1
|
Griffith JA, King RD, Dunn AC, Lewis SE, Maxwell BA, Nurkiewicz TR, Goldsmith WT, Kelley EE, Bowdridge EC. Maternal nano-titanium dioxide inhalation exposure alters placental cyclooxygenase and oxidant balance in a sexually dimorphic manner. ADVANCES IN REDOX RESEARCH 2024; 10:10.1016/j.arres.2023.100090. [PMID: 38562524 PMCID: PMC10979698 DOI: 10.1016/j.arres.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Julie A. Griffith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rachel D. King
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Allison C. Dunn
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sara E. Lewis
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brooke A. Maxwell
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E. Kelley
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C. Bowdridge
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
2
|
Tielemans B, Delcroix M, Belge C, Quarck R. TGFβ and BMPRII signalling pathways in the pathogenesis of pulmonary arterial hypertension. Drug Discov Today 2019; 24:703-716. [DOI: 10.1016/j.drudis.2018.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Accepted: 12/04/2018] [Indexed: 01/23/2023]
|
3
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
4
|
Decreased vasorelaxation induced by iloprost during acute inflammation in human internal mammary artery. Eur J Pharmacol 2017; 804:31-37. [PMID: 28373136 DOI: 10.1016/j.ejphar.2017.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/25/2022]
Abstract
Cyclooxygenase-2 (COX-2) induction in human internal mammary arteries (IMA) under inflammatory conditions has been associated with attenuated norepinephrine (NE)-induced vasoconstriction. This effect was associated with increased prostaglandin (PG) E2 and prostacyclin (PGI2) releases. The present study was designed to assess the role of these PG and their receptors (EP and IP, respectively) on the vascular reactivity during acute inflammation. Isolated IMA were cultured in the absence (Control conditions) or presence (Inflammatory conditions) of both interleukin-1 beta (IL-1β) and lipopolysaccharide (LPS). The vasorelaxation and the increased content of cyclic adenosine monophosphate (cAMP) induced by iloprost, a PGI2 analogue, were significantly reduced under inflammatory conditions and restored in preparations cultured with the IP antagonist (CAY10441). Decreased cAMP levels under inflammatory conditions are due to at least increased phosphodiesterase (PDE) 4B expression. On the other hand, PGE2, thromboxane analogues and EP agonists-induced vasoconstrictions were not affected under inflammatory conditions. No vasorelaxation was observed with PGD2, PGE2 or the EP2/4 agonists in pre-contracted IMA. Finally, using RT-qPCR and immunohistochemistry, the COX-2, IP receptor and PGI2 synthase (PGIS) were detected. A significant increase of COX-2 and moderate increase of IP mRNA expression was observed under inflammatory conditions, whereas PGIS mRNA level was not affected. This study demonstrates that PGI2/IP receptor signalling and PGI2-induced relaxation are impaired in human IMA during acute inflammation, whereas the responses induced by other prostanoids are not affected. These results could explain some of the mechanisms of vascular dysfunction reported in inflammatory conditions.
Collapse
|
5
|
Rafikova O, Meadows ML, Kinchen JM, Mohney RP, Maltepe E, Desai AA, Yuan JXJ, Garcia JGN, Fineman JR, Rafikov R, Black SM. Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung. PLoS One 2016; 11:e0150480. [PMID: 26937637 PMCID: PMC4777490 DOI: 10.1371/journal.pone.0150480] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/14/2016] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH.
Collapse
Affiliation(s)
- Olga Rafikova
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Mary L. Meadows
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | | | | | - Emin Maltepe
- Division of Neonatology, University of California San Francisco, San Francisco, California, United States of America
| | - Ankit A. Desai
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jason X.-J. Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Joe G. N. Garcia
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| | - Jeffrey R. Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Ruslan Rafikov
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| | - Stephen M. Black
- Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
6
|
Groth A, Vrugt B, Brock M, Speich R, Ulrich S, Huber LC. Inflammatory cytokines in pulmonary hypertension. Respir Res 2014; 15:47. [PMID: 24739042 PMCID: PMC4002553 DOI: 10.1186/1465-9921-15-47] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/08/2014] [Indexed: 12/14/2022] Open
Abstract
Pulmonary hypertension is an “umbrella term” used for a spectrum of entities resulting in an elevation of the pulmonary arterial pressure. Clinical symptoms include dyspnea and fatigue which in the absence of adequate therapeutic intervention may lead to progressive right heart failure and death. The pathogenesis of pulmonary hypertension is characterized by three major processes including vasoconstriction, vascular remodeling and microthrombotic events. In addition accumulating evidence point to a cytokine driven inflammatory process as a major contributor to the development of pulmonary hypertension. This review summarizes the latest clinical and experimental developments in inflammation associated with pulmonary hypertension with special focus on Interleukin-6, and its role in vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | - Lars C Huber
- Division of Pulmonology, University Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
7
|
Kittikulsuth W, Stuart D, Kohan DE. Adenylyl cyclase 4 does not regulate collecting duct water and sodium handling. Physiol Rep 2014; 2:e00277. [PMID: 24760529 PMCID: PMC4002255 DOI: 10.1002/phy2.277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adenylyl cyclase (AC)‐stimulated cAMP is a key mediator of collecting duct (CD) Na and water transport. AC isoforms 3, 4, and 6 are expressed in the CD. Our group demonstrated that AC6, but not AC3, is involved in regulating CD Na and water transport. However, the role of AC4 in such regulation remains unknown. Therefore, we generated mice with loxP‐flanked critical exons in the Adcy4 gene and bred with mice expressing the aquaporin‐2/Cre recombinase transgene to yield CD principal cell‐specific knockout of AC4 (CD AC4 KO). Isolated inner medullary CD showed 100% genomic target gene recombination in CD AC4 KO mice, while microdissected cortical CD and renal papillary AC4 mRNA was significantly reduced in CD AC4 KO mice. CD AC4 KO had no effect on vasopressin (AVP)‐stimulated cAMP generation in the inner medulla. Water intake, urine volume, and urine osmolality were similar between CD AC4 KO and control mice during normal or restricted water intake. Sodium intake, urinary Na excretion, and blood pressure on a normal‐, high‐, or low‐Na diet were not affected by CD AC4 KO. Moreover, there were no differences in plasma AVP or plasma renin concentration between CD AC4 KO and control mice. In summary, these data suggest that CD AC4 does not play a role in the physiologic regulation of CD Na and water handling. Principal cells in the collecting duct express adenylyl cyclase 4 (AC4), however, the role of AC4 in the regulation of collecting duct function is unknown. We made mice with collecting duct principal cell‐specific deletion of AC4 and found that these mice have no alterations in arterial pressure or urinary sodium, potassium, or water excretion under varying physiological conditions.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| | | | | |
Collapse
|
8
|
Li XW, Du J, Hu GY, Hu CP, Li D, Li YJ, Li XH. Fluorofenidone attenuates vascular remodeling in hypoxia-induced pulmonary hypertension of rats. Can J Physiol Pharmacol 2014; 92:58-69. [DOI: 10.1139/cjpp-2013-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone derivate that targets transforming growth factor-β1 (TGF-β1) signaling. Previous studies have proven that AKF-PD functions as an antifibrotic agent in pulmonary fibrosis and renal fibrosis models. Activated TGF-β1 signaling is thought to be a major feature of pulmonary hypertension (PH). TGF-β1 exerts powerful pro-proliferation effects on pulmonary arterial smooth muscle cells (PASMCs), and hence, prompts vascular remodeling. This study is designed to investigate the effect of AKF-PD on vascular remodeling in a rat model of hypoxia-induced PH. PH was induced in rats by 4 weeks of hypoxia. The expression of TGF-β1, collagen I, and collagen III was analyzed by ELISA, immunohistochemistry, real-time PCR, or Western blot. Proliferation of cultured PASMCs was determined by the BrdU incorporation method and flow cytometry. The results showed that AKF-PD treatment (0.5 or 1.0 g·(kg body mass)·d−1) for 4 weeks attenuated pulmonary vascular remodeling and improved homodynamic parameters. TGF-β1 level was significantly down-regulated by AKF-PD both in vivo and in vitro. Furthermore, hypoxia- and TGF-β1-induced PASMC proliferation and collagen expression were both significantly suppressed by AKF-PD. These results suggest that AKF-PD ameliorates the progression of PH induced by hypoxia in rats through its regulation of TGF-β1 expression, PASMC proliferation, and the extracellular matrix.
Collapse
Affiliation(s)
- Xian-Wei Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
- Department of Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Gao-Yun Hu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Chang-Ping Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Dai Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 41008, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Xiang-Ya Road No. 110, Changsha 410078, China
| |
Collapse
|
9
|
Oldenburger A, Maarsingh H, Schmidt M. Multiple facets of cAMP signalling and physiological impact: cAMP compartmentalization in the lung. Pharmaceuticals (Basel) 2012; 5:1291-331. [PMID: 24281338 PMCID: PMC3816672 DOI: 10.3390/ph5121291] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Anouk Oldenburger
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
10
|
Webb JG, Tan Y, Jaffa MA, Jaffa AA. Evidence for prostacyclin and cAMP upregulation by bradykinin and insulin-like growth factor 1 in vascular smooth muscle cells. J Recept Signal Transduct Res 2010; 30:61-71. [PMID: 20082561 DOI: 10.3109/10799890903563768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although bradykinin (BK) and insulin like growth factor-1 (IGF-1) have been shown to modulate the functional and structural integrity of the arterial wall, the cellular mechanisms through which this regulation occurs is still undefined. The present study examined the role of second messenger molecules generated by BK and IGF-1 that could ultimately result in proliferative or antiproliferative signals in vascular smooth muscle cells (VSMC). Activation of BK or IGF-1 receptors stimulated the synthesis and release of prostacyclin (PGI(2)) leading to increased production of cAMP in VSMC. Inhibition of p42/p44(mapk) or src kinases prevented the increase in PGI(2) and cAMP observed in response to BK or IGF-1, indicating a role for these kinases in the regulation of cPLA(2) activity in the VSMC. Inhibition of PKC failed to alter production of PGI(2) in response to BK, but further increased both p42/p44(mapk) activation and the synthesis of PGI(2) produced in response to IGF-1. In addition, both BK and IGF-1 significantly induced the expression of c-fos mRNA levels in VSMC, and this effect of BK was accentuated in the presence a cPLA(2) inhibitor. Finally, inhibition of cPLA(2) activity and/or cyclooxygenase activity enhanced the expression of collagen I mRNA levels in response to BK and IGF-1 stimulation. These findings indicate that the effect of BK or IGF-1 to stimulate VSMC growth is an integrated response to the activation of multiple signaling pathways. Thus, the excessive cell growth that occurs in certain forms of vascular disease could reflect dysfunction in one or more of these pathways.
Collapse
Affiliation(s)
- Jerry G Webb
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
11
|
Roux J, Carles M, Koh H, Goolaerts A, Ganter MT, Chesebro BB, Howard M, Houseman BT, Finkbeiner W, Shokat KM, Paquet AC, Matthay MA, Pittet JF. Transforming growth factor beta1 inhibits cystic fibrosis transmembrane conductance regulator-dependent cAMP-stimulated alveolar epithelial fluid transport via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 2009; 285:4278-90. [PMID: 19996317 DOI: 10.1074/jbc.m109.036731] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exogenous or endogenous beta(2)-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that transforming growth factor beta1 (TGF-beta1), a critical mediator of acute lung injury, inhibits beta(2)-adrenergic receptor agonist-stimulated vectorial fluid and Cl(-) transport across primary rat and human alveolar epithelial type II cell monolayers. This inhibition is due to a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis mediated by a phosphatidylinositol 3-kinase (PI3K)-dependent heterologous desensitization and down-regulation of the beta(2)-adrenergic receptors. Consistent with these in vitro results, inhibition of the PI3K pathway or pretreatment with soluble chimeric TGF-beta type II receptor restored beta(2)-adrenergic receptor agonist-stimulated alveolar epithelial fluid transport in an in vivo model of acute lung injury induced by hemorrhagic shock in rats. The results demonstrate a novel role for TGF-beta1 in impairing the beta- adrenergic agonist-stimulated alveolar fluid clearance in acute lung injury, an effect that could be corrected by using PI3K inhibitors that are safe to use in humans.
Collapse
Affiliation(s)
- Jérémie Roux
- Laboratory of Surgical Research, Department of Anesthesia, University of California, San Francisco, California 94110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Foudi N, Norel X, Rienzo M, Louedec L, Brink C, Michel JB, Bäck M. Altered reactivity to norepinephrine through COX-2 induction by vascular injury in hypercholesterolemic rabbits. Am J Physiol Heart Circ Physiol 2009; 297:H1882-8. [DOI: 10.1152/ajpheart.00092.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although long-term use of cyclooxygenase (COX)-2 inhibitors may be associated with increased cardiovascular risk, their effects on vascular reactivity in atherosclerosis has remained largely unexplored. The aim of the present study was to evaluate the role of COX-2 induced by an atherosclerotic process, in the local control of vascular tone. New Zealand White rabbits were fed 0.3% cholesterol and subjected to balloon injury of the abdominal aorta. After 2 wk, the aorta was removed and used for organ bath experiments and immunohistochemistry, and the prostaglandins released were measured using enzyme immunoassays. Hypercholesterolemia and vascular injury significantly increased the thickness of the intimal layer, which was associated with an induction of COX-2 immunoreactivity throughout the aortic wall. In these preparations, a significant decrease of the maximal contractions induced by norepinephrine was observed. The norepinephrine-induced contractions of atherosclerotic preparations were restored by the COX inhibitors DuP-697 (0.5 μmol/l) and indomethacin (1.7 μmol/l), to similar contractions as was observed in aortic preparations derived from healthy rabbits. Norepinephrine stimulation of the abdominal aorta was accompanied by increased levels of prostaglandin I2 but not of prostaglandin E2, prostaglandin D2, or thromboxane A2 in atherosclerotic compared with normal aorta. Selective COX-2 inhibition significantly decreased the prostaglandin I2 release from atherosclerotic aorta but had no effect on the prostaglandin release from aortic preparations derived from normal rabbits. These observations suggest that the local induction of COX-2 during atherosclerosis decreased the sensitivity to norepinephrine and that COX-2 inhibitors may increase vascular reactivity at sites of atherosclerotic lesions.
Collapse
Affiliation(s)
- Nabil Foudi
- Bichat Hospital (1INSERM U698,
- University of Paris 13 and
| | | | | | | | | | - Jean-Baptiste Michel
- Bichat Hospital (1INSERM U698,
- University of Paris 7), Paris Cedex 18, France; and
| | - Magnus Bäck
- Bichat Hospital (1INSERM U698,
- Department of Cardiology and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Increased Human Vascular Reactivity Via Cyclooxygenase-2 Inhibition During Acute Inflammation: Role of Prostaglandins E2 and I2. Inflamm Res 2009. [DOI: 10.1007/bf03354230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Foudi N, Louedec L, Cachina T, Brink C, Norel X. Selective cyclooxygenase-2 inhibition directly increases human vascular reactivity to norepinephrine during acute inflammation. Cardiovasc Res 2008; 81:269-77. [DOI: 10.1093/cvr/cvn287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Chada M, Nögel S, Schmidt AM, Rückel A, Bosselmann S, Walther J, Papadopoulos T, von der Hardt K, Dötsch J, Rascher W, Kandler MA. Anakinra (IL-1R antagonist) lowers pulmonary artery pressure in a neonatal surfactant depleted piglet model. Pediatr Pulmonol 2008; 43:851-7. [PMID: 18668691 DOI: 10.1002/ppul.20851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In acute respiratory distress syndrome (ARDS) with pulmonary hypertension, interleukin-1 beta (IL-1 beta) and interleukin-8 (IL-8) are involved in the pulmonary inflammatory reaction. The purpose of this study was to determine whether systemic and aerosolized administered IL-1 receptor antagonist (IL-1Ra) Anakinra (Kineret) improves lung mechanics and pulmonary artery pressure in surfactant depleted newborn piglets. After induction of acute lung injury by lung lavage, neonatal piglets received repetitive treatment of either aerosolized IL-1Ra (IL-1Ra-Aerosol) or intravenous IL-1Ra (IL-1Ra-i.v.), or saline solution as control. IL-1Ra given as aerosol or intravenously significantly reduced mean pulmonary artery pressure (MPAP) but did not influence mean systemic arterial pressure (MAP) compared with the control group. IL-1 beta and IL-8 mRNA expressions normalized to beta-actin and hypoxanthine-guanine-phosphoribosyl transferase were significantly reduced in the IL-1Ra-Aerosol group but not in IL-1Ra-i.v. group compared to the control group. The lung injury score was not significantly different between IL-1Ra groups and the control group. Application of aerosolized IL-1Ra reduced MPAP without affecting MAP in a piglet model of surfactant depletion with pulmonary hypertension. Furthermore, there is evidence for reduction of early pro-inflammatory pulmonary reaction.
Collapse
Affiliation(s)
- Martin Chada
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rakotoniaina Z, Guerard P, Lirussi F, Rochette L, Dumas M, Goirand F, Bardou M. Celecoxib but not the combination of celecoxib+atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:241-51. [PMID: 18542928 DOI: 10.1007/s00210-008-0298-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/07/2008] [Indexed: 01/10/2023]
Abstract
The present study aimed to assess the effects of a COX-2 inhibitor, celecoxib, a HMG-CoA reductase inhibitor, atorvastatin, and the association of both on monocrotaline (MC)-induced pulmonary hypertension in rats. Celecoxib (Cib, 25 mg kg(-1) day(-1)), atorvastatin (AS, 10 mg kg(-1) day(-1)) or vehicle, were given orally, separately or in combination, for 26 days to Wistar male rats injected or not with MC (60 mg/kg intraperitoneally). At 4 weeks, MC-injected rats developed a severe pulmonary hypertension, with an increase in lung to body weight ratio (L/BW), right ventricular pressure (RVP in mmHg, 31 +/- 3 and 14 +/- 1 for MC and control groups, respectively, P < 0.05) and right ventricle/left ventricle + septum weight ratio (RV/LV+S) associated with a decrease in acetylcholine- and sodium-nitroprusside-induced pulmonary artery vasodilation in vitro. Hypertensive pulmonary arteries exhibited an increase in wall thickness (wall thickness to external diameter ratio, 0.42 +/- 0.01 vs 0.24 +/- 0.01 for MC and control groups, respectively, P < 0.001). Whole lung eNOS expression was decreased, and an increase in apoptosis, evaluated by cleaved caspase-3 expression, was evidenced by Western blotting. Cib (RVP in mmHg, 19 +/- 3 and 31 +/- 3 for MC+Cib and MC groups, respectively, P < 0.05), but neither AS nor AS+Cib significantly limited the development of pulmonary hypertension (P < 0.05), although the three treatments exhibited protective effects against MC-induced lung and right ventricle hypertrophy evaluated by L/BW and RV/(LV+S) ratios, respectively (P < 0.05). AS, Cib and AS+Cib treatments reduced MC-induced thickening of small intrapulmonary artery wall (0.42 +/- 0.01, 0.24 +/- 0.01, 0.26 +/- 0.01 and 0.28 +/- 0.01 for MC, MC+AS, MC+Cib and MC+AS+Cib groups, respectively, P < 0.001). In control rats, Cib reduced acetylcholine-induced pulmonary artery vasorelaxation. Treatment of MC rats by either Cib or AS did not modify acetylcholine-induced pulmonary artery relaxation, whereas combination of both drugs significantly worsened it (P < 0.05). AS, but neither Cib nor the combination of both, prevented apoptosis (AS, P < 0.05) and partially restored eNOS expression (AS, P < 0.05) in whole lung of MC rats. In conclusion, celecoxib exhibited beneficial effects against the development of monocrotaline-induced pulmonary artery hypertension and right ventricular hypertrophy. These beneficial effects of celecoxib might be, at least partly, explained by its effects on pulmonary artery thickening and pulmonary hypertrophy, even if it did not show any effect on pulmonary artery vasorelaxation and whole lung eNOS expression or apoptosis. The combination of celecoxib and atorvastatin was unable to prevent MC-induced pulmonary hypertension, decreased endothelium-dependent vasorelaxation and showed a trend toward an increased in RVP that deserves further studies.
Collapse
|
17
|
Liu LB, Xue YX, Liu YH, Wang YB. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton. J Neurosci Res 2008; 86:1153-68. [PMID: 18183615 DOI: 10.1002/jnr.21558] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
18
|
De Franceschi L, Platt OS, Malpeli G, Janin A, Scarpa A, Leboeuf C, Beuzard Y, Payen E, Brugnara C. Protective effects of phosphodiesterase-4 (PDE-4) inhibition in the early phase of pulmonary arterial hypertension in transgenic sickle cell mice. FASEB J 2008; 22:1849-60. [PMID: 18245171 DOI: 10.1096/fj.07-098921] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is one of the leading causes of morbidity and mortality in adult patients with sickle cell disease (SCD). Here, we developed a model to study the early stage of PAH in SCD. We exposed wild-type and transgenic sickle cell SAD (Hbb(s)/Hbb(s)) mice to hypoxia (8% O(2)) for 7 days. Prolonged hypoxia in SAD mice only induced 1) increased neutrophil count in both bronchoalveolar lavage (BAL) and peripheral circulation; 2) increased BAL IL1beta, IL10, IL6, and TNF-alpha; and 3) up-regulation of the genes endothelin-1, cyclo-oxygenase-2, angiotensin-converting-enzyme, and IL-1beta, suggesting that amplified inflammatory response and activation of the endothelin-1 system may contribute to the early phase of PAH in SCD. Since phosphodiesterases (PDEs) are involved in pulmonary vascular tone regulation, we evaluated gene expression of phosphodiesterase-4 (PDE-4) isoforms and of PDE-1, -2, -3, -7, -8, which are the main cyclic-adenosine-monophosphate hydrolyzing enzymes. In SAD mouse lungs, prolonged hypoxia significantly increased PDE-4 and -1 gene expressions. The PDE-4 inhibitor, rolipram, prevented the hypoxia-induced PDE-4 and -1 gene up-regulation and interfered with the development of PAH, most likely through modulation of both vascular tone and inflammatory factors. This finding supports a possible therapeutic use of PDEs inhibitors in the earlier phases of PAH in SCD.
Collapse
Affiliation(s)
- Lucia De Franceschi
- Department of Clinical and Experimental Medicine, Section of Internal Medicine, University of Verona, Policlinico GB Rossi, 37134 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
El-Haroun H, Clarke DL, Deacon K, Bradbury D, Clayton A, Sutcliffe A, Knox AJ. IL-1beta, BK, and TGF-beta1 attenuate PGI2-mediated cAMP formation in human pulmonary artery smooth muscle cells by multiple mechanisms involving p38 MAP kinase and PKA. Am J Physiol Lung Cell Mol Physiol 2007; 294:L553-62. [PMID: 18156442 DOI: 10.1152/ajplung.00044.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that interleukin (IL)-1beta, transforming growth factor (TGF)-beta1, or bradykinin (BK) impair cAMP generation in response to prostacyclin analogs in human pulmonary artery smooth muscle (PASM), suggesting that inflammation can impair the effects of prostacyclin analogs on PASM in pulmonary hypertension. Here we explored the biochemical mechanisms involved. We found that IL-1beta, BK, and TGF-beta1 reduced adenylyl cyclase isoform 1, 2, and 4 mRNA, increased Galphai protein levels, and reduced prostacyclin receptor (IP receptor) mRNA expression. In contrast, Galphas protein levels were unchanged. Protein kinase A (PKA) (H-89, KT-2750, PKIm) and p38 mitogen-activated protein (MAP) kinase (SB-202190) inhibitors attenuated these effects, but protein kinase C (bisindolylmaleide) or phosphoinositol 3-kinase (LY-294002) inhibitors did not. Fluorescent kemptide assay and Western blotting confirmed that PKA and p38 MAP kinase were activated by IL-1beta, BK, and TGF-beta1. These studies suggest that IL-1beta, BK, and TGF-beta1 impair IP receptor-mediated cAMP accumulation by multiple effects on different components of the signaling pathway and that these effects are PKA and p38 MAP kinase dependent.
Collapse
Affiliation(s)
- H El-Haroun
- Division of Respiratory Medicine, University of Nottingham, Clinical Science Bldg., City Hospital, Nottingham, NG5 1PB, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Ito T, Okada T, Miyashita H, Nomoto T, Nonaka-Sarukawa M, Uchibori R, Maeda Y, Urabe M, Mizukami H, Kume A, Takahashi M, Ikeda U, Shimada K, Ozawa K. Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats. Circ Res 2007; 101:734-41. [PMID: 17673672 DOI: 10.1161/circresaha.107.153023] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease associated with inflammation and pathological remodeling of the pulmonary artery (PA). Interleukin (IL)-10 is a pleiotropic antiinflammatory cytokine with vasculoprotective properties. Here, we report the preventive effects of IL-10 on monocrotaline-induced PAH. Three-week-old Wistar rats were intramuscularly injected with an adeno-associated virus serotype 1 vector expressing IL-10, followed by monocrotaline injection at 7 weeks old. IL-10 transduction significantly improved survival rates of the PAH rats 8 weeks after monocrotaline administration compared with control gene transduction (75% versus 0%, P<0.01). IL-10 also significantly reduced mean PA pressure (22.8+/-1.5 versus 29.7+/-2.8 mm Hg, P<0.05), a weight ratio of right ventricle to left ventricle plus septum (0.35+/-0.04 versus 0.42+/-0.05, P<0.05), and percent medial thickness of the PA (12.9+/-0.3% versus 21.4+/-0.4%, P<0.01) compared with controls. IL-10 significantly reduced macrophage infiltration and vascular cell proliferation in the remodeled PA in vivo. It also significantly decreased the lung levels of transforming growth factor-beta1 and IL-6, which are indicative of PA remodeling. In addition, IL-10 increased the lung level of heme oxygenase-1, which strongly prevents PA remodeling. In vitro analysis revealed that IL-10 significantly inhibited excessive proliferation of cultured human PA smooth muscle cells treated with transforming growth factor-beta1 or the heme oxygenase inhibitor tin protoporphyrin IX. Thus, IL-10 prevented the development of monocrotaline-induced PAH, and these results provide new insights into the molecular mechanisms of human PAH.
Collapse
Affiliation(s)
- Takayuki Ito
- Division of Genetic Therapeutics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clément N, Glorian M, Raymondjean M, Andréani M, Limon I. PGE2 amplifies the effects of IL-1beta on vascular smooth muscle cell de-differentiation: a consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J Cell Physiol 2006; 208:495-505. [PMID: 16741924 DOI: 10.1002/jcp.20673] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transition of vascular smooth muscle cells from a contractile/quiescent to a secretory/proliferative phenotype is one of the critical steps in atherosclerosis and is instigated by pro-inflammatory cytokines released from macrophages that have infiltrated into the vascular wall. In most inflammatory diseases, cell activation induced by these compounds leads to a massive production of type E2 prostaglandin (PGE2) which often takes over and even potentiates the pro-inflammatory cytokine-related effects. To evaluate PGE2 incidence on atheroma plaque development, we investigated whether and how this compound could enhance the dedifferentiation of smooth muscle cells initially induced by interleukin-1beta (IL-1beta). To address this issue, we took advantage of vascular smooth muscle cells in primary culture and tracked two markers: PLA2 secretion and alpha-actin filament disorganization. In such a context, we found that PGE2 synergizes with IL-1beta to further enhance the phenotype transition of smooth muscle cells, through cAMP-protein kinase A. As indicated by pharmacological studies, the full PGE2-dependent potentiation of IL-1beta induced PLA2 secretion is associated with a change of regulation exerted by the subtypes 3 G(i)-coupled PGE2 receptors toward adenylyl cyclase(s) activated by the subtype 4 G(s)-linked PGE2 receptor. Whereas on contractile cells, stimulated subtypes 3 inhibit type 4-dependent PLA2 secretion, this negative regulation is switched to positive on IL-1beta-treated cells. Using real time PCR, pharmacological tools and small interfering RNA (siRNA), we demonstrated that the different integration of PGE2 signals depends on the upregulation of calcium/calmodulin stimulable adenylyl cyclase 8.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Aorta, Thoracic
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Cyclic AMP/metabolism
- Dinoprostone/pharmacology
- Drug Synergism
- Gene Expression Regulation, Enzymologic/drug effects
- Interleukin-1/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Phospholipases A/genetics
- Phospholipases A/metabolism
- Phospholipases A2
- RNA, Small Interfering/genetics
- Rats
- Receptors, Prostaglandin E/classification
- Receptors, Prostaglandin E/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/drug effects
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Nathalie Clément
- UMR 7079 CNRS, Université Pierre et Marie Curie (UPMC-Paris 6), Paris, France
| | | | | | | | | |
Collapse
|
22
|
Millen J, MacLean MR, Houslay MD. Hypoxia-induced remodelling of PDE4 isoform expression and cAMP handling in human pulmonary artery smooth muscle cells. Eur J Cell Biol 2006; 85:679-91. [PMID: 16458997 DOI: 10.1016/j.ejcb.2006.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human pulmonary artery smooth muscle cells (hPASM cells) express PDE4A10, PDE4A11, PDE4B2, PDE4C and PDE4D5 isoforms. Hypoxia causes a transient up-regulation of PDE4B2 that reaches a maximum after 7 days and sustained up-regulation of PDE4A10/11 and PDE4D5 over 14 days in hypoxia. Seven days in hypoxia increases both intracellular cAMP levels, protein kinase A (PKA) activity and activated, phosphorylated extracellular signal regulated kinase (pERK) but does not alter either PKA isoform expression or total cAMP phosphodiesterase-4 (PDE4) activity or cAMP phosphodiesterase-3 (PDE3) activity. Both the cyclooxygenase inhibitor, indomethacin and the ERK inhibitors, UO126 and PD980589 reverse the hypoxia-induced increase in intracellular cAMP levels back to those seen in normoxic hPASM cells. Challenge of normoxic hPASM cells with prostaglandin E(2) (PGE(2)) elevates cAMP to levels comparable to those seen in hypoxic cells but fails to increase intracellular cAMP levels in hypoxic hPASM cells. The adenylyl cyclase activator, forskolin increases cAMP levels in both normoxic and hypoxic hPASM cells to comparable elevated levels. Challenge of hypoxic hPASM cells with indomethacin attenuates total PDE4 activity whilst challenge with UO126 increases total PDE4 activity. We propose that the hypoxia-induced activation of ERK initiates a phospholipase A(2)/COX-driven autocrine effect whereupon PGE(2) is generated, causing the activation of adenylyl cyclase and increase in intracellular cAMP. Despite the hypoxia-induced increases in the expression of PDE4A10/11, PDE4B2 and PDE4D5 and activation of certain of these long PDE4 isoforms through PKA phosphorylation, we suggest that the failure to see any overall increase in PDE4 activity is due to ERK-mediated phosphorylation and inhibition of particular PDE4 long isoforms. Such hypoxia-induced increase in expression of PDE4 isoforms known to interact with certain signalling scaffold proteins may result in alterations in compartmentalised cAMP signalling. The hypoxia-induced increase in cAMP may represent a compensatory protective mechanism against hypoxia-induced mitogens such as endothelin-1 and serotonin.
Collapse
Affiliation(s)
- Jennifer Millen
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
23
|
Knowles HJ, te Poele RH, Te Poole R, Workman P, Harris AL. Niacin induces PPARgamma expression and transcriptional activation in macrophages via HM74 and HM74a-mediated induction of prostaglandin synthesis pathways. Biochem Pharmacol 2006; 71:646-56. [PMID: 16386710 DOI: 10.1016/j.bcp.2005.11.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/21/2005] [Accepted: 11/22/2005] [Indexed: 01/11/2023]
Abstract
HM74 and HM74a have been identified as receptors for niacin. HM74a mediates the pharmacological anti-lipolytic effects of niacin in adipocytes by reducing intracellular cyclic AMP (cAMP) and inhibiting release of free fatty acids into the circulation. In macrophages, niacin induces peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent and cAMP-dependent expression of genes mediating reverse cholesterol transport, although via an unidentified receptor. We describe constitutive expression of HM74a mRNA and hypoxia- and IFNgamma-inducible expression of HM74 and HM74a in human monocytic cell lines and primary cells in culture. In U937 cells niacin-induced expression of 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), the most potent endogenous ligand of PPARgamma. Both niacin and the structurally distinct HM74/HM74a ligand acifran-induced nuclear expression of PPARgamma protein and enhanced PPARgamma transcriptional activity. Niacin-induced PPARgamma transcriptional activity was pertussis toxin sensitive and required activity of phospholipase A(2) (EC 3.1.1.4), cyclo-oxygenase (EC 1.14.99.1) and prostaglandin D(2) synthase (EC 5.3.99.2). Niacin also induced PPARgamma transcriptional activity in HM74 and HM74a CHO cell transfectants, although not in vector-only control cells. This was sensitive to pertussis toxin and to inhibition of phoshoplipase A(2) and cyclo-oxygenase activity. Additionally, niacin increased intracellular cAMP in U937 via a pertussis toxin and cyclo-oxygenase-sensitive mechanism. These results indicate that HM74 and HM74a can mediate macrophage responses to niacin via activation of the prostaglandin synthesis pathway and induction and activation of PPARgamma. This suggests a novel mechanism(s) mediating the clinical effects of pharmacological doses of niacin.
Collapse
Affiliation(s)
- Helen J Knowles
- Cancer Research UK Molecular Oncology Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
24
|
Baratelli F, Lin Y, Zhu L, Yang SC, Heuzé-Vourc'h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:1483-90. [PMID: 16034085 DOI: 10.4049/jimmunol.175.3.1483] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naturally occurring CD4+CD25+ regulatory T cells (T reg) are pivotal in suppressing immune responses and maintaining tolerance. The identification of molecules controlling T reg differentiation and function is important in understanding host immune responses in malignancy and autoimmunity. In this study we show that PGE2 enhances the in vitro inhibitory function of human purified CD4+CD25+ T reg cells. Moreover, PGE2 induces a regulatory phenotype in CD4+CD25- T cells. PGE2-treated T cell-mediated inhibition of anti-CD3-stimulated lymphocyte proliferation did not require cell contact. Phenotypic analysis revealed that PGE2 diminished CD25 expression in both CD4+CD25dim T cells and CD4+CD25bright T reg cells. PGE2 exposure induced the T reg cell-specific transcription factor forkhead/winged helix transcription factor gene (FOXP3) in CD4+CD25- T cells and significantly up-regulated its expression in CD4+CD25+ T reg cells. Similarly, 24-h incubation with supernatants from cyclooxygenase-2-overexpressing lung cancer cells that secrete high levels of PGE2 significantly induced FOXP3 in CD4+CD25- T cells. Finally, PGE2 up-regulated FOXP3 at both mRNA and protein levels and enhanced FOXP3 promoter activity. This is the first report indicating that PGE2 can modulate FOXP3 expression and T reg function in human lymphocytes.
Collapse
Affiliation(s)
- Felicita Baratelli
- Lung Cancer Research Program of the Jonsson Comprehensive Cancer Center and Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stocks J, Bradbury D, Corbett L, Pang L, Knox AJ. Cytokines upregulate vascular endothelial growth factor secretion by human airway smooth muscle cells: Role of endogenous prostanoids. FEBS Lett 2005; 579:2551-6. [PMID: 15862289 DOI: 10.1016/j.febslet.2005.02.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Here, we report that vascular endothelial growth factor (VEGF)-A secretion by human airway smooth muscle cells was increased by interleukin 1 beta (IL-1beta) and transforming growth factor beta (TGFbeta). IL-1beta and TGFbeta induced cyclo-oxygenase (COX)-2 protein and increased prostaglandin E(2) (PGE(2)). Both IL-1beta and TGFbeta increased VEGF-A(165) mRNA and VEGF promoter luciferase construct activity, in addition VEGF-A protein was inhibited by actinomycin D suggesting transcriptional regulation. The COX inhibitors indomethacin and NS398 inhibited IL-1beta but not TGFbeta mediated VEGF-A production. Furthermore, the effect of the COX inhibitors was overcome by adding exogenous PGE(2). In conclusion, IL-1beta increases VEGF-A secretion by COX-2 derived PGE(2) production whereas TGFbeta uses COX-independent pathways.
Collapse
Affiliation(s)
- Joanne Stocks
- Division of Respiratory Medicine, Clinical Sciences Building, City Hospital, Nottingham, UK
| | | | | | | | | |
Collapse
|
26
|
Sobolewski A, Jourdan KB, Upton PD, Long L, Morrell NW. Mechanism of cicaprost-induced desensitization in rat pulmonary artery smooth muscle cells involves a PKA-mediated inhibition of adenylyl cyclase. Am J Physiol Lung Cell Mol Physiol 2004; 287:L352-9. [PMID: 15107293 DOI: 10.1152/ajplung.00270.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term infusion of prostacyclin, or its analogs, is an effective treatment for severe pulmonary arterial hypertension. However, dose escalation is often required to maintain efficacy. The aim of this study was to investigate the mechanisms of prostacyclin receptor desensitization using the prostacyclin analog cicaprost in rat pulmonary artery smooth muscle cells (PASMCs). Desensitization of the cAMP response occurred in 63 nM cicaprost after a 6-h preincubation with agonist. This desensitization was reversed 12 h after agonist removal, and resensitization was inhibited by 10 microg/ml of cycloheximide. Desensitization was heterologous since desensitization to other G(s)alpha-adenylyl cyclase (AC)-coupled agonists, isoproterenol (1 microM), adrenomedullin (100 nM), or bradykinin (1 microM), was also reduced by preincubation with cicaprost. The reduced cAMP response to prolonged cicaprost exposure appeared to be due to inhibition of AC activity since the responses to the directly acting AC agonist forskolin (3 microM) and the selective AC5 activator NKH-477 were similarly reduced. Expression of AC2 and AC5/6 protein levels transiently decreased after 1 h of cicaprost exposure. The PKA inhibitor H-89 (1 microM) added 1 h before cicaprost preincubation (6 h, 63 nM) completely reversed cicaprost-induced desensitization, whereas the PKC inhibitor bisindolylmaleimide (100 nM) was only partly effective. Desensitization was not prevented by the G(i) inhibitor pertussis toxin. In conclusion, chronic treatment of PASMCs with cicaprost induced heterologous, reversible desensitization by inhibition of AC activity. Our data suggest that heterologous G(s)alpha desensitization by cicaprost is mediated predominantly by a PKA-inhibitable isoform of AC, most likely AC5/6.
Collapse
Affiliation(s)
- Anastasia Sobolewski
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | |
Collapse
|