1
|
Choi J, Wood PT, Holmes JB, Dominic KL, Dos Remedios CG, Campbell KS, Stelzer JE. Differential effects of myosin activators on myocardial contractile function in nonfailing and failing human hearts. Am J Physiol Heart Circ Physiol 2025; 328:H161-H173. [PMID: 39453428 DOI: 10.1152/ajpheart.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The second-generation myosin activator danicamtiv (DN) has shown improved function compared with the first-generation myosin activator omecamtiv mecarbil (OM) in nonfailing myocardium by enhancing cardiac force generation but attenuating slowed relaxation. However, whether the functional improvement with DN compared with OM persists in remodeled failing myocardium remains unknown. Therefore, this study aimed to investigate the differential contractile responses to myosin activators in nonfailing and failing myocardium. Mechanical measurements were performed in detergent-skinned myocardium isolated from donor and failing human hearts. Steady-state force, stretch activation responses and loaded shortening velocity were analyzed at submaximal [Ca2+] in the absence or presence of 0.5 µmol/L OM or 2 µmol/L DN. The effects of DN and OM on Ca2+ sensitivity of force generation were determined by incubating myocardial preparations at various [Ca2+]. The inherent impairment in force generation and cross-bridge behavior sensitized the failing myocardium to the effects of myosin activators. Specifically, increased Ca2+ sensitivity of force generation, slowed rates of cross-bridge recruitment and detachment following acute stretch, slowed loaded shortening velocity, and diminished power output were more prominent following treatment with OM or DN in failing myocardium compared with donor myocardium. Although these effects were less pronounced with DN compared with OM in failing myocardium, DN impaired contractile properties in failing myocardium that were not affected in donor myocardium. Our results indicate that similar to first-generation myosin activators, the DN-induced slowing of cross-bridge kinetics may result in a prolongation of systolic ejection and delayed diastolic relaxation in the heart failure setting.NEW & NOTEWORTHY This is the first study to provide a detailed mechanistic comparison of omecamtiv mecarbil (OM) and danicamtiv (DN) in failing and nonfailing human myocardium. These findings have clinical implications and the potential to inform the clinical utility of myosin activators in the heart failure setting.
Collapse
Affiliation(s)
- Joohee Choi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Patrick T Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Katherine L Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | | | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, United States
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Xu W, Richmond M. Advances in understanding and managing pediatric heart failure and transplant. Curr Opin Pediatr 2024; 36:489-495. [PMID: 39254752 PMCID: PMC11408753 DOI: 10.1097/mop.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW This article highlights the most recent advances in a review of the current literature in the field of pediatric heart failure and transplantation. RECENT FINDINGS Diagnostically, the identification of new genetic factors has contributed to a deeper understanding of cardiomyopathy in children. Novel medications like sacubitril/valsartan and Sodium-Glucose cotransporter-2 (SGLT2) inhibitors, which are now standard in the adult population are being studied in pediatric population and offer new promise of pediatric heart failure treatment. Ventricular assist devices are more commonly used in cardiomyopathy patients and single ventricle patients as a bridge to transplant. Recent pediatric heart transplant society (PHTS) data demonstrated that waitlist survival improved significantly over the past decades (i) and new treatments such as daratumumab and eculizumab have been used in high-risk populations and demonstrate promising results. TEAMMATE trial is the first multicenter randomized clinical trial (RCT) in pediatric heart transplant (HT) to evaluate the safety and efficacy of everolimus (EVL) and low-dose tacrolimus (TAC) compared to standard-dose TAC and mycophenolate mofetil (MMF). It will provide valuable information about the safety and efficacy of EVL, TAC, and MMF (ii).Donor cell-free DNA has been used more in pediatric transplant recipients and has significantly decreased invasive EMB (iii). SUMMARY This past 5 years have witness dramatic progress in the field of pediatric heart failure and transplantation including more use of mechanical support in heart failure patients with various underlying etiology, especially use of mechanical support in single ventricle patients and the use of sacubitril/valsartan and SGLT2 inhibitors in the pediatric population. The problem of the highly sensitized transplant recipient remains, although novel therapeutics have been added to our toolbox of options to maintain healthy allograft function. Ongoing research aims to further enhance our understanding and management of pediatric heart failure, emphasizing the need for continued innovation in this complex field.
Collapse
Affiliation(s)
- Wenyuan Xu
- Pediatric Advanced Cardiac Care and Transplantation, Division of Pediatric Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
3
|
Jang JH, Lee SW, Kim DY, Shin SH, Lee SC, Kim DH, Choi W, Baek YS. Use of artificial intelligence-powered ECG to differentiate between cardiac and pulmonary pathologies in patients with acute dyspnoea in the emergency department. Open Heart 2024; 11:e002924. [PMID: 39353705 PMCID: PMC11448159 DOI: 10.1136/openhrt-2024-002924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Acute dyspnoea is common in acute care settings. However, identifying the origin of dyspnoea in the emergency department (ED) is often challenging. We aimed to investigate whether our artificial intelligence (AI)-powered ECG analysis reliably distinguishes between the causes of dyspnoea and evaluate its potential as a clinical triage tool for comparing conventional heart failure diagnostic processes using natriuretic peptides. METHODS A retrospective analysis was conducted using an AI-based ECG algorithm on patients ≥18 years old presenting with dyspnoea at the ED from February 2006 to September 2023. Patients were categorised into cardiac or pulmonary origin groups based on initial admission. The performance of an AI-ECG using a transformer neural network algorithm was assessed to analyse standard 12-lead ECGs for accuracy, sensitivity, specificity and area under the receiver operating characteristic curve (AUC). Additionally, we compared the diagnostic efficacy of AI-ECG models with N-terminal probrain natriuretic peptide (NT-proBNP) levels to identify cardiac origins. RESULTS Among the 3105 patients included in the study, 1197 had cardiac-origin dyspnoea. The AI-ECG model demonstrated an AUC of 0.938 and 88.1% accuracy for cardiac-origin dyspnoea. The sensitivity, specificity and positive and negative predictive values were 93.0%, 79.5%, 89.0% and 86.4%, respectively. The F1 score was 0.828. AI-ECG demonstrated superior diagnostic performance in identifying cardiac-origin dyspnoea compared with NT-proBNP. True cardiac origin was confirmed in 96 patients in a sensitivity analysis of 129 patients with a high probability of cardiac origin initially misdiagnosed as pulmonary origin predicted by AI-ECG. CONCLUSIONS AI-ECG demonstrated superior diagnostic accuracy over NT-proBNP and showed promise as a clinical triage tool. It is a potentially valuable tool for identifying the origin of dyspnoea in emergency settings and supporting decision-making.
Collapse
Affiliation(s)
- Ji-Hun Jang
- Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Sang-Won Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, South Korea
| | - Dae-Young Kim
- Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Sung-Hee Shin
- Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Sang-Chul Lee
- DeepCardio Inc, Incheon, South Korea
- Department of Computer Engineering, Inha University, Incheon, South Korea
| | - Dae-Hyeok Kim
- Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Incheon, South Korea
- DeepCardio Inc, Incheon, South Korea
| | - Wonik Choi
- DeepCardio Inc, Incheon, South Korea
- Department of Information and Communication Engineering, Inha University, Incheon, Korea (the Republic of)
| | - Yong-Soo Baek
- Division of Cardiology, Department of Internal Medicine, Inha University College of Medicine, Incheon, South Korea
- DeepCardio Inc, Incheon, South Korea
| |
Collapse
|
4
|
Song MH, Yoo J, Kwon DA, Chepurko E, Cho S, Fargnoli A, Hajjar RJ, Park WJ, Zangi L, Jeong D. Modified mRNA-Mediated CCN5 Gene Transfer Ameliorates Cardiac Dysfunction and Fibrosis without Adverse Structural Remodeling. Int J Mol Sci 2024; 25:6262. [PMID: 38892449 PMCID: PMC11172546 DOI: 10.3390/ijms25116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.H.S.)
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Do-A Kwon
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| | - Elena Chepurko
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Sunghye Cho
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| | - Anthony Fargnoli
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA 02139, USA;
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (M.H.S.)
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
| | - Dongtak Jeong
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA; (J.Y.); (E.C.); (A.F.)
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan-si 15588, Republic of Korea; (D.-A.K.); (S.C.)
| |
Collapse
|
5
|
Boschi A, Iachetta G, Buonocore S, Hubarevich A, Hurtaud J, Moreddu R, Marta d’Amora, Formoso MB, Tantussi F, Dipalo M, De Angelis F. Interferometric Biosensor for High Sensitive Label-Free Recording of HiPS Cardiomyocytes Contraction in Vitro. NANO LETTERS 2024; 24:6451-6458. [PMID: 38776267 PMCID: PMC11157657 DOI: 10.1021/acs.nanolett.3c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 05/24/2024]
Abstract
Heart disease remains a leading cause of global mortality, underscoring the need for advanced technologies to study cardiovascular diseases and develop effective treatments. We introduce an innovative interferometric biosensor for high-sensitivity and label-free recording of human induced pluripotent stem cell (hiPSC) cardiomyocyte contraction in vitro. Using an optical cavity, our device captures interference patterns caused by the contraction-induced displacement of a thin flexible membrane. First, we demonstrate the capability to quantify spontaneous contractions and discriminate between contraction and relaxation phases. We calculate a contraction-induced vertical membrane displacement close to 40 nm, which implies a traction stress of 34 ± 4 mN/mm2. Finally, we investigate the effects of a drug compound on contractility amplitude, revealing a significant reduction in contractile forces. The label-free and high-throughput nature of our biosensor may enhance drug screening processes and drug development for cardiac treatments. Our interferometric biosensor offers a novel approach for noninvasive and real-time assessment of cardiomyocyte contraction.
Collapse
Affiliation(s)
- Alessio Boschi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Bioengineering, University of Genoa, 16126 Genoa, Italy
| | - Giuseppina Iachetta
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Salvatore Buonocore
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | | | - Julien Hurtaud
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Rosalia Moreddu
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Marta d’Amora
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Department
of Biology, University of Pisa, 56127 Pisa, Italy
| | - Maria Blanco Formoso
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Center
for Research in Nanomaterials and Biomedicine, University of Vigo, 36310 Vigo, Spain
| | - Francesco Tantussi
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Michele Dipalo
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Francesco De Angelis
- Plasmon
Nanotechnologies Unit, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| |
Collapse
|
6
|
Zaveri S, Srivastava U, Qu YS, Chahine M, Boutjdir M. Pathophysiology of Ca v1.3 L-type calcium channels in the heart. Front Physiol 2023; 14:1144069. [PMID: 37025382 PMCID: PMC10070707 DOI: 10.3389/fphys.2023.1144069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
Ca2+ plays a crucial role in excitation-contraction coupling in cardiac myocytes. Dysfunctional Ca2+ regulation alters the force of contraction and causes cardiac arrhythmias. Ca2+ entry into cardiomyocytes is mediated mainly through L-type Ca2+ channels, leading to the subsequent Ca2+ release from the sarcoplasmic reticulum. L-type Ca2+ channels are composed of the conventional Cav1.2, ubiquitously expressed in all heart chambers, and the developmentally regulated Cav1.3, exclusively expressed in the atria, sinoatrial node, and atrioventricular node in the adult heart. As such, Cav1.3 is implicated in the pathogenesis of sinoatrial and atrioventricular node dysfunction as well as atrial fibrillation. More recently, Cav1.3 de novo expression was suggested in heart failure. Here, we review the functional role, expression levels, and regulation of Cav1.3 in the heart, including in the context of cardiac diseases. We believe that the elucidation of the functional and molecular pathways regulating Cav1.3 in the heart will assist in developing novel targeted therapeutic interventions for the aforementioned arrhythmias.
Collapse
Affiliation(s)
- Sahil Zaveri
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
| | - Ujala Srivastava
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
| | - Yongxia Sarah Qu
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital, New York, NY, United States
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
- Department of Medicine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, Brooklyn, New York, NY, United States
- Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
- *Correspondence: Mohamed Boutjdir,
| |
Collapse
|
7
|
Sturgill SL, Shettigar V, Ziolo MT. Antiquated ejection fraction: Basic research applications for speckle tracking echocardiography. Front Physiol 2022; 13:969314. [PMID: 36353373 PMCID: PMC9637923 DOI: 10.3389/fphys.2022.969314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/05/2022] [Indexed: 03/24/2024] Open
Abstract
For years, ejection fraction has been an essentially ubiquitous measurement for assessing the cardiovascular function of animal models in research labs. Despite technological advances, it remains the top choice among research labs for reporting heart function to this day, and is often overstated in applications. This unfortunately may lead to misinterpretation of data. Clinical approaches have now surpassed research methods, allowing for deeper analysis of the tiers of cardiovascular performance (cardiovascular performance, heart performance, systolic and diastolic function, and contractility). Analysis of each tier is crucial for understanding heart performance, mechanism of action, and disease diagnosis, classification, and progression. This review will elucidate the differences between the tiers of cardiovascular function and discuss the benefits of measuring each tier via speckle tracking echocardiography for basic scientists.
Collapse
Affiliation(s)
| | | | - Mark T. Ziolo
- Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Lopez JR, Linares N, Adams JA, Mijares A. The Role of the Na+/Ca2+ Exchanger in Aberrant Intracellular Ca2+ in Cardiomyocytes of Chagas-Infected Rodents. Front Cell Infect Microbiol 2022; 12:890709. [PMID: 35903196 PMCID: PMC9318578 DOI: 10.3389/fcimb.2022.890709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Chagas disease is produced by the parasite Trypanosoma cruzi (T. cruzi), which is the leading cause of death and morbidity in Latin America. We have shown that in patients with Chagas cardiomyopathy, there is a chronic elevation of diastolic Ca2+ concentration ([Ca2+]d), associated with deterioration to further address this issue, we explored the role Na+/Ca2+ exchanger (NCX). Experiments were carried out in noninfected C57BL/6 mice and infected with blood-derived trypomastigotes of the T. cruzi Y strain. Anesthetized mice were sacrificed and the cardiomyocytes were enzymatically dissociated. Diastolic [Ca2+] ([Ca2+]d) was measured using Ca2+ selective microelectrodes in cardiomyocytes from control mice (CONT) and cardiomyocytes from T. cruzi infected mice in the early acute phase (EAP) at 20 dpi, in the acute phase (AP) at 40 dpi, and in the chronic phase (CP) at 120 dpi. [Ca2+]d was 1.5-times higher in EAP, 2.6-times in AP, and 3.4-times in CP compared to CONT. Exploring the reverse mode activity of NCX, we replaced extracellular Na+ in equivalent amounts with N-methyl-D-glucamine. Reduction of [Na+]e to 65 mM caused an increase in [Ca2+]d of 1.7 times in cardiomyocytes from CONT mice, 2 times in EAP infected mice, 2.4 times in AP infected mice and 2.8 in CP infected mice. The Na+ free solution caused a further elevation of [Ca2+]d of 2.5 times in cardiomyocytes from CONT, 2.8 times in EAP infected mice, 3.1 times in AP infected mice, and 3.3 times in CP infected mice. Extracellular Ca2+ withdrawal reduced [Ca2+]d in both CONT and cardiomyocytes from Chagas-infected mice and prevented the increase in [Ca2+]d induced by Na+ depletion. Preincubation with 10µM KB-R7943 or in 1µM YM-244769 reduced [Ca2+]d in cardiomyocytes from infected mice, but not control mice. Furthermore, both NCX blockers prevented the increase in [Ca2+]d associated with exposure to a solution without Na+. These results suggest that Ca2+ entry through the reverse NCX mode plays a significant role in the observed [Ca2+]d dyshomeostasis in Chagas infected cardiomyocytes. Additionally, NCX inhibitors may be a viable therapeutic approach for treating patients with Chagas cardiomyopathy.
Collapse
Affiliation(s)
- Jose R. Lopez
- Department of Research, Mount Sinai, Medical Center, Miami, FL, United States
| | - Nancy Linares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai, Medical Center, Miami, FL, United States
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
- *Correspondence: Alfredo Mijares,
| |
Collapse
|
9
|
Harbo MB, Stokke MK, Sjaastad I, Espe EKS. One step closer to myocardial physiology: From PV loop analysis to state-of-the-art myocardial imaging. Acta Physiol (Oxf) 2022; 234:e13759. [PMID: 34978759 DOI: 10.1111/apha.13759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/14/2021] [Accepted: 01/01/2022] [Indexed: 11/29/2022]
Abstract
Recent advances in cardiac imaging have revitalized the assessment of fundamental physiological concepts. In the field of cardiac physiology, invasive measurements with pressure-volume (PV) loops have served as the gold standard methodology for the characterization of left ventricular (LV) function. From PV loop data, fundamental aspects of LV chamber function are derived such as work, efficiency, stiffness and contractility. However, the parametrization of these aspects is limited because of the need for invasive procedures. Through the utilization of recent advances in echocardiography, magnetic resonance imaging and positron emission tomography, it has become increasingly feasible to quantify these fundamental aspects of LV function non-invasively. Importantly, state-of-the-art imaging technology enables direct assessment of myocardial performance, thereby extending functional assessment from the net function of the LV chamber, as is done with PV loops, to the myocardium itself. With a strong coupling to underlying myocardial physiology, imaging measurements of myocardial work, efficiency, stiffness and contractility could represent the next generation of functional parameters. The purpose of this review is to discuss how the new imaging parameters of myocardial work, efficiency, stiffness and contractility can bring cardiac physiologists, researchers and clinicians alike one step closer to underlying myocardial physiology.
Collapse
Affiliation(s)
- Markus Borge Harbo
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- K.G. Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| |
Collapse
|
10
|
Ulutas Z, Ermis N, Ozhan O, Parlakpinar H, Vardi N, Ates B, Colak C. The Protective Effects of Compound 21 and Valsartan in Isoproterenol-Induced Myocardial Injury in Rats. Cardiovasc Toxicol 2021; 21:17-28. [PMID: 32648158 DOI: 10.1007/s12012-020-09590-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 07/03/2020] [Indexed: 02/04/2023]
Abstract
This study investigated the protective effects of Compound 21 (C21), the first specific non-peptide AT2 receptor agonist, on cardiac injury in rats with isoproterenol-induced heart failure in vivo and compared it with valsartan, an AT1 receptor antagonist. In this study, 56 Wistar albino male rats (estimated body weights 250-400 g) were divided into eight groups (n = 7). Group 1 (Control) received no drug. Group 2 (ISO) was given 180 mg/kg of isoproterenol subcutaneously (s.c.); two doses were administered at 24-h intervals on days 29 and 30 of the experiment. Groups 3, 4, and 5 were given valsartan (30 mg/kg orally), C21 (0.03 mg/kg intraperitoneally), and a combination of Valsartan + C21, respectively, for 30 days. Groups 6, 7, and 8 were administered Valsartan, C21, and Valsartan + C21 in the same application, duration, and dose, respectively, and isoproterenol (180 mg/kg s.c.) was given on days 29 and 30 of the experiment. Transthoracic echocardiography was performed on the rats at the beginning and end of the experiment. Blood pressure, heart rate, and ECG alterations were monitored via a carotid artery cannula at the end of the experiment. Histopathological and biochemical measurements were performed on the cardiac tissue of the rats. For histopathological findings, C21 and Valsartan + C21 combination therapy significantly reduced the development of heart failure compared to valsartan alone. Also, the protective effect of C21 on myocardial injury was superior to that of valsartan. According to the results of echocardiographic and biochemical evaluations, C21, and Valsartan showed protective effects against heart failure. C21, valsartan, and combined therapy significantly prevented the decrease of ejection fraction. This report describes the cardioprotective effects of C21 and valsartan in ISO-induced myocardial damage.
Collapse
Affiliation(s)
- Zeynep Ulutas
- Department of Cardiology, Elazig State Hospital, 23100, Elazig, Turkey.
| | - Necip Ermis
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Onural Ozhan
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science and Arts, İnonu University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
11
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
12
|
Lakomkin VL, Lukoshkina EV, Kapelko VI. Reaction of the Heart to High Frequency Stimulation against the Background of Acute Doxorubicin Treatment. Bull Exp Biol Med 2020; 169:619-622. [PMID: 32986211 DOI: 10.1007/s10517-020-04940-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 01/19/2023]
Abstract
Short-term high frequency electrostimulation (8-10 Hz) of the isolated isovolumic rat heart rapidly increased the rate of pressure rise and drop and the diastolic pressure. At the same time, the relaxation rate constant (RRC), being independent of the developed pressure, remained unaltered. These findings suggested that diastolic pressure rise was not caused by incomplete myocardial relaxation. Doxorubicin (3 μM) moderately reduced the developed pressure, but the relaxation rate constant remained unchanged. The dynamics and degree of changes in all indicators of the cardiac contractile function in high-frequency stimulation were the same as in control. It can be hypothesized that the initial effect of doxorubicin was not related to ionic transport system disturbances in cardiomyocytes.
Collapse
Affiliation(s)
- V L Lakomkin
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E V Lukoshkina
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V I Kapelko
- National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
13
|
Joca HC, Santos-Miranda A, Joviano-Santos JV, Maia-Joca RPM, Brum PC, Williams GSB, Cruz JS. Chronic Sympathetic Hyperactivity Triggers Electrophysiological Remodeling and Disrupts Excitation-Contraction Coupling in Heart. Sci Rep 2020; 10:8001. [PMID: 32409748 PMCID: PMC7224293 DOI: 10.1038/s41598-020-64949-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
The sympathetic nervous system is essential for maintenance of cardiac function via activation of post-junctional adrenergic receptors. Prolonged adrenergic receptor activation, however, has deleterious long-term effects leading to hypertrophy and the development of heart failure. Here we investigate the effect of chronic adrenergic receptors activation on excitation-contraction coupling (ECC) in ventricular cardiomyocytes from a previously characterized mouse model of chronic sympathetic hyperactivity, which are genetically deficient in the adrenoceptor α2A and α2C genes (ARDKO). When compared to wild-type (WT) cardiomyocytes, ARDKO displayed reduced fractional shortening (~33%) and slower relaxation (~20%). Furthermore, ARDKO cells exhibited several electrophysiological changes such as action potential (AP) prolongation (~50%), reduced L-type calcium channel (LCC) current (~33%), reduced outward potassium (K+) currents (~30%), and increased sodium/calcium exchanger (NCX) activity (~52%). Consistent with reduced contractility and calcium (Ca2+) currents, the cytosolic Ca2+ ([Ca2+]i) transient from ARDKO animals was smaller and decayed slower. Importantly, no changes were observed in membrane resting potential, AP amplitude, or the inward K+ current. Finally, we modified our existing cardiac ECC computational model to account for changes in the ARDKO heart. Simulations suggest that cellular changes in the ARDKO heart resulted in variable and dyssynchronous Ca2+-induced Ca2+ release therefore altering [Ca2+]i transient dynamics and reducing force generation. In conclusion, chronic sympathetic hyperactivity impairs ECC by changing the density of several ionic currents (and thus AP repolarization) causing altered Ca2+ dynamics and contractile activity. This demonstrates the important role of ECC remodeling in the cardiac dysfunction secondary to chronic sympathetic activity.
Collapse
Affiliation(s)
- Humberto C Joca
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Artur Santos-Miranda
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biophysics, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Rebeca P M Maia-Joca
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
| | - George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
14
|
Increase in PKCα Activity during Heart Failure Despite the Stimulation of PKCα Braking Mechanism. Int J Mol Sci 2020; 21:ijms21072561. [PMID: 32272716 PMCID: PMC7177253 DOI: 10.3390/ijms21072561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
Rationale: Heart failure (HF) is marked by dampened cardiac contractility. A mild therapeutic target that improves contractile function without desensitizing the β-adrenergic system during HF may improve cardiac contractility and potentially survival. Inhibiting protein kinase C α (PKCα) activity may fit the criteria of a therapeutic target with milder systemic effects that still boosts contractility in HF patients. PKCα activity has been observed to increase during HF. This increase in PKCα activity is perplexing because it is also accompanied by up-regulation of a molecular braking mechanism. Objective: I aim to explore how PKCα activity can be increased and maintained during HF despite the presence of a molecular braking mechanism. Methods and Results: Using a computational approach, I show that the local diacylglycerol (DAG) signaling is regulated through a two-compartment signaling system in cardiomyocytes. These results imply that after massive myocardial infarction (MI), local homeostasis of DAG signaling is disrupted. The loss of this balance leads to prolonged activation of PKCα, a key molecular target linked to LV remodeling and dysfunctional filling and ejection in the mammalian heart. This study also proposes an explanation for how DAG homeostasis is regulated during normal systolic and diastolic cardiac function. Conclusions: I developed a novel two-compartment computational model for regulating DAG homeostasis during Ang II-induced heart failure. This model provides a promising tool with which to study mechanisms of DAG signaling regulation during heart failure. The model can also aid in identification of novel therapeutic targets with the aim of improving the quality of life for heart failure patients.
Collapse
|
15
|
Mouton AJ, Li X, Hall ME, Hall JE. Obesity, Hypertension, and Cardiac Dysfunction: Novel Roles of Immunometabolism in Macrophage Activation and Inflammation. Circ Res 2020; 126:789-806. [PMID: 32163341 PMCID: PMC7255054 DOI: 10.1161/circresaha.119.312321] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - Michael E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Department of Medicine, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State Street; Jackson, MS, 39216-4505
| |
Collapse
|
16
|
Petersen CE, Wolf MJ, Smyth JT. Suppression of store-operated calcium entry causes dilated cardiomyopathy of the Drosophila heart. Biol Open 2020; 9:bio049999. [PMID: 32086252 PMCID: PMC7075072 DOI: 10.1242/bio.049999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is an essential Ca2+ signaling mechanism present in most animal cells. SOCE refers to Ca2+ influx that is activated by depletion of sarco/endoplasmic reticulum (S/ER) Ca2+ stores. The main components of SOCE are STIM and Orai. STIM proteins function as S/ER Ca2+ sensors, and upon S/ER Ca2+ depletion STIM rearranges to S/ER-plasma membrane junctions and activates Orai Ca2+ influx channels. Studies have implicated SOCE in cardiac hypertrophy pathogenesis, but SOCE's role in normal heart physiology remains poorly understood. We therefore analyzed heart-specific SOCE function in Drosophila, a powerful animal model of cardiac physiology. We show that heart-specific suppression of Stim and Orai in larvae and adults resulted in reduced contractility consistent with dilated cardiomyopathy. Myofibers were also highly disorganized in Stim and Orai RNAi hearts, reflecting possible decompensation or upregulated stress signaling. Furthermore, we show that reduced heart function due to SOCE suppression adversely affected animal viability, as heart specific Stim and Orai RNAi animals exhibited significant delays in post-embryonic development and adults died earlier than controls. Collectively, our results demonstrate that SOCE is essential for physiological heart function, and establish Drosophila as an important model for understanding the role of SOCE in cardiac pathophysiology.
Collapse
Affiliation(s)
- Courtney E Petersen
- Graduate Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Matthew J Wolf
- Division of Cardiovascular Medicine, Department of Medicine, The University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Novel re-expression of L-type calcium channel Ca v1.3 in left ventricles of failing human heart. Heart Rhythm 2020; 17:1193-1197. [PMID: 32113898 DOI: 10.1016/j.hrthm.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
|
18
|
Kapelko VI. [Why Myocardial Relaxation Always Slows at Cardiac Pathology?]. ACTA ACUST UNITED AC 2019; 59:44-51. [PMID: 31849310 DOI: 10.18087/cardio.2019.12.n801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022]
Abstract
Chronic heart failure (CHF) in most cases is due to a decrease in myocardial contractility. In particular, this results in a reduction in the maximum rate of the pressure development in the left ventricle. At the same time the maximal rate of pressure fall at relaxation is also reduced. This is not surprising, since both depend on Ca ++ myoplasmic concentration. But most of cardiac pathologies have been associated with the impairement of myocardial relaxation to a greater extent than the contraction. In the review a new view has been proposed according to which this phenomenon is attributable to restructuring of titin, the sarcomeric protein that connects the ends of myosin filaments with the sarcomeric board, lines Z. A spring-like molecule of titin shrinks at sarcomeric contraction and straightens in parallel with removing of Ca ++ from myofibrils. A reduction of its stiffness, facilitating the filling of the left ventricle, can reduce restoring force of titin and thereby slow relaxation. The survey provides information about the functions of the calcium transport system and titin in the normal heart and in CHF observed both in experimental models and in patients.
Collapse
Affiliation(s)
- V I Kapelko
- National Medical Research Center for Cardiology
| |
Collapse
|
19
|
Liu QH, Qiao X, Zhang LJ, Wang J, Zhang L, Zhai XW, Ren XZ, Li Y, Cao XN, Feng QL, Cao JM, Wu BW. I K1 Channel Agonist Zacopride Alleviates Cardiac Hypertrophy and Failure via Alterations in Calcium Dyshomeostasis and Electrical Remodeling in Rats. Front Pharmacol 2019; 10:929. [PMID: 31507422 PMCID: PMC6718093 DOI: 10.3389/fphar.2019.00929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/22/2019] [Indexed: 01/08/2023] Open
Abstract
Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 μmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 μg/kg in vivo and 1 μmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Xi Qiao
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Li-Jun Zhang
- Department of Pathophysiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- Clinical Laboratory, Children's Hospital of Shanxi, Taiyuan, China
| | - Xu-Wen Zhai
- Clinical Skills Teaching Simulation Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiao-Ze Ren
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Li
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Xiao-Na Cao
- Department of Internal Medicine, The Hospital of Beijing Sports University, Beijing, China
| | - Qi-Long Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Bo-Wei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
20
|
Yang TH, Jo G, Koo JH, Woo SY, Kim JU, Kim YM. A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms. Biomed Eng Online 2019; 18:1. [PMID: 30602383 PMCID: PMC6317228 DOI: 10.1186/s12938-018-0620-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023] Open
Abstract
Background There exists a growing need for a cost-effective, reliable, and portable pulsation simulator that can generate a wide variety of pulses depending on age and cardiovascular disease. For constructing compact pulsation simulator, this study proposes to use a pneumatic actuator based on cam-follower mechanism controlled by a DC motor. The simulator is intended to generate pulse waveforms for a range of pulse pressures and heart beats that are realistic to human blood pulsations. Methods This study first performed in vivo testing of a healthy young man to collect his pulse waveforms using a robotic tonometry system (RTS). Based on the collected data a representative human radial pulse waveform is obtained by conducting a mathematical analysis. This standard pulse waveform is then used to design the cam profile. Upon fabrication of the cam, the pulsatile simulator, consisting of the pulse pressure generating component, pressure and heart rate adjusting units, and the real-time pulse display, is constructed. Using the RTS, a series of testing was performed on the prototype to collect its pulse waveforms by varying the pressure levels and heart rates. Followed by the testing, the pulse waveforms generated by the prototype are compared with the representative, in vivo, pulse waveform. Results The radial Augmentation Index analysis results show that the percent error between the simulator data and human pulse profiles is sufficiently small, indicating that the first two peak pressures agree well. Moreover, the phase analysis results show that the phase delay errors between the pulse waveforms of the prototype and the representative waveform are adequately small, confirming that the prototype simulator is capable of simulating realistic human pulse waveforms. Conclusions This study demonstrated that a very accurate radial pressure waveform can be reproduced using the cam-based simulator. It can be concluded that the same testing and design methods can be used to generate pulse waveforms for other age groups or any target pulse waveforms. Such a simulator can make a contribution to the research efforts, such as development of wearable pressure sensors, standardization of pulse diagnosis in oriental medicine, and training medical professionals for pulse diagnosis techniques.
Collapse
Affiliation(s)
- Tae-Heon Yang
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk, Republic of Korea
| | - Gwanghyun Jo
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| | - Jeong-Hoi Koo
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH, USA
| | - Sam-Yong Woo
- Center for Mechanical Metrology, KRISS, Daejeon, Republic of Korea
| | - Jaeuk U Kim
- Future Medicine Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdaero, Yuseong-gu, Deajeon, 34054, Republic of Korea
| | - Young-Min Kim
- Future Medicine Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdaero, Yuseong-gu, Deajeon, 34054, Republic of Korea.
| |
Collapse
|
21
|
Zhang X, Zhang L, Wang K, Yu C, Zhu T, Tang J. A rapid approach to assess cardiac contractility by ballistocardiogram and electrocardiogram. ACTA ACUST UNITED AC 2018; 63:113-122. [PMID: 27824610 DOI: 10.1515/bmt-2015-0204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/06/2016] [Indexed: 11/15/2022]
Abstract
In this paper, we propose a rapid assessment on cardiac contractility by using the time interval between the I wave of ballistocardiogram (BCG) and the R wave of electrocardiogram (ECG) which is referred to as the RI interval. The whole work can be divided into two parts. First, the correlation between the RI interval and the ejection fraction (EF), which is a clinical index to assess systolic performance, was computed. For 39 subjects, the correlation coefficient is -0.54 (p<0.001). Moreover, RI intervals of heart failure (HF) patients and healthy subjects were measured, and a significant difference was found among different New York Heart Association (NYHA) classes and the healthy group. Second, the beat-to-beat correlation analysis between the RI interval and the pre-ejection period (PEP), which is a parameter of systolic time interval to evaluate the cardiac contractility, was calculated. For 4578 heart beats across eight healthy subjects, the correlation coefficient is 0.85 (p<0.001). As a conclusion, these results indicate that the RI interval can be used as a noninvasive assessment of cardiac contractility.
Collapse
Affiliation(s)
- Xianwen Zhang
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, 100084, China
| | - Liyan Zhang
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, 100084, China
| | - Kun Wang
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, 100084, China
| | - Chao Yu
- Peking University People's Hospital, Beijing, 100084, China
| | - Tiangang Zhu
- Peking University People's Hospital, Beijing, 100084, China
| | - Jintian Tang
- Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing, 100084, China
| |
Collapse
|
22
|
Fang HY, Hung MY, Lin YM, Pandey S, Chang CC, Lin KH, Shen CY, Viswanadha VP, Kuo WW, Huang CY. 17β-Estradiol and/or estrogen receptor alpha signaling blocks protein phosphatase 1 mediated ISO induced cardiac hypertrophy. PLoS One 2018; 13:e0196569. [PMID: 29723269 PMCID: PMC5933784 DOI: 10.1371/journal.pone.0196569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chien Chang
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Triposkiadis F, Giamouzis G, Boudoulas KD, Karagiannis G, Skoularigis J, Boudoulas H, Parissis J. Left ventricular geometry as a major determinant of left ventricular ejection fraction: physiological considerations and clinical implications. Eur J Heart Fail 2017; 20:436-444. [DOI: 10.1002/ejhf.1055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/23/2017] [Accepted: 08/12/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
| | - Gregory Giamouzis
- Department of Cardiology; Larissa University Hospital; Larissa Greece
| | | | - Georgios Karagiannis
- Department of Cardiology, Hillingdon Hospital; Department of Transplantation; Harefield Hospital; London UK
| | - John Skoularigis
- Department of Cardiology; Larissa University Hospital; Larissa Greece
| | - Harisios Boudoulas
- The Ohio State University, Columbus, OH, USA; Biomedical Research Foundation Academy of Athens, Athens, and; Aristotelian University of Thessaloniki; Thessaloniki Greece
| | - John Parissis
- Department of Cardiology; Athens University Hospital Attikon; Athens Greece
| |
Collapse
|
24
|
Gao H, Mangion K, Carrick D, Husmeier D, Luo X, Berry C. Estimating prognosis in patients with acute myocardial infarction using personalized computational heart models. Sci Rep 2017; 7:13527. [PMID: 29051544 PMCID: PMC5648923 DOI: 10.1038/s41598-017-13635-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Biomechanical computational models have potential prognostic utility in patients after an acute ST-segment-elevation myocardial infarction (STEMI). In a proof-of-concept study, we defined two groups (1) an acute STEMI group (n = 6, 83% male, age 54 ± 12 years) complicated by left ventricular (LV) systolic dysfunction; (2) an age- and sex- matched hyper-control group (n = 6, 83% male, age 46 ± 14 years), no prior history of cardiovascular disease and normal systolic blood pressure (SBP < 130 mmHg). Cardiac MRI was performed in the patients (2 days & 6 months post-STEMI) and the volunteers, and biomechanical heart models were synthesized for each subject. The candidate parameters included normalized active tension (AT norm) and active tension at the resting sarcomere length (T req, reflecting required contractility). Myocardial contractility was inversely determined from personalized heart models by matching CMR-imaged LV dynamics. Compared with controls, patients with recent STEMI exhibited increased LV wall active tension when normalized by SBP. We observed a linear relationship between T req 2 days post-MI and global longitudinal strain 6 months later (r = 0.86; p = 0.03). T req may be associated with changes in LV function in the longer term in STEMI patients complicated by LV dysfunction. Further studies seem warranted.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Kenneth Mangion
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
- Golden Jubilee National Hospital, Clydebank, UK
| | - David Carrick
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
- Golden Jubilee National Hospital, Clydebank, UK
| | - Dirk Husmeier
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Colin Berry
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK.
- Golden Jubilee National Hospital, Clydebank, UK.
| |
Collapse
|
25
|
Abstract
Attempts have been made to assess and measure ventricular contractility in patients and whether it can be used to identify heart failure. Due to the assumption that if the contractility of all the muscle fibres in a heart were lower, could it be called heart failure? Early attempts involved the assumption of a model of muscle that had a contractile unit in series with an elastic element, but this was found to be incorrect. Further attempts applied the series elastic model but this model also proved challenging. However, one method has assessed changes in contractility in a given patient, in response to an intervention, but could not compare contractility in a patient with heart failure with a normal person. End-systolic pressure-volume (ESPV) is regarded as a more correct index of contractility and this method was used to confirm changes in contractility from beat to beat during AF, showing results that end-systolic volume varied and indicating a shift of ESPV from beat to beat. This review will discuss the difficulty in measurement, the complicated nature of myocardial fibre orientation and hypertrophy, and whether myocardial contractility failure precipitates increased global heart failure.
Collapse
Affiliation(s)
- Mark Im Noble
- Department of Medicine and Therapeutics, University of Aberdeen,Aberdeen, UK
| |
Collapse
|
26
|
Guizoni DM, Oliveira-Junior SA, Noor SLR, Pagan LU, Martinez PF, Lima ARR, Gomes MJ, Damatto RL, Cezar MDM, Bonomo C, Zornoff LAM, Okoshi K, Okoshi MP. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol 2016; 221:406-12. [PMID: 27404715 DOI: 10.1016/j.ijcard.2016.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Physical exercise attenuates myocardial infarction (MI)-induced cardiac remodeling. However, it is unsettled whether late exercise modulates post-infarction cardiac remodeling differentially according to infarct size. We investigated the effects of exercise started at late stage heart failure on cardiac remodeling in rats with moderate and large sized MI. METHODS Three months after MI, rats were assigned into sedentary and exercise groups. Exercise rats underwent treadmill for three months. After assessing infarct size by histological analysis, rats were subdivided into four groups: moderate MI sedentary (Mod MI-Sed; n=7), Mod MI exercised (Mod MI-Ex; n=7), Large MI-Sed (n=11), and Large MI-Ex (n=10). RESULTS Before exercise, MI-induced cardiac changes were demonstrated by comparing results to a Sham group; alterations were more intense in rats with large than moderate MI size. Systolic function, evaluated by echocardiogram using the variation in LV fractional area change between after and before exercise, was improved in exercise than sedentary groups. Calsequestrin expression increased in exercised compared to sedentary groups. L-type calcium channel was higher in Mod MI-Ex than Mod MI-Sed. SERCA2a, phospholamban, and Na(+)/Ca(2+) exchanger expression did not differ between groups. CONCLUSION Late exercise improves systolic function and modulates intracellular calcium signaling proteins in rats with moderate and large MI.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Sefora L R Noor
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil; School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
27
|
Jeong D, Lee MA, Li Y, Yang DK, Kho C, Oh JG, Hong G, Lee A, Song MH, LaRocca TJ, Chen J, Liang L, Mitsuyama S, D'Escamard V, Kovacic JC, Kwak TH, Hajjar RJ, Park WJ. Matricellular Protein CCN5 Reverses Established Cardiac Fibrosis. J Am Coll Cardiol 2016; 67:1556-1568. [PMID: 27150688 PMCID: PMC5887128 DOI: 10.1016/j.jacc.2016.01.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/24/2015] [Accepted: 01/24/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiac fibrosis (CF) is associated with increased ventricular stiffness and diastolic dysfunction and is an independent predictor of long-term clinical outcomes of patients with heart failure (HF). We previously showed that the matricellular CCN5 protein is cardioprotective via its ability to inhibit CF and preserve cardiac contractility. OBJECTIVES This study examined the role of CCN5 in human heart failure and tested whether CCN5 can reverse established CF in an experimental model of HF induced by pressure overload. METHODS Human hearts were obtained from patients with end-stage heart failure. Extensive CF was induced by applying transverse aortic constriction for 8 weeks, which was followed by adeno-associated virus-mediated transfer of CCN5 to the heart. Eight weeks following gene transfer, cellular and molecular effects were examined. RESULTS Expression of CCN5 was significantly decreased in failing hearts from patients with end-stage heart failure compared to nonfailing hearts. Trichrome staining and myofibroblast content measurements revealed that the established CF had been reversed by CCN5 gene transfer. Anti-CF effects of CCN5 were associated with inhibition of the transforming growth factor beta signaling pathway. CCN5 significantly inhibited endothelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation, which are 2 critical processes for CF progression, both in vivo and in vitro. In addition, CCN5 induced apoptosis in myofibroblasts, but not in cardiomyocytes or fibroblasts, both in vivo and in vitro. CCN5 provoked the intrinsic apoptotic pathway specifically in myofibroblasts, which may have been due the ability of CCN5 to inhibit the activity of NFκB, an antiapoptotic molecule. CONCLUSIONS CCN5 can reverse established CF by inhibiting the generation of and enhancing apoptosis of myofibroblasts in the myocardium. CCN5 may provide a novel platform for the development of targeted anti-CF therapies.
Collapse
Affiliation(s)
- Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Min-Ah Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Yan Li
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Dong Kwon Yang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gyeongdeok Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Min Ho Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Thomas J LaRocca
- Benioff Children's Hospital, University of California, San Francisco, California
| | - Jiqiu Chen
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lifan Liang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shinichi Mitsuyama
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Valentina D'Escamard
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tae Hwan Kwak
- Paean Biotechnology, Chungnam National University, Daejeon, Korea
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| |
Collapse
|
28
|
Brunjes DL, Dunlop M, Wu C, Jones M, Kato TS, Kennel PJ, Armstrong HF, Choo TH, Bartels MN, Forman DE, Mancini DM, Schulze PC. Analysis of Skeletal Muscle Torque Capacity and Circulating Ceramides in Patients with Advanced Heart Failure. J Card Fail 2016; 22:347-55. [PMID: 26879888 DOI: 10.1016/j.cardfail.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Heart failure (HF)-related exercise intolerance is thought to be perpetuated by peripheral skeletal muscle functional, structural, and metabolic abnormalities. We analyzed specific dynamics of muscle contraction in patients with HF compared with healthy, sedentary controls. METHODS Isometric and isokinetic muscle parameters were measured in the dominant upper and lower limbs of 45 HF patients and 15 healthy age-matched controls. Measurements included peak torque normalized to body weight, work normalized to body weight, power, time to peak torque, and acceleration and deceleration to maximum strength times. Body morphometry (dual energy X-ray absorptiometry scan) and circulating fatty acids and ceramides (lipodomics) were analyzed in a subset of subjects (18 HF and 9 controls). RESULTS Extension and flexion time-to-peak torque was longer in the lower limbs of HF patients. Furthermore, acceleration and deceleration times in the lower limbs were also prolonged in HF subjects. HF subjects had increased adiposity and decreased lean muscle mass compared with controls. Decreased circulating unsaturated fatty acids and increased ceramides were found in subjects with HF. CONCLUSIONS Delayed torque development suggests skeletal muscle impairments that may reflect abnormal neuromuscular functional coupling. These impairments may be further compounded by increased adiposity and inflammation associated with increased ceramides.
Collapse
Affiliation(s)
- Danielle L Brunjes
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York.
| | - Mark Dunlop
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Christina Wu
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Meaghan Jones
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Tomoko S Kato
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Peter J Kennel
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Hilary F Armstrong
- Department of Rehabilitation and Regenerative Medicine, Columbia University Medical Center, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Tse-Hwei Choo
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York
| | - Matthew N Bartels
- Department of Rehabilitation Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, New York, New York
| | - Daniel E Forman
- Section of Geriatric Cardiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Donna M Mancini
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - P Christian Schulze
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
29
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
30
|
Makarewich CA, Troupes CD, Schumacher SM, Gross P, Koch WJ, Crandall DL, Houser SR. Comparative effects of urocortins and stresscopin on cardiac myocyte contractility. J Mol Cell Cardiol 2015; 86:179-86. [PMID: 26231084 DOI: 10.1016/j.yjmcc.2015.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 07/25/2015] [Indexed: 01/19/2023]
Abstract
RATIONALE There is a current need for the development of new therapies for patients with heart failure. OBJECTIVE We test the effects of members of the corticotropin-releasing factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. METHODS AND RESULTS Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the β-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca(2+) transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca(2+) decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. CONCLUSIONS The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Constantine D Troupes
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Center for Translational Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - David L Crandall
- Janssen Research & Development, LLC, Spring House, PA 19044, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
31
|
|
32
|
Frentzou GA, Drinkhill MJ, Turner NA, Ball SG, Ainscough JFX. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice. Dis Model Mech 2015; 8:783-94. [PMID: 26092119 PMCID: PMC4527284 DOI: 10.1242/dmm.019174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. Highlighted Article: A novel conditional mouse model was used to investigate early initiating stages of heart disease that are commonly overlooked, and identifies a ‘window of opportunity’ for personalised therapeutic intervention.
Collapse
Affiliation(s)
- Georgia A Frentzou
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Mark J Drinkhill
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Neil A Turner
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen G Ball
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Justin F X Ainscough
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
33
|
Ziolo MT, Houser SR. Abnormal Ca(2+) cycling in failing ventricular myocytes: role of NOS1-mediated nitroso-redox balance. Antioxid Redox Signal 2014; 21:2044-59. [PMID: 24801117 PMCID: PMC4208612 DOI: 10.1089/ars.2014.5873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Heart failure (HF) results from poor heart function and is the leading cause of death in Western society. Abnormalities of Ca(2+) handling at the level of the ventricular myocyte are largely responsible for much of the poor heart function. RECENT ADVANCES Although studies have unraveled numerous mechanisms for the abnormal Ca(2+) handling, investigations over the past decade have indicated that much of the contractile dysfunction and adverse remodeling that occurs in HF involves oxidative stress. CRITICAL ISSUES Regrettably, antioxidant therapy has been an immense disappointment in clinical trials. Thus, redox signaling is being reassessed to elucidate why antioxidants failed to treat HF. FUTURE DIRECTIONS A recently identified aspect of redox signaling (specifically the superoxide anion radical) is its interaction with nitric oxide, known as the nitroso-redox balance. There is a large nitroso-redox imbalance with HF, and we suggest that correcting this imbalance may be able to restore myocyte contraction and improve heart function.
Collapse
Affiliation(s)
- Mark T Ziolo
- 1 Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio
| | | |
Collapse
|
34
|
Houser SR. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res 2014; 114:1320-7; discussion 1327. [PMID: 24723657 DOI: 10.1161/circresaha.114.300569] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This Controversies in Research article discusses the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the Ryanodine Receptor (RyR) at a single serine (RyRS2808) is essential for normal sympathetic regulation of cardiac myocyte contractility and is responsible for the disturbed Ca(2+) regulation that underlies depressed contractility in heart failure. Studies supporting this hypothesis have associated hyperphosphorylation of RyRS2808 and heart failure progression in animals and humans and have shown that a phosphorylation defective RyR mutant mouse (RyRS2808A) does not respond normally to sympathetic agonists and does not exhibit heart failure symptoms after myocardial infarction. Studies to confirm and extend these ideas have failed to support the original data. Experiments from many different laboratories have convincingly shown that PKA-mediated RyRS2808 phosphorylation does not play any significant role in the normal sympathetic regulation of sarcoplasmic reticulum Ca2+ release or cardiac contractility. Hearts and myocytes from RyRS2808A mice have been shown to respond normally to sympathetic agonists, and to increase Ca(2+) influx, Ca(2+) transients, and Ca(2+) efflux. Although the RyR is involved in heart failure-related Ca(2+) disturbances, this results from Ca(2+)-calmodulin kinase II and reactive oxygen species-mediated regulation rather than by RyR2808 phosphorylation. Also, a new study has shown that RyRS2808A mice are not protected from myocardial infarction. Collectively, there is now a clear consensus in the published literature showing that dysregulated RyRs contribute to the altered Ca(2+) regulatory phenotype of the failing heart, but PKA-mediated phosphorylation of RyRS2808 has little or no role in these alterations.
Collapse
Affiliation(s)
- Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
35
|
Messer AE, Marston SB. Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca(2+)-sensitivity in the pathogenesis of cardiomyopathy. Front Physiol 2014; 5:315. [PMID: 25202278 PMCID: PMC4142463 DOI: 10.3389/fphys.2014.00315] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022] Open
Abstract
Contraction in the mammalian heart is controlled by the intracellular Ca(2+) concentration as it is in all striated muscle, but the heart has an additional signaling system that comes into play to increase heart rate and cardiac output during exercise or stress. β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the activation of protein kinase A which phosphorylates key proteins in the sarcolemma, sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation lowers myofibrillar Ca(2+)-sensitivity and increases the speed of Ca(2+)-dissociation and relaxation (lusitropic effect). Recent studies have shown that this relationship between Ca(2+)-sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response. For familial dilated cardiomyopathy in thin filament proteins it has been proposed that this uncoupling is causative of the phenotype. Uncoupling has also been found in human heart tissue from patients with hypertrophic obstructive cardiomyopathy as a secondary effect. Recently, it has been found that Ca(2+)-sensitizing drugs can promote uncoupling, whilst one Ca(2+)-desensitizing drug Epigallocatechin 3-Gallate (EGCG) can reverse uncoupling. We will discuss recent findings about the role of uncoupling in the development of cardiomyopathies and the molecular mechanism of the process.
Collapse
Affiliation(s)
- Andrew E. Messer
- National Heart & Lung Institute, Imperial College LondonLondon, UK
| | | |
Collapse
|
36
|
Makarewich CA, Zhang H, Davis J, Correll RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H, Madesh M, Chen X, Gao E, Molkentin JD, Houser SR. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res 2014; 115:567-580. [PMID: 25047165 DOI: 10.1161/circresaha.115.303831] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE The cellular and molecular basis for post-myocardial infarction (MI) structural and functional remodeling is not well understood. OBJECTIVE Our aim was to determine if Ca2+ influx through transient receptor potential canonical (TRPC) channels contributes to post-MI structural and functional remodeling. METHODS AND RESULTS TRPC1/3/4/6 channel mRNA increased after MI in mice and was associated with TRPC-mediated Ca2+ entry. Cardiac myocyte-specific expression of a dominant-negative (loss-of-function) TRPC4 channel increased basal myocyte contractility and reduced hypertrophy and cardiac structural and functional remodeling after MI while increasing survival in mice. We used adenovirus-mediated expression of TRPC3/4/6 channels in cultured adult feline myocytes to define mechanistic aspects of these TRPC-related effects. TRPC3/4/6 overexpression in adult feline myocytes induced calcineurin (Cn)-nuclear factor of activated T-cells (NFAT)-mediated hypertrophic signaling, which was reliant on caveolae targeting of TRPCs. TRPC3/4/6 expression in adult feline myocytes increased rested state contractions and increased spontaneous sarcoplasmic reticulum Ca2+ sparks mediated by enhanced phosphorylation of the ryanodine receptor. TRPC3/4/6 expression was associated with reduced contractility and response to catecholamines during steady-state pacing, likely because of enhanced sarcoplasmic reticulum Ca2+ leak. CONCLUSIONS Ca2+ influx through TRPC channels expressed after MI activates pathological cardiac hypertrophy and reduces contractility reserve. Blocking post-MI TRPC activity improved post-MI cardiac structure and function.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hongyu Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer Davis
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert N Correll
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Danielle M Trappanese
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Nicholas E Hoffman
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Biochemistry Department, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Constantine D Troupes
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Remus M Berretta
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hajime Kubo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Muniswamy Madesh
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Biochemistry Department, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
37
|
Maack C, Böhm M. Pharmacological Treatment of Patients with Chronic Systolic Heart Failure. Eur Cardiol 2014; 9:43-48. [PMID: 30310484 DOI: 10.15420/ecr.2014.9.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic heart failure is characterised by neuroendocrine activation as an attempt of the body to maintain pump function of the heart and blood pressure for the perfusion of peripheral tissues. While this neuroendocrine activation is beneficial in the short term, it induces maladaptive remodeling of the heart with continuous deterioration of left ventricular function. Accordingly, pharmacological treatment of patients with heart failure aims at protecting the heart from this neuroendocrine activation, which is represented in particular by the sympathetic nervous and the renin-angiotensin-aldosterone systems. While this concept is based on evidence from numerous large randomised placebo-controlled studies in patients with systolic heart failure, about half of the patients with heart failure have preserved systolic function, and most studies antagonising neuroendocrine activation were not successful in these latter patients. Here, we review the pathophysiological changes that occur in patients with heart failure and provide an overview on the mechanisms and clinical evidence of currently applied pharmacological treatment in patients with systolic heart failure.
Collapse
Affiliation(s)
- Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| |
Collapse
|
38
|
Bennett MK, Sweet WE, Baicker-McKee S, Looney E, Karohl K, Mountis M, Tang WHW, Starling RC, Moravec CS. S100A1 in human heart failure: lack of recovery following left ventricular assist device support. Circ Heart Fail 2014; 7:612-8. [PMID: 24842913 PMCID: PMC4102621 DOI: 10.1161/circheartfailure.113.000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We hypothesized that S100A1 is regulated during human hypertrophy and heart failure and that it may be implicated in remodeling after left ventricular assist device. S100A1 is decreased in animal and human heart failure, and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explore human cardiac S100A1 regulation and its role in remodeling. METHODS AND RESULTS We measured S100A1, the sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, phospholamban, and ryanodine receptor proteins, as well as β-adrenergic receptor density in nonfailing, hypertrophied (left ventricular hypertrophy), failing, and failing left ventricular assist device-supported hearts. We determined functional consequences of protein alterations in isolated contracting muscles from the same hearts. S100A1, sarcoplasmic endoplasmic reticulum Ca(2+)ATPase and phospholamban were normal in left ventricular hypertrophy, but decreased in failing hearts, while ryanodine receptor was unchanged in either group. Baseline muscle contraction was not altered in left ventricular hypertrophy or failing hearts. β-Adrenergic receptor and inotropic response were decreased in failing hearts. In failing left ventricular assist device-supported hearts, S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase showed no recovery, while phospholamban, β-adrenergic receptor, and the inotropic response fully recovered. CONCLUSIONS S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, both key Ca(2+)-regulatory proteins, are decreased in human heart failure, and these changes are not reversed after left ventricular assist device. The clinical significance of these findings for cardiac recovery remains to be addressed.
Collapse
Affiliation(s)
- Mosi K Bennett
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Wendy E Sweet
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Sara Baicker-McKee
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Elizabeth Looney
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Kristen Karohl
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Maria Mountis
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Randall C Starling
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Christine S Moravec
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH.
| |
Collapse
|
39
|
Morgan KY, Black LD. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med 2014; 11:342-353. [PMID: 24916022 DOI: 10.1002/term.1915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/17/2014] [Accepted: 04/22/2014] [Indexed: 11/07/2022]
Abstract
Mechanical stimulation has been used extensively to improve the function of cardiac engineered tissue, as it mimics the physical environment in which the tissue is situated during normal development. However, previous mechanical stimulation has been carried out under a constant frequency that more closely resembles a diseased heart. The goal of this study was to create a bioreactor system that would allow us to control the mechanical stimulation of engineered cardiac tissue on a cycle-by-cycle basis. This unique system allows us to determine the effects on cardiac construct function of introducing variability to the mechanical stretch. To test our bioreactor system, constructs created from neonatal rat cardiomyocytes entrapped in fibrin hydrogels were stimulated under various regimes for 2 weeks and then assessed for functional outcomes. No differences were observed in the final cell number in each condition, indicating that variability in frequency did not have a negative effect on viability. The forces were higher for all mechanical stimulation groups compared to static controls, although no differences were observed between the mechanically stimulated conditions, indicating that variable frequency on a cycle-by-cycle basis has limited effects on the resulting force. Although differences in the observed twitch force were not observed, differences in the protein expression indicate that variable-frequency mechanical stimulation had an effect on cell-cell coupling and growth pathway activation in the constructs. Thus, this bioreactor system provides a valuable tool for further development and optimization of engineered myocardial tissue as a repair or replacement strategy for patients undergoing heart failure. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
40
|
Mitochondrial reactive oxygen species production and elimination. J Mol Cell Cardiol 2014; 73:26-33. [PMID: 24657720 DOI: 10.1016/j.yjmcc.2014.03.011] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) play an important role in cardiovascular diseases, and one important source for ROS are mitochondria. Emission of ROS from mitochondria is the net result of ROS production at the electron transport chain (ETC) and their elimination by antioxidative enzymes. Both of these processes are highly dependent on the mitochondrial redox state, which is dynamically altered under different physiological and pathological conditions. The concept of "redox-optimized ROS balance" integrates these aspects and implies that oxidative stress occurs when the optimal equilibrium of an intermediate redox state is disturbed towards either strong oxidation or reduction. Furthermore, mitochondria integrate ROS signals from other cellular sources, presumably through a process termed "ROS-induced ROS release" that involves mitochondrial ion channels. Here, we attempt to integrate these recent advances in our understanding of the control of mitochondrial ROS emission and develop a concept of how in heart failure, defects in ion handling can lead to mitochondrial oxidative stress. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".
Collapse
|
41
|
Bocalini DS, Beutel A, Bergamaschi CT, Tucci PJ, Campos RR. Treadmill exercise training prevents myocardial mechanical dysfunction induced by androgenic-anabolic steroid treatment in rats. PLoS One 2014; 9:e87106. [PMID: 24533053 PMCID: PMC3922753 DOI: 10.1371/journal.pone.0087106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 12/23/2013] [Indexed: 01/19/2023] Open
Abstract
Elevated concentrations of testosterone and its synthetic analogs may induce changes in cardiovascular function. However, the effects of the combination of anabolic/androgenic steroid (AAS) treatment and exercise training on systolic and diastolic cardiac function are poorly understood. In the present study, we aimed to investigate the effects of low-dose steroid treatment (stanozolol) on cardiac contractile parameters when this steroid treatment was combined with exercise training in rats and the effects of chronic steroid treatment on the Frank-Starling (length-tension curves) relationship. Male Wistar rats were randomly assigned to one of four groups: U (untrained), US (untrained and treated with stanozolol 5 mg/kg/week), T (trained, 16 m/min/1 h) and TS (trained and treated with stanozolol 5 mg/kg/week). Continuous exercise training was conducted 5 days/week for 8 consecutive weeks. The speed of the treadmill was gradually increased to a final setting of 16 m/min/1 h. Experiments were divided into two independent series: 1) central hemodynamic analysis for mean arterial blood pressure (MAP) and cardiac output (CO) measurements and 2) isolated papillary muscle preparation in Krebs solution. Stanozolol treatment significantly increased the MAP and the heart size in untrained and trained rats (U 113±2; T 106±2; US 138±8 and TS 130±7 mmHg). Furthermore, stanozolol significantly decreased developed tension and dT/dt (maximal and minimal) in U rats. However, the developed tension was completely restored by training. The Frank/Starling relationship was impaired in rats treated with stanozolol; however, again, training completely restored diastolic function. Taken together, the present data suggest that AAS treatment is able to decrease cardiac performance (systolic and diastolic functions). The combination of stanozolol and physical training improved cardiac performance, including diastolic and systolic functions, independent of changes in central hemodynamic parameters. Therefore, changes in ventricular myocyte calcium transients may play a cardioprotective role.
Collapse
Affiliation(s)
- Danilo S. Bocalini
- Department of Post Graduation in Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Abram Beutel
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Cássia T. Bergamaschi
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo J. Tucci
- Department of Medicine. Cardiology division - Federal University of São Paulo – São Paulo, Brazil
| | - Ruy R. Campos
- Cardiovascular Division, Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Yar S, Monasky MM, Solaro RJ. Maladaptive modifications in myofilament proteins and triggers in the progression to heart failure and sudden death. Pflugers Arch 2014; 466:1189-97. [PMID: 24488009 DOI: 10.1007/s00424-014-1457-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 12/25/2022]
Abstract
In this review, we address the following question: Are modifications at the level of sarcomeric proteins in acquired heart failure early inducers of altered cardiac dynamics and signaling leading to remodeling and progression to decompensation? There is no doubt that most inherited cardiomyopathies are caused by mutations in proteins of the sarcomere. We think this linkage indicates that early changes at the level of the sarcomeres in acquired cardiac disorders may be significant in triggering the progression to failure. We consider evidence that there are rate-limiting mechanisms downstream of the trigger event of Ca(2+) binding to troponin C, which control cardiac dynamics. We discuss new perspectives on how modifications in these mechanisms may be of relevance to redox signaling in diastolic heart failure, to angiotensin II signaling via β-arrestin, and to remodeling related to altered structural rigidity of tropomyosin. We think that these new perspectives provide a rationale for future studies directed at a more thorough understanding of the question driving our review.
Collapse
Affiliation(s)
- Sumeyye Yar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, M/C 901, Chicago, IL, 60612, USA
| | | | | |
Collapse
|
43
|
Study of molecular mechanism of Prostaglandin E1 in inhibiting coronary heart disease. Mol Biol Rep 2013; 40:6701-8. [PMID: 24146100 DOI: 10.1007/s11033-013-2785-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/14/2013] [Indexed: 01/28/2023]
Abstract
Prostaglandin E1 has been used clinically for improving heart diseases. In this study, we examined the effect of Prostaglandin E1 on blood lipid levels, heart protein and genes expression in coronary heart disease (CHD) rats. Female rats were fed either a control diet or hypercholesterolemic diet for 14 weeks. The feeding of a hypercholesterolemic diet (HCD) increased the serum TC, TG, and LDL-c levels, decreased the serum HDL-c, E2, P, FSH, LH and PRL levels in CHD rats. In addition, The feeding of a HCD diet markedly increased the content of serum TXA2, TXB2, and decreased the content of serum PGI2, and PGI2/TXA2, 6-Keto PGF1a. Furthermore, the feeding of a hypercholesterolemic diet markedly increased expression levels of myocardium Fas and Caspase-3 protein and mRNA levels, vascular endothelial growth factor and basic fibroblast growth factor mRNA, and decreased RyR2 mRNA in CHD rats. The feeding of Prostaglandin E1 for 14 weeks significantly reversed these abnormal biochemical indexes in rats. These findings suggest that Prostaglandin E1 play a obvious heart protective effect. The mechanisms may be related to restraining the excessive activation of Fas and Caspase-3 protein and modulating some gene expressions associated with CHD.
Collapse
|
44
|
Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, Kass DA, Mahaney JE, Paolocci N. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 2013; 19:1185-97. [PMID: 23919584 PMCID: PMC3785857 DOI: 10.1089/ars.2012.5057] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts. RESULTS Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted β-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available. INNOVATION HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a. CONCLUSIONS PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.
Collapse
Affiliation(s)
- Vidhya Sivakumaran
- 1 Division of Cardiology, Johns Hopkins Medical Institutions , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pleger ST, Brinks H, Ritterhoff J, Raake P, Koch WJ, Katus HA, Most P. Heart failure gene therapy: the path to clinical practice. Circ Res 2013; 113:792-809. [PMID: 23989720 PMCID: PMC11848682 DOI: 10.1161/circresaha.113.300269] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
Abstract
Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
Collapse
Affiliation(s)
- Sven T. Pleger
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Henriette Brinks
- Department of Cardiac and Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
| | - Julia Ritterhoff
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Philip Raake
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Temple University, Philadelphia, PA 19122, USA
| | - Hugo A. Katus
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | - Patrick Most
- Center for Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| |
Collapse
|
46
|
Signore S, Sorrentino A, Ferreira-Martins J, Kannappan R, Shafaie M, Del Ben F, Isobe K, Arranto C, Wybieralska E, Webster A, Sanada F, Ogórek B, Zheng H, Liu X, Del Monte F, D'Alessandro DA, Wunimenghe O, Michler RE, Hosoda T, Goichberg P, Leri A, Kajstura J, Anversa P, Rota M. Inositol 1, 4, 5-trisphosphate receptors and human left ventricular myocytes. Circulation 2013; 128:1286-97. [PMID: 23983250 DOI: 10.1161/circulationaha.113.002764] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Little is known about the function of inositol 1,4,5-trisphosphate receptors (IP3Rs) in the adult heart experimentally. Moreover, whether these Ca(2+) release channels are present and play a critical role in human cardiomyocytes remains to be defined. IP3Rs may be activated after Gαq-protein-coupled receptor stimulation, affecting Ca(2+) cycling, enhancing myocyte performance, and potentially favoring an increase in the incidence of arrhythmias. METHODS AND RESULTS IP3R function was determined in human left ventricular myocytes, and this analysis was integrated with assays in mouse myocytes to identify the mechanisms by which IP3Rs influence the electric and mechanical properties of the myocardium. We report that IP3Rs are expressed and operative in human left ventricular myocytes. After Gαq-protein-coupled receptor activation, Ca(2+) mobilized from the sarcoplasmic reticulum via IP3Rs contributes to the decrease in resting membrane potential, prolongation of the action potential, and occurrence of early afterdepolarizations. Ca(2+) transient amplitude and cell shortening are enhanced, and extrasystolic and dysregulated Ca(2+) elevations and contractions become apparent. These alterations in the electromechanical behavior of human cardiomyocytes are coupled with increased isometric twitch of the myocardium and arrhythmic events, suggesting that Gαq-protein-coupled receptor activation provides inotropic reserve, which is hampered by electric instability and contractile abnormalities. Additionally, our findings support the notion that increases in Ca(2+) load by IP3Rs promote Ca(2+) extrusion by forward-mode Na(+)/Ca(2+) exchange, an important mechanism of arrhythmic events. CONCLUSIONS The Gαq-protein/coupled receptor/IP3R axis modulates the electromechanical properties of the human myocardium and its propensity to develop arrhythmias.
Collapse
Affiliation(s)
- Sergio Signore
- Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.S., A.S., J.F.-M., R.K., M.S., F.D.B., K.I., C.A., E.W., A.W., F.S., B.O., H.Z., X.L., T.H., P.G., A.L., J.K., P.A., M.R.); Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (F.d.M.); and Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY (D.A.D., O.W., R.E.M.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ozcan S, Cakmak HA, Ikitimur B, Yurtseven E, Stavileci B, Tufekcioglu EY, Enar R. The prognostic significance of narrow fragmented QRS on admission electrocardiogram in patients hospitalized for decompensated systolic heart failure. Clin Cardiol 2013; 36:560-4. [PMID: 23754185 DOI: 10.1002/clc.22158] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Narrow fragmented QRS (fQRS) has recently been recognized as a significant predictor of prognosis in various cardiovascular diseases. HYPOTHESIS We hypothesized that the presence of narrow fQRS on admission electrocardiogram (ECG) in patients with decompensated systolic heart failure (HF) of any cause would be associated with long-term prognosis. METHODS Patients hospitalized for decompensated HF due to ischemic or nonischemic dilated cardiomyopathy (left ventricular ejection fraction <35%) were retrospectively analyzed. The primary clinical end points were cardiovascular mortality, sudden cardiac death, and rehospitalization for HF. RESULTS The mean duration of follow-up was 3.73 ± 1.41 years. Patients were classified as fQRS(+) group (n = 114; mean age, 63.49 ± 12.04 years) and fQRS(-) group (n = 113 patients; mean age, 65.04 ± 11.95 years). fQRS on ECG was significantly correlated with New York Heart Association (NYHA) functional class (P = 0.001). In multivariate Cox proportional hazard analysis, narrow fQRS (odds ratio [OR]: 3.130, 95% confidence interval [CI]: 1.560-2.848, P = 0.001), chronic renal failure (OR: 2.455, 95% CI: 1.120-5.381, P = 0.025), NYHA class (OR: 8.305, 95% CI: 2.568-26.855, P < 0.0001), and hypoalbuminemia (OR: 2.099, 95% CI: 1.122-3.926, P = 0.020) were independent predictors of cardiovascular mortality. In Kaplan-Meier survival analysis, narrow fQRS on admission ECG predicted worse survival rate at 84 months; survival probability significantly decreased in the fQRS(+) group compared with fQRS(-) group (P < 0.0001). CONCLUSIONS Presence of narrow fQRS is associated with worse NYHA functional class in patients hospitalized for decompensated HF. Narrow fQRS predicts cardiovascular mortality in a specific subgroup of systolic HF patients, namely those hospitalized for decompensated HF of both ischemic and nonischemic causes.
Collapse
Affiliation(s)
- Sevgi Ozcan
- Department of Cardiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
48
|
Myocardial energetics in heart failure. Basic Res Cardiol 2013; 108:358. [PMID: 23740216 DOI: 10.1007/s00395-013-0358-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
It has become common sense that the failing heart is an "engine out of fuel". However, undisputable evidence that, indeed, the failing heart is limited by insufficient ATP supply is currently lacking. Over the last couple of years, an increasingly complex picture of mechanisms evolved that suggests that potentially metabolic intermediates and redox state could play the more dominant roles for signaling that eventually results in left ventricular remodeling and contractile dysfunction. In the pathophysiology of heart failure, mitochondria emerge in the crossfire of defective excitation-contraction coupling and increased energetic demand, which may provoke oxidative stress as an important upstream mediator of cardiac remodeling and cell death. Thus, future therapies may be guided towards restoring defective ion homeostasis and mitochondrial redox shifts rather than aiming solely at improving the generation of ATP.
Collapse
|
49
|
Bay J, Kohlhaas M, Maack C. Intracellular Na⁺ and cardiac metabolism. J Mol Cell Cardiol 2013; 61:20-7. [PMID: 23727097 DOI: 10.1016/j.yjmcc.2013.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022]
Abstract
In heart failure, alterations of excitation-contraction underlie contractile dysfunction. One important defect is an elevation of the intracellular Na(+) concentration in cardiac myocytes ([Na(+)]i), which has an important impact on cytosolic and mitochondrial Ca(2+) homeostasis. While elevated [Na(+)]i is thought to compensate for decreased Ca(2+) load of the sarcoplasmic reticulum (SR), it yet negatively affects energy supply-and-demand matching and can even induce mitochondrial oxidative stress. Here, we review the mechanisms underlying these pathophysiological changes. The chain of events may constitute a vicious cycle of ion dysregulation, oxidative stress and energetic deficit, resembling characteristic cellular deficits that are considered key hallmarks of the failing heart. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Johannes Bay
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | |
Collapse
|
50
|
Sambol J, Deitch EA, Takimoto K, Dosi G, Yatani A. Cellular basis of burn-induced cardiac dysfunction and prevention by mesenteric lymph duct ligation. J Surg Res 2013; 183:678-85. [PMID: 23465433 DOI: 10.1016/j.jss.2013.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/09/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Myocardial contractile depression develops 4 to 24 h after major burn injury. We have reported previously that in a rat burn injury model (≈40% of total body surface area burn), mesenteric lymph duct ligation (LDL) prior to burn prevented myocardial dysfunction. However, the underlying cellular and molecular mechanisms are not well understood. MATERIALS AND METHODS Left ventricular myocytes were isolated from sham burn (control), sham burn with LDL (sham + LDL), burn, and burn with LDL (burn + LDL) rats at 4 and 24 h after burn or sham burn. Electrophysiological techniques were used to study myocyte size, contractility and L-type Ca2+ channel current (ICa). Further studies examined changes in the messenger RNA expression levels of pore-forming subunit of the L-type Ca(2+) channel, α1C, and its auxiliary subunits, β1, β2, β3, and α2δ1, which modulate the abundance of the ICa in post-burn hearts. RESULTS Depressed myocyte contractility (≈20%) developed during 4 to 24 h post-burn compared with control, sham + LDL, or burn + LDL groups, a pattern of changes consistent with whole heart studies. There was no significant alteration in myocyte size. The ICa density was significantly decreased (≈30%) at 24 h post-burn, whereas the messenger RNA expression levels of Ca(2+) channel gene were not significantly altered at 4 and 24 h after burn injury. CONCLUSIONS These results suggest that the post-burn contractile phenotype in vivo was also present in isolated myocytes in vitro, but cellular remodeling was not a major factor. The results also suggest that changes in ICa regulation, but not from Ca(2+) channel gene modification, may be a key element involved in post-burn contractile depression and the beneficial effects of LDL.
Collapse
Affiliation(s)
- Justin Sambol
- Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|