1
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Song K, Stuart D, Abraham N, Wang F, Wang S, Yang T, Sigmund CD, Kohan DE, Ramkumar N. Collecting Duct Renin Does Not Mediate DOCA-Salt Hypertension or Renal Injury. PLoS One 2016; 11:e0159872. [PMID: 27467376 PMCID: PMC4965005 DOI: 10.1371/journal.pone.0159872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Collecting duct (CD)-derived renin is involved in the hypertensive response to chronic angiotensin-II (Ang-II) administration. However, whether CD renin is involved in Ang-II independent hypertension is currently unknown. To begin to examine this, 12 week old male and female CD-specific renin knock out (KO) mice and their littermate controls were subjected to uni-nephrectomy followed by 2 weeks of deoxycorticosterone acetate (DOCA) infusion combined with a high salt diet. Radiotelemetric blood pressure (BP) was similar between KO and control mice at baseline; BP increased in both groups to a similar degree throughout the 2 weeks of DOCA-salt treatment. Urinary albumin excretion and plasma blood urea nitrogen were comparable between the two groups after DOCA-salt treatment. Fibrosis as assessed by Masson’s Trichrome stain/Sirius Red stain and collagen-1 mRNA expression was similar between control and KO mice. Compared to baseline, DOCA-salt treatment decreased plasma renin concentration (PRC), urinary renin excretion and medullary renin mRNA expression in both floxed and CD renin KO mice with no detectable differences between the two groups. Further, in primary culture of rat inner medullary CD, aldosterone treatment did not change renin activity or total renin content. Taken together, these data suggest that CD derived renin does not play a role in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Kai Song
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Department of Nephrology, Second Affiliated Hospital of Soochow University, Soochow City, China
| | - Deborah Stuart
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Nikita Abraham
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Fei Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Shuping Wang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
| | - Tianxin Yang
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Curt D. Sigmund
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Donald E. Kohan
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah, United States of America
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah Health Sciences Center, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
3
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
4
|
Wang XH, Huang LL, Yu TT, Zhu JH, Shen B, Zhang Y, Wang HZ, Gao S. Effects of oligomeric grape seed proanthocyanidins on heart, aorta, kidney in DOCA-salt mice: role of oxidative stress. Phytother Res 2012; 27:869-76. [PMID: 22903376 DOI: 10.1002/ptr.4793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 06/18/2012] [Accepted: 07/13/2012] [Indexed: 11/12/2022]
Abstract
Growing experimental and clinical data highlights the important roles of increased reactive oxygen species production in cardiovascular remodeling (CR). Oligomeric grape seed proanthocyanidins (GSPs) have been shown to be potent antioxidants and free radical scavengers. Mice were treated with DOCA-salt to induce CR and were given distilled water or oligomeric GSPs for 4 weeks. The heart weight (HW) index and kidney weight (KW) index were expressed as heart weight/body weight (HW/BW) and kidney weight/body weight (KW/BW); the histological changes were investigated by hematoxylin and eosin and Van Gieson staining.The endothelial-dependent vasodilation function induced by acetylcholine was investigated in isolated thoracic aorta ring. Colorimetric analysis was used to assay superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and nitric oxide (NO) content in serum and hydroxyproline content in cardiac tissue. Administration of GSPs markedly alleviated the elevation of HW/BW ratio, KW/BW ratio and cross-sectional area of cardiomyocytes, decreased collagen deposition in heart and attenuated histopathology injury, and improves endothelial-dependent aorta ring relaxation in vitro accompany by increasing of NO content in serum. Meanwhile, treatment with GSPs significantly ameliorated oxidative stress via increasing SOD activities and decreasing MDA formation. These findings suggest that administration of GSPs has the potential to attenuate DOCA-salt induced CR and KH and preserve NO activity and endothelial function, which mechanism may contribute to its antioxidant characteristic, at least in part.
Collapse
Affiliation(s)
- Xing-hui Wang
- Department of Pharmacology, Key Laboratory of Antiinflammatory and Immunopharmacology of Education Ministry, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Waeckel L, Potier L, Chollet C, Taveau C, Bruneval P, Roussel R, Alhenc-Gelas F, Bouby N. Antihypertensive role of tissue kallikrein in hyperaldosteronism in the mouse. Endocrinology 2012; 153:3886-96. [PMID: 22669897 DOI: 10.1210/en.2012-1225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue kallikrein (TK) is synthesized in arteries and distal renal tubule, the main target of aldosterone. Urinary kallikrein excretion increases in hyperaldosteronism. We tested the hypothesis that TK is involved in the cardiovascular and renal effects of high aldosterone. Kallikrein-deficient mice (TK-/-), and wild-type (WT) littermates, studied on two different genetic backgrounds, were treated with aldosterone and high-NaCl diet for 1 month. Control mice received vehicle and standard NaCl diet. Treatment induced 5- to 7-fold increase in plasma aldosterone, suppressed renin secretion, and increased urinary TK activity. In 129SvJ-C57BL/6J mice, blood pressure monitored by radiotelemetry was not different between control TK-/- and WT mice. In TK-/- mice, aldosterone induced larger increases in blood pressure than in WT mice (+47 vs. +27 mm Hg; genotype-treatment interaction, P < 0.05). Night-day difference was also exacerbated in treated TK-/- mice (P < 0.01). Moderate cardiac septal hypertrophy was observed in hypertensive animals without major change in heart function. Aldosterone-salt increased kidney weight similarly in both genotypes but induced a 2-fold increase in renal mRNA abundance of epithelial sodium channel subunits only in TK-/- mice. The hypertensive effect of TK deficiency was also documented in treated C57BL/6J mice. In this strain, aldosterone-induced hypertension was only observed in TK-/- mice (+16 mm Hg, P < 0.01). These findings show that TK deficiency exacerbates aldosterone-salt-induced hypertension. This effect may be due at least in part to enhanced sodium reabsorption in the distal nephron aggravating sodium retention. The study suggests that kallikrein plays an antihypertensive role in hyperaldosteronism.
Collapse
Affiliation(s)
- Ludovic Waeckel
- Institut National de la Santé et de la Recherche Médicale Unité 872, Centre de Recherches des Cordeliers, 15 Rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Rupp H, Rupp TP, Alter P, Maisch B. Mechanisms involved in the differential reduction of omega-3 and omega-6 highly unsaturated fatty acids by structural heart disease resulting in "HUFA deficiency". Can J Physiol Pharmacol 2011; 90:55-73. [PMID: 22188440 DOI: 10.1139/y11-101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The causes of reduced levels of omega-3 and omega-6 highly unsaturated fatty acids ("HUFA deficiency") in heart failure remain unresolved. HUFA profiles were examined in the serum of 331 patients with failing versus nonfailing heart disease. Arachidonic acid was positively correlated (P < 0.001) with eicosapentaenoic acid (EPA) (r = 0.40) and docosahexaenoic acid (DHA) (r = 0.53) and negatively with palmitic (r = 0.42), palmitoleic (r = 0.38), and oleic acid (r = 0.48). Delta-5 desaturase activity was reduced (P < 0.01) in heart failure patients with low ejection fraction, dilatation, increased wall stress, and reduced heart rate variability (SDNN). In these patients, the reduced (P < 0.01) HUFA and increased palmitic (P < 0.01) and oleic acid (P = 0.05) arose from separate influences involving reduced cardiac contractility (arachidonic acid and palmitic acid predicted by ejection fraction) and chamber dilatation (DHA and oleic acid predicted by end-diastolic diameter). A low DHA (0.2%-0.9% versus 1.4%-3.1%) was associated (P < 0.025) with atrial dilatation (44 ± 8 mm versus 40 ± 8 mm). Equidirectional but less pronounced effects on HUFA were induced by sympathetic activation and (or) insulin resistance (fat and sugar fed to deoxycorticosterone acetate (DOCA)-salt rats) but not by compensated cardiac overload alone (DOCA-salt or aortic constriction), or reduced fatty acid oxidation (CPT-1 inhibition). Based on administration of omega-3 HUFA (OMACOR), dilatation is identified as a target for 1-2 g omega-3 HUFA·day(-1). Interventions for reduced arachidonic acid remain to be explored.
Collapse
Affiliation(s)
- Heinz Rupp
- Experimental Cardiology Laboratory, Department of Internal Medicine - Cardiology, Philipps University Marburg, Baldingerstrasse 1, 35043 Marburg, Germany.
| | | | | | | |
Collapse
|
7
|
Rieg T, Gerasimova M, Boyer JL, Insel PA, Vallon V. P2Y₂ receptor activation decreases blood pressure and increases renal Na⁺ excretion. Am J Physiol Regul Integr Comp Physiol 2011; 301:R510-8. [PMID: 21613580 DOI: 10.1152/ajpregu.00148.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP and UTP are endogenous agonists of P2Y(2/4) receptors. To define the in vivo effects of P2Y(2) receptor activation on blood pressure and urinary excretion, we compared the response to INS45973, a P2Y(2/4) receptor agonist and UTP analog, in wild-type (WT) and P2Y(2) receptor knockout (P2Y(2)-/-) mice. INS45973 was administered intravenously as a bolus injection or continuous infusion to determine effects on blood pressure and renal function, respectively. Within seconds, bolus application of INS45973 (0.1 to 3 mg/kg body wt) dose-dependently decreased blood pressure in WT (maximum response -35 ± 2 mmHg) and to a similar extent in endothelial nitric oxide synthase knockout mice. By contrast, blood pressure increased in P2Y(2)-/- (maximum response +18 ± 1 mmHg) but returned to basal levels within 60 s. Continuous infusion of INS45973 (25 to 750 μg·min(-1)·kg(-1) body wt) dose-dependently increased urinary excretion of Na(+) in WT (maximum response +46 ± 15%) but reduced Na(+) excretion in P2Y(2)-/- (maximum responses of -45 ± 15%) mice. In renal clearance experiments, INS45973 did not affect glomerular filtration rate but lowered blood pressure and increased fractional excretion of fluid, Na(+), and K(+) in WT relative to P2Y(2)-/- mice. The blood pressure responses to INS45973 are consistent with P2Y(2) receptor-mediated NO-independent vasodilation and implicate responses to endothelium-derived hyperpolarizing factor, and P2Y(2) receptor-independent vasoconstriction, probably via activation of P2Y(4) receptors on smooth muscle. Systemic activation of P2Y(2) receptors thus lowers blood pressure and inhibits renal Na(+) reabsorption, effects suggesting the potential utility of P2Y(2) agonism in the treatment of hypertension.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California 92161, USA.
| | | | | | | | | |
Collapse
|
8
|
Renal protective effects of N-acetyl-Ser-Asp-Lys-Pro in deoxycorticosterone acetate-salt hypertensive mice. J Hypertens 2011; 29:330-8. [PMID: 21052020 DOI: 10.1097/hjh.0b013e32834103ee] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertension-induced renal injury is characterized by inflammation, fibrosis and proteinuria. Previous studies have demonstrated that N-acetyl-Ser-Asp-Lys-Pro (Ac-SDKP) inhibits renal damage following diabetes mellitus and antiglomerular basement membrane nephritis. However, its effects on low-renin hypertensive nephropathy are not known. Thus, we hypothesized that Ac-SDKP has renal protective effects on deoxycorticosterone acetate (DOCA)-salt hypertensive mice, decreasing inflammatory cell infiltration, matrix deposition and albuminuria. METHOD We uninephrectomized 16-week-old C57BL/6J mice and treated them with either placebo, DCOA (10 mg/10 g body weight subcutaneous) and 1% sodium chloride with 0.2% potassium chloride in drinking water (DOCA-salt) or DOCA-salt with Ac-SDKP (800 μg/kg per day) for 12 weeks. We measured blood pressure, urine albumin, glomerular matrix, renal collagen content, monocyte/macrophage infiltration and glomerular nephrin expression. RESULTS Treatment with DOCA-salt significantly increased blood pressure (P < 0.01), which remained unaltered by Ac-SDKP. Ac-SDKP decreased DOCA-salt-induced renal collagen deposition, glomerular matrix expansion and monocyte/macrophage infiltration. Moreover, DOCA-salt-induced increase in albuminuria was normalized by Ac-SDKP (controls, 10.8 ± 1.7; DOCA-salt, 41 ± 5; DOCA-salt + Ac-SDKP, 13 ± 3 μg/10 g body weight per 24 h; P < 0.001, DOCA-salt vs. DOCA-salt + Ac-SDKP). Loss of nephrin reportedly causes excess urinary protein excretion; therefore, we determined whether Ac-SDKP inhibits proteinuria by restoring nephrin expression in the glomerulus of hypertensive mice. DOCA-salt significantly downregulated glomerular nephrin expression (controls, 37 ± 8; DOCA-salt, 10 ± 1.5% of glomerular area; P < 0.01), which was partially reversed by Ac-SDKP (23 ± 4.0% of glomerular area; P = 0.065, DOCA-salt vs. DOCA-salt + Ac-SDKP). CONCLUSION We concluded that Ac-SDKP prevents hypertension-induced inflammatory cell infiltration, collagen deposition, nephrin downregulation and albuminuria, which could lead to renoprotection in hypertensive mice.
Collapse
|
9
|
Sturgis LC, Cannon JG, Schreihofer DA, Brands MW. The role of aldosterone in mediating the dependence of angiotensin hypertension on IL-6. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1742-8. [PMID: 19812355 DOI: 10.1152/ajpregu.90995.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knockout (KO) of IL-6 has been shown to attenuate ANG II hypertension, and mineralocorticoid receptors (MR) have been reported to contribute to the increase in IL-6 during acute ANG II infusion. This study determined whether that MR action is sustained with chronic ANG II infusion and whether it plays a role in mediating ANG II hypertension. ANG II infusion (90 ng/min) increased plasma IL-6 from 1.6 +/- 0.6 to 22.7 +/- 2.2 and 19.9 +/- 3.2 pg/ml on days 7 and 14, respectively, and chronic MR blockade with spironolactone attenuated that only at day 7 (7.2 +/- 2.2 pg/ml). ANG II increased MAP (19 h/day with telemetry) approximately 40 mmHg, but in ANG II+spironolactone mice (25 or 50 mg*kg(-1)*day(-1)), mean arterial pressure (MAP) was not significantly different despite a tendency for lower pressure the first 6 days. To isolate further the mineralocorticoid link to IL-6 and blood pressure, DOCA-salt hypertension was induced in IL-6 KO and wild-type (WT) mice. Plasma IL-6 increased from 4.1 +/- 1.7 to 34.5 +/- 7.0 pg/ml by day 7 of DOCA treatment in the WT mice but was back to control levels by day 14. An IL-6 bioassay using the murine B9, B-cell hybridoma cell line demonstrated that plasma IL-6 measurements reflected actual IL-6 bioactivity. The hypertension was not different and virtually superimposable in WT vs. IL-6 KO mice, averaging 145 +/- 2 and 144 +/- 3 mmHg, respectively. Both experiments confirm chronic stimulation of IL-6 by mineralocorticoids but show that it is transient. In addition, IL-6 was not required for mineralocorticoid hypertension. This suggests that aldosterone contributes to the increase in plasma IL-6 in the early stage of ANG II hypertension but that the blood pressure actions of IL-6 in that model are linked most likely to ANG II rather than aldosterone.
Collapse
Affiliation(s)
- LaShon C Sturgis
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912-3000, USA
| | | | | | | |
Collapse
|
10
|
Müller P, Kazakov A, Jagoda P, Semenov A, Böhm M, Laufs U. ACE inhibition promotes upregulation of endothelial progenitor cells and neoangiogenesis in cardiac pressure overload. Cardiovasc Res 2009; 83:106-14. [DOI: 10.1093/cvr/cvp123] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Gross DR. Other Transgenic Animal Models Used in Cardiovascular Studies. ANIMAL MODELS IN CARDIOVASCULAR RESEARCH 2009. [PMCID: PMC7121723 DOI: 10.1007/978-0-387-95962-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previous chapters have described a large number of transgenic animal models used to study specific cardiovascular syndromes. This chapter will fill in some gaps. Many of these transgenic animals were developed to study normal and/or abnormal physiological responses in other organ systems, or to study basic biochemical and molecular reactions or pathways. These models were then discovered to also have effects on the cardiovascular system, some of them unanticipated. A word of caution, particularly when highly inbred mouse strains are used to develop transgenic models - not all strains of a particular species are created equal. When cardiovascular parameters of age- and sex-matched A/J and C57BL/6J inbred mice were compared the C57BL/6J mice demonstrated eccentric physiologic ventricular hypertrophy, increased ventricular function, lower heart rates, and increased exercise endurance.1
Collapse
|
12
|
Barrick CJ, Rojas M, Schoonhoven R, Smyth SS, Threadgill DW. Cardiac response to pressure overload in 129S1/SvImJ and C57BL/6J mice: temporal- and background-dependent development of concentric left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2007; 292:H2119-30. [PMID: 17172276 DOI: 10.1152/ajpheart.00816.2006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular hypertrophy (LVH), a risk factor for cardiovascular morbidity and mortality, is commonly caused by essential hypertension. Three geometric patterns of LVH can be induced by hypertension: concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. Clinical studies suggest that different underlying etiologies, genetic modifiers, and risk of mortality are associated with LVH geometric patterns. Since pressure overload-induced LVH can be modeled experimentally using transverse aortic constriction (TAC) and since C57BL/6J (B6) and 129S1/SvImJ (129S1) strains, which have different baseline cardiovascular phenotypes, are commonly used, we conducted serial echocardiographic studies to assess cardiac function up to 8 wk of post-TAC in male B6, 129S1, and B6129F1 (F1) mice. B6 mice had an earlier onset and more pronounced impairment in contractile function, with corresponding left and right ventricular dilatation, fibrosis, change in expression of hypertrophy marker, and increased liver weights at 5 wk of post-TAC. These observations suggest that B6 mice had eccentric hypertrophy with systolic dysfunction and right-sided heart failure. In contrast, we found that 129S1 and F1 mice delayed transition to decompensated heart failure, with 129S1 mice exhibiting preserved systolic function until 8 wk of post-TAC and relatively mild alterations in histology and markers of hypertrophy at 5 wk post-TAC. Consistent with concentric hypertrophy, our results show that these strains manifest different cardiac responses to pressure overload in a time-dependent manner and that genetic susceptibility to initial concentric hypertrophy is dominant to eccentric hypertrophy. These results also imply that genetic background differences can complicate interpretation of TAC studies when using mixed genetic backgrounds.
Collapse
Affiliation(s)
- Cordelia J Barrick
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
13
|
Cayla C, Todiras M, Iliescu R, Saul VV, Gross V, Pilz B, Chai G, Merino VF, Pesquero JB, Baltatu OC, Bader M. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J 2007; 21:1689-98. [PMID: 17289925 DOI: 10.1096/fj.06-7175com] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Kinins play a central role in the modulation of cardiovascular function and in the pathophysiology of inflammation. These peptides mediate their effects by binding to two specific G-protein coupled receptors named B1 and B2. To evaluate the full functional relevance of the kallikrein-kinin system, we generated mice lacking both kinin receptors (B1B2-/-). Because of the close chromosomal position of both kinin receptor genes, B1B2-/- mice could not be obtained by simple breeding of the single knockout lines. Therefore, we inactivated the B1 receptor gene by homologous recombination in embryonic stem cells derived from B2-deficient animals. The B1B2-/- mice exhibited undetectable levels of mRNAs for both receptors and a lack of response to bradykinin (B2 agonist) and des-Arg9-bradykinin (B1 agonist), as attested by contractility studies with isolated smooth muscle tissues. B1B2-/- mice are healthy and fertile, and no sign of cardiac abnormality was detected. They are normotensive but exhibit a lower heart rate than controls. Furthermore, kinin receptor deficiency affects the pathogenesis of endotoxin-induced hypotension. While blood pressure decreased markedly in wild-type mice and B2-/- and moderately in B1-/- mice after bacterial lipopolysaccharide (LPS) injection, blood pressure remained unchanged in B1B2-/- mice. These results clearly demonstrate a pivotal role of kinins and their receptors in hypotension induced by endotoxemia in mice.
Collapse
Affiliation(s)
- Cécile Cayla
- Max-Delbrück-Center for Molecular Medicine, D-13092 Berlin-Buch, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun Y, Carretero OA, Xu J, Rhaleb NE, Wang F, Lin C, Yang JJ, Pagano PJ, Yang XP. Lack of inducible NO synthase reduces oxidative stress and enhances cardiac response to isoproterenol in mice with deoxycorticosterone acetate-salt hypertension. Hypertension 2005; 46:1355-61. [PMID: 16286571 PMCID: PMC4601605 DOI: 10.1161/01.hyp.0000192651.06674.3f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although NO derived from endothelial NO synthase (eNOS) is thought to be cardioprotective, the role of inducible NO synthase (iNOS) remains controversial. Using mice lacking iNOS (iNOS-/-), we studied (1) whether development of hypertension, cardiac hypertrophy, and dysfunction after deoxycorticosterone acetate (DOCA)-salt would be less severe compared with wild-type controls (WT; C57BL/6J), and (2) whether the cardioprotection attributable to lack of iNOS is mediated by reduced oxidative stress. Mice were uninephrectomized and received either DOCA-salt (30 mg/mouse SC and 1% NaCl+0.2% KCl in drinking water) or vehicle (tap water) for 12 weeks. Systolic blood pressure (SBP) was measured weekly. Left ventricular (LV) ejection fraction (EF) by echocardiography and cardiac response to isoproterenol (50 ng/mouse IV) were studied at the end of the experiment. Expression of eNOS and iNOS as well as the oxidative stress markers 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) were determined by Western blot and immunohistochemical staining, respectively. DOCA-salt increased SBP and LV weight similarly in both strains and decreased EF in WT but not in iNOS-/-. Cardiac contractile and relaxation responses to isoproterenol were greater, 4-HNE and nitrotyrosine levels were lower, and eNOS expression tended to be higher in iNOS-/-. We conclude that lack of iNOS leads to better preservation of cardiac function, which may be mediated by reduced oxidative stress and increased eNOS; however, it does not seem to play a significant role in preventing DOCA-salt-induced hypertension and hypertrophy.
Collapse
Affiliation(s)
- Ying Sun
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Health System, Wayne State University, Detroit, MI 48202-2689, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function. Hypertension 2005. [DOI: 10.1016/b978-0-7216-0258-5.50110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Murphey LJ, Eccles WK, Williams GH, Brown NJ. Loss of Sodium Modulation of Plasma Kinins in Human Hypertension. J Pharmacol Exp Ther 2004; 308:1046-52. [PMID: 14718610 DOI: 10.1124/jpet.103.059337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of salt intake and hypertension on the systemic kallikrein-kinin system (KKS), as measured by bradykinin (BK) 1-5, a stable circulating bradykinin metabolite, and the tissue KKS, as measured by urinary kallikrein excretion. Venous BK 1-5, urinary kallikrein, and components of the renin-angiotensin-aldosterone system were measured in 35 normotensive and 19 hypertensive subjects who were maintained on a high (200 mmol/day) or low (10 mmol/day) salt diet. Salt restriction decreased mean arterial pressure (MAP) (P < 0.001 overall) and the plasma angiotensin-converting enzyme (P = 0.017) and increased plasma renin activity (P < 0.001) and serum aldosterone (P < 0.001). There was an interactive effect of salt intake and hypertension on plasma BK 1-5 (P = 0.043), with BK 1-5 significantly lower during low compared with high salt intake in normotensive (24.7 +/- 2.6 versus 34.9 +/- 5.6 fmol/ml, P = 0.002) but not hypertensive subjects (30.6 +/- 4.6 versus 27.5 +/- 2.8 fmol/ml, P = 0.335). In normotensives, the change in plasma BK 1-5 from high to low salt intake correlated with the change in MAP (r = 0.533, P = 0.004). Urinary kallikrein was higher during low compared with high salt intake (P < 0.001) in both groups. There was no effect of salt intake on urinary BK 1-5. In summary, the systemic and renal KKSs act in tandem to modulate the response to salt intake. The systemic system is activated during high salt intake and counterbalances increased vascular response to pressors. With sodium restriction, the renal system is activated and counterbalances the increased sodium-retaining state induced by activation of the renin-angiotensin-aldosterone system. With hypertension, these modulating effects are diminished or lost, supporting a role for both systems in the development/maintenance of hypertension.
Collapse
Affiliation(s)
- Laine J Murphey
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
17
|
Ma X, Abboud FM, Chapleau MW. Neurocardiovascular regulation in mice: Experimental approaches and novel findings. Clin Exp Pharmacol Physiol 2003; 30:885-93. [PMID: 14678254 DOI: 10.1046/j.1440-1681.2003.03927.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Neural mechanisms are of major importance in the regulation of arterial blood pressure, blood volume and other aspects of cardiovascular function. The recent explosion in gene discovery and advances in molecular technologies now provide the opportunity to define the molecular and cellular mechanisms essential to integrative neurocardiovascular regulation. The unique susceptibility of mice to genetic manipulation makes this species an attractive model for such investigation. 2. We provide here a brief overview of: (i) experimental approaches used to assess autonomic and reflex control of the circulation in mice; (ii) novel mechanisms of neurocardiovascular regulation revealed using these approaches; and (iii) findings from recent studies involving mouse models of cardiovascular disease.
Collapse
Affiliation(s)
- Xiuying Ma
- The Cardiovascular Center, The University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
18
|
|
19
|
Varagic J, Susic D, Slama M, Frohlich ED. Omapatrilat induces profound renal vasodilation but does not affect coronary hemodynamics. J Cardiovasc Pharmacol Ther 2003; 8:167-74. [PMID: 12808490 DOI: 10.1177/107424840300800210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Omapatrilat has potent enzymatic inhibitory effects on the angiotensin-converting enzyme and neutral endopeptidase. The prolonged effects of this inhibition on systemic and regional hemodynamics, cardiovascular mass, and hydroxyproline concentration in spontaneously hypertensive rats were studied. The contribution of endogenous bradykinin on the cardiovascular actions of omapatrilat in this genetic model of hypertension was also investigated. METHODS AND RESULTS Systemic and regional hemodynamics (radionuclide-labeled microspheres), left and right ventricular and aortic masses, and hydroxyproline concentration were determined in 35-week-old spontaneously hypertensive rats after 12 weeks of treatment with omapatrilat (40 mg/kg/day), with and without the bradykinin receptor antagonist icatibant (500 microg/kg/day). Omapatrilat decreased mean arterial pressure, reducing total peripheral resistance as well as decreased left ventricular and aortic mass indices. It also induced a profound renovasodilation associated with a decrease renal vascular resistance that markedly increased renal blood flow. Coronary hemodynamics and left ventricular hydroxyproline concentration remained unaltered. Concomitant blockade of bradykinin receptors partially attenuated the hypotensive effect of omapatrilat and its effect on aortic mass; and icatibant did not influence the renovasodilation. CONCLUSION Omapatrilat produced profoundly beneficial effects on systemic and renal hemodynamics, as well as on left ventricular and aortic masses, without any effect on coronary hemodynamics. These effects of omapatrilat on arterial pressure and aortic mass, but not on renal hemodynamics and left ventricular mass, may have been at least partially mediated through the action of bradykinin.
Collapse
Affiliation(s)
- Jasmina Varagic
- Hypertension Research Laboratory, Ochsner Clinic Foundation, New Orleans, Louisiana 70121, USA
| | | | | | | |
Collapse
|
20
|
Katori M, Majima M. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension. Crit Rev Clin Lab Sci 2003; 40:43-115. [PMID: 12627748 DOI: 10.1080/713609329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
21
|
Wang Q, Hummler E, Nussberger J, Clément S, Gabbiani G, Brunner HR, Burnier M. Blood pressure, cardiac, and renal responses to salt and deoxycorticosterone acetate in mice: role of Renin genes. J Am Soc Nephrol 2002; 13:1509-16. [PMID: 12039980 DOI: 10.1097/01.asn.0000017902.77985.84] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that mice are polymorphic for the number of renin genes, with some inbred strains harboring one gene (Ren-1(c)) and other strains containing two genes (Ren-1(d) and Ren-2). In this study, the effects of 1% salt and deoxycorticosterone acetate (DOCA)/salt were investigated in one- and two-renin gene mice, for elucidation of the role of renin in the modulation of BP, cardiac, and renal responses to salt and DOCA. The results demonstrated that, under baseline conditions, mice with two renin genes exhibited 10-fold higher plasma renin activity, 100-fold higher plasma renin concentrations, elevated BP (which was angiotensin II-dependent), and an increased cardiac weight index, compared with one-renin gene mice (all P < 0.01). The presence of two renin genes markedly increased the BP, cardiac, and renal responses to salt. The number of renin genes also modulated the responses to DOCA/salt. In one-renin gene mice, DOCA/salt induced significant renal and cardiac hypertrophy (P < 0.01) even in the absence of any increase in BP. Treatment with losartan, an angiotensin II AT(1) receptor antagonist, decreased BP in two-renin gene mice but not in one-renin gene mice. However, losartan prevented the development of cardiac hypertrophy in both groups of mice. In conclusion, these data demonstrate that renin genes are important determinants of BP and of the responses to salt and DOCA in mice. The results confirm that the Ren-2 gene, which controls renin production mainly in the submaxillary gland, is physiologically active in mice and is not subject to the usual negative feedback control. Finally, these data provide further evidence that mineralocorticoids promote cardiac hypertrophy even in the absence of BP changes. This hypertrophic process is mediated in part by the activation of angiotensin II AT(1) receptors.
Collapse
Affiliation(s)
- Qing Wang
- Division of Hypertension and Vascular Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
22
|
Carini F, Guelfi M, Lecci A, Tramontana M, Meini S, Giuliani S, Montserrat X, Pascual J, Fabbri G, Ricci R, Quartara L, Maggi CA. Cardiovascular effects of peptide kinin B2 receptor antagonists in rats. Can J Physiol Pharmacol 2002; 80:310-22. [PMID: 12025966 DOI: 10.1139/y02-023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bradykinin (BK) is a vasoactive peptide reputed to play an important role in cardiovascular homeostasis. In this study, we describe the cardiovascular changes (mean blood pressure (BP) and heart rate (HR)) induced by the i.v. administration (left jugular vein) of two selective kinin B2 receptor antagonist, namely icatibant (0.1-1 micromol/kg as a bolus) and MEN1 1270 (0.1-1 micromol/kg as a bolus or 1 micromol/kg infused in 15 or 60 min), in urethane-anaesthetized or conscious rats with an indwelling catheter implanted in the right carotid artery for BP measurements. In conscious rats, icatibant at 0.1 or 0.3 micromol/kg did not change BP but at 0.1 micromol/kg increased HR at 30 min from administration. MEN1 1270 at 0.1 or 0.3 micromol/kg induced a dose-related increase in BP and a concomitant bradycardia (significant at 0.3 micromol/kg) lasting for 5 or 30 min, respectively. Icatibant at 1 micromol/kg induced a slight (P < 0.05) increase in BP that resolved in 5 min and a biphasic tachycardia (peaks at 30 and 90 min from administration). MEN1 1270 at 1 micromol/kg induced a triphasic change in HR (tachycardia in the first 5 min, bradycardia at 30 min, and tachycardia at 90 and 120 min) and a biphasic change in BP (hypotension at 15 min and hypertension at 30 min). The i.v. infusion of MEN1 1270 (1 micromol/kg in 15 or 60 min) produced hypertension, whereas HR was increased only following the 15-min infusion. In urethane-anaesthetized rats, both icatibant and MEN1 1270 (0.1 micromol/kg as a bolus) increased BP and the onset for this effect was correlated with the time course of the antagonism of BK-induced hypotension, where the effect of MEN1 1270 was more rapid than that of icatibant. These results indicate that kinin B2 receptor antagonists can induce acute cardiovascular effects, and the reason for the different haemodynamic profile between icatibant and MEN1 1270 could be putatively attributed to kinetic characteristics.
Collapse
Affiliation(s)
- F Carini
- Pharmacology Department, Menarini Ricerche, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meini S, Lecci A, Carini F, Tramontana M, Giuliani S, Maggi CA, Ricci R, Fabbri G, Anichini B, Harmat N, Rizzi A, Camarda V, Regoli D, Quartara L. In vitro and in vivo activity of analogues of the kinin B2 receptor antagonist MEN1 1270. Can J Physiol Pharmacol 2002; 80:293-302. [PMID: 12025964 DOI: 10.1139/y02-022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we describe the in vitro and in vivo activities of a series of cyclic peptide analogues of the selective kinin B2 receptor antagonist MEN11270 on Chinese hamster ovary cells expressing the human B2 receptor (hB2R), the human isolated umbilical vein (hUV), the isolated guinea pig ileum (gpI), and bradykinin (BK) induced bronchoconstriction (BC) and hypotension in anaesthetized guinea pigs. Substitutions in the backbone of MEN1 1270 (H-DArg-Arg-Pro-Hyp-Gly-Thi-c(Dab-DTic-Oic-Arg)c(7gamma-10alpha)) aimed to increase the potency in inhibiting bronchospasm versus hypotension following the topical (intratracheal (i.t.)) or systemic (intravenous (i.v.)) application of these antagonists. A series of analogues were left unprotected from N-terminal cleavage by aminopeptidases (MEN12739, MEN13052, MEN13346, and MEN13371): these compounds maintained sizeable affinities for the hB2R (pKi = 9.4, 9.6, 9.7, and 8.6, respectively) and antagonist activities toward BK in the hUV (pA2 = 7.9, 8.3, 8.2, and 7.5) and gpI assays (pK(B) = 7.4, 7.8, 7.9, and 7.9), but the inhibition of BK-induced BC and hypotension in vivo was negligible following either i.v. or i.t. administration. Two analogues (MEN12388 and MEN13405) could be potential substrates of angiotensin-converting enzyme: these have good activity in the hB2R (pKi = 9.5 and 8.9, respectively), hUV (pA2 = 8.2 for MEN12388), and gpI assays (pK(B) = 8.4 and 8.0) but an in vivo activity 10- to 30-fold lower than the parent compound MEN1 1270 (pKi = 9.4, pA2 = 8.1, pKB = 8.3) when given by either the i.v. or the i.t. route. Other analogues were functionalized with a quaternary ammonium Lys derivative (MEN13031, MEN12374, and the previously mentioned MEN13052) or with an ethyl group on Arg (MEN13655 and the previously mentioned MEN13346 and MEN13405) in order to hinder or facilitate local absorption. MEN13346 and MEN13031 (pKi = 9.7and 9.5, pA2 = 8.2 and 7.9, pKB = 7.9 and 8.5, respectively) were 10- to 30-fold less active in vivo than MEN1 1270, without improving the discrimination between BK-induced BC and hypotension after either systemic or topical administration. It is concluded that the decreased in vivo activities of cyclic analogues of MEN11270 on BK-induced BC and hypotension following either their intratracheal or their intravenous routes of administration might be due in large part to metabolic degradation.
Collapse
Affiliation(s)
- S Meini
- Pharmacology Department, Menarini Ricerche, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Palkhiwala SA, Frishman WH, Warshafsky S. Bradykinin for the treatment of cardiovascular disease. HEART DISEASE (HAGERSTOWN, MD.) 2001; 3:333-9. [PMID: 11975815 DOI: 10.1097/00132580-200109000-00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bradykinin is a vasoactive kinin known to be involved in many biologic processes. Levels of bradykinin have been shown to be elevated in a number of cardiac diseases. It is thought that these elevated levels play a protective role in cardiovascular diseases. Preliminary studies have demonstrated that bradykinin may have beneficial effects on a wide spectrum of cardiovascular disorders. Though much study is still required, bradykinin augmentation represents an exciting new target for the treatment of cardiovascular disease.
Collapse
|
25
|
MESH Headings
- Angiotensin II/pharmacology
- Female
- Humans
- Muscle, Smooth, Vascular/drug effects
- Pre-Eclampsia/drug therapy
- Pre-Eclampsia/physiopathology
- Pregnancy
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptor, Bradykinin B2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Bradykinin/drug effects
- Receptors, Bradykinin/metabolism
Collapse
|
26
|
Milia AF, Gross V, Plehm R, De Silva JA, Bader M, Luft FC. Normal blood pressure and renal function in mice lacking the bradykinin B(2) receptor. Hypertension 2001; 37:1473-9. [PMID: 11408397 DOI: 10.1161/01.hyp.37.6.1473] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Telemetric blood pressure determinations, heart rate measurements, and pressure-natriuresis-diuresis experiments were used to characterize cardiovascular and renal function in bradykinin B(2) receptor knockout mice fed mouse chow containing 0.25% NaCl or mouse chow containing 4% NaCl. In B(2) receptor knockout mice fed usual mouse chow, the mean arterial blood pressure leveled between 108+/-1 and 110+/-3 mm Hg, and the heart rate leveled between 520+/-26 and 525+/-29 bpm, values that were not different from those measured in B(1) receptor knockout mice or 129Sv/J control mice. Increasing dietary salt intake did not affect mean arterial blood pressure and heart rate. Accordingly, pressure-natriuresis curves, pressure-diuresis curves, renal blood flow, and glomerular filtration rate were not different between B(2) receptor knockout and 129Sv/J mice. Increasing dietary salt intake to 4% increased renal blood flow to levels between 8.41 and 9.50 mL/min per gram kidney wet weight in 129Sv/J mice, whereas in B(2) receptor-deficient mice, renal blood flow was not affected and ranged between 6.85 and 7.88 mL/min per gram kidney wet weight. Other renal function parameters were not affected. Absence of B(2) receptor function was verified in B(2) receptor knockout mice with bradykinin infusion. These data suggest that the absence of B(2) receptor function does not necessarily make B(2) receptor knockout mice hypertensive or induce salt sensitivity. Presumably, differences in the genetic background or an adaptation to the loss of B(2) receptor function may account for these results, in contrast with earlier reports involving B(2) receptor knockout mice. We hold the latter possibility to be more likely and to be a fruitful possibility for future research.
Collapse
Affiliation(s)
- A F Milia
- Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Cervenka L, Maly J, Karasová L, Simová M, Vítko S, Hellerová S, Heller J, El-Dahr SS. Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension 2001; 37:967-73. [PMID: 11270390 DOI: 10.1161/01.hyp.37.3.967] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study was performed to examine the role of endogenous bradykinin (BK) in the development of angiotensin II (Ang II)-induced hypertension in mice. BK B2receptor knockout (B2R-/-) and wild-type (B2R+/+) mice (22to 26 g) were infused with either saline (SAL) or Ang II (40ng/min) via an osmotic minipump implanted intraperitoneally. On day 12after implantation, there was no difference in systolic blood pressure (SBP, tail-cuff plethysmography) between SAL/B2R+/+ and SAL/B2R-/- mice(128+/-5 versus 133+/-6 mm Hg, n=24/group). In contrast, SBP was higher on day 12 of infusion in Ang II/B2R-/- than in Ang II/B2R+/+ mice (173+/-6versus 156+/-5 mm Hg; P<0.05, n=27 and 28). Mean arterial pressure (MAP)was also higher in anesthetized Ang II/B2R-/- mice than in Ang II/B2R+/+mice (139+/-3 versus 124+/-3 mm Hg; P<0.05, n=16 and 14). Unlike Ang II, long-term norepinephrine (NE) infusion via an osmotic minipump (45ng/min) caused equivalent increases in SBP in B2R+/+ and B2R-/- mice measured on day 12 after implantation (151+/-4 versus 149+/-5 mm Hg, n=9and 8). MAP also did not differ on day 13 after implantation between NE/B2R+/+ and NE/B2R-/- mice (120+/-6 versus 122+/-4 mm Hg, n=9 and 8). There were no differences in glomerular filtration rate and urinary sodium excretion among the groups. However, renal plasma flow (RPF) was lower in Ang II/B2R-/- mice than in Ang II/B2R+/+ mice (2.34+/-0.06 versus 4.33+/-0.19 mL x min-1 x g-1; P<0.05). Acute inhibition of NO synthase (NOS)with nitro-L-arginine-methyl ester (0.5 microg x g-1 x min-1) in SAL/B2+/+ and SAL/B2-/- mice caused equal increases in MAP (142+/-1 versus 145+/-1 mmHg) and decreases in RPF (2.06+/-0.06 versus 2.12+/-0.15 mL x min-1 x g-1).However, short-term NOS inhibition caused a greater increase in MAP of Ang II/B2R+/+ mice than of Ang II/B2R-/- mice, such that MAP after NOS inhibition in Ang II/B2R+/+ approached that of Ang II/B2R-/- mice (156+/-2versus 159+/-2 mm Hg). These changes were associated with a decrease in RPF in Ang II/B2R+/+ mice to values similar to those of Ang II/B2R-/- mice before NOS inhibition (2.12+/-0.09 versus 2.34+/-0.06 mL x min-1 x g-1). These results demonstrate that the kallikrein-kinin system selectively buffers the vasoconstrictor activity of Ang II. Furthermore, the enhanced susceptibility of B2R-/- mice to Ang II-induced hypertension and renal vasoconstriction is likely due to an impaired ability to release NO by endogenous kinins.
Collapse
Affiliation(s)
- L Cervenka
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, 1958/9 Vídeská, 140 00 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lake-Bruse KD, Sigmund CD. Transgenic and knockout mice to study the renin-angiotensin system and other interacting vasoactive pathways. Curr Hypertens Rep 2000; 2:211-6. [PMID: 10981151 DOI: 10.1007/s11906-000-0084-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Essential hypertension is an insidious disease in which the afflicted person risks disability and death from myocardial infarction and stroke. Many factors contribute to the development of essential hypertension, including environment, diet, daily stress, and genetics. Although several single gene disorders causing high blood pressure have been identified, the genetics of essential hypertension are much more complicated. The current hypothesis is that a combination of genetic variations in multiple genes may predispose a person to hypertension. Both overexpression and gene inactivation ("knockout") have proven useful tools to evaluate the genetics of essential hypertension and to identify pathways regulating blood pressure. Molecular and physiologic evaluations of transgenic and knockout mice carried out over the past 5 years have provided a plethora of information about the mechanisms of blood pressure regulation and the development and maintenance of hypertension. This review focuses on the newer mouse models that have been developed to investigate hypertension with an emphasis on vascular and renal mechanisms, contributed by the renin-angiotensin system, and other pathways intersecting with the renin-angiotensin system.
Collapse
Affiliation(s)
- K D Lake-Bruse
- Departments of Internal Medicine and Physiology & Biophysics, The University of Iowa College of Medicine, Iowa City, IA, 52242, USA
| | | |
Collapse
|
29
|
Tornel J, Madrid MI, García-Salom M, Wirth KJ, Fenoy FJ. Role of kinins in the control of renal papillary blood flow, pressure natriuresis, and arterial pressure. Circ Res 2000; 86:589-95. [PMID: 10720421 DOI: 10.1161/01.res.86.5.589] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study evaluated the effects of blocking kinins with the bradykinin B(2) receptor antagonist Hoe140 on the relationship between renal perfusion pressure, papillary blood flow (PBF), and sodium excretion. To determine the relevance of renal kinins in the long-term control of arterial pressure, the effect of a chronic intrarenal infusion of Hoe140 on arterial pressure and sodium balance was also studied. PBF was not autoregulated in volume-expanded rats, and the administration of Hoe140 reduced PBF (-30%) and improved PBF autoregulation. The kinin antagonist also decreased sodium excretion (-35%) and blunted pressure natriuresis with no whole-kidney renal hemodynamic changes. These effects may be mediated through nitric oxide (NO), because in rats pretreated with N(G)-nitro-L-arginine methyl ester, Hoe140 had no additional effects on PBF or pressure natriuresis. A role for NO in mediating the renal response to Hoe140 is also supported by the finding that Hoe140 reduced basal urinary NO(3)(-)/NO(2)(-) excretion (-33%), and it blunted the arterial pressure-induced increase in NO(3)(-)/NO(2)(-) excretion, which is compatible with the idea that the pressure-natriuresis response may be mediated through kinins and NO. The importance of kinins in long-term regulation of arterial pressure is demonstrated by the severe arterial hypertension (172+/-6 mm Hg) induced during the chronic intrarenal infusion of Hoe140 associated with sodium and volume retention. These data suggest that renal kinins and NO may be a part of the renal mechanism coupling changes in arterial pressure with modifications in PBF and sodium excretion, therefore contributing to the long-term control of arterial pressure.
Collapse
Affiliation(s)
- J Tornel
- Departamento de Fisiología, Facultad de Medicina, Murcia, Spain
| | | | | | | | | |
Collapse
|
30
|
Nakajima S, Ito H, Hayashi I, Kuribayashi Y, Okumura T, Yajima Y, Katori M, Majima M. Inhibition of kinin degradation on the luminal side of renal tubules reduces high blood pressure in deoxycorticosterone acetate salt-treated rats. Clin Exp Pharmacol Physiol 2000; 27:80-7. [PMID: 10696533 DOI: 10.1046/j.1440-1681.2000.03209.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. To determine whether the antihypertensive response in deoxycorticosterone acetate (DOCA) salt-treated rats was mediated by kinins on the luminal side of renal tubules or in the circulation, selective urinary kininase inhibitors were administered to normal Brown Norway Kitasato (BN-Ki) rats and kininogen-deficient Brown Norway Katholiek (BN-Ka) rats. 2. Kinins were degraded by neutral endopeptidase (NEP) and carboxypeptidase Y-like kininase (CPY) in urine, but were inactivated mainly by angiotensin-converting enzyme (ACE) in the plasma. 3. Ebelactone B inhibited CPY, while poststatin inhibited CPY and NEP. 4. Daily administration of poststatin (5 mg/kg per day, s.c.) for 3 days reduced blood pressure (BP) in DOCA salt-treated BN-Ki rats, but not in BN-Ka rats. 5. Ebelactone B (5 mg/kg per day, s.c.) also reduced BP in BN-Ki rats, which was accompanied by increased urinary sodium excretion, but had no effect on BP in BN-Ka rats. 6. Lisinopril (5 mg/kg per day, s.c.) had no effect on BP in either rat strain. 7. Arterial kinin levels in BN-Ki rats increased significantly (2.2-4.6 pg/mL) with captopril (10 mg/kg, s.c.). However, arterial kinin levels that induced hypotension following the infusion of bradykinin (1000 ng/kg per min, i.v.) were 110-fold higher than endogenous arterial kinin levels attained following captopril. 8. These results suggest that inhibition of kinin degradation on the luminal side of the renal tubules may effectively attenuate hypertension.
Collapse
Affiliation(s)
- S Nakajima
- Department of Internal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Madeddu P, Emanueli C. Can knockout mice help dissect relevant genes in hypertension? Evidence and confounding factors. Hypertension 1999; 34:e14-5. [PMID: 10601137 DOI: 10.1161/01.hyp.34.6.e14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yang XP, Liu YH, Rhaleb NE, Kurihara N, Kim HE, Carretero OA. Echocardiographic assessment of cardiac function in conscious and anesthetized mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1967-74. [PMID: 10564153 DOI: 10.1152/ajpheart.1999.277.5.h1967] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a high-frequency linear transducer (15L8), we studied 1) the feasibility of performing echocardiography in nonanesthetized mice compared with mice given pentobarbital sodium (Pento) or a mixture of ketamine and xylazine and 2) the feasibility of echocardiographic evaluation of left ventricular (LV) hypertrophy, dilatation, and function in mice with two-kidney, one-clip hypertension or myocardial infarction (MI). Heart rate (HR) in awake mice was 658 +/- 9 beats/min; Pento and ketamine plus xylazine reduced HR to 377 +/- 11 and 293 +/- 19 beats/min, respectively, associated with a significant decrease in shortening fraction (SF), ejection fraction (EF), and cardiac output (CO) and an increase in LV end-diastolic (LVEDD) and end-systolic dimensions (LVESD). Mice with 4 wk of two-kidney, one-clip hypertension had increased LV mass (15.62 +/- 0. 62 vs. 22.17 +/- 1.79 mg) without altered LV dimensions, SF, EF, or CO. Mice studied 4 wk post-MI exhibited obvious LV dilatation and systolic dysfunction, as evidenced by increased LVEDD and LVESD and decreased SF, EF, and CO. Our findings clearly show the adverse impact of anesthesia on basal cardiac function and the difficulty in interpreting data obtained from anesthetized mice. We believe this is the first study to demonstrate the feasibility of using echocardiography to assess cardiovascular function in the nonanesthetized mouse.
Collapse
Affiliation(s)
- X P Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | | | |
Collapse
|