1
|
Abstract
Neurogenic pulmonary edema (NPE) is a life-threatening complication of central nervous system (CNS) injuries. This review summarizes current knowledge about NPE etiology and pathophysiology with an emphasis on its experimental models, including our spinal cord compression model. NPE may develop as a result of activation of specific CNS trigger zones located in the brainstem, leading to a rapid sympathetic discharge, rise in systemic blood pressure, baroreflex-induced bradycardia, and enhanced venous return resulting in pulmonary vascular congestion characterized by interstitial edema, intra-alveolar accumulation of transudate, and intra-alveolar hemorrhages. The potential etiological role of neurotransmitter changes in NPE trigger zones leading to enhanced sympathetic nerve activity is discussed. Degree of anesthesia is a crucial determinant for the extent of NPE development in experimental models because of its influence on sympathetic nervous system activity. Sympathetic hyperactivity is based on the major activation of either ascending spinal pathways by spinal cord injury or NPE trigger zones by increased intracranial pressure. Attenuation of sympathetic nerve activity or abolition of reflex bradycardia completely prevent NPE development in our experimental model. Suggestions for future research into NPE pathogenesis as well as therapeutic potential of particular drugs and interventions are discussed.
Collapse
Affiliation(s)
- Jiří Šedý
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
2
|
Affiliation(s)
- Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences
| |
Collapse
|
3
|
Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiol Regul Integr Comp Physiol 2011; 300:R818-26. [PMID: 21289238 DOI: 10.1152/ajpregu.00426.2010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) play important roles in blood pressure regulation via the modulation of the autonomic nervous system, particularly in the central nervous system (CNS). In general, accumulating evidence suggests that NO inhibits, but ROS activates, the sympathetic nervous system. NO and ROS, however, interact with each other. Our consecutive studies and those of others strongly indicate that an imbalance between NO bioavailability and ROS generation in the CNS, including the brain stem, activates the sympathetic nervous system, and this mechanism is involved in the pathogenesis of neurogenic aspects of hypertension. In this review, we focus on the role of NO and ROS in the regulation of the sympathetic nervous system within the brain stem and subsequent cardiovascular control. Multiple mechanisms are proposed, including modulation of neurotransmitter release, inhibition of receptors, and alterations of intracellular signaling pathways. Together, the evidence indicates that an imbalance of NO and ROS in the CNS plays a pivotal role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
4
|
Šedý J, Zicha J, Kuneš J, Hejčl A, Syková E. The role of nitric oxide in the development of neurogenic pulmonary edema in spinal cord-injured rats: the effect of preventive interventions. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1111-7. [DOI: 10.1152/ajpregu.00251.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurogenic pulmonary edema (NPE) is an acute life-threatening complication following an injury of the spinal cord or brain, which is associated with sympathetic hyperactivity. The role of nitric oxide (NO) in NPE development in rats subjected to balloon compression of the spinal cord has not yet been examined. We, therefore, pretreated Wistar rats with the NO synthase inhibitor N G-nitro-l-arginine methyl ester (l-NAME) either acutely (just before the injury) or chronically (for 4 wk prior to the injury). Acute (but not chronic) l-NAME administration enhanced NPE severity in rats anesthetized with 1.5% isoflurane, leading to the death of 83% of the animals within 10 min after injury. Pretreatment with either the ganglionic blocker pentolinium (to reduce blood pressure rise) or the muscarinic receptor blocker atropine (to lessen heart rate decrease) prevented or attenuated NPE development in these rats. We did not observe any therapeutic effects of atropine administered 2 min after spinal cord compression. Our data indicate that NPE development is dependent upon a marked decrease of heart rate under the conditions of high blood pressure elicited by the activation of the sympathetic nervous system. These hemodynamic alterations are especially pronounced in rats subjected to acute NO synthase inhibition. In conclusion, nitric oxide has a partial protective effect on NPE development because it attenuates sympathetic vasoconstriction and consequent baroreflex-induced bradycardia following spinal cord injury.
Collapse
Affiliation(s)
- Jiří Šedý
- Institute of Experimental Medicine and
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Dental Research, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Josef Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Center for Cardiovascular Research, Prague, Czech Republic; and
| | - Jaroslav Kuneš
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Center for Cardiovascular Research, Prague, Czech Republic; and
| | | | - Eva Syková
- Institute of Experimental Medicine and
- Center for Cell Therapy and Tissue Repair and Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Atarashi K, Ishiyama A, Minami M, Takagi M, Omata M. Effects of acute hypercholesterolemia on blood pressure and pressor response to norepinephrine in rats. Blood Press 2009; 13:56-61. [PMID: 15083642 DOI: 10.1080/08037050310028471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To examine if high cholesterol in blood acutely affects the blood pressure, we partly exchanged the blood of normal rats for that of hypercholesterolemic rats. Male Sprague-Dawley rats were fed for 8 weeks with a high-cholesterol diet (4% cholesterol; HC) or a normal diet (NC). The rats were catheterized; and blood of animals in NC was partly exchanged with that of HC (N-H) or other animals in NC (N-N). Systolic blood pressure (SBP) and the pressor response to norepinephrine (NE) in N-H were compared with those of N-N. Serum lipids and malondialdehyde (MDA), and urinary excretion of protein (UP) and NE (UNE) were determined. After 8 weeks, SBP, serum total cholesterol (TC), MDA, UP and UNE were higher in the HC. Blood exchange caused an increase in TC, MDA and SBP in only the N-H. Increases in SBP caused by NE injection were rather less in the N-H than in the N-N. The blood pressure increase induced by a high-cholesterol diet seemed to be caused by certain factors in the blood of hypercholesterolemic rats. Excessive lipid oxidation induced by hypercholesterolemia may be involved in the blood pressure elevation.
Collapse
Affiliation(s)
- Keiichiro Atarashi
- Department of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
6
|
Arraj M, Lemmer B. Circadian Rhythms in Heart Rate, Motility, and Body Temperature of Wild‐type C57 and eNOS Knock‐out Mice Under Light‐dark, Free‐run, and After Time Zone Transition. Chronobiol Int 2009; 23:795-812. [PMID: 16887749 DOI: 10.1080/07420520600827111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system--though expressed in the suprachiasmatic nuclei and in peripheral tissues--did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.
Collapse
Affiliation(s)
- M Arraj
- Institute of Pharmacology and Toxicology Mannheim, Ruprecht-Karls-University of Heidelberg, Germany
| | | |
Collapse
|
7
|
Arraj M, Lemmer B. Endothelial nitric oxide is not involved in circadian rhythm generation of blood pressure: experiments in wild-type C57 and eNOS knock-out mice under light-dark and free-run conditions. Chronobiol Int 2008; 24:1231-40. [PMID: 18075809 DOI: 10.1080/07420520701795357] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endothelial nitric oxide synthase knock out mice (eNOS-/-) are mildly hypertensive in comparison to wild-type (WT) mice. Hypertension in eNOS-/- mice is partly the result of an increase in peripheral resistance due to the absence of the vasodilatory action of NO. No data are available for these animals regarding the 24 h blood pressure profile under the 12:12 h light-dark cycle (LD) and constant dark (DD) conditions. Therefore, this study aimed to investigate by radiotelemetry the circadian rhythms in systolic blood pressure (SBP) and diastolic blood pressure (DBP) of six eNOS-/- mice and five wild-type mice under LD and DD. Data were collected beginning 3 wks after operation (implantation of sensor) for 2 wks under LD and for another 2 wks thereafter under DD. Our results show that eNOS-/- mice were hypertensive under all experimental conditions. SBP and DBP were significantly higher by about 15% in eNOS-/- mice. No differences were found in the pattern of the circadian rhythms, rhythmicity, or period lengths during LD or DD. The genetic deletion of eNOS seems to lead to higher SBP and DBP, but the circadian blood pressure pattern is still preserved with higher values during the night (active phase) and lower values during the daytime (rest phase). Thus, endothelial-derived NO plays an important role in the regulation of vascular tone and haemodynamics, but it is not important for the circadian organization of SBP and DBP.
Collapse
Affiliation(s)
- M Arraj
- Institute of Pharmacology and Toxicology Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
8
|
Xing J, Li DP, Li J. Role of GABA receptors in nitric oxide inhibition of dorsolateral periaqueductal gray neurons. Neuropharmacology 2008; 54:734-44. [PMID: 18222497 DOI: 10.1016/j.neuropharm.2007.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 11/26/2007] [Accepted: 12/07/2007] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) affects neuronal activity of the midbrain periaqueductal gray (PAG). The purpose of this report was to investigate the role of GABA receptors in NO modulation of neuronal activity through inhibitory and excitatory synaptic inputs within the dorsolateral PAG (dl-PAG). First, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) and excitatory postsynaptic currents (mEPSCs) were recorded using whole cell voltage-clamp methods. Increased NO by either S-nitroso-N-acetyl-penicillamine (SNAP, 100 microM) or L-arginine (50 microM) significantly augmented the frequency of mIPSCs of the dl-PAG neurons without altering their amplitudes or decay time constants. The effects were eliminated after bath application of carboxy-PTIO (NO scavenger), and 1-(2-trifluorom-ethylphenyl) imidazole (NO synthase inhibitor). In contrast, SNAP and L-arginine did not alter mEPSCs in dl-PAG neurons. However the frequency of mEPSCs was significantly increased with prior application of the GABA(B) receptors antagonist, CGP55845. In addition, NO significantly decreased the discharge rate of spontaneous action potentials in the dl-PAG neurons and the effect was reduced in the presence of the GABA(A) receptor antagonist, bicuculline. Our data show that within the dl-PAG NO potentiates the synaptic release of GABA, while NO-induced GABA presynaptically inhibits glutamate release through GABA(B) receptors. Overall, NO suppresses neuronal activity of the dl-PAG via a potentiation of GABAergic synaptic inputs and via GABA(A) receptors.
Collapse
Affiliation(s)
- Jihong Xing
- Heart and Vascular Institute and Department of Medicine, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
9
|
Schwenke DO, Pearson JT, Tsuchimochi H, Kangawa K, Shirai M. PULMONARY VASCULAR REACTIVITY OF SPONTANEOUSLY HYPERTENSIVE RATS IS EXACERBATED IN RESPONSE TO THE CENTRAL ADMINISTRATION OF EXOGENOUS NITRIC OXIDE. Clin Exp Pharmacol Physiol 2007; 34:88-94. [PMID: 17201741 DOI: 10.1111/j.1440-1681.2007.04544.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Centrally, nitric oxide (NO) is a sympathoinhibitory substance. Spontaneously hypertensive rats (SHR) have an impaired central nitroxidergic system and, consequently, NO-mediated decrease in sympathetic activity is exacerbated in SHR compared with Wistar-Kyoto (WKY) rats. We have demonstrated previously that acute hypoxic pulmonary vasoconstriction (HPV) is enhanced by central NO administration. Therefore, in the present study, we hypothesized that accentuation of the HPV by NO would be exacerbated in SHR compared with WKY rats. 2. Mean pulmonary arterial pressure, systemic mean arterial blood pressure, cardiac output and heart rate were measured in pentobarbitone-anaesthetized, artificially ventilated, male SHR and WKY rats. The brief, transient response to a bolus intracerebroventricular (i.c.v.) dose of N(G)-nitro-L-arginine methyl ester (L-NAME; 150 microg in 10 microL) was recorded in all rats. Upon recovery, rats were exposed to acute hypoxia (10% O(2) for 4 min) before and after the i.c.v. administration of the NO donor 3-[4-morpholinyl]-sydnonimine-hydrochloride (SIN-1; 100 microg in 10 microL). 3. In WKY rats, central inhibition of NO synthesis by L-NAME caused a mild increase in tonic pulmonary vascular tone and induced a large systemic pressor response. These responses were not observed in SHR. In contrast, SIN-1 failed to alter tonic pulmonary vascular tone, although it enhanced the HPV in WKY rats and, significantly more so, in SHR. 4. These results confirm that accentuation of the HPV by NO is exacerbated in SHR compared with WKY rats. The mechanism(s) by which the HPV is accentuated by central NO remains to be fully elucidated, but is likely to be associated with the sympathoinhibitory effects of NO and, if so, supports the idea that the nitroxidergic system of the SHR is impaired. Further electrophysiological studies are essential to confirm these assumptions.
Collapse
Affiliation(s)
- Daryl O Schwenke
- Department of Biochemistry, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Schwenke DO, Pearson JT, Tsuchimochi H, Mori H, Shirai M. Exogenous nitric oxide centrally enhances pulmonary reactivity in the normal and hypertensive rat. Clin Exp Pharmacol Physiol 2005; 32:952-9. [PMID: 16405452 DOI: 10.1111/j.1440-1681.2005.4290.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Chronic hypoxia causes sustained pulmonary hypertension and, although impairment of the pulmonary endothelial nitric oxide (NO) pathway has been implicated, no study has described the central role of NO in modulating pulmonary vascular tone and reactivity. Centrally, NO inhibits sympathetic outflow, so we hypothesised that central NO would modulate pulmonary vascular tone and its reactivity to acute hypoxia, especially in the hypertensive state. 2. Male adult Sprague-Dawley rats were exposed to normoxia (N) or chronic hypoxia (CH; 12% O2) for 14 days. Mean pulmonary arterial pressure (MPAP), systemic mean arterial blood pressure (MABP), cardiac output and heart rate were then measured in pentobarbitone-anaesthetized, artificially ventilated rats. The N and CH rats were exposed to acute hypoxia (10% O2 for 4 min) after the intracerebroventricular (i.c.v.) administration of artificial cerebrospinal fluid (control) and then again after either i.c.v. NG-nitro-L-arginine methyl ester (L-NAME; 150 microg in 10 microL) or 3-morpholino-sydnonimine hydrochloride (SIN-1; 100 microg in 10 microL). 3. Chronic hypoxia caused pulmonary hypertension (MPAP 20+/-1 vs 30+/-1 mmHg in N and CH rats, respectively) and attenuated acute hypoxic pulmonary vasoconstriction (HPV). Central inhibition of NO synthesis (by l-NAME) did not alter baseline MPAP or the acute HPV in either N or CH rats, but it did elevate MABP. The NO donor SIN-1 did not alter baseline MPAP, but it did enhance (N rats) or restore (CH rats) the HPV and decreased MABP. 4. The results of the present study indicate that central NO has a limited role in the tonic modulation of MPAP during normoxia and after chronic hypoxia. However, the acute HPV seems to be enhanced by exogenous NO.
Collapse
Affiliation(s)
- Daryl O Schwenke
- Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
12
|
Sakai K, Hirooka Y, Shigematsu H, Kishi T, Ito K, Shimokawa H, Takeshita A, Sunagawa K. Overexpression of eNOS in brain stem reduces enhanced sympathetic drive in mice with myocardial infarction. Am J Physiol Heart Circ Physiol 2005; 289:H2159-66. [PMID: 16006546 DOI: 10.1152/ajpheart.00408.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced nitric oxide (NO) in the brain might contribute to enhanced sympathetic drive in heart failure (HF). The aim of this study was to determine whether increased NO production induced by local overexpression of endothelial NO synthase (eNOS) in the nucleus tractus solitarius (NTS) of the brain stem reduces the enhanced sympathetic drive in mice with HF. Myocardial infarction (MI) was induced in mice by ligating the left coronary artery. MI mice exhibited left ventricular dilatation and a reduced left ventricular ejection fraction. Urinary norepinephrine excretion in MI mice was greater than that in sham-operated mice, indicating that sympathetic drive was enhanced in this model. Thus this model has features that are typical of HF. Western blot analysis and immunohistochemical staining for neuronal NOS (nNOS) indicated that nNOS protein expression was significantly reduced in the brain stem of MI mice. MI mice had a significantly smaller increase in blood pressure evoked by intracisternal injection of N(G)-monomethyl-L-arginine than sham-operated mice. Adenoviral vectors encoding either eNOS (AdeNOS) or beta-galactosidase (Adbeta gal) were transfected into the NTS to examine the effect of increased NO production in the NTS on the enhanced sympathetic drive in HF. After the gene transfer, urinary norepinephrine excretion was reduced in AdeNOS-transfected MI mice but not in Adbeta gal-transfected MI mice. These results indicate that nNOS expression in the brain stem, especially in the NTS, is reduced in the MI mouse model of HF, and increased NO production induced by overexpression of eNOS in the NTS attenuates the enhanced sympathetic drive in this model.
Collapse
Affiliation(s)
- Koji Sakai
- Dept. of Cardiovascular Medicine, Kyushu Univ. Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Smith SA, Mitchell JH, Li J. Independent modification of baroreceptor and exercise pressor reflex function by nitric oxide in nucleus tractus solitarius. Am J Physiol Heart Circ Physiol 2005; 288:H2068-76. [PMID: 15604127 DOI: 10.1152/ajpheart.00919.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM l-arginine, an NO precursor, and 20 mM NG-nitro-l-arginine methyl ester (l-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (−0.24 ± 0.04 beats·min−1·mmHg−1) after the dialysis of l-arginine (−0.18 ± 0.02 beats·min−1·mmHg−1) and l-NAME (−0.29 ± 0.02 beats·min−1·mmHg−1). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 ± 7 mmHg) was significantly attenuated by the dialysis of l-arginine (change in MAP from baseline, 29 ± 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.
Collapse
Affiliation(s)
- Scott A Smith
- Department of Health Care Sciences, Harry S. Moss Heart Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
14
|
Dias ACR, Vitela M, Colombari E, Mifflin SW. Nitric oxide modulation of glutamatergic, baroreflex, and cardiopulmonary transmission in the nucleus of the solitary tract. Am J Physiol Heart Circ Physiol 2005; 288:H256-62. [PMID: 15598868 DOI: 10.1152/ajpheart.01149.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of l-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of ( RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after l-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-d-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after l-NAME. To examine baroreceptor and cardiopulmonary reflex function, l-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 μg iv) before and after l-NAME. Five minutes after l-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 μg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after l-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.
Collapse
|
15
|
Wu WC, Chai CY. Nitric oxide release in the nucleus tractus solitarius during and after bilateral common carotid artery occlusion. Clin Exp Pharmacol Physiol 2004; 31:152-8. [PMID: 15008957 DOI: 10.1111/j.1440-1681.2004.03967.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. The purpose of the present study was to investigate the effect of bilateral common carotid artery occlusion (BCCAO) on cardiovascular responses and nitric oxide (NO) formation in the nucleus tractus solitarius (NTS). 2. Twenty-three adult cats were anaesthetized intraperitoneally with urethane (400 mg/kg) and alpha-chloralose (40 mg/kg). The femoral artery was cannulated to allow monitoring of systemic arterial pressure (SAP) and heart rate (HR). The femoral vein was cannulated for intravenous drug administration. 3. Extracellular NO levels in the NTS were measured by in vivo voltammetry using an NO microsensor combined with a microcomputer-controlled apparatus. 4. Microinjection of l-arginine (30 nmol) into the NTS produced hypotension and NO release. This effect of l-arginine was not changed by 2 min of BCCAO. 5. Bilateral common carotid artery occlusion produced increases in SAP and NO levels. These effects were more apparent in vagotomized than in intact animals. 6. The onset latency of BCCAO-induced changes in SAP levels (8.4 +/- 2.5 s) was longer than that for changes in NO (4.7 +/- 1.7 s). 7. Bilateral common carotid artery occlusion induced hypertension and NO release in the NTS of intact and vagotomized animals. These cardiovascular and NO responses to BCCAO were significantly attenuated by NG-nitro-l-arginine methyl ester (10 mg/kg, i.v.) and MK-801 (2.5 mg/kg, i.v.). These data suggest that NO synthase and activation of N-methyl-d-aspartate receptors are involved in the cardiovascular and NO responses to BCCAO.
Collapse
Affiliation(s)
- Wun-Chin Wu
- Department of Electronic Engineering, National Penghu Institute of Technology, Penghu and Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
16
|
Li J. Central integration of muscle reflex and arterial baroreflex in midbrain periaqueductal gray: roles of GABA and NO. Am J Physiol Heart Circ Physiol 2004; 287:H1312-8. [PMID: 15087292 DOI: 10.1152/ajpheart.00163.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that the midbrain periaqueductal gray (PAG) is a neural integrating site for the interaction between the muscle pressor reflex and the arterial baroreceptor reflex. The underlying mechanisms are poorly understood. The purpose of this study was to examine the roles of GABA and nitric oxide (NO) in modulating the PAG integration of both reflexes. To activate muscle afferents, static contraction of the triceps surae muscle was evoked by electrical stimulation of the L7 and S1 ventral roots of 18 anesthetized cats. In the first group of experiments ( n = 6), the pressor response to muscle contraction was attenuated by bilateral microinjection of muscimol (a GABA receptor agonist) into the lateral PAG [change in mean arterial pressure (ΔMAP) = 24 ± 5 vs. 46 ± 8 mmHg in control]. Conversely, the pressor response was significantly augmented by 0.1 mM bicuculline, a GABAA receptor antagonist (ΔMAP = 65 ± 10 mmHg). In addition, the effect of GABAA receptor blockade on the reflex response was significantly blunted after sinoaortic denervation and vagotomy ( n = 4). In the second group of experiments ( n = 8), the pressor response to contraction was significantly attenuated by microinjection of l-arginine into the lateral PAG (ΔMAP = 26 ± 4 mmHg after l-arginine injection vs. 45 ± 7 mmHg in control). The effect of NO attenuation was antagonized by bicuculline and was reduced after denervation. These data demonstrate that GABA and NO within the PAG modulate the pressor response to muscle contraction and that NO attenuation of the muscle pressor reflex is mediated via arterial baroreflex-engaged GABA increase. The results suggest that the PAG plays an important role in modulating cardiovascular responses when muscle afferents are activated.
Collapse
Affiliation(s)
- Jianhua Li
- Division of Cardiology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
17
|
Toda N, Okamura T. The pharmacology of nitric oxide in the peripheral nervous system of blood vessels. Pharmacol Rev 2003; 55:271-324. [PMID: 12773630 DOI: 10.1124/pr.55.2.3] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Unanticipated, novel hypothesis on nitric oxide (NO) radical, an inorganic, labile, gaseous molecule, as a neurotransmitter first appeared in late 1989 and into the early 1990s, and solid evidences supporting this idea have been accumulated during the last decade of the 20th century. The discovery of nitrergic innervation of vascular smooth muscle has led to a new understanding of the neurogenic control of vascular function. Physiological roles of the nitrergic nerve in vascular smooth muscle include the dominant vasodilator control of cerebral and ocular arteries, the reciprocal regulation with the adrenergic vasoconstrictor nerve in other arteries and veins, and in the initiation and maintenance of penile erection in association with smooth muscle relaxation of the corpus cavernosum. The discovery of autonomic efferent nerves in which NO plays key roles as a neurotransmitter in blood vessels, the physiological roles of this nerve in the control of smooth muscle tone of the artery, vein, and corpus cavernosum, and pharmacological and pathological implications of neurogenic NO have been reviewed. This nerve is a postganglionic parasympathetic nerve. Mechanical responses to stimulation of the nerve, mainly mediated by NO, clearly differ from those to cholinergic nerve stimulation. The naming "nitrergic or nitroxidergic" is therefore proposed to avoid confusion of the term "cholinergic nerve", from which acetylcholine is released as a major neurotransmitter. By establishing functional roles of nitrergic, cholinergic, adrenergic, and other autonomic efferent nerves in the regulation of vascular tone and the interactions of these nerves in vivo, especially in humans, progress in the understanding of cardiovascular dysfunctions and the development of pharmacotherapeutic strategies would be expected in the future.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Toyama Bldg., 7-13, 1-Chome, Azuchi-machi, Chuo-ku, Osaka 541-0052, Japan.
| | | |
Collapse
|
18
|
Brooks VL, Clow KA, O'Hagan KP. Pregnancy and acute baroreflex resetting in conscious rabbits. Am J Physiol Regul Integr Comp Physiol 2002; 283:R429-40. [PMID: 12121856 DOI: 10.1152/ajpregu.00014.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that acute resetting of baroreflex control of heart rate (HR) is enhanced during pregnancy, we determined whether the rightward shift in the baroreflex relationship between arterial pressure and HR after arterial pressure is raised [~25 mmHg for 30 min, due to infusion of phenylephrine (PE) or methoxamine (Meth)] is greater in late pregnant compared with nonpregnant conscious rabbits. Baroreflex function was assessed by monitoring HR responses to both stepwise steady-state changes (n = 14) and rapid ramp changes (n = 10) in arterial pressure. Pregnancy decreased reflex gain, increased reflex minimum HR, and shifted the curves to a lower pressure level, when either the steady-state or ramp method was used (all changes, P < 0.05). When PE was used to increase pressure, resetting of steady-state curves was observed both before and during pregnancy, but the magnitude of the resetting was less in the pregnant rabbits. Further inspection of the data revealed that the size of the shift in pregnant rabbits was inversely related to the dose of PE. Because the pressure rise was the same in all experiments, PE appears to nonspecifically counteract acute resetting. When Meth was used instead to increase pressure, resetting of steady-state curves was similar in pregnant and nonpregnant rabbits and was unrelated to dose. Similarly, when reflex curves were generated using the ramp method, and either Meth or low doses of PE were used to increase pressure, no differences in the degree of resetting were observed between pregnant and nonpregnant rabbits. In summary, high doses of PE counteract acute resetting of baroreflex control of HR. More importantly, while baroreflex function is depressed, the ability of the baroreflex to reset appears to be preserved during pregnancy.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
19
|
Wu WC, Wang Y, Kao LS, Tang FI, Chai CY. Nitric oxide reduces blood pressure in the nucleus tractus solitarius: a real time electrochemical study. Brain Res Bull 2002; 57:171-7. [PMID: 11849823 DOI: 10.1016/s0361-9230(01)00737-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increasing evidence has demonstrated that nitric oxide (NO) is involved in central cardiovascular regulation. In this study, we directly measured extracellular NO levels, in real-time, in the nucleus tractus solitarius (NTS) of anesthetized cats using Nafion/Porphyrine/o-Phenylenediamine-coated NO sensors. We found that local application of L-arginine (L-Arg) induced NO overflow in NTS and hypotension. These responses were potentiated in the vagotomized animals. Pretreatment with NO synthase (NOS)/guanylate cyclase inhibitor methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one or NO scavenger hemoglobin attenuated L-Arg-induced hypotension, suggesting that exogenous supplement of NO suppressed cardiac functions through the NOS/cyclic guanosine monophosphate mechanism. The role of endogenous NO was examined after local application of N(G)-nitro-L-arginine methyl ester (L-NAME). We found that L-NAME suppressed endogenous NO levels in NTS and elicited hypertension and tachycardia. Taken together, our data suggest that NO is tonically released in the NTS to inhibit blood pressure.
Collapse
Affiliation(s)
- W C Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Abstract
The gaseous molecule nitric oxide (NO) plays an important role in cardiovascular homeostasis. It plays this role by its action on both the central and peripheral autonomic nervous systems. In this review, the central role of NO in the regulation of sympathetic outflow and subsequent cardiovascular control is examined. After a brief introduction concerning the location of NO synthase (NOS) containing neurons in the central nervous system (CNS), studies that demonstrate the central effect of NO by systemic administration of NO modulators will be presented. The central effects of NO as assessed by intracerebroventricular, intracisternal, or direct injection within the specific central areas is also discussed. Our studies demonstrating specific medullary and hypothalamic sites involved in sympathetic outflow are summarized. The review will be concluded with a discussion of the role of central NO mechanisms in the altered sympathetic outflow in disease states such as hypertension and heart failure.
Collapse
Affiliation(s)
- K P Patel
- Department of Physiology and Biophysics, University of Nebraska Medical Center, 984575 Nebraska Medical Center, Omaha, NE 68198-4545, USA.
| | | | | |
Collapse
|
21
|
Hirooka Y, Sakai K, Kishi T, Takeshita A. Adenovirus-mediated gene transfer into the NTS in conscious rats. A new approach to examining the central control of cardiovascular regulation. Ann N Y Acad Sci 2001; 940:197-205. [PMID: 11458677 DOI: 10.1111/j.1749-6632.2001.tb03677.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleus tractus solitarii (NTS) is an important site for the regulation of sympathetic nerve activity. It receives the signals through afferent fibers from arterial baroreceptors, chemoreceptors, cardiopulmonary receptors, and other visceral receptors. Many studies have examined the role of nitric oxide (NO) in the NTS in cardiovascular regulation. However, most of these studies were conducted in an acute state with anesthesia. We have developed a novel technique of endothelial nitric oxide synthase (eNOS) gene transfer into the NTS in vivo. Adenovirus vectors encoding either the beta-galactosidase gene (Ad beta gal) or the endothelial nitric oxide synthase gene (AdeNOS) gene were transfected into the NTS. In the Ad beta gal-treated rats, the local expression of beta-galactosidase was confirmed by X-Gal staining, and beta-galactosidase activity was quantified using a colorimetric assay. In the AdeNOS-treated rats, the local expression of eNOS protein was confirmed by immunohistochemistry, and eNOS production was measured by in vivo microdialysis. Blood pressure and heart rate were monitored by a radiotelemetry system in a conscious state. The expression of each gene was observed from day 5 to day 10 after the gene transfer. In the AdeNOS-treated rats, blood pressure and heart rate significantly decreased from day 5 to day 10, and then thereafter gradually recovered over time. Our method may be useful in examining the local effect of a particular substance produced by a specific gene in the brain on cardiovascular function.
Collapse
Affiliation(s)
- Y Hirooka
- Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
22
|
Hamdy O, Maekawa H, Shimada Y, Feng GG, Ishikawa N. Role of central nervous system nitric oxide in the development of neurogenic pulmonary edema in rats. Crit Care Med 2001; 29:1222-8. [PMID: 11395608 DOI: 10.1097/00003246-200106000-00028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The present study was undertaken to evaluate roles of nitric oxide in the central nervous system in the development of neurogenic pulmonary edema. Nitric oxide donor compounds have been reported to be effective for controlling some kinds of pulmonary edema. DESIGN Randomized trial. SETTING Experimental university pharmacology laboratory. SUBJECTS Wistar rats anesthetized with pentobarbital. INTERVENTIONS Neurogenic pulmonary edema was induced by injections of fibrinogen and thrombin into the cisterna magna. Physiologic roles of nitric oxide were evaluated by using NG-nitro-l-arginine methyl ester (a nitric oxide synthase inhibitor) or l-arginine (a nitric oxide donor compound). Vagus nerves were either left intact or bilaterally severed 20 mins before the injections of fibrinogen and thrombin. MEASUREMENTS AND MAIN RESULTS Because enhanced sympathetic nerve activity mediates neurogenic pulmonary edema, the concentration of neuropeptide Y, a neurotransmitter, in edema fluid was measured by using enzyme-linked immunosorbent assay. To evaluate the severity of pulmonary edema and pulmonary vascular permeability, lung water content and protein concentration in edema fluid were analyzed. In rats with intact vagus nerves, injection of NG-nitro-l-arginine methyl ester into the cisterna magna worsened the pulmonary edema, whereas l-arginine had no effect. In contrast, in vagotomized rats, l-arginine abrogated pulmonary edema, whereas NG-nitro-l-arginine methyl ester exerted no influence. Likewise, the ratio of edema fluid protein to serum protein and the neuropeptide Y concentration were increased by NG-nitro-l-arginine methyl ester in rats with the vagus nerves intact and were diminished by l-arginine in vagotomized rats. CONCLUSIONS Neurogenic pulmonary edema is characterized by elevated pulmonary vascular permeability and may be inhibited by nitric oxide production in the medulla oblongata.
Collapse
Affiliation(s)
- O Hamdy
- Department of Pharmacology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | |
Collapse
|
23
|
Matsuo I, Hirooka Y, Hironaga K, Eshima K, Shigematsu H, Shihara M, Sakai K, Takeshita A. Glutamate release via NO production evoked by NMDA in the NTS enhances hypotension and bradycardia in vivo. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1285-91. [PMID: 11294745 DOI: 10.1152/ajpregu.2001.280.5.r1285] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nitric oxide (NO) in the nucleus tractus solitarii (NTS) plays an important role in regulating sympathetic nerve activity. The aims of this study were to determine whether the activation of N-methyl-D-aspartate (NMDA) receptors in the NTS facilitates the release of L-glutamate (Glu) via NO production, and, if so, to determine whether this mechanism is involved in the depressor and bradycardic responses evoked by NMDA. We measured the production of NO in the NTS as NO2- and NO3- (NO(x)) or Glu levels by in vivo microdialysis before, during, and after infusion of NMDA in anesthetized rats. We also examined effects of N(omega)-nitro-L-arginine methyl ester (L-NAME) on the changes in these levels. NMDA elicited depressor and bradycardic responses and increased the levels of NO(x) and Glu. L-NAME abolished the increases in the levels of NO(x) and Glu and attenuated cardiovascular responses evoked by NMDA. These results suggest that NMDA receptor activation in the NTS induces Glu release through NO synthesis and that Glu released via NO enhances depressor and bradycardic responses.
Collapse
Affiliation(s)
- I Matsuo
- Department of Cardiovascular Medicine, Cardiovascular Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 2001; 531:445-58. [PMID: 11230517 PMCID: PMC2278463 DOI: 10.1111/j.1469-7793.2001.0445i.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Angiotensin II (ANGII) acting on ANGII type 1 (AT1) receptors in the solitary tract nucleus (NTS) depresses the baroreflex. Since ANGII stimulates the release of nitric oxide (NO), we tested whether the ANGII-mediated depression of the baroreflex in the NTS depended on NO release. In a working heart-brainstem preparation (WHBP) of rat NTS microinjection of either ANGII (500 fmol) or a NO donor (diethylamine nonoate, 500 pmol) both depressed baroreflex gain by -56 and -67 %, respectively (P < 0.01). In contrast, whilst ANGII potentiated the peripheral chemoreflex, the NO donor was without effect. NTS microinjection of non-selective NO synthase (NOS) inhibitors (L-NAME; 50 pmol) or (L-NMMA; 200 pmol) prevented the ANGII-induced baroreflex attenuation (P > 0.1). In contrast, a neurone-specific NOS inhibitor, TRIM (50 pmol), was without effect. Using an adenoviral vector, a dominant negative mutant of endothelial NOS (TeNOS) was expressed bilaterally in the NTS. Expression of TeNOS affected neither baseline cardiovascular parameters nor baroreflex sensitivity. However, ANGII microinjected into the transfected region failed to affect the baroreflex.Immunostaining revealed that eNOS-positive neurones were more numerous than those labelled for AT1 receptors. Neurones double labelled for both AT1 receptors and eNOS comprised 23 +/- 5.4 % of the eNOS-positive cells and 57 +/- 9.2 % of the AT1 receptor-positive cells. Endothelial cells were also double labelled for eNOS and AT1 receptors. We suggest that ANGII activates eNOS located in either neurones and/or endothelial cells to release NO, which acts selectively to depress the baroreflex.
Collapse
Affiliation(s)
- J F Paton
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Poon CS, Siniaia MS. Plasticity of cardiorespiratory neural processing: classification and computational functions. RESPIRATION PHYSIOLOGY 2000; 122:83-109. [PMID: 10967337 DOI: 10.1016/s0034-5687(00)00152-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neural plasticity, or malleability of neuronal structure and function, is an important attribute of the mammalian forebrain and is generally thought to be a kernel of biological intelligence. In this review, we examine some reported manifestations of neural plasticity in the cardiorespiratory system and classify them into four functional categories, integral; differential; memory; and statistical-type plasticity. At the cellular and systems level the myriad forms of cardiorespiratory plasticity display emergent and self-organization properties, use- and disuse-dependent and pairing-specific properties, short-term and long-term potentiation or depression, as well as redundancy in series or parallel structures, convergent pathways or backup and fail-safe surrogate pathways. At the behavioral level, the cardiorespiratory system demonstrates the capability of associative and nonassociative learning, classical and operant conditioning as well as short-term and long-term memory. The remarkable similarity and consistency of the various types of plasticity exhibited at all levels of organization suggest that neural plasticity is integral to cardiorespiratory control and may subserve important physiological functions.
Collapse
Affiliation(s)
- C S Poon
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Bldg. E25-501, Cambridge, MA 02139, USA.
| | | |
Collapse
|
26
|
Krukoff TL. Central actions of nitric oxide in regulation of autonomic functions. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 30:52-65. [PMID: 10407125 DOI: 10.1016/s0165-0173(99)00010-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The identification of nitric oxide (NO) as a gaseous, nonconventional neurotransmitter in the central nervous system has led to an explosion of studies aimed at learning about the roles of NO, not only at a cellular level, but also in regulating the activity of specific physiological systems that are coordinated by the brain. In the 1980s, publications began to appear which pointed to a role for NO in regulating peripheral autonomic function. In the 1990s, it became apparent that NO also acts centrally to affect autonomic responses. In this review, I will discuss the state of the current knowledge about the central role of NO in physiological functions which are related specifically to the control of sympathetic output. Studies which do not differentiate a central from a peripheral role for NO in these functions have not been included. After a brief discussion about the cellular events in which NO is involved, the distribution of NO-producing neurons in central autonomic areas of the brain will be presented. The more general actions of central NO in regulating sympathetic activity, as assessed with i.c.v. injections of pharmacological agents, will be followed by more specific sites of action achieved with microinjections into discrete brain areas. The review will be concluded with discussions about central NO in two physiological states of sympathetic imbalance, hypertension and stress.
Collapse
Affiliation(s)
- T L Krukoff
- Department of Cell Biology and Anatomy, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
27
|
Abstract
Nitric oxide is hypothesized to be an inhibitory modulator of central sympathetic nervous outflow, and deficient neuronal nitric oxide production to cause sympathetic overactivity, which then contributes to nitric-oxide-deficient hypertension. The biochemical and neuroanatomical basis for this concept revolves around nitric oxide modulation of glutamatergic neurotransmission within brainstem vasomotor centers. The functional consequence of neuronal nitric oxide in blood pressure regulation is, however, marked by an apparent conflict in the literature. On one hand, conscious animal studies using sympathetic blockade suggest a significant role for neuronal nitric oxide deficiency in the development of nitric-oxide-deficient hypertension, and on the other hand, there is evidence against such a role derived from 'knock-out' mice lacking nitric-oxide synthase 1, the major source of neuronal nitric oxide.
Collapse
Affiliation(s)
- M Sander
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | | |
Collapse
|