1
|
Grzenda A, Shannon J, Fisher J, Arkovitz MS. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Dis Model Mech 2012; 6:106-14. [PMID: 22917924 PMCID: PMC3529343 DOI: 10.1242/dmm.008821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Charles Edison Laboratory for Pediatric Surgery Research, Department of Surgery, Division of Pediatric Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
2
|
Lau EMT, Manes A, Celermajer DS, Galiè N. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: time to move forward. Eur Heart J 2011; 32:2489-98. [PMID: 21616950 DOI: 10.1093/eurheartj/ehr160] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) can be a rapidly progressive disorder and is associated with high rate of mortality, despite medical intervention. With the availability of effective therapy, early disease detection is an important strategic objective to improve treatment outcomes. Resting echocardiography is currently the recommended screening modality for high-risk population groups. However, it is clear that derangements in resting haemodynamics (and symptoms) are late sequelae of the pathobiological processes that begin in the distal pulmonary arteries. Exercise stress may unmask early pulmonary vascular dysfunction but the definition, clinical significance, and natural history of 'exercise PAH' remain undefined. We will review the currently available and potential future strategies aimed at early disease detection, and propose that ultimately the way forward is to detect disease at a stage prior to the rise in resting pulmonary artery pressure.
Collapse
Affiliation(s)
- Edmund M T Lau
- Department of Medicine, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
3
|
Kümpers P, Nickel N, Lukasz A, Golpon H, Westerkamp V, Olsson KM, Jonigk D, Maegel L, Bockmeyer CL, David S, Hoeper MM. Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J 2010; 31:2291-300. [DOI: 10.1093/eurheartj/ehq226] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
4
|
van Meurs M, Kümpers P, Ligtenberg JJM, Meertens JHJM, Molema G, Zijlstra JG. Bench-to-bedside review: Angiopoietin signalling in critical illness - a future target? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:207. [PMID: 19435476 PMCID: PMC2689450 DOI: 10.1186/cc7153] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple organ dysfunction syndrome (MODS) occurs in response to major insults such as sepsis, severe haemorrhage, trauma, major surgery and pancreatitis. The mortality rate is high despite intensive supportive care. The pathophysiological mechanism underlying MODS are not entirely clear, although several have been proposed. Overwhelming inflammation, immunoparesis, occult oxygen debt and other mechanisms have been investigated, and – despite many unanswered questions – therapies targeting these mechanisms have been developed. Unfortunately, only a few interventions, usually those targeting multiple mechanisms at the same time, have appeared to be beneficial. We clearly need to understand better the mechanisms that underlie MODS. The endothelium certainly plays an active role in MODS. It functions at the intersection of several systems, including inflammation, coagulation, haemodynamics, fluid and electrolyte balance, and cell migration. An important regulator of these systems is the angiopoietin/Tie2 signalling system. In this review we describe this signalling system, giving special attention to what is known about it in critically ill patients and its potential as a target for therapy.
Collapse
Affiliation(s)
- Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, University of Groningen, 9700RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Yamamoto A, Takahashi H, Kojima Y, Tsuda Y, Morio Y, Muramatsu M, Fukuchi Y. Downregulation of angiopoietin-1 and Tie2 in chronic hypoxic pulmonary hypertension. ACTA ACUST UNITED AC 2007; 75:328-38. [PMID: 18073453 DOI: 10.1159/000112432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 08/29/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Angiopoietins, newly discovered vascular-specific growth factors, and vascular endothelial growth factors (VEGF) play distinct and complementary roles in angiogenesis and vascular maturation. However, the exact roles of angiogenic factors in the adult pulmonary vasculature remain unclear. OBJECTIVE To elucidate possible roles of angiopoietins and VEGF in the development of hypoxic pulmonary hypertension (PH), changes in the expression of angiogenic factors were examined. METHODS The cellular distribution and expression of angiopoietins and their receptor Tie2 and VEGF were investigated by RT-PCR, immunoblot, and immunohistochemical methods in rat lung under normal and hypoxic conditions. RESULTS During the development of PH with vascular remodeling characterized by a decrease in vessel density of intrapulmonary arteries, protein expression of angiopoietin-1 (Ang-1), Tie2, and VEGF significantly decreased in the pulmonary arteries, and Tie2 receptor was inactivated in the lung. The expression of angiopoietin-3 (Ang-3), an endogenous antagonist of Ang-1, significantly increased in the intima under hypoxic conditions. CONCLUSIONS Since both Ang-1/Tie2 and VEGF promote angiogenesis and vascular survival, and play protective roles in the adaptation of microvascular changes during the onset of PH, the downregulation of both Ang-1/Tie2 and VEGF and upregulation of Ang-3 appear to be associated with vascular rarefaction and the development of hypoxic PH.
Collapse
Affiliation(s)
- Akihito Yamamoto
- Department of Respiratory Medicine, Biomedical Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
INTRODUCTION Pulmonary arterial hypertension (PAH) is a rare syndrome of fatigue and dyspnoea, caused by increased pulmonary vascular resistance and right heart failure without an identifiable pulmonary or cardiac cause. Despite important recent advances in treatment the condition remains incurable. BACKGROUND Experimental animal models of PAH rely on hypoxic or monocrotaline injected rodents, the creation of left to right shunts in lambs or piglets, ligation of the ductus arteriosus in newborn lambs, genetically manipulated rodents and tissue culture. Hypoxic pulmonary hypertension is usually only moderate and limited to medial hypertrophy with varying degrees of adventitial change, but may progress to extensive remodelling in some species. Monocrotaline induced pulmonary hypertension is severe with prominent medial hypertrophy, inflammatory adventitial remodelling and, initially, pulmonary oedema and endothelial apoptosis. Pulmonary hypertension induced by shunting remains the most realistic model of PAH but causes only moderate increase in vascular resistance due to medial hypertrophy. Pulmonary hypertension of the newborn is severe but largely vasospastic, with predominant medial hypertrophy. An increasing number of genetically manipulated rodents are becoming available for the investigation of specific signalling pathways. VIEWPOINT While none of the models has yet reproduced PAH each allows investigation of a specific hypothesis. Recent progress has resulted from genetic manipulation and molecular and cellular approaches. CONCLUSIONS Animal models of PAH share basic biological abnormalities which, together with the study of lung tissue from patients with severe disease should lead to better understanding of the pathology and therapeutic innovation.
Collapse
Affiliation(s)
- R Naeije
- Laboratoire de Physiologie, Faculté de Médecine de l'Université Libre de Bruxelles, Belgique.
| | | |
Collapse
|
7
|
Abstract
Angiopoietin-1 (Ang1) has powerful vascular protective effects: suppressing plasma leakage, inhibiting vascular inflammation, and preventing endothelial death. Preclinical studies indicate that Ang1 may be therapeutically useful in a number of situations, including treatment of edema, endotoxemia, and transplant arteriosclerosis. However, the ligand has also been implicated in vessel remodeling, induction of angiogenesis and pulmonary hypertension, indicating that strategies to minimize any deleterious effects while optimizing vessel protection are likely to be needed. This review surveys the published data on vascular protective effects of Ang1 and highlights the therapeutic potential of this ligand, as well as possible limitations to its use. We also consider the data on Ang1 receptors and speculate on how to maximize therapeutic benefit by targeting the Tie receptors.
Collapse
Affiliation(s)
- Nicholas P J Brindle
- Department of Cardiovascular Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK.
| | | | | |
Collapse
|
8
|
Mukhopadhyay S, Shah M, Patel K, Sehgal PB. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response. Toxicol Appl Pharmacol 2006; 211:209-20. [PMID: 16000202 DOI: 10.1016/j.taap.2005.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/27/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a "megalocytosis" phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the "Golgi blockade" hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and alpha-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1alpha and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
9
|
Kugathasan L, Dutly AE, Zhao YD, Deng Y, Robb MJ, Keshavjee S, Stewart DJ. Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension. Chest 2006; 128:633S-642S. [PMID: 16373885 DOI: 10.1378/chest.128.6_suppl.633s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION The pulmonary microvasculature, consisting mainly of an endothelial cell (EC) monolayer and scant matrix support, is incompletely muscularized. Thus, the distal pulmonary arterioles may be predisposed to regression on exposure to environmental stresses (ie, hypoxia) and may be dependent on EC survival factors, like angiopoietin (Ang) 1, to attenuate the development of pulmonary arterial hypertension (PAH). In order to clarify the link between Ang1 expression and the development of PAH in patients, we also studied messenger RNA and protein expression in lung samples from healthy control subjects and patients with idiopathic PAH (IPAH) or PAH associated with other diseases (APAH). METHODS Ang/Tie2 gene expression was assessed in rats that had been exposed to hypoxia (ie, 10% O2) for 1, 3, or 7 days. In a separate experiment, the cell-based gene transfer of Ang1/Ang2 was performed, and the effects were evaluated in rats with hypoxia-induced PAH. RESULTS Hypoxia induced significant early increases in right ventricular systolic pressure (RVSP) and right ventricle/left ventricle-plus-septum mass ratio (RV/[LV + S]), with a significant decrease in Tie2 expression. Hypoxic rats receiving Ang1 demonstrated significant improvements in RVSP and RV/(LV + S), with a partial normalization in Tie2 protein levels. Robust Ang1 expression was observed in healthy human lungs. Furthermore, there were no significant changes in the levels of Ang1 or Ang2 in IPAH or APAH samples vs those in control subjects. CONCLUSIONS Decreased activity of the Tie2 pathway with hypoxia may contribute to PAH, possibly by loss of EC survival signaling, which can be overcome by Ang1 gene transfer.
Collapse
Affiliation(s)
- Lakshmi Kugathasan
- Terrence Donnelly Heart Centre, Division of Cardiology, St. Michael's Hospital, Queen Wing, Toronto, ON, Canada, M5B 1W8
| | | | | | | | | | | | | |
Collapse
|
10
|
Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol 2005; 67:623-61. [PMID: 15709973 DOI: 10.1146/annurev.physiol.67.040403.102229] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Past studies have primarily focused on how altered lung vascular growth and development contribute to pulmonary hypertension. Recently, basic studies of vascular growth have led to novel insights into mechanisms underlying development of the normal pulmonary circulation and the essential relationship of vascular growth to lung alveolar development. These observations have led to new concepts underlying the pathobiology of developmental lung disease, especially the inhibition of lung growth that characterizes bronchopulmonary dysplasia (BPD). We speculate that understanding basic mechanisms that regulate and determine vascular growth will lead to new clinical strategies to improve the long-term outcome of premature babies with BPD.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Developmental Lung Biology Laboratory, Department of Pediatrics, University of Colorado Health Sciences Center and The Children's Hospital, Denver, Colorado 80262, USA.
| | | |
Collapse
|
11
|
Abstract
The combined effects of vasoconstriction, remodelling of the pulmonary vessel walls and in situ thrombosis contribute to the increase in pulmonary vascular resistance during pulmonary arterial hypertension. Vascular remodelling involves all the sheaths of the vessel wall and all the cell types of which it is composed (endothelial cells, smooth muscle cells, fibroblasts, inflammatory cells and platelets). Excessive vasoconstriction has been related to a defect in the function of expression of the potassium channels and endothelial dysfunction. This leads to chronic insufficiency in the production of vasodilators, notably nitrogen monoxide and prostacyclin and the excessive production of vasoconstrictors such as endotheline-1. These defects contribute to the increase in vascular tonus and pulmonary vascular remodelling and represent pertinent pharmacological targets. Certain growth factors, including those of the super-family of transforming growth factor beta, angiopoietine-1 and serotonin, may play a part in the pathogenesis of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Frédéric Perros
- Service de pneumologie et réanimation respiratoire, Centre des maladies vasculaires pulmonaires, UPRES EA 2705, Institut Paris Sud sur les cytokines, Hôpital Antoine Béclère, Université Paris-Sud, 157 rue de la porte de Trivaux, 92140 Clamart, France
| | | |
Collapse
|
12
|
Carreira PE. Pulmonary hypertension in autoimmune rheumatic diseases. Autoimmun Rev 2004; 3:313-20. [PMID: 15246028 DOI: 10.1016/j.autrev.2003.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 11/08/2003] [Indexed: 12/16/2022]
Abstract
Arterial pulmonary hypertension (PH) might be a complication of some autoimmune rheumatic diseases, specially systemic sclerosis. This form of arterial PH is indistinguishable from primary PH, characterised by the presence of plexiform lesions. Although for many years plexiform lesions have been considered end-stage scarring lesions, they are composed by actively proliferating endothelial cells that share many features with cancer cells. Endothelial cells within plexiform lesions in all forms of arterial PH show a decrease in the expression of vasodilator and anti-proliferative factors, and an increase in the expression of vasoconstrictor and angiogenic and mitogenic factors. These cells also show important alterations in growth and apoptosis key regulatory genes. Plexiform lesions are surrounded by inflammatory cell infiltrates, probably providing cytokines that may contribute to the endothelial cell proliferative process. All these data suggest that arterial PH might be seen as a proliferative endothelial cell process, which would open new therapeutic approaches for this devastating disease.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Animals
- Apoptosis/genetics
- Autoimmune Diseases
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/physiopathology
- Rheumatic Diseases
- Scleroderma, Systemic/immunology
- Scleroderma, Systemic/pathology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Patricia E Carreira
- Servicio de reumatología, Hospital 12 de Octubre, Avda. de Córdoba S/N, 28041 Madrid, Spain.
| |
Collapse
|
13
|
Affiliation(s)
- Harrison W Farber
- Evans Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
14
|
Mandegar M, Fung YCB, Huang W, Remillard CV, Rubin LJ, Yuan JXJ. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004; 68:75-103. [PMID: 15313118 DOI: 10.1016/j.mvr.2004.06.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Pulmonary artery vasoconstriction and vascular remodeling greatly contribute to a sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) in patients with pulmonary arterial hypertension (PAH). The development of PAH involves a complex and heterogeneous constellation of multiple genetic, molecular, and humoral abnormalities, which interact in a complicated manner, presenting a final manifestation of vascular remodeling in which fibroblasts, smooth muscle and endothelial cells, and platelets all play a role. Vascular remodeling is characterized largely by medial hypertrophy due to enhanced vascular smooth muscle cell proliferation or attenuated apoptosis and to endothelial cell over-proliferation, which can result in lumen obliteration. In addition to other factors, cytoplasmic Ca2+ in particular seems to play a central role as it is involved in both the generation of force through its effects on the contractile machinery, and the initiation and propagation of cell proliferation via its effects on transcription factors, mitogens, and cell cycle components. This review focuses on the role played by cellular factors, circulating factors, and genetic molecular signaling factors that promote a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to vascular remodeling.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blood Pressure
- Bone Morphogenetic Protein Receptors, Type II
- Calcium Signaling
- Capillaries/pathology
- Capillaries/physiopathology
- Endothelium, Vascular/pathology
- Feedback
- Humans
- Hypertension, Pulmonary/classification
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy
- Membrane Glycoproteins/physiology
- Membrane Transport Proteins/physiology
- Models, Biological
- Muscle, Smooth, Vascular/pathology
- Mutation
- Nerve Tissue Proteins/physiology
- Potassium Channels, Voltage-Gated/metabolism
- Protein Serine-Threonine Kinases/genetics
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pulmonary Circulation
- Pulmonary Veins/pathology
- Pulmonary Veins/physiopathology
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins
- Vascular Resistance
- Vasoconstriction
Collapse
Affiliation(s)
- Mehran Mandegar
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
15
|
Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43:13S-24S. [PMID: 15194174 DOI: 10.1016/j.jacc.2004.02.029] [Citation(s) in RCA: 1099] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/03/2004] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) has a multifactorial pathobiology. Vasoconstriction, remodeling of the pulmonary vessel wall, and thrombosis contribute to increased pulmonary vascular resistance in PAH. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by cellular heterogeneity within each compartment of the pulmonary arterial wall. Indeed, each cell type (endothelial, smooth muscle, and fibroblast), as well as inflammatory cells and platelets, may play a significant role in PAH. Pulmonary vasoconstriction is believed to be an early component of the pulmonary hypertensive process. Excessive vasoconstriction has been related to abnormal function or expression of potassium channels and to endothelial dysfunction. Endothelial dysfunction leads to chronically impaired production of vasodilators such as nitric oxide and prostacyclin along with overexpression of vasoconstrictors such as endothelin (ET)-1. Many of these abnormalities not only elevate vascular tone and promote vascular remodeling but also represent logical pharmacological targets. Recent genetic and pathophysiologic studies have emphasized the relevance of several mediators in this condition, including prostacyclin, nitric oxide, ET-1, angiopoietin-1, serotonin, cytokines, chemokines, and members of the transforming-growth-factor-beta superfamily. Disordered proteolysis of the extracellular matrix is also evident in PAH. Future studies are required to find which if any of these abnormalities initiates PAH and which ones are best targeted to cure the disease.
Collapse
MESH Headings
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Molecular Biology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Vascular Resistance/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Marc Humbert
- Service de Pneumologie et Réanimation Respiratoire, Centre des Maladies Vasculaires Pulmonaires, UPRES EA2705, Hôpital Antoine-Béclère, Université Paris-Sud, Clamart, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|