1
|
Eiken O, Elia A, Sköldefors H, Sundblad P, Keramidas ME, Kölegård R. Adaptation to 5 weeks of intermittent local vascular pressure increments; mechanisms to be considered in the development of primary hypertension? Am J Physiol Heart Circ Physiol 2021; 320:H1303-H1312. [PMID: 33481701 DOI: 10.1152/ajpheart.00763.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aims were to study effects of iterative exposures to moderate elevations of local intravascular pressure on arterial/arteriolar stiffness and plasma levels of vasoactive substances. Pressures in the vasculature of an arm were increased by 150 mmHg in healthy men (n = 11) before and after a 5-wk regimen, during which the vasculature in one arm was exposed to fifteen 40-min sessions of moderately increased transmural pressure (+65 to +105 mmHg). This vascular pressure training and the pressure-distension determinations were conducted by exposing the subjects' arm versus remaining part of the body to differential ambient pressure. During the pressure-distension determinations, venous samples were simultaneously obtained from pressurized and unpressurized vessels. Pressure training reduced arterial pressure distension by 40 ± 23% and pressure-induced flow by 33 ± 30% (P < 0.01), but only in the pressure-trained arm, suggesting local adaptive mechanisms. The distending pressure-diameter and distending pressure-flow curves, with training-induced increments in pressure thresholds and reductions in response gains, suggest that the increased precapillary stiffness was attributable to increased contractility and structural remodeling of the walls. Acute vascular pressure provocation induced local release of angiotensin-II (ANG II) and endothelin-1 (ET-1) (P < 0.05), suggesting that these vasoconstrictors limited the pressure distension. Pressure training increased basal levels of ET-1 and induced local pressure release of matrix metalloproteinase 7 (P < 0.05), suggesting involvement of these substances in vascular remodeling. The findings are compatible with the notion that local intravascular pressure load acts as a prime mover in the development of primary hypertension.NEW & NOTEWORTHY Adaptive responses to arterial/arteriolar pressure elevation have typically been investigated in cross-sectional studies in hypertensive patients or in longitudinal studies in experimental animals. The present investigation shows that in healthy individuals, fifteen 40-min, carefully controlled, moderate transmural pressure elevations markedly increase in vivo stiffness (i.e. reduce pressure distension) in arteries and arterioles. The response is mediated via local mechanisms, and it appears that endothelin-1, angiotensin-II, and matrix metalloproteinase 7 may have key roles.
Collapse
Affiliation(s)
- O Eiken
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - A Elia
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - H Sköldefors
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - P Sundblad
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - M E Keramidas
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - R Kölegård
- Division of Environmental Physiology, Swedish Aerospace Physiology Center, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
2
|
Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute? Am J Physiol Heart Circ Physiol 2015; 310:H137-52. [PMID: 26475588 DOI: 10.1152/ajpheart.00618.2015] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
Abstract
The renin-angiotensin system (RAS) constitutes a key hormonal system in the physiological regulation of blood pressure through peripheral and central mechanisms. Indeed, dysregulation of the RAS is considered a major factor in the development of cardiovascular pathologies, and pharmacological blockade of this system by the inhibition of angiotensin-converting enzyme (ACE) or antagonism of the angiotensin type 1 receptor (AT1R) offers an effective therapeutic regimen. The RAS is now defined as a system composed of different angiotensin peptides with diverse biological actions mediated by distinct receptor subtypes. The classic RAS comprises the ACE-ANG II-AT1R axis that promotes vasoconstriction; water intake; sodium retention; and increased oxidative stress, fibrosis, cellular growth, and inflammation. In contrast, the nonclassical RAS composed primarily of the ANG II/ANG III-AT2R and the ACE2-ANG-(1-7)-AT7R pathways generally opposes the actions of a stimulated ANG II-AT1R axis. In lieu of the complex and multifunctional aspects of this system, as well as increased concerns on the reproducibility among laboratories, a critical assessment is provided on the current biochemical approaches to characterize and define the various components that ultimately reflect the status of the RAS.
Collapse
Affiliation(s)
- Mark C Chappell
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
3
|
Eiken O, Mekjavic IB, Kölegård R. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading. Eur J Appl Physiol 2013; 114:499-509. [PMID: 24318655 PMCID: PMC3929772 DOI: 10.1007/s00421-013-2758-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/18/2013] [Indexed: 02/07/2023]
Abstract
Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50 %. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.
Collapse
Affiliation(s)
- Ola Eiken
- Department of Environmental Physiology and Swedish Aerospace Physiology Centre, KTH, Royal Institute of Technology, Berzelius v 13, Solna, 17165, Stockholm, Sweden,
| | | | | |
Collapse
|
4
|
Gustafsson T, Kölegård R, Sundblad P, Norman B, Eiken O. Elevations of local intravascular pressures release vasoactive substances in humans. Clin Physiol Funct Imaging 2012; 33:38-44. [DOI: 10.1111/j.1475-097x.2012.01159.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 12/22/2022]
Affiliation(s)
- T. Gustafsson
- Department of Laboratory Medicine; Division of Clinical Physiology; Karolinska Institutet; Stockholm; Sweden
| | - R. Kölegård
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm; Sweden
| | - P. Sundblad
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm; Sweden
| | - B. Norman
- Department of Laboratory Medicine; Division of Clinical Physiology; Karolinska Institutet; Stockholm; Sweden
| | - O. Eiken
- Department of Environmental Physiology; School of Technology and Health; Royal Institute of Technology; Stockholm; Sweden
| |
Collapse
|
5
|
Facilitated diffusion of angiotensin II from perivascular interstitium to AT1 receptors of the arteriole. A regulating step in vasoconstriction. J Hypertens 2011; 29:906-14. [PMID: 21358416 DOI: 10.1097/hjh.0b013e328344b9a0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A kinetic model for the binding of angiotensin (Ang) II to AT1 receptors (AT1R) in arterioles in vivo did suggest a novel mechanism of stimulus amplification. OBJECTIVE To further clarify the role of this mechanism in the functioning of the local renin-angiotensin systems, as opposed to circulating Ang II. METHODS AND RESULTS The model was refined in order to account for geometric characteristics of the vascular smooth muscle (VSM) cells in arterioles with a single VSM cell layer. Results show that, unlike experiments in vitro, the graph of AT1R occupancy, that is, [Rec(occ)]/[Rec(total)] where [Rec(total)]=[Rec(occ)]+[Rec(free)], as a function of log [Ang II], is shifted to the left at higher [Rec(total)]. This leads to the concept of association rate amplification (ASRA) and facilitated Ang II diffusion. Considering that abluminal Ang II has to cross a diffusion fluid-barrier 1-10 times the glycocalyx to reach VSM AT1R, it appears that the ASRA factor is 1500 to 150 respectively, whereas more than 90% of Ang II is captured, at 10% occupancy, and with [Ang II] as low as 10(-15)-10(-14) mol/ml. Due to the presence of endothelium, intraluminal [Ang II] needs to be 20-30 times higher. ASRA favors a low [Ang II] threshold for AT1R stimulation, but it also favors a flat stimulus/response curve by promoting receptor-mediated endocytosis and receptor downregulation. CONCLUSION The model predicts that, in small resistance vessels, abluminal rather than intraluminal Ang II is important for maintaining vasoconstrictor tone. ASRA minimizes the overflow of de-novo generated tissue Ang II into the circulation. It explains why Ang II acts at levels far below K(D), why AT1R blockers are effective in hypertension even when [Ang II] is low, and why the constrictor action of Ang II appears so much suppressed by sodium depletion.
Collapse
|
6
|
Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A, Sass G, Neuhuber W, Tiegs G. Autonomic renal denervation ameliorates experimental glomerulonephritis. J Am Soc Nephrol 2008; 19:1371-8. [PMID: 18400940 DOI: 10.1681/asn.2007050552] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Increasing evidence indicates that inflammation of visceral organs is significantly affected by the autonomic nervous system. Such neuroimmune interactions have not been studied in the kidney. Here, we show that the rat kidney is innervated by both tyrosine hydroxylase-positive sympathetic efferent nerve fibers and calcitonin gene-related peptide-positive primary afferent nerve fibers, both of which are found in proximity to macrophages and dendritic cells. Complete surgical bilateral renal denervation was performed 2 d before glomerulonephritis was induced by injecting the monoclonal anti-Thy-1.1 antibody OX-7. Denervation significantly reduced albuminuria, mesangiolysis, formation of microaneurysms, deposition of glomerular collagen IV, and expression of TGF-beta compared with sham-operated controls. Accordingly, inflammation, identified by accumulation of interstitial macrophages and renal expression of TNF-alpha, and mesangial cell proliferation were significantly reduced. These findings indicate that autonomic renal denervation ameliorates and, by inference, innervation exacerbates acute inflammation in the kidney; therefore, neurotransmitters or neuropeptides and their receptors might represent novel targets for the treatment of acute glomerulonephritis.
Collapse
Affiliation(s)
- Roland Veelken
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schalekamp MADH. A local pre-receptor mechanism of hormone stimulus amplification: focus on angiotensin II in resistance blood vessels. J Hypertens 2007; 24:1787-96. [PMID: 16915028 DOI: 10.1097/01.hjh.0000242403.91332.70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The in-vivo correlation between vascular tone and the concentration of free angiotensin (Ang) II at the level of the arterioles, under (patho)physiological conditions, is not known. OBJECTIVE To examine the in-vivo kinetics of binding of Ang II to Ang II type 1 (AT1) receptors in vascular tissue. METHODS AND RESULTS A plane vascular smooth muscle (VSM) sheet containing a single layer of cells, at one side exposed to Ang II, was the starting point for designing a mathematical model based on local receptor density and geometric considerations and on kinetic parameters of Ang II diffusion and Ang II-AT1 receptor complex formation and internalization. Calculations demonstrate that a diffusing Ang II molecule at short distance from the receptor has an almost 100% chance to be actually bound, so that the apparent binding rate constant (per unit of receptor concentration) is greatly augmented. This pre-receptor stimulus amplification (PRESTAMP) mechanism is sustained by AT1 receptor-mediated endocytosis and receptor recycling. On the other hand, PRESTAMP also enhances endocytotic receptor downregulation, and calculations predict that steady-state levels of Ang II above threshold have relatively little additional effect. CONCLUSION The results explain why physiological concentrations of free Ang II far below the equilibrium dissociation constant of its reaction with AT1 receptors are sufficient to increase vascular resistance, and why a correlation between blood pressure and the concentration of free Ang II is often difficult to demonstrate.
Collapse
|
8
|
Hartner A, Porst M, Klanke B, Cordasic N, Veelken R, Hilgers KF. Angiotensin II formation in the kidney and nephrosclerosis in Ren-2 hypertensive rats. Nephrol Dial Transplant 2006; 21:1778-85. [PMID: 16522658 DOI: 10.1093/ndt/gfl065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ren-2 transgenic hypertensive rats develop malignant hypertensive nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin. We tested the hypothesis that local angiotensin II formation occurs at sites of renal vascular and interstitial injury in this model. METHODS Heterozygous Ren-2 transgenic rats were compared with normotensive Sprague-Dawley-Hannover control rats and Ren-2 transgenic rats treated with a very low dose of an angiotensin II type 1 (AT1) receptor antagonist, 1 mg/kg/day losartan, for 4 weeks. Blood pressure measurements, quantifications of urinary albumin, plasma and tissue angiotensin II as well as immunohistochemical analyses were performed. RESULTS Systolic blood pressure was not affected by losartan during the study but intra-arterial recordings revealed a decrease of blood pressure. Losartan reduced albumin excretion, cell proliferation, macrophage influx, collagen I and collagen IV deposition. Plasma angiotensin II was decreased, while kidney tissue angiotensin II content was increased in Ren-2 transgenic rats compared with control rats. In Ren-2 transgenic rats, juxtaglomerular renin and angiotensin II staining were reduced, but there was a marked angiotensin II staining at foci of tubulo-interstitial fibrosis and at proliferative malignant vascular lesions. CONCLUSION We conclude that local angiotensin II formation is increased in proliferative or fibrotic kidney lesions in the Ren-2 transgenic rat. Local angiotensin II formation may help to explain why the AT1 receptor antagonist prevents or ameliorates this transgenic model of malignant nephrosclerosis despite low to normal plasma angiotensin II and suppressed renal renin.
Collapse
Affiliation(s)
- Andrea Hartner
- University Hospital for Children and Adolescents, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
9
|
Thomas MA, Fleissner G, Stöhr M, Hauptfleisch S, Lemmer B. Localization of components of the renin-angiotensin system in the suprachiasmatic nucleus of normotensive Sprague-Dawley rats: part A. angiotensin I/II, a light and electron microscopic study. Brain Res 2004; 1008:212-23. [PMID: 15145759 DOI: 10.1016/j.brainres.2004.01.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2004] [Indexed: 11/19/2022]
Abstract
The central pacemaker of the mammalian circadian clock, identified in the suprachiasmatic nucleus (SCN), is of special interest for many chronomedical studies on neuropeptides. Based on its role in the modulation of blood pressure and vasopressin release, the distribution and function of the neuropeptide angiotensin II (ANG II) in the SCN became a target for several immunohistological studies. At the light microscopic level, the distribution of ANG II in the SCN is well known, but detailed information about the localization of ANG II in the SCN at the ultrastructural level is missing. To gain further insight in the functional aspects of ANG II in the SCN, we investigated on the subcellular localization of the neuropeptide ANG II and its precursor ANG I in the SCN. The current report presents a light and electron microscopic study on ANG I/II-immunoreactivity in the suprachiasmatic nucleus of normotensive Sprague-Dawley rats.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, Maybachstr. 14-16, 68169 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The concept of local renin-angiotensin systems has been introduced almost 20 years ago to explain the beneficial blood pressure-independent effects of ACE inhibitors and AT(1) receptor antagonists in cardiovascular diseases. In the past decade, research has focussed on the local effects of angiotensin II rather than on the mechanism(s) of its local generation. This review addresses several of the unanswered questions with regard to tissue angiotensin II generation, focussing in particular on the heart and vascular wall: (1) what is the origin of the renin that is required to generate angiotensin II locally, (2) where does tissue angiotensin generation occur (intra- versus extracellular), (3) what is the importance of alternative (non-renin, non-ACE) angiotensin-generating enzymes, (4) do ACE inhibitors and AT(1) receptor antagonists exert local effects that are renin-angiotensin system independent (thereby incorrectly leading to the conclusion that they interfere with the local generation or effects of angiotensin II), and (5) to what degree do differences in tissue angiotensin generation underlie the association between cardiovascular diseases and renin-angiotensin system gene polymorphisms?
Collapse
Affiliation(s)
- A H Jan Danser
- Department of Pharmacology, room EE1418b, Erasmus Medical Centre, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
11
|
Thomas MA, Fleissner G, Hauptfleisch S, Lemmer B. Subcellular identification of angiotensin I/II- and angiotensin II (AT1)-receptor-immunoreactivity in the central nervous system of rats. Brain Res 2003; 962:92-104. [PMID: 12543459 DOI: 10.1016/s0006-8993(02)03971-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To gain insight into generating and transport mechanisms of angiotensin (ANG) in the brain the study was focused on the subcellular localization of ANG II and its AT(1)-receptors in the hypothalamus of rats. The present paper demonstrates ANG II- and AT(1)-receptor-immunolabelling at brain parenchyma vessels and at glial and neuronal structures in the perivascular region. Further, ANG II- and AT(1)-receptor-immunoreactivity is shown at plasma membranes and intracellular structures in the ependyma of the third ventricle. Based upon a conventional horseradish peroxidase technique, combined with the classical substrate 3,3'-diaminobenzidine, a procedure is introduced that will be useful with a variety of antibodies used on glutar- and paraformaldehyde-fixed brain tissue. This technique enables a fast correlation between light and electron microscopical results and might also provide an attractive alternative to colloidal gold-labelling and silver-intensification techniques.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
12
|
Schuijt MP, de Vries R, Saxena PR, Schalekamp MADH, Danser AHJ. Vasoconstriction is determined by interstitial rather than circulating angiotensin II. Br J Pharmacol 2002; 135:275-83. [PMID: 11786504 PMCID: PMC1573115 DOI: 10.1038/sj.bjp.0704452] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We investigated why angiotensin (Ang) I and II induce vasoconstriction with similar potencies, although Ang I-II conversion is limited. 2. Construction of concentration-response curves to Ang I and II in porcine femoral arteries, in the absence or presence of the AT(1) or AT(2) receptor antagonists irbesartan and PD123319, revealed that the approximately 2 fold difference in potency between Ang I and II was not due to stimulation of different AT receptor populations by exogenous and locally generated Ang II. 3. Measurement of Ang I and II and their metabolites at the time of vasoconstriction confirmed that, at equimolar application of Ang I and II, bath fluid Ang II during Ang I was approximately 18 times lower than during Ang II and that Ang II was by far the most important metabolite of Ang I. Tissue Ang II was 2.9+/-1.5% and 12.2+/-2.4% of the corresponding Ang I and II bath fluid levels, and was not affected by irbesartan or PD123319, suggesting that it was located extracellularly. 4. Since approximately 15% of tissue weight consists of interstitial fluid, it can be calculated that interstitial Ang II levels during Ang II resemble bath fluid Ang II levels, whereas during Ang I they are 8.8 - 27 fold higher. Consequently at equimolar application of Ang I and II, the interstitial Ang II levels differ only 2 - 4 fold. 5. Interstitial, rather than circulating Ang II determines vasoconstriction. Arterial Ang I, resulting in high interstitial Ang II levels via its local conversion by ACE, may be of greater physiological importance than arterial Ang II.
Collapse
Affiliation(s)
- Martin P Schuijt
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - René de Vries
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Pramod R Saxena
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Maarten A D H Schalekamp
- Department of Internal Medicine, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Pharmacology, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Author for correspondence:
| |
Collapse
|
13
|
Broomé M, Haney M, Häggmark S, Johansson G, Aneman A, Biber B. Acute effects of angiotensin II on myocardial performance. Acta Anaesthesiol Scand 2001; 45:1147-54. [PMID: 11683667 DOI: 10.1034/j.1399-6576.2001.450916.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Specific angiotensin II (Ang II) receptors exist in many organs including peripheral blood vessels, cardiac myocytes and the central nervous system. This suggests multiple sites of actions for Ang II throughout the cardiovascular system. Cardiac effects of Ang II are not completely understood, though its prominent vasoconstrictor actions are well described. This study was designed to assess left ventricular function during administration of Ang II using relatively load-independent methods in a whole-animal model. METHODS Ang II was infused in incremental doses (0-200 microg x h(-1)) in anaesthetised instrumented pigs (n=10). Cardiac systolic and diastolic function were evaluated by analysis of the left ventricular pressure-volume relationship. RESULTS Heart rate (HR), mean arterial pressure (MAP) and systemic vascular resistance (SVR) increased dose-dependently with Ang II, while cardiac output (CO) remained unchanged. Systolic function indices, end-systolic elastance (Ees) and preload recruitable stroke work (PRSW), demonstrated dose-dependent increases. The diastolic function parameter tau (tau) did not change with increasing Ang II dose. CONCLUSION Ang II infusion caused increases in contractility indices in anaesthetised pigs in the doses used in this study. The mechanisms for these systolic function effects may be a direct myocardial effect or modulated through changes in autonomic nervous system activity.
Collapse
Affiliation(s)
- M Broomé
- Dept of Surgical and Perioperative Science, Anaesthesiology and Intensive Care, Umeå University Hospital, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Nagata K, Ishibashi T, Sakamoto T, Nakazato K, Seino Y, Yokoyama K, Ohkawara H, Teramoto T, Maruyama Y. Effects of blockade of the renin-angiotensin system on tissue factor and plasminogen activator inhibitor-1 synthesis in human cultured monocytes. J Hypertens 2001; 19:775-83. [PMID: 11330881 DOI: 10.1097/00004872-200104000-00015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To clarify the pathophysiological significance of the renin-angiotensin system (RAS) in monocytes, we examined the effect of its blockade on tissue factor and plasminogen activator inhibitor-1 (PAI-1) synthesis in human cultured monocytes. METHODS Monocytes were isolated from healthy volunteers and cultured. Tissue factor and PAI-1 antigens in culture medium and cells were measured by enzyme-linked immunosorbent assay and Western blotting, and mRNA levels were assessed by reverse-transcriptase polymerase chain reaction. RESULTS We show that the RAS is present in isolated human peripheral blood monocytes. Exogenous angiotensin II increased the levels of tissue factor antigen and mRNA in cultured monocytes, but not of PAI-1 synthesis. An angiotensin converting enzyme (ACE) inhibitor (captopril) and an angiotensin II type 1 (AT1) receptor antagonist (candesartan) decreased the levels of tissue factor protein and mRNA in cultured monocytes. These alterations were accompanied by a reduction in the levels of tumour necrosis factor-alpha protein and mRNA. The levels of PAI-1 protein were reduced by captopril, but not by candesartan. A bradykinin B2 receptor antagonist abolished the suppressive effect of captopril on PAI-1 antigen. CONCLUSIONS An ACE inhibitor and an AT1 receptor antagonist reduced tissue factor synthesis in these cells. We show different actions of these agents on PAI-1 synthesis. ACE inhibition decreased PAI-1 synthesis mediated by bradykinin production, but AT1 receptor inhibition had no effect.
Collapse
Affiliation(s)
- K Nagata
- First Department of Internal Medicine, Fukushima Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rankinen T, Gagnon J, Pérusse L, Rice T, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C. Body fat, resting and exercise blood pressure and the angiotensinogen M235T polymorphism: the heritage family study. OBESITY RESEARCH 1999; 7:423-30. [PMID: 10509598 DOI: 10.1002/j.1550-8528.1999.tb00429.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The association of resting and exercise blood pressure (BP) and fat mass with the angiotensinogen (AGT) M235T polymorphism was investigated in 522 sedentary Caucasian subjects from 99 families. RESEARCH METHODS AND PROCEDURES Resting BP was measured on two separate days, three times each day, and the mean of six valid measurements was used. Exercise BP was measured during a cycle ergometer test at a constant power output (50 W). Body composition was derived from under-water weighing and the AGT M235T polymorphism was typed with a polymerase chain reaction-based method. RESULTS Neither resting nor exercise BP was associated with the AGT genotypes. In mothers, the homozygotes for the T allele showed 8.8 kg and 7.1 kg greater (p=0.017) age-adjusted body fat mass (FM) than the MM homozygotes and heterozygotes, respectively. Sixty-nine percent of all TT homozygotes were found in the highest FM tertile, whereas only 16% of the MM homozygotes fell in the same tertile (p = 0.008). Moreover, a significant interaction was seen between FM and T-allele carrier status in women with regard to resting diastolic BP (p = 0.002). Among women with a FM> or =24 kg, carriers of the T allele showed a 6.3 mmHg higher diastolic blood pressure (DBP) than non-carriers whereas no difference was found in women with a FM less than 24 kg. A similar trend toward an interaction term was evident with resting systolic blood pressure (p = 0.011) and exercise DBP (p = 0.012). Body fat was not associated with the AGT polymorphism in fathers or in offspring. DISCUSSION These data suggest that the AGT M235T polymorphism is associated with body fatness in women, and that the relationship between DBP and AGT M235T polymorphism is dependent on FM in middle-aged sedentary normotensive women.
Collapse
Affiliation(s)
- T Rankinen
- Physical Activity Sciences Laboratory, Laval University, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
It is now recognized that the brain contains an autonomous angiotensin (AG) system, including the aminopeptidases A and N required for angiotensin metabolism. Using immunohistochemical techniques, we show that capillary pericytes and periendothelial cells of other vessels express aminopeptidase A (APA) and aminopeptidase N (APN) at their plasma membrane in adult mouse brain parenchyma. We therefore investigated the localization of angiotensin II(III), known as putative substrates for these enzymes, as well as that of their precursor angiotensin I. We report here the presence of immunoreactivity to angiotensin I and II(III) around most brain vessels. Angiotensins are present at the plasma membrane of brain parenchymal cells, presumably perivascular astrocytes which are also immunoreactive to AT1-receptor antibodies. The very close relationship between AGII(III) and their metabolizing enzymes APA and APN suggests a specific functional role for brain perivascular angiotensins.
Collapse
Affiliation(s)
- F Alliot
- CNRS UPR 9035 and ER 1783 'Développement et Immunité du Système Nerveux Central', 15 rue de l'Ecole de Médecine, 75270, Paris cedex 06, France
| | | | | | | |
Collapse
|