These novel findings may provide important information to target cardiovascular diseases under the enhanced renin angiotensin system.
Collapse
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Murakami S, Suzuki S, Ishii M, Inanobe A, Kurachi Y. Cellular modelling: experiments and simulation to develop a physiological model of G-protein control of muscarinic K+ channels in mammalian atrial cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2983-3000. [PMID: 20478917 DOI: 10.1098/rsta.2010.0093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The first model of G-protein-K(ACh) channel interaction was developed 14 years ago and then expanded to include both the receptor-G-protein cycle and G-protein-K(ACh) channel interaction. The G-protein-K(ACh) channel interaction used the Monod-Wyman-Changeux allosteric model with the idea that one K(ACh) channel is composed of four subunits, each of which binds one active G-protein subunit (G(betagamma)). The receptor-G-protein cycle used a previous model to account for the steady-state relationship between K(ACh) current and intracellular guanosine-5-triphosphate at various extracellular concentrations of acetylcholine (ACh). However, simulations of the activation and deactivation of K(ACh) current upon ACh application or removal were much slower than experimental results. This clearly indicates some essential elements were absent from the model. We recently found that regulators of G-protein signalling are involved in the control of K(ACh) channel activity. They are responsible for the voltage-dependent relaxation behaviour of K(ACh) channels. Based on this finding, we have improved the receptor-G-protein cycle model to reproduce the relaxation behaviour. With this modification, the activation and deactivation of K(ACh) current in the model are much faster and now fall within physiological ranges.
Collapse
Affiliation(s)
- Shingo Murakami
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
21
|
Burch ML, Ballinger ML, Yang SNY, Getachew R, Itman C, Loveland K, Osman N, Little PJ. Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by protease-activated receptor-1 transactivation of the transforming growth factor beta type I receptor. J Biol Chem 2010; 285:26798-26805. [PMID: 20571025 DOI: 10.1074/jbc.m109.092767] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factors modify the structure of the glycosaminoglycan (GAG) chains on biglycan leading to enhanced LDL binding. G-protein receptor-coupled agonists such as thrombin, signal changes the structure of proteoglycans produced by vascular smooth muscle cells (VSMCs). One component of classical G-protein-coupled receptor (GPCR) signaling invokes transactivation of protein tyrosine kinase receptors such as the epidermal growth factor receptor. Serine/threonine receptor growth factors such as transforming growth factor-(TGF)-beta are potent activators of proteoglycan synthesis. We have used the model of proteoglycan synthesis to demonstrate that the signaling paradigm of GPCR signaling can be extended to include the transactivation of serine/threonine receptor, specifically the TGF-beta type I receptor (TbetaRI) also known as activin-like kinase (ALK) V. Thrombin stimulated elongation of GAG chains and increased proteoglycan core protein expression and these responses were blocked by the TbetaRI antagonist, SB431542 and TbetaRI siRNA knockdown, as well as several protease-activated receptor (PAR)-1 antagonists. The canonical downstream response to TGF-beta is increased C-terminal phosphorylation of the transcription factor Smad2 generating phospho-Smad2C (phosphorylation of Smad2 C-terminal region). Thrombin stimulated increased phospho-Smad2C levels, and the response was blocked by SB431542 and JNJ5177094. The proteolytically inactive thrombin mimetic thrombin-receptor activating peptide also stimulated an increase in cytosolic phospho-Smad2C. Signaling pathways for growth factor regulated proteoglycan synthesis represent therapeutic targets for the prevention of atherosclerosis, but the novel finding of a GPCR-mediated transactivation of a serine/threonine growth factor receptor almost certainly has implications well beyond the synthesis of proteoglycans.
Collapse
Affiliation(s)
- Micah L Burch
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia
| | - Mandy L Ballinger
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Sundy N Y Yang
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Robel Getachew
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia
| | - Catherine Itman
- Departments of Biochemistry & Molecular Biology and Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kate Loveland
- Departments of Biochemistry & Molecular Biology and Anatomy & Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Narin Osman
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia
| | - Peter J Little
- Diabetes and Cell Biology Laboratory, BakerIDI Heart and Diabetes Institute, Melbourne, 3004 Victoria, Australia; Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Hospital, Monash University, Melbourne, 3004 Victoria, Australia.
| |
Collapse
|
22
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
23
|
Cervantes D, Crosby C, Xiang Y. Arrestin orchestrates crosstalk between G protein-coupled receptors to modulate the spatiotemporal activation of ERK MAPK. Circ Res 2009; 106:79-88. [PMID: 19926878 DOI: 10.1161/circresaha.109.198580] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE G protein-coupled receptors (GPCRs) respond to diversified extracellular stimuli to modulate cellular function. Despite extensive studies investigating the regulation of single GPCR signaling cascades, the effects of concomitant GPCR activation on downstream signaling and cellular function remain unclear. OBJECTIVE We aimed to characterize the cellular mechanism by which GPCR crosstalk regulates mitogen-activated protein kinase (MAPK) activation. METHODS AND RESULTS Adrenergic receptors on cardiac fibroblasts were manipulated to examine the role of arrestin in the spatiotemporal regulation of extracellular signal-regulated kinase (ERK)1/2 MAPK signaling. We show a general mechanism in which arrestin activation by one GPCR is capable of regulating signaling originating from another GPCR. Activation of Gq coupled-receptor signaling leads to prolonged ERK1/2 MAPK phosphorylation, nuclear accumulation, and cellular proliferation. Interestingly, coactivation of these receptors with the beta-adrenergic receptors induced transient ERK signaling localized within the cytosol, which attenuated cell proliferation. Further studies revealed that recruitment of arrestin3 to the beta2-adrenergic receptor orchestrates the sequestration of Gq-coupled receptor-induced ERK to the cytosol through direct binding of ERK to arrestin. CONCLUSIONS This is the first evidence showing that arrestin3 acts as a coordinator to integrate signals from multiple GPCRs. Our studies not only provide a novel mechanism explaining the integration of mitogenic signaling elicited by different GPCRs, but also underscore the critical role of signaling crosstalk among GPCRs in vivo.
Collapse
Affiliation(s)
- David Cervantes
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
24
|
Jiang D, Gu H, Wu Q, Wang X, Zhang M, Song B. Impact of the transfer of sFlt-1 gene fragments on the ERK1/2 pathway of VEGF in vitro. Curr Eye Res 2009; 34:800-8. [PMID: 19839874 DOI: 10.1080/02713680903090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether various sFlt-1 gene fragments affect the biological functions and ERK1/2 pathway of vascular endothelial growth factor (VEGF) under conditions of hypoxia or in the presence of high glucose concentrations in vitro. METHODS Plasmids expressing loops 2-3 and loops 2-4 of sFlt-1 were packed in carboxymethylated dextran-coated nanoparticles and transferred into human umbilical vein endothelial cells (HUVECs), which were then cultured under hypoxia or in a high-glucose environment. The proliferation and migration of HUVECs were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and low-power microscopy, respectively. Western blot analyses were performed to detect p-ERK1/2 protein expression. RESULTS After transfection with the sFlt-1(2-3) or sFlt-1(2-4) gene fragment, the proliferation and migration of HUVECs were markedly reduced, and p-ERK1/2 protein expression was down-regulated under both hypoxic and high-glucose conditions. The impacts on the proliferation, migration of HUVECs, and on p-ERK1/2 protein expression did not differ significantly between the sFlt-1(2-3) and sFlt-1(2-4) gene fragments. CONCLUSIONS Both sFlt-1(2-3) and sFlt-1(2-4) gene fragments inhibited the proliferation and migration of HUVECs, as well as signal transduction in the ERK1/2 pathway of VEGF.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Ophthalmology, Shanghai No. 6 People's Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Correll JA, Noel DM, Sheppard AB, Thompson KN, Li Y, Yin D, Brown RW. Nicotine sensitization and analysis of brain-derived neurotrophic factor in adolescent beta-arrestin-2 knockout mice. Synapse 2009; 63:510-9. [PMID: 19224602 DOI: 10.1002/syn.20625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nicotine sensitization and levels of brain-derived neurotrophic factor (BDNF) were analyzed in adolescent beta-arrestin-2 knockout (betaA-2 KO) and wild type (WT) mice. The beta-arrestin-2 protein has been shown to be important in G-protein hydrolysis and receptor internalization. Four- to five-week-old adolescent betaA-2 KO and WT C57/Bl6 mice were administered either nicotine (0.5 mg/kg free base) or saline 10 min before being placed into a locomotor arena on each of 7 (Experiment 1) or 14 (Experiment 2) consecutive days. A nicotine challenge was given 7 days after sensitization was complete. In Experiment 1, betaA-2 KO mice administered nicotine or saline and WT mice administered nicotine demonstrated significant hypoactivity during early in testing, and neither WT nor betaA-2 KO mice administered nicotine demonstrated sensitization. On the nicotine challenge, WT mice administered nicotine demonstrated significantly higher activity levels compared to all groups, and this same group demonstrated significantly higher levels of accumbal BDNF compared to all groups. In Experiment 2, betaA-2 KO mice were again hypoactive compared to WT mice, whereas WT mice administered nicotine demonstrated significant hypoactivity during initial testing and significantly higher levels of activity compared to all other groups late in testing. On the nicotine challenge, WT mice that received nicotine demonstrated a significant increase in activity compared to all groups, and showed increased accumbal BDNF compared to all groups. These results show that the beta-arrestin-2 protein is important in induction and expression of nicotine sensitization as well as nicotine's effects on accumbal BDNF.
Collapse
Affiliation(s)
- Jennifer A Correll
- Department of Psychology, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Smith NJ, Stoddart LA, Devine NM, Jenkins L, Milligan G. The action and mode of binding of thiazolidinedione ligands at free fatty acid receptor 1. J Biol Chem 2009; 284:17527-39. [PMID: 19398560 DOI: 10.1074/jbc.m109.012849] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endogenous ligands for free fatty acid receptor 1 (FFA1) are medium and longer chain free fatty acids. However, a range of selective, small molecule ligands have recently been developed as tool compounds to explore the therapeutic potential of this receptor, whereas clinically employed thiazolidinedione "glitazone" drugs are also agonists at FFA1. Each of these classes of agonist was able to promote phosphorylation of the ERK1/2 mitogen-activated protein (MAP) kinases in cells able to express human FFA1 on demand. However, although both lauric acid and the synthetic agonist GW9508X produced rapid and transient ERK1/2 MAP kinase phosphorylation, the thiazolidinedione rosiglitazone produced responses that were sustained for a substantially longer period. Despite this difference, the effects of each ligand required FFA1 and were transduced in each case predominantly via G proteins of the Galphaq/Galpha11 family. Different glitazone drugs also displayed markedly different efficacy and kinetics of sustainability of ERK1/2 MAP kinase phosphorylation. A number of orthosteric binding site mutants of FFA1 were generated, and despite variations in the changes of potency and efficacy of the three ligand classes in different functional end point assays, these were consistent with rosiglitazone also binding at the orthosteric site. Four distinct polymorphic variants of human FFA1 have been described. Despite previous indications that these display differences in function and pharmacology, they all responded in entirely equivalent ways to lauric acid, rosiglitazone, and GW9508X in measures of ERK1/2 MAP kinase phosphorylation, enhancement of binding of [35S]GTPgammaS (guanosine 5'-O-(3-[35S]thio)triphosphate) to Galphaq, and elevation of intracellular [Ca2+], suggesting that individuals expressing each variant are likely to respond equivalently to orthosteric agonists of FFA1.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Group, Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Hennenberg M, Trebicka J, Stark C, Kohistani AZ, Heller J, Sauerbruch T. Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol 2009; 157:258-70. [PMID: 19338580 DOI: 10.1111/j.1476-5381.2009.00158.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Extrahepatic vasodilation and increased intrahepatic vascular resistance represent attractive targets for the medical treatment of portal hypertension in liver cirrhosis. In both dysfunctions, dysregulation of the contraction-mediating Rho kinase plays an important role as it contributes to altered vasoconstrictor responsiveness. However, the mechanisms of vascular Rho kinase dysregulation in cirrhosis are insufficiently understood. They possibly involve mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-dependent mechanisms in extrahepatic vessels. As the multikinase inhibitor sorafenib inhibits ERK, we tested the effect of sorafenib on haemodynamics and dysregulated vascular Rho kinase in rats with secondary biliary cirrhosis. EXPERIMENTAL APPROACH Secondary biliary cirrhosis was induced by bile duct ligation (BDL). Sorafenib was given orally for 1 week (60 mg.kg(-1).d(-1)). Messenger RNA levels were determined by quantitative real time polymerase chain reaction, protein expressions and protein phosphorylation by Western blot analysis. Aortic contractility was studied by myographic measurements, and intrahepatic vasoregulation by using livers perfused in situ. In vivo, haemodynamic parameters were assessed invasively in combination with coloured microspheres. KEY RESULTS In BDL rats, treatment with sorafenib decreased portal pressure, paralleled by decreases in hepatic Rho kinase expression and Rho kinase-mediated intrahepatic vascular resistance. In aortas from BDL rats, sorafenib caused up-regulation of Rho kinase and an improvement of aortic contractility. By contrast, mesenteric Rho kinase remained unaffected by sorafenib. CONCLUSIONS AND IMPLICATIONS Intrahepatic dysregulation of vascular Rho kinase expression is controlled by sorafenib-sensitive mechanisms in rats with secondary biliary cirrhosis. Thus, sorafenib reduced portal pressure without affecting systemic blood pressure.
Collapse
Affiliation(s)
- M Hennenberg
- Department of Internal Medicine I, University of Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Zhao H, Qiu Y, Loh HH, Law PY. Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 2008; 284:1990-2000. [PMID: 19029294 DOI: 10.1074/jbc.m807971200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed that in G protein-coupled receptor signalings switching between G protein- and beta-arrestin (betaArr)-dependent pathways occurs. In the case of opioid receptors, the signal is switched from the initial inhibition of adenylyl cyclase (AC) to an increase in AC activity (AC activation) during prolonged agonist treatment. The mechanism of such AC activation has been suggested to involve the switching of G proteins activated by the receptor, phosphorylation of signaling molecules, or receptor-dependent recruitment of cellular proteins. Using protein kinase inhibitors, dominant negative mutant studies and mouse embryonic fibroblast cells isolated from Src kinase knock-out mice, we demonstrated that mu-opioid receptor (OPRM1)-mediated AC activation requires direct association and activation of Src kinase by lipid raft-located OPRM1. Such Src activation was independent of betaArr as indicated by the ability of OPRM1 to activate Src and AC after prolonged agonist treatment in mouse embryonic fibroblast cells lacking both betaArr-1 and -2. Instead the switching of OPRM1 signals was dependent on the heterotrimeric G protein, specifically Gi2 alpha-subunit. Among the Src kinase substrates, OPRM1 was phosphorylated at Tyr336 within NPXXY motif by Src during AC activation. Mutation of this Tyr residue, together with mutation of Tyr166 within the DRY motif to Phe, resulted in the complete blunting of AC activation. Thus, the recruitment and activation of Src kinase by OPRM1 during chronic agonist treatment, which eventually results in the receptor tyrosine phosphorylation, is the key for switching the opioid receptor signals from its initial AC inhibition to subsequent AC activation.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
29
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mamillapalli R, VanHouten J, Zawalich W, Wysolmerski J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J Biol Chem 2008; 283:24435-47. [PMID: 18621740 PMCID: PMC2528989 DOI: 10.1074/jbc.m801738200] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/26/2008] [Indexed: 12/20/2022] Open
Abstract
The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to stimulate PTHrP production by breast cancer cells. In this study, we confirmed that the CaR inhibits PTHrP production by MMECs but stimulates PTHrP production by Comma-D cells (immortalized murine mammary cells) and MCF-7 human breast cancer cells. We found that changes in intracellular cAMP, but not phospholipase C or MAPK signaling, correlated with the opposing effects of the CaR on PTHrP production. Pharmacologic stimulation of cAMP accumulation increased PTHrP production by normal and transformed breast cells. Inhibition of protein kinase A activity mimicked the effects of CaR activation on inhibiting PTHrP secretion by MMECs and blocked the effects of the CaR on stimulating PTHrP production in Comma-D and MCF-7 cells. We found that the CaR coupled to Galphai in MMECs but coupled to Galphas in Comma-D and MCF-7 cells. Thus, the opposing effects of the CaR on PTHrP production are because of alternate G-protein coupling of the receptor in normal versus transformed breast cells. Because PTHrP contributes to hypercalcemia and bone metastases, switching of G-protein usage by the CaR may contribute to the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - Walter Zawalich
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| | - John Wysolmerski
- Section of Endocrinology and Metabolism,
Department of Internal Medicine, School of Medicine and
School of Nursing, Yale University, New Haven,
Connecticut 06520
| |
Collapse
|
31
|
Boivin B, Vaniotis G, Allen BG, Hébert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res 2008; 28:15-28. [PMID: 18437627 DOI: 10.1080/10799890801941889] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signaling from internalizing and endosomal receptors has almost become a classic GPCR paradigm in the last several years. However, it has become clear in recent years that GPCRs also elicit signals when resident at other subcellular sites including the endoplasmic reticulum, Golgi apparatus, and the nucleus. In this review we discuss the nature, function, and trafficking of nuclear GPCR signaling complexes, as well as potential sources of endogenous and exogenous ligands. Finally, we pose a series of questions that will need to be answered in the coming years to confirm and extend this as a new paradigm for GPCR signaling.
Collapse
Affiliation(s)
- Benoit Boivin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | | | |
Collapse
|
32
|
Ohtsu H, Higuchi S, Shirai H, Eguchi K, Suzuki H, Hinoki A, Brailoiu E, Eckhart AD, Frank GD, Eguchi S. Central role of Gq in the hypertrophic signal transduction of angiotensin II in vascular smooth muscle cells. Endocrinology 2008; 149:3569-75. [PMID: 18356277 PMCID: PMC2453088 DOI: 10.1210/en.2007-1694] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The angiotensin II (AngII) type 1 receptor (AT(1)) plays a critical role in hypertrophy of vascular smooth muscle cells (VSMCs). Although it is well known that G(q) is the major G protein activated by the AT(1) receptor, the requirement of G(q) for AngII-induced VSMC hypertrophy remains unclear. By using cultured VSMCs, this study examined the requirement of G(q) for the epidermal growth factor receptor (EGFR) pathway, the Rho-kinase (ROCK) pathway, and subsequent hypertrophy. AngII-induced intracellular Ca(2+) elevation was completely inhibited by a pharmacological G(q) inhibitor as well as by adenovirus encoding a G(q) inhibitory minigene. AngII (100nm)-induced EGFR transactivation was almost completely inhibited by these inhibitors, whereas these inhibitors only partially inhibited AngII (100nm)-induced phosphorylation of a ROCK substrate, myosin phosphatase target subunit-1. Stimulation of VSMCs with AngII resulted in an increase of cellular protein and cell volume but not in cell number. The G(q) inhibitors completely blocked these hypertrophic responses, whereas a G protein-independent AT(1) agonist did not stimulate these hypertrophic responses. In conclusion, G(q) appears to play a major role in the EGFR pathway, leading to vascular hypertrophy induced by AngII. Vascular G(q) seems to be a critical target of intervention against cardiovascular diseases associated with the enhanced renin-angiotensin system.
Collapse
MESH Headings
- Adenoviridae/genetics
- Angiotensin II/pharmacology
- Animals
- Calcium/metabolism
- Cell Enlargement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- ErbB Receptors/metabolism
- ErbB Receptors/physiology
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Hypertrophy
- Immunoblotting
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/physiology
- Phosphorylation/drug effects
- Protein Phosphatase 1/metabolism
- Rats
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Signal Transduction/drug effects
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Haruhiko Ohtsu
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Perrino C, Rockman HA. Reversal of cardiac remodeling by modulation of adrenergic receptors: a new frontier in heart failure. Curr Opin Cardiol 2007; 22:443-9. [PMID: 17762546 DOI: 10.1097/hco.0b013e3282294d72] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Heart failure is a common clinical syndrome, and despite intensive medical therapy it remains a leading cause of global morbidity and mortality. Pathological stimuli promote a general remodeling process in the heart. RECENT FINDINGS Recent animal studies have highlighted very promising novel therapeutic possibilities, based on the regulation of adrenergic receptor function, and novel signaling pathways are being discovered that could be relevant for future molecular approaches. SUMMARY This review highlights some of the novel approaches to reverse pathological remodeling and improve cardiac dysfunction, placing emphasis on strategies targeting the adrenergic receptors.
Collapse
Affiliation(s)
- Cinzia Perrino
- Division of Cardiology, Department of Clinical Medicine, Cardiovascular and Immunological Sciences, Federico II University, Naples, Italy
| | | |
Collapse
|
34
|
Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol 2007; 153 Suppl 1:S298-309. [PMID: 18037927 DOI: 10.1038/sj.bjp.0707508] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
G-protein-coupled receptors (GPCRs), also known as seven transmembrane receptors (7-TMRs), are the largest protein receptor superfamily in the body. These receptors and their ligands direct a diverse array of physiological responses, and hence have broad relevance to numerous diseases. As a result, they have generated considerable interest in the pharmaceutical industry as drug targets. Recently, GPCRs have been demonstrated to elicit signals through interaction with the scaffolding proteins, beta-arrestins-1 and 2, independent of heterotrimeric G-protein coupling. This review discusses several known G-protein-independent, beta-arrestin-dependent pathways and their potential physiological and pharmacological significance. The emergence of G-protein-independent signalling changes the way in which GPCR signalling is evaluated, from a cell biological to a pharmaceutical perspective and raises the possibility for the development of pathway specific therapeutics.
Collapse
|
35
|
Aguilera G, Kiss A, Liu Y, Kamitakahara A. Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress 2007; 10:153-61. [PMID: 17514584 DOI: 10.1080/10253890701391192] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Corticotropin releasing factor (CRF) coordinates behavioral, autonomic and hormonal responses to stress. Activation of the hypothalamic pituitary adrenal (HPA) axis with stimulation of CRF and vasopressin (VP) release from hypothalamic parvocellular neurons, and consequent secretion of ACTH from the anterior pituitary and glucocorticoid from the adrenal cortex, is the major endocrine response to stress. Current evidence indicates that the main regulator of ACTH secretion in acute and chronic conditions is CRF, in spite of the fact that the selective increases in expression of parvocellular VP and pituitary VP V1b receptors observed during prolonged activation of the HPA axis have suggested that VP becomes the predominant regulator. Following CRF release, activation of CRF transcription is required to restore mRNA and peptide levels, but termination of the response is essential to prevent pathology associated with chronic elevation of CRF and glucocorticoid production. While glucocorticoid feedback plays an important role in regulating CRF expression, the relative importance of direct transcriptional repression of the CRF gene by glucocorticoids in the overall feedback mechanism is not clear. In addition to glucocorticoids, intracellular feedback mechanisms in the CRF neuron, involving induction of repressor forms of cAMP response element modulator (CREM) limit CRF transcriptional responses by competing with the positive regulator, phospho-CREB. Rapid repression of CRF transcription following stress-induced activation is likely to contribute to limiting the stress response and to preventing disorders associated with excessive CRF production.
Collapse
Affiliation(s)
- Greti Aguilera
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-1103, USA.
| | | | | | | |
Collapse
|
36
|
Jiang X, Benovic JL, Wedegaertner PB. Plasma membrane and nuclear localization of G protein coupled receptor kinase 6A. Mol Biol Cell 2007; 18:2960-9. [PMID: 17538017 PMCID: PMC1949383 DOI: 10.1091/mbc.e07-01-0013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) specifically phosphorylate agonist-occupied GPCRs at the inner surface of the plasma membrane (PM), leading to receptor desensitization. Here we show that the C-terminal 30 amino acids of GRK6A contain multiple elements that either promote or inhibit PM localization. Disruption of palmitoylation by individual mutation of cysteine 561, 562, or 565 or treatment of cells with 2-bromopalmitate shifts GRK6A from the PM to both the cytoplasm and nucleus. Likewise, disruption of the hydrophobic nature of a predicted amphipathic helix by mutation of two leucines to alanines at positions 551 and 552 causes a loss of PM localization. Moreover, acidic amino acids in the C-terminus appear to negatively regulate PM localization; mutational replacement of several acidic residues with neutral or basic residues rescues PM localization of a palmitoylation-defective GRK6A. Last, we characterize the novel nuclear localization, showing that nuclear export of nonpalmitoylated GRK6A is sensitive to leptomycin B and that GRK6A contains a potential nuclear localization signal. Our results suggest that the C-terminus of GRK6A contains a novel electrostatic palmitoyl switch in which acidic residues weaken the membrane-binding strength of the amphipathic helix, thus allowing changes in palmitoylation to regulate PM versus cytoplasmic/nuclear localization.
Collapse
Affiliation(s)
- Xiaoshan Jiang
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
37
|
Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 2007; 112:417-28. [PMID: 17346243 DOI: 10.1042/cs20060342] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intracellular signal transduction of AngII (angiotensin II) has been implicated in cardiovascular diseases, such as hypertension, atherosclerosis and restenosis after injury. AT(1) receptor (AngII type-1 receptor), a G-protein-coupled receptor, mediates most of the physiological and pathophysiological actions of AngII, and this receptor is predominantly expressed in cardiovascular cells, such as VSMCs (vascular smooth muscle cells). AngII activates various signalling molecules, including G-protein-derived second messengers, protein kinases and small G-proteins (Ras, Rho, Rac etc), through the AT(1) receptor leading to vascular remodelling. Growth factor receptors, such as EGFR (epidermal growth factor receptor), have been demonstrated to be 'trans'-activated by the AT(1) receptor in VSMCs to mediate growth and migration. Rho and its effector Rho-kinase/ROCK are also implicated in the pathological cellular actions of AngII in VSMCs. Less is known about the endothelial AngII signalling; however, recent studies suggest the endothelial AngII signalling positively, as well as negatively, regulates the NO (nitric oxide) signalling pathway and, thereby, modulates endothelial dysfunction. Moreover, selective AT(1)-receptor-interacting proteins have recently been identified that potentially regulate AngII signal transduction and their pathogenic functions in the target organs. In this review, we focus our discussion on the recent findings and concepts that suggest the existence of the above-mentioned novel signalling mechanisms whereby AngII mediates the formation of cardiovascular diseases.
Collapse
Affiliation(s)
- Sadaharu Higuchi
- Cardiovascular Research Center, Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Wang Seong Ryu
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Chee Jeong Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|