1
|
Soliman SA, Abd-Elhafeez HH, Abou-Elhamd AS, Kamel BM, Abdellah N, Mustafa FEZA. Role of Uterine Telocytes During Pregnancy. MICROSCOPY AND MICROANALYSIS 2023; 29:283-302. [DOI: 10.1093/micmic/ozac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Endometrial remolding and angiogenesis are critical events that occur during pregnancy in order to establish uteroplacental vascular communication. This study investigated the role of uterine telocytes (TCs) in pregnancy. We analyzed the distribution of TCs and morphological changes in the endometrium of the gravid rabbit uterus at different stages of pregnancy: after ovulation, pre-implantation (day 7), post-implantation (days 8 and 9), and mid-pregnancy (day 14) and late (days 21–28) pregnancy. TCs gradually increased with the progression of pregnancy. They had distinctive telopodes (TPs) and podoms, with intranucleolar chromatin. The TCs established contact with decidual cells, growing a glandular epithelium, blood vessels, and immune cells, such as lymphocytes, neutrophils, and macrophages. The TCs underwent morphological changes at the post-implantation phase. They acquired thick and voluminous TPs, formed an extensive three-dimensional (3D) labyrinth at mid-pregnancy, and exhibited irregular-shaped nuclei and a dilated rough endoplasmic reticulum at late pregnancy. They also acquired a convoluted contour-formed complex network. Scanning electron microscopy (SEM) showed an extensive 3D network in the endometrium, forming a condensed sheath at late pregnancy. Transmission electron microscopy and SEM detected fenestrated TPs, and TCs were identified by CD34 and vascular endothelial growth factor expression. TCs also expressed matrix metalloproteinase-9 and transforming growth factor beta-1. Results suggested that TCs might play an essential role in maternal placenta formation, especially decidualization, regulation of uterine gland development, and neovascularization of maternal uterine blood vessels.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University , Qena , Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| | - Alaa S Abou-Elhamd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University , Jazan , Saudi Arabia
| | - Basma Mohamed Kamel
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Sadat City , Sadat City 32897 , Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University , Sohag 82524 , Egypt
| | - Fatma El-Zahraa A Mustafa
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| |
Collapse
|
2
|
Ito Y, Oyane A, Yasunaga M, Hirata K, Hirose M, Tsurushima H, Ito Y, Matsumaru Y, Ishikawa E. Induction of angiogenesis and neural progenitor cells by basic fibroblast growth factor‐releasing polyglycolic acid sheet following focal cerebral infarction in mice. J Biomed Mater Res A 2022; 110:1964-1975. [DOI: 10.1002/jbm.a.37434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshiro Ito
- Department of Neurosurgery, Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| | - Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| | - Koji Hirata
- Department of Neurosurgery, Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Japan
| | - Hideo Tsurushima
- Department of Neurosurgery, Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yuzuru Ito
- Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
3
|
Jiang G, Xiao G, Luo C, Tang Z, Teng Z, Peng X. Correlation Between SNPs at the 3'UTR of the FGF2 Gene and Their Interaction with Environmental Factors in Han Chinese Diabetic Peripheral Neuropathy Patients. J Mol Neurosci 2020; 71:203-214. [PMID: 32613556 DOI: 10.1007/s12031-020-01641-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
FGF2 is a neurotrophic factor that can act as a key regulatory molecule of neuroprotection, neurogenesis, and angiogenesis in various injuries. To explore the genetic background of the FGF2 gene on DPN development, this study analyzed the correlation between SNPs in the 3'UTR of the FGF2 gene and their interaction with environmental factors in DPN patients of Han Chinese nationality. Sanger sequencing was used to analyze the FGF2 genotypes at the rs1048201, rs3804158, rs41348645, rs6854081, rs3747676, rs7683093, rs1476215, and rs1476217 loci in 150 DPN patients, 150 NDPN patients, and 150 healthy control patients. Plasma FGF2 levels were measured in all subjects by using ELISAs. Subjects carrying the T allele at the rs1048201 locus in the FGF2 gene had a significantly lower risk of developing DPN compared with subjects carrying the C allele (OR = 0.43, 95% CI = 0.33-0.56, p < 0.01). Subjects with the G genotype at the rs6854081 locus had an exceptionally higher risk of developing DPN than subjects with the T allele (OR = 1.66, 95% CI = 1.39-1.89, p < 0.01). Individuals harboring the G allele at the rs7683093 locus had a markedly higher risk of DPN than patients with the C allele (OR = 1.63, 95% CI = 1.36-1.87, p < 0.01). Finally, individuals having the A genotype at the rs1476215 locus had a significantly higher risk of DPN than individuals carrying the T allele (OR = 1.82, 95% CI = 1.53-2.02, p < 0.01). There was an interaction between age and alcohol consumption and the SNP rs7683093. SNPs at rs1048201, rs6854081, rs7683093, and rs1476215 in the FGF2 3'UTR were strongly associated with plasma levels of FGF2 (p < 0.05). SNPs at the rs1048201, rs6854081, rs7683093, and rs1476215 loci in the FGF2 gene were significantly associated with the risk of DPN. A possible mechanism is that these SNPs affect the expression level of FGF2 by interrupting the binding of microRNAs to target sites in the 3'UTR.
Collapse
Affiliation(s)
- Guangyuan Jiang
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Gang Xiao
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Chao Luo
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaohua Tang
- Departmen of neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhipeng Teng
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xing Peng
- Department of Neurosurgery, The Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
4
|
Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11:347-374. [PMID: 31293717 PMCID: PMC6600850 DOI: 10.4252/wjsc.v11.i6.347] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application.
AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SM-MSCs), and skin (SK-MSCs).
METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc; 27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed.
RESULTS All MSCs showed the basic MSC phenotype; however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties; however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs.
CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Katarzyna Futoma
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Dariusz Patrzalek
- Faculty of Health Science, Department of Physiotherapy, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| |
Collapse
|
5
|
Okadome J, Matsumoto T, Yoshiya K, Matsuda D, Tamada K, Onimaru M, Nakano K, Egashira K, Yonemitsu Y, Maehara Y. BubR1 insufficiency impairs angiogenesis in aging and in experimental critical limb ischemic mice. J Vasc Surg 2018; 68:576-586.e1. [DOI: 10.1016/j.jvs.2017.07.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
|
6
|
Costamagna D, Mommaerts H, Sampaolesi M, Tylzanowski P. Noggin inactivation affects the number and differentiation potential of muscle progenitor cells in vivo. Sci Rep 2016; 6:31949. [PMID: 27573479 PMCID: PMC5004166 DOI: 10.1038/srep31949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/28/2016] [Indexed: 10/25/2022] Open
Abstract
Inactivation of Noggin, a secreted antagonist of Bone Morphogenetic Proteins (BMPs), in mice leads, among others, to severe malformations of the appendicular skeleton and defective skeletal muscle fibers. To determine the molecular basis of the phenotype, we carried out a histomorphological and molecular analysis of developing muscles Noggin(-/-) mice. We show that in 18.5 dpc embryos there is a marked reduction in muscle fiber size and a failure of nuclei migration towards the cell membrane. Molecularly, the absence of Noggin results in an increased BMP signaling in muscle tissue as shown by the increase in SMAD1/5/8 phosphorylation, concomitant with the induction of BMP target genes such as Id1, 2, 3 as well as Msx1. Finally, upon removal of Noggin, the number of mesenchymal Pax7(+) muscle precursor cells is reduced and they are more prone to differentiate into adipocytes in vitro. Thus, our results highlight the importance of Noggin/BMP balance for myogenic commitment of early fetal progenitor cells.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Laboratory of Experimental Medicine and Clinical Pathology, Dept. Clinical and Biological Sciences, University of Turin, Italy
| | - Hendrik Mommaerts
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Lab, Stem Cell Biology and Embryology, Dept. Development and Regeneration, KU Leuven, Belgium.,Division of Human Anatomy, Dept. of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, KU Leuven, Belgium.,Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
| |
Collapse
|
7
|
PDGFRα plays a crucial role in connective tissue remodeling. Sci Rep 2015; 5:17948. [PMID: 26639755 PMCID: PMC4671150 DOI: 10.1038/srep17948] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
Platelet derived growth factor (PDGF) plays a pivotal role in the remodeling of connective tissues. Emerging data indicate the distinctive role of PDGF receptor-α (PDGFRα) in this process. In the present study, the Pdgfra gene was systemically inactivated in adult mouse (α-KO mouse), and the role of PDGFRα was examined in the subcutaneously implanted sponge matrices. PDGFRα expressed in the fibroblasts of Pdgfra-preserving control mice (Flox mice), was significantly reduced in the sponges in α-KO mice. Neovascularized areas were largely suppressed in the α-KO mice than in the Flox mice, whereas the other parameters related to the blood vessels and endothelial cells were similar. The deposition of collagen and fibronectin and the expression of collagen 1a1 and 3a1 genes were significantly reduced in α-KO mice. There was a significantly decrease in the number and dividing fibroblasts in the α-KO mice, and those of macrophages were similar between the two genotypes. Hepatocyte growth factor (Hgf) gene expression was suppressed in Pdgfra-inactivated fibroblasts and connective tissue. The findings implicate the role of PDGFRα-dependent ECM and HGF production in fibroblasts that promotes the remodeling of connective tissue and suggest that PDGFRα may be a relevant target to regulate connective tissue remodeling.
Collapse
|
8
|
Anticancer effect of rapamycin on MCF-7 via downregulation of VEGF expression. In Vitro Cell Dev Biol Anim 2015; 52:45-8. [PMID: 26427711 DOI: 10.1007/s11626-015-9944-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/17/2015] [Indexed: 12/27/2022]
Abstract
The importance of mTOR signaling in tumor biology is widely accepted and a number of agents that selectively target mTOR are being developed in cancer therapy. On the other hand, it has been demonstrated that mTOR can act as an angiogenic agent. Thus, we hypothesized that the mTOR inhibitor-induced anticancer effect is affected by expression of a key angiogenic factor, vascular endothelial growth factor (VEGF) and investigated the anticancer effect underlying mTOR using an in vitro assay. The mTOR inhibitor rapamycin dose-dependently reduced the cell viability of the breast cancer cell line, MCF-7, but did not reduce the cell viability of the colon cancer cell line, HT-29. Rapamycin reduced the VEGF expression in the culture medium of MCF-7, while rapamycin did not contribute VEGF expression in the culture medium of HT-29. VEGF stimulated cell viability and VEGF inhibition reduced cell viability of MCF-7, and rapamycin dose-dependently restored the cell viability of MCF-7 reduced by rapamycin. These findings suggest that mTOR acts as a direct anticancer agent and that the mTOR-inhibitor-induced anticancer effect involved the reduced expression of VEGF in MCF-7. Our results imply that mTOR regulates the expression of VEGF and is involved in breast cancer progression.
Collapse
|
9
|
Brown RE. Morphoproteomics: exposing protein circuitries in tumors to identify potential therapeutic targets in cancer patients. Expert Rev Proteomics 2014; 2:337-48. [PMID: 16000081 DOI: 10.1586/14789450.2.3.337] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering molecular targets amenable to specific intervention, thereby customizing therapy for individual patients. This review considers the clinical application of morphoproteomics in malignant cells in the context of currently available pharmaceutical agents and discusses opportunities for combinatorial approaches that involve one or more small molecule inhibitors and single-agent chemotherapy with relatively low toxicity profiles. Future directions that involve focusing on points of convergence in signal transduction pathways and which integrate morphoproteomic with genomic and pharmacoproteomic and protein-function microarray data are offered.
Collapse
|
10
|
Honnami M, Choi S, Liu IL, Kamimura W, Taguchi T, Hojo H, Shimohata N, Ohba S, Koyama H, Nishimura R, Chung UI, Sasaki N, Mochizuki M. Repair of rabbit segmental femoral defects by using a combination of tetrapod-shaped calcium phosphate granules and basic fibroblast growth factor-binding ion complex gel. Biomaterials 2013; 34:9056-62. [DOI: 10.1016/j.biomaterials.2013.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/07/2013] [Indexed: 12/29/2022]
|
11
|
Yonemitsu Y, Matsumoto T, Itoh H, Okazaki J, Uchiyama M, Yoshida K, Onimaru M, Onohara T, Inoguchi H, Kyuragi R, Shimokawa M, Ban H, Tanaka M, Inoue M, Shu T, Hasegawa M, Nakanishi Y, Maehara Y. DVC1-0101 to treat peripheral arterial disease: a Phase I/IIa open-label dose-escalation clinical trial. Mol Ther 2013; 21:707-14. [PMID: 23319060 PMCID: PMC3589164 DOI: 10.1038/mt.2012.279] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/05/2012] [Indexed: 11/08/2022] Open
Abstract
We here report the results of a Phase I/IIa open-label four dose-escalation clinical study assessing the safety, tolerability, and possible therapeutic efficacy of a single intramuscular administration of DVC1-0101, a new gene transfer vector based on a nontransmissible recombinant Sendai virus (rSeV) expressing the human fibroblast growth factor-2 (FGF-2) gene (rSeV/dF-hFGF2), in patients with peripheral arterial disease (PAD). Gene transfer was done in 12 limbs of 12 patients with rest pain, and three of them had ischemic ulcer(s). No cardiovascular or other serious adverse events (SAEs) caused by gene transfer were detected in the patients over a 6-month follow-up. No infectious viral particles, as assessed by hemagglutination activity, were detected in any patient during the study. No representative elevation of proinflammatory cytokines or plasma FGF-2 was seen. Significant and continuous improvements in Rutherford category, absolute claudication distance (ACD), and rest pain were observed (P < 0.05 to 0.01). To the best of our knowledge, this is the first clinical trial of the use of a gene transfer vector based on rSeV. The single intramuscular administration of DVC1-0101 to PAD patients was safe and well tolerated, and resulted in significant improvements of limb function. Larger pivotal studies are warranted as a next step.
Collapse
Affiliation(s)
- Yoshikazu Yonemitsu
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suarez-Arroyo IJ, Rosario-Acevedo R, Aguilar-Perez A, Clemente PL, Cubano LA, Serrano J, Schneider RJ, Martínez-Montemayor MM. Anti-tumor effects of Ganoderma lucidum (reishi) in inflammatory breast cancer in in vivo and in vitro models. PLoS One 2013; 8:e57431. [PMID: 23468988 PMCID: PMC3585368 DOI: 10.1371/journal.pone.0057431] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/22/2013] [Indexed: 12/20/2022] Open
Abstract
The medicinal mushroom Ganoderma lucidum (Reishi) was tested as a potential therapeutic for Inflammatory Breast Cancer (IBC) using in vivo and in vitro IBC models. IBC is a lethal and aggressive form of breast cancer that manifests itself without a typical tumor mass. Studies show that IBC tissue biopsies overexpress E-cadherin and the eukaryotic initiation factor 4GI (eIF4GI), two proteins that are partially responsible for the unique pathological properties of this disease. IBC is treated with a multimodal approach that includes non-targeted systemic chemotherapy, surgery, and radiation. Because of its non-toxic and selective anti-cancer activity, medicinal mushroom extracts have received attention for their use in cancer therapy. Our previous studies demonstrate these selective anti-cancer effects of Reishi, where IBC cell viability and invasion, as well as the expression of key IBC molecules, including eIF4G is compromised. Thus, herein we define the mechanistic effects of Reishi focusing on the phosphoinositide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, a regulator of cell survival and growth. The present study demonstrates that Reishi treated IBC SUM-149 cells have reduced expression of mTOR downstream effectors at early treatment times, as we observe reduced eIF4G levels coupled with increased levels of eIF4E bound to 4E-BP, with consequential protein synthesis reduction. Severe combined immunodeficient mice injected with IBC cells treated with Reishi for 13 weeks show reduced tumor growth and weight by ∼50%, and Reishi treated tumors showed reduced expression of E-cadherin, mTOR, eIF4G, and p70S6K, and activity of extracellular regulated kinase (ERK1/2). Our results provide evidence that Reishi suppresses protein synthesis and tumor growth by affecting survival and proliferative signaling pathways that act on translation, suggesting that Reishi is a potential natural therapeutic for breast and other cancers.
Collapse
Affiliation(s)
- Ivette J. Suarez-Arroyo
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Raysa Rosario-Acevedo
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Alexandra Aguilar-Perez
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Pedro L. Clemente
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Luis A. Cubano
- Department of Anatomy and Cell Biology, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
| | - Juan Serrano
- San Pablo Pathology, Bayamón, Puerto Rico, United States of America
| | - Robert J. Schneider
- New York University Cancer Institute, New York, New York, United States of America
| | - Michelle M. Martínez-Montemayor
- Department of Biochemistry, Universidad Central del Caribe, School of Medicine, Bayamón, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
13
|
Reichenbach V, Fernández-Varo G, Casals G, Oró D, Ros J, Melgar-Lesmes P, Weiskirchen R, Morales-Ruiz M, Jiménez W. Adenoviral dominant-negative soluble PDGFRβ improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J Hepatol 2012; 57:967-73. [PMID: 22820479 DOI: 10.1016/j.jhep.2012.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/04/2012] [Accepted: 07/08/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Platelet-derived growth factor (PDGF) is the most potent stimulus for proliferation and migration of stellate cells. PDGF receptor β (PDGFRβ) expression is an important phenotypic change in myofibroblastic cells that mediates proliferation and chemotaxis. Here we analyzed the relationship between PDGFRβ expression, hemodynamic deterioration, and fibrosis in CCl(4)-treated rats. Thereafter, we investigated the effects produced by an adenovirus encoding a dominant-negative soluble PDGFRβ (sPDGFRβ) on hemodynamic parameters, PDGFRβ signaling pathway, and fibrosis. METHODS Mean arterial pressure, portal pressure, PDGFRβ mRNA expression, and hepatic collagen were assessed in 6 controls and 21 rats induced to hepatic fibrosis/cirrhosis. Next, 30 fibrotic rats were randomized into three groups receiving iv saline and an adenovirus encoding for sPDGFRβ or β-galactosidase. After 7days, mean arterial pressure, portal pressure, serum sPDGFRβ, and hepatic collagen were measured. RESULTS CCl(4)-treated animals for 18weeks showed a significantly higher increase in PDGFRβ mRNA compared to those treated for 13weeks and control rats. In CCl(4)-treated rats, the fibrous tissue area ranged from moderate to severe fibrosis. A direct relationship between the degree of fibrosis, hemodynamic changes, and PDGFRβ expression was observed. Fibrotic rats transduced with the adenovirus encoding sPDGFRβ showed increased mean arterial pressure, decreased portal pressure, lower activation of the PDGFRβ signaling pathway, and reduced hepatic collagen than fibrotic rats receiving β-galactosidase or saline. CONCLUSIONS PDGFRβ activation closely correlates with hemodynamic disorders and increased fibrosis in CCl(4)-treated rats. Adenoviral dominant negative soluble PDGFRβ improved fibrosis. As a result, the hemodynamic abnormalities were ameliorated.
Collapse
Affiliation(s)
- V Reichenbach
- Biochemistry and Molecular Genetics Service, Hospital Clínic Provincial de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sozmen M, Beytut E. An investigation of growth factors and lactoferrin in naturally occurring ovine pulmonary adenomatosis. J Comp Pathol 2012; 147:441-51. [PMID: 22721818 DOI: 10.1016/j.jcpa.2012.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/27/2012] [Accepted: 04/25/2012] [Indexed: 12/17/2022]
Abstract
Ovine pulmonary adenomatosis (OPA), also known as jaagsiekte, is a transmissible beta retrovirus-induced lung tumour of sheep that has several features resembling human bronchoalveolar carcinoma (BAC). Angiogenesis has been suggested to be one of the most important factors underlying tumour growth and invasion. This process involves the action of growth factors including vascular endothelial growth factor (VEGF)-C, basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF)-C and its receptor (PDGFR-α). Bovine lactoferrin (bLF), an iron and heparin-binding glycoprotein secreted into various biological fluids, has been implicated in innate immunity and has anti-inflammatory and anti-tumour functions. Tissues from 16 cases of OPA were compared with tissues from seven healthy control sheep by immunohistochemistry. Expression of the markers was assessed semi-quantitatively by ascribing an immunoreactivity score (IRS) with a maximum value of 300. VEGF-C, bFGF, PDGF-C, PDGFR-α and bLF signals were detected in 10/16, 15/16, 12/16, 15/16 and 10/16 of the OPA cases studied, respectively. bLF expression was weak in the neoplastic epithelial cells (IRS 21.4 ± 10.0) in contrast to high levels detected in infiltrating macrophages and plasma cells (IRS 141.3 ± 24.8 and 140.0 ± 25.1, respectively). The PDGFR-α IRS was elevated for neoplastic epithelial cells (108.9 ± 18.2) and was lowest for macrophages and plasma cells (20.4 ± 13.1 and 13.7 ± 12.4, respectively). These results suggest that bFGF, VEGF-C and PDGF-C have roles in the pathogenesis of OPA. bLF may activate macrophages and plasma cells in these lesions, but limited expression of bLF by neoplastic cells may be a consequence of defective or impaired function of this molecule.
Collapse
Affiliation(s)
- M Sozmen
- Department of Pathology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey.
| | | |
Collapse
|
15
|
Ikeda A, Matsushita S, Sakakibara Y. Inhibition of Protein Kinase C β Ameliorates Impaired Angiogenesis in Type I Diabetic Mice Complicating Myocardial Infarction. Circ J 2012; 76:943-9. [DOI: 10.1253/circj.cj-11-0881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akihiko Ikeda
- Department of Cardiovascular Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Shonosuke Matsushita
- Department of Cardiovascular Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yuzuru Sakakibara
- Department of Cardiovascular Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
16
|
Ho-Tin-Noé B, Le Dall J, Gomez D, Louedec L, Vranckx R, El-Bouchtaoui M, Legrès L, Meilhac O, Michel JB. Early atheroma-derived agonists of peroxisome proliferator-activated receptor-γ trigger intramedial angiogenesis in a smooth muscle cell-dependent manner. Circ Res 2011; 109:1003-14. [PMID: 21885829 DOI: 10.1161/circresaha.110.235390] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Neovascularization favors intraplaque hemorrhage and plaque rupture. Development of therapeutic strategies against atheromatous angiogenesis requires elucidation of its initiating factors. OBJECTIVE We investigated the contribution of smooth muscle cells (SMCs) and atheroma-derived lipids to the initiation of atheroma-associated neoangiogenesis. METHODS AND RESULTS Forty human aortic segments, each harvested from a different donor, were classified as healthy or as bearing early atheromatous lesions, including fatty streaks and fibrolipidic atheroma, according to their histological features. Immunostaining for blood vessels and vascular endothelial growth factor-A (VEGF-A), as well as measurement of VEGF-A protein and mRNA levels by ELISA and real-time PCR, revealed that angiogenesis and VEGF-A production were enhanced in the medial layer of atheromatous aortas. The intramedial vessel density and invasiveness and the production of VEGF-A by medial SMCs were indeed increased in atheromatous aortas compared with healthy aortas. Furthermore, intimal layers of atheromatous aortas were enriched in soluble lipid mediators capable of inducing a sustained increase in VEGF-A production by medial SMCs, turning these cells into potent inducers of angiogenesis when incorporated into mouse Matrigel implants. Both effects were inhibited by the peroxisome proliferator-activated receptor-γ inhibitor GW9662 and mimicked by its agonist, rosiglitazone. CONCLUSIONS We show that VEGF-A production is upregulated in medial SMCs of human atheromatous aortas and that peroxisome proliferator-activated receptor-γ agonists derived from early intimal lesions are likely to contribute to this phenotypic change. Our findings suggest that medial SMCs are central organizers of an angiogenic response initiated by the subendothelial accumulation of atherogenic lipids.
Collapse
|
17
|
Tsutsumi N, Kohnoe S, Sonoda H, Guntani A, Rikimaru T, Taguchi KI, Tomikawa M, Kakeji Y, Nakashima H, Maehara Y. Protein-bound polysaccharide-K reduces colitic tumors and improves survival of inflammatory bowel disease in vivo. Oncol Lett 2011; 2:791-796. [PMID: 22866128 DOI: 10.3892/ol.2011.336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/10/2011] [Indexed: 12/21/2022] Open
Abstract
Protein-bound polysaccharide-K (PSK) is a biological response modifier that possesses antitumor effects against various tumors. Although an inflammatory response has been considered to play an important role in the development of colorectal cancer, the anti-inflammatory effect of PSK has yet to be elucidated. An inflammatory bowel disease (IBD)-induced colorectal tumor model with 1.2-dimethyl hydrazine (DMH) and dextran sodium sulfate (DSS) was used to examine the effects of PSK on tumor suppression and survival. Although 90% of the mice that were not treated with PSK developed colitic tumors, oral administration of PSK suppressed tumor formation by less than 30%. Although deaths associated with DSS-induced melena were observed, PSK significantly reduced mortality. In conclusion, the present study showed that PSK not only suppressed colorectal tumor formation in the DMH+DSS-induced IBD model, but also improved the survival rate, indicating that anti-inflammatory activity is one of the mechanisms for the antitumor effects of PSK.
Collapse
Affiliation(s)
- Norifumi Tsutsumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sugiyama M, Kakeji Y, Tsujitani S, Harada Y, Onimaru M, Yoshida K, Tanaka S, Emi Y, Morita M, Morodomi Y, Hasegawa M, Maehara Y, Yonemitsu Y. Antagonism of VEGF by genetically engineered dendritic cells is essential to induce antitumor immunity against malignant ascites. Mol Cancer Ther 2011; 10:540-9. [PMID: 21209070 DOI: 10.1158/1535-7163.mct-10-0479] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant ascitis (MA) is a highly intractable and immunotherapy-resistant state of advanced gastrointestinal and ovarian cancers. Using a murine model of MA with CT26 colon cancer cells, we here determined that the imbalance between the VEGF-A/vascular permeability factor and its decoy receptor, soluble fms-like tryrosine kinase receptor-1 (sFLT-1), was a major cause of MA resistance to dendritic cell (DC)-based immunotherapy. We found that the ratio of VEGF-A/sFLT-1 was increased not only in murine but also in human MA, and F-gene-deleted recombinant Sendai virus (rSeV/dF)-mediated secretion of human sFLT-1 by DCs augmented not only the activity of DCs themselves, but also dramatically improved the survival of tumor-bearing animals associated with enhanced CTL activity and its infiltration to peritoneal tumors. These findings were not seen in immunodeficient mice, indicating that a VEGF-A/sFLT-1 imbalance is critical for determining the antitumor immune response by DC-vaccination therapy against MA.
Collapse
Affiliation(s)
- Masahiko Sugiyama
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Rm 505 Collaborative Research Station II, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Onimaru M, Yonemitsu Y, Suzuki H, Fujii T, Sueishi K. An Autocrine Linkage Between Matrix Metalloproteinase-14 and Tie-2 Via Ectodomain Shedding Modulates Angiopoietin-1–Dependent Function in Endothelial Cells. Arterioscler Thromb Vasc Biol 2010; 30:818-26. [DOI: 10.1161/atvbaha.109.201111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The angiopoietin (Ang)–Tie-2 system plays a critical role during fetal and adult angiogenesis. Herein, we explored the Tie-2 shedding–related molecular mechanisms and the pathophysiological significance.
Methods and Results—
By using a mouse hindlimb ischemia model, we observed dissociated expression between the full-length Tie-2 (fTie-2) protein and Tie-2 mRNA in thigh muscles 1 day after an ischemic operation, suggesting that fTie-2 expression was modified through the posttranscriptional regulation in vivo. A soluble form of Tie-2 produced in human umbilical vein endothelial cells was dramatically suppressed by treatment with siRNA–matrix metalloproteinase (MMP) 14 or tissue inhibitor of metalloproteinase 3, resulting in an increase in cellular fTie-2 and thereby enhancing Ang-1–dependent Akt phosphorylation and Akt-dependent endothelial functions, such as Ang-2 downregulation or an increase of endothelial viability. Phorbol-12-myristate-13 acetate (PMA) upregulates MMP-14 mRNA via protein kinase C–extracellular signal–regulated kinase pathways, and enhanced soluble Tie-2 production in an MMP-14–dependent manner, resulting in a reduction of cellular fTie-2. In addition, the PMA-induced soluble Tie-2 was mediated by the protein kinase C–extracellular signal–regulated kinase signaling pathways. Finally, downregulation of tissue inhibitor of metalloproteinase 3 and upregulation of MMP-14 mRNA were confirmed in ischemic thigh muscles 1 day after the operation.
Conclusion—
An autocrine linkage between the endothelial protein kinase C–MMP-14 axis and Tie-2 shedding was shown to be a novel regulatory mechanism for the Ang–Tie-2 system and may play a role in modulating endothelial function during angiogenesis.
Collapse
Affiliation(s)
- Mitsuho Onimaru
- From the Division of Pathophysiological and Experimental Pathology, Department of Pathology (M.O., H.S., and K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; the Department of Gene Therapy (Y.Y.), Chiba University Graduate School of Medicine, Chiba, Japan; and the Department of General Surgical Science (T.F.), Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Yoshikazu Yonemitsu
- From the Division of Pathophysiological and Experimental Pathology, Department of Pathology (M.O., H.S., and K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; the Department of Gene Therapy (Y.Y.), Chiba University Graduate School of Medicine, Chiba, Japan; and the Department of General Surgical Science (T.F.), Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Hanako Suzuki
- From the Division of Pathophysiological and Experimental Pathology, Department of Pathology (M.O., H.S., and K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; the Department of Gene Therapy (Y.Y.), Chiba University Graduate School of Medicine, Chiba, Japan; and the Department of General Surgical Science (T.F.), Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Takaaki Fujii
- From the Division of Pathophysiological and Experimental Pathology, Department of Pathology (M.O., H.S., and K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; the Department of Gene Therapy (Y.Y.), Chiba University Graduate School of Medicine, Chiba, Japan; and the Department of General Surgical Science (T.F.), Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuo Sueishi
- From the Division of Pathophysiological and Experimental Pathology, Department of Pathology (M.O., H.S., and K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; the Department of Gene Therapy (Y.Y.), Chiba University Graduate School of Medicine, Chiba, Japan; and the Department of General Surgical Science (T.F.), Gunma University, Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
20
|
Platelet-Derived Growth Factor (PDGF)/PDGF Receptors (PDGFR) Axis as Target for Antitumor and Antiangiogenic Therapy. Pharmaceuticals (Basel) 2010; 3:572-599. [PMID: 27713269 PMCID: PMC4033970 DOI: 10.3390/ph3030572] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/16/2010] [Accepted: 03/09/2010] [Indexed: 01/06/2023] Open
Abstract
Angiogenesis in normal and pathological conditions is a multi-step process governed by positive and negative endogenous regulators. Many growth factors are involved in different steps of angiogenesis, like vascular endothelial growth factors (VEGF), fibroblast growth factor (FGF)-2 or platelet-derived growth factors (PDGF). From these, VEGF and FGF-2 were extensively investigated and it was shown that they significantly contribute to the induction and progression of angiogenesis. A lot of evidence has been accumulated in last 10 years that supports the contribution of PDGF/PDGFR axis in developing angiogenesis in both normal and tumoral conditions. The crucial role of PDGF-B and PDGFR-β in angiogenesis has been demonstrated by gene targeting experiments, and their expression correlates with increased vascularity and maturation of the vascular wall. PDGF and their receptors were identified in a large variety of human tumor cells. In experimental models it was shown that inhibition of PDGF reduces interstitial fluid pressure in tumors and enhances the effect of chemotherapy. PDGFR have been involved in the cardiovascular development and their loss leads to a disruption in yolk sac blood vessels development. PDGFRβ expression by pericytes is necessary for their recruitment and integration in the wall of tumor vessels. Endothelial cells of tumor-associated blood vessels can express PDGFR. Based on these data, it was suggested the potential benefit of targeting PDGFR in the treatment of solid tumors. The molecular mechanisms of PDGF/PDGFR-mediated angiogenesis are not fully understood, but it was shown that tyrosine kinase inhibitors reduce tumor growth and angiogenesis in experimental xenograft models, and recent data demonstrated their efficacy in chemoresistant tumors. The in vivo effects of PDGFR inhibitors are more complex, based on the cross-talk with other angiogenic factors. In this review, we summarize data regarding the mechanisms and significance of PDGF/PDGFR expression in normal conditions and tumors, focusing on this axis as a potential target for antitumor and antiangiogenic therapy.
Collapse
|
21
|
Fujii T, Kuwano H. Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF-2. In Vitro Cell Dev Biol Anim 2010; 46:487-91. [PMID: 20112075 DOI: 10.1007/s11626-009-9270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
Sonic hedgehog (Shh) is a typical morphogen to regulate epithelial-mesenchymal interactions during embryonic development. Shh is also an indirect angiogenic agent upregulating other angiogenic factors, including angiopoietin-1 (Ang-1). Recent studies revealed that angiogenesis induced by Shh is characterized by distinct large-diameter vessels with less branching. Ang-1 promotes blood vessel maturation, and angiopoietin-2 (Ang-2) counteracts Ang-1 activity and regulates vascular branching. Thus, we hypothesized that Shh-induced angiogenesis is affected by expression of Ang-1 and Ang-2, and we investigated the regulatory system of angiopoietins by Shh in vitro. Shh enhanced Ang-1 expression but did not enhance vascular endothelial growth factor in fibroblasts. The upregulation of Ang-1 expression by Shh was significantly decreased by fibroblast growth factor-2 (FGF-2), a potent angiogenic factor. Furthermore, FGF-2 increased the expression of Ang-2 in endothelial cells. These findings suggest that Shh and FGF-2 regulate the expression balance of vascular morphogens Ang-1 and Ang-2 and are involved in angiogenesis.
Collapse
Affiliation(s)
- Takaaki Fujii
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
22
|
Shimabukuro R, Kawanaka H, Tomikawa M, Akahoshi T, Konishi K, Yoshida D, Anegawa G, Uehara H, Hashimoto N, Hashizume M, Maehara Y. Effect of thrombopoietin on platelet counts and liver regeneration after partial hepatectomy in a rat model. Surg Today 2009; 39:1054-9. [DOI: 10.1007/s00595-008-4054-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 08/05/2008] [Indexed: 10/20/2022]
|
23
|
Hwu YM, Li SH, Lee RKK, Lin MH, Tsai YH, Yeh TS. Luteinizing hormone increases platelet-derived growth factor-D gene expression in human granulosa–luteal cells. Fertil Steril 2009; 92:2065-8. [DOI: 10.1016/j.fertnstert.2009.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 05/19/2009] [Accepted: 05/27/2009] [Indexed: 11/15/2022]
|
24
|
Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer 2009; 9:418. [PMID: 19948069 PMCID: PMC2797816 DOI: 10.1186/1471-2407-9-418] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 12/01/2009] [Indexed: 12/12/2022] Open
Abstract
Background Despite well-studied tumor hypoxia in laboratory, little is known about the association with other pathophysiological events in the clinical view. We investigated the prognostic value of hypoxia-inducible factor-1 alpha (HIF-1alpha) in hepatocellular carcinoma (HCC), and its correlations with inflammation, angiogenesis and MYC oncogene. Methods In a random series of 110 HCC patients, the mRNA of HIF-1alpha, inflammation related factors (COX-2, MMP7 and MMP9), angiogenesis related factors (VEGF and PDGFRA) and MYC in tumor tissue were detected by real-time RT-PCR and HIF-1alpha protein was assessed by immunohistochemistry. The correlations between HIF-1alpha mRNA and the factors mentioned previously, the relationship between HIF-1alpha and clinicopathologic features, and the prognostic value were analyzed. Results The expression of both HIF-1alpha mRNA and protein in HCC were independent prognostic factors for overall survival (OS) (P = 0.012 and P = 0.021, respectively) and disease-free survival (DFS) (P = 0.004 and P = 0.007, respectively) as well. Besides, the high expression of HIF-1alpha mRNA and protein proposed an advanced BCLC stage and more incidence of vascular invasion. The mRNA of HIF-1alpha had significantly positive correlations to that of COX-2, PDGFRA, MMP7, MMP9, MYC, except VEGF. In addition to HIF-1alpha, COX-2 and PDGFRA were also independent prognosticators for OS (P = 0.004 and P = 0.010, respectively) and DFS (P = 0.010 and P = 0.038, respectively). Conclusion HIF-1alpha in HCC plays an important role in predicting patient outcome. It may influence HCC biological behaviors and affect the tumor inflammation, angiogenesis and act in concert with the oncogene MYC. Attaching importance to HIF-1alpha in HCC may improve the prognostic and therapeutic technique.
Collapse
|
25
|
Onimaru M, Yonemitsu Y, Fujii T, Tanii M, Nakano T, Nakagawa K, Kohno RI, Hasegawa M, Nishikawa SI, Sueishi K. VEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B. Am J Physiol Heart Circ Physiol 2009; 297:H1685-96. [DOI: 10.1152/ajpheart.00015.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging evidence indicates that the tight communication between vascular endothelial cells and mural cells using platelet-derived growth factor (PDGF)-BB is essential for capillary stabilization during the angiogenic process. However, little is known about the related regulator that determines PDGF-BB expression. Using murine models of therapeutic neovascularization, we here show that a typical lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, is an essential regulator determining PDGF-BB expression for vascular stabilization via a paracrine mode of action. The blockade of VEGF type 3 receptor (VEGFR3) using neutralizing antibody AFL-4 abrogated FGF-2-mediated limb salvage and blood flow recovery in severely ischemic hindlimb. Interestingly, inhibition of VEGFR3 activity not only diminished lymphangiogenesis, but induced marked dilatation of capillary vessels, showing mural cell dissociation. In these mice, VEGF-C and PDGF-B were upregulated in the later phase after induced ischemia, on day 7, when exogenous FGF-2 expression had already declined, and blockade of VEGFR3 or PDGF-BB activities diminished PDGF-B or VEGF-C expression, respectively. These results clearly indicate that VEGF-C is a critical mediator, not only for lymphangiogenesis, but also for capillary stabilization, the essential molecular mechanism of communication between endothelial cells and mural cells during neovascularization.
Collapse
Affiliation(s)
- Mitsuho Onimaru
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Yoshikazu Yonemitsu
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Takaaki Fujii
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Mitsugu Tanii
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Toshiaki Nakano
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Kazunori Nakagawa
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Ri-ichiro Kohno
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | | | - Shin-ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Katsuo Sueishi
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| |
Collapse
|
26
|
Matsuura M, Onimaru M, Yonemitsu Y, Suzuki H, Nakano T, Ishibashi H, Shirasuna K, Sueishi K. Autocrine loop between vascular endothelial growth factor (VEGF)-C and VEGF receptor-3 positively regulates tumor-associated lymphangiogenesis in oral squamoid cancer cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1709-21. [PMID: 19779139 DOI: 10.2353/ajpath.2009.081139] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numerous past studies have suggested a critical role of the paracrine effect between tumor vascular endothelial growth factor (VEGF)-C and lymphatic FLT-4 in solid tumor-associated lymphangiogenesis. In contrast, the pathophysiological role of tumor cell-associated FLT-4 in tumor progression remains to be elucidated. Here, we investigated this role using a tumor implantation model. SAS cells, an oral squamous carcinoma cell line expressing both VEGF-C and FLT-4 but neither FLK-1/KDR nor VEGF-D were adopted for experiments. Stable transformants of dominant-negative (dn) SAS cells were established in which the cytoplasmic domain-deleted FLT-4 was exogenously overexpressed, which can lead to inactivation of endogenous FLT-4 through competitive antagonism and is associated with down-activation of endogenous FLT-4-related intracellular signals. In vitro and in vivo proliferation assays showed lower proliferative activity of dn-SAS cells. An immunohistochemical study revealed that the tumor lymphangiogenesis was significantly suppressed, and the level of human VEGF-C mRNA was significantly lower in dn-SAS cell-derived tumor tissues. Moreover, in vitro studies demonstrated that the significant suppression of VEGF-C and VEGF-A expression was evident in dn-SAS cells or wild-type SAS cells treated with either the FLT-4 kinase inhibitor MAZ51 or the inhibitor of FLT-4-related signals. These findings together suggested that the VEGF-C/FLT-4 autocrine loop in tumor cells was a potential enhancer system to promote cancer progression, and FLT-4 in tumor tissue might become an effective target for cancer therapy.
Collapse
Affiliation(s)
- Masaki Matsuura
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Oseini AM, Roberts LR. PDGFRalpha: a new therapeutic target in the treatment of hepatocellular carcinoma? Expert Opin Ther Targets 2009; 13:443-54. [PMID: 19335066 DOI: 10.1517/14728220902719233] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) develops most often in a background of chronic inflammatory liver injury from viral infection or alcohol use. Most HCCs are diagnosed at a stage at which surgical resection is not feasible. Even in patients receiving surgery rates of recurrence and metastasis remain high. There are few effective HCC therapies and hence a need for novel, rational approaches to treatment. Platelet derived growth factor receptor-alpha (PDGFR-alpha) is involved in tumor angiogenesis and maintenance of the tumor microenvironment and has been implicated in development and metastasis of HCC. OBJECTIVE To examine PDGFR-alpha as a target for therapy of HCC and explore opportunities and strategies for PDGFR-alpha inhibition. METHODS A review of relevant literature. RESULTS/CONCLUSIONS Targeted inhibition of PDGFR-alpha is a rational strategy for prevention and therapy of HCC.
Collapse
Affiliation(s)
- Abdul M Oseini
- Miles and Shirley Fiterman Center for Digestive Diseases College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
28
|
Reinmuth N, Liersch R, Raedel M, Fehrmann F, Fehrmann N, Bayer M, Schwoeppe C, Kessler T, Berdel W, Thomas M, Mesters RM. Combined anti-PDGFRalpha and PDGFRbeta targeting in non-small cell lung cancer. Int J Cancer 2009; 124:1535-44. [PMID: 19115205 DOI: 10.1002/ijc.24109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the platelet-derived growth factor (PDGF)-receptors is critically involved into various stromal cell functions including recruitment of stromal cells and vascular endothelial growth factor (VEGF) induction in tumor and perivascular cells. To evaluate the effects of combined PDGFRalpha and -beta inhibition in a non-small cell lung cancer model, we stably transfected A549 lung cancer cells with the PDGF-A mutant PDGF-0. PDGF-0 has been generated by substituting amino acids in the binding region of PDGF-A with the corresponding VEGF-A region, leading to a decreased receptor-binding affinity and activation. Compared with control vector transfected cells, transfection with PDGF-0 had no impact on monolayer growth and apoptosis in vitro, but significantly impaired the number of colony formation in soft agar. After subcutaneous injections, all mice developed tumors within 5 days. While control vector transfected A549 cells were characterized by constant tumor growth, PDGF-0 transfected A549 revealed a reduced tumor mass (p < 0.001) with no further growth beyond 14 days (2 months observation time) and complete regressions in 7 of 13 cases. Immunohistochemical analyses revealed that PDGF-0 transfected tumors demonstrated decreased recruitment of periendothelial cells, while the tumor invasion zone was similar to control vector transfectants. Similarly, conditioned medium from PDGF-0 transfected cells induced significantly less migration of smooth muscle cells and fibroblasts in vitro. Interestingly, in PDGF-0 transfectants, neither total vessel count nor VEGF expression were significantly altered. These studies demonstrate that combined inhibition of PDGFRalpha and -beta results in markedly decreased tumor growth in vivo because of impaired recruitment of periendothelial cells.
Collapse
Affiliation(s)
- Niels Reinmuth
- Department of Medicine/Hematology and Oncology and the IZKF Muenster, University of Muenster, Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Murakami Y, Ikeda Y, Yonemitsu Y, Onimaru M, Nakagawa K, Kohno RI, Miyazaki M, Hisatomi T, Nakamura M, Yabe T, Hasegawa M, Ishibashi T, Sueishi K. Inhibition of nuclear translocation of apoptosis-inducing factor is an essential mechanism of the neuroprotective activity of pigment epithelium-derived factor in a rat model of retinal degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1326-38. [PMID: 18845835 DOI: 10.2353/ajpath.2008.080466] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photoreceptor apoptosis is a critical process of retinal degeneration in retinitis pigmentosa (RP), a group of retinal degenerative diseases that result from rod and cone photoreceptor cell death and represent a major cause of adult blindness. We previously demonstrated the efficient prevention of photoreceptor apoptosis by intraocular gene transfer of pigment epithelium-derived factor (PEDF) in animal models of RP; however, the underlying mechanism of the neuroprotective activity of PEDF remains elusive. In this study, we show that an apoptosis-inducing factor (AIF)-related pathway is an essential target of PEDF-mediated neuroprotection. PEDF rescued serum starvation-induced apoptosis, which is mediated by AIF but not by caspases, of R28 cells derived from the rat retina by preventing translocation of AIF into the nucleus. Nuclear translocation of AIF was also observed in the apoptotic photoreceptors of Royal College of Surgeons rats, a well-known animal model of RP that carries a mutation of the Mertk gene. Lentivirus-mediated retinal gene transfer of PEDF prevented the nuclear translocation of AIF in vivo, resulting in the inhibition of the apoptotic loss of their photoreceptors in association with up-regulated Bcl-2 expression, which mediates the mitochondrial release of AIF. These findings clearly demonstrate that AIF is an essential executioner of photoreceptor apoptosis in inherited retinal degeneration and provide a therapeutic rationale for PEDF-mediated neuroprotective gene therapy for individuals with RP.
Collapse
Affiliation(s)
- Yusuke Murakami
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fujii T, Yonemitsu Y, Onimaru M, Inoue M, Hasegawa M, Kuwano H, Sueishi K. VEGF function for upregulation of endogenous PlGF expression during FGF-2-mediated therapeutic angiogenesis. Atherosclerosis 2008; 200:51-7. [DOI: 10.1016/j.atherosclerosis.2007.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 11/12/2007] [Accepted: 12/15/2007] [Indexed: 01/13/2023]
|
31
|
Submegabase resolution of epistatically interacting quantitative trait loci for blood pressure applicable for essential hypertension. J Hypertens 2008; 26:893-901. [PMID: 18398331 DOI: 10.1097/hjh.0b013e3282f85ded] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Although genetic mapping of quantitative trait loci for blood pressure to large chromosome segments is readily achievable, their final identification confronts formidable hurdles. Restriction of the genes lodging in one quantitative trait locus interval to experimental limitation can facilitate their positional cloning. We previously delineated several quantitative trait loci for blood pressure on chromosome 10 of Dahl salt-sensitive rats, but their chromosome delimitations were either large or not definitive. METHODS In this study, we systematically and comprehensively constructed congenic strains with submegabase (Mb) genome resolution and analyzed their blood pressure by telemetry. RESULTS Three quantitative trait loci have been conclusively delimited by three congenic strains, each independently lowering the blood pressure. Their intervals are demarcated by genomic regions between 350 and 910 kilobases (kb) in size. Two of the three quantitative trait loci share an epistatic relationship and are separated from one another by less than 170 kb. Two additional quantitative trait loci for blood pressure were also tentatively delineated and their intervals range from 520 kb to 1.75 Mb. Possible genes dwelling in each quantitative trait locus-interval number between 11 and 17. None of these genes is known to exert a functional impact on blood pressure. Work is underway to find candidate genes with mutations that could be responsible for the blood pressure effect. CONCLUSION Novel diagnostic, prognostic, preventive and/or therapeutic targets for essential hypertension and hypertension-associated diseases are likely to emerge from the identification of these quantitative trait loci. Potential applications of these quantitative trait loci to humans are suggested from the positive results from several association studies, demonstrating the existence of quantitative trait loci in the broad homologous regions.
Collapse
|
32
|
Celec P, Yonemitsu Y. Vascular endothelial growth factor targeted RNA interference as a modulator of angiogenesis. Pharmacotherapy 2008; 62:349-51. [DOI: 10.1016/j.biopha.2008.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 01/22/2008] [Indexed: 11/16/2022]
|
33
|
Fujii T, Onimaru M, Yonemitsu Y, Kuwano H, Sueishi K. Statins restore ischemic limb blood flow in diabetic microangiopathy via eNOS/NO upregulation but not via PDGF-BB expression. Am J Physiol Heart Circ Physiol 2008; 294:H2785-91. [DOI: 10.1152/ajpheart.00149.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
3-Hydroxy-3-methyl-glutaryl CoA reductase inhibitors, or statins, have pleiotropic effects and can protect the vasculature in a manner independent of their lipid-lowering effect. The effectiveness of statins in reducing the risk of coronary events has been shown even in patients with diabetes, and their effects on diabetic complications have been reported. Using a model of severe hindlimb ischemia in streptozotocin-induced diabetic mice (STZ-DM), we investigated the effects and mechanisms of statin therapy in diabetic angiopathy in ischemic hindlimbs. As a result, STZ-DM mice frequently lost their hindlimbs after induced ischemia, whereas non-DM mice did not. Supplementation with statins significantly prevented autoamputation. We previously showed that diabetic vascular complications are caused by impaired expression of PDGF-BB, but statin therapy did not enhance PDGF-BB expression. Statins helped enhance endogenous endothelial nitric oxide (NO) synthase (eNOS) expression. Furthermore, the inhibition of NO synthesis by the administration of Nω-nitro-l-arginine methyl ester impaired the ability of statins to prevent STZ-DM mouse limb autoamputation, indicating that the therapeutic effect of statins in hindlimb ischemia in STZ-DM mice occurs via the eNOS/NO pathway. A combination therapy of statins and PDGF-BB gene supplementation was more effective for diabetic angiopathy than either therapy alone. In conclusion, these findings indicate that statin therapy might be useful for preventing intractable diabetic foot disease in patients with diabetic angiopathy.
Collapse
|
34
|
Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H, Reynolds CP, Maris JM, Keir ST, Billups CA, Smith MA. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 2008; 50:799-805. [PMID: 17635004 DOI: 10.1002/pbc.21296] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rapamycin is a highly specific inhibitor of mTOR, a serine/threonine kinase that controls cap-dependent translation. Here we report the activity of rapamycin against the in vitro and in vivo panels of the Pediatric Preclinical Testing Program (PPTP). PROCEDURES Rapamycin was tested against the in vitro panel at concentrations from 0.01 to 100 nM and was tested against the in vivo tumor panels by i.p. administration daily x 5 for 6 consecutive weeks at a dose of 5 mg/kg. RESULTS Rapamycin variably inhibited growth of the cell lines in the PPTP in vitro panel, with maximal inhibition values ranging from 19% to 85% (median 49%) and a median EC(50) of 0.7 nM. Ten of 23 cell lines achieved at least 50% growth inhibition. Against the in vivo panels, rapamycin induced significant differences in EFS distribution in 27 of 36 solid tumor xenografts and in 5 of 8 ALL xenografts. Using the time to event activity measure, rapamycin had intermediate or high activity against 14 of 31 evaluable solid tumor xenografts and 5 of 8 ALL xenografts. Objective responses were observed in several panels, including: rhabdoid tumor (1PR), rhabdomyosarcoma (2PR), and osteosarcoma (1 maintained CR). Two T-cell ALL xenografts had objective responses (1PR, 1 maintained CR). CONCLUSIONS Rapamycin demonstrated broad antitumor activity against the PPTP's in vivo tumor panels, with particularly noteworthy activity for selected sarcoma and ALL xenografts. Future work will evaluate the molecular characteristics of responding models and the activity of combinations of rapamycin with other anticancer agents.
Collapse
|
35
|
Glinskii OV, Abraha TW, Turk JR, Glinsky VV, Huxley VH. PDGF/VEGF system activation and angiogenesis following initial post ovariectomy meningeal microvessel loss. Cell Cycle 2008; 7:1385-90. [PMID: 18418080 DOI: 10.4161/cc.7.10.5819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently we demonstrated that cessation of ovarian hormone production causes dramatic vascular remodeling in meningeal microvascular networks characterized by a significant microvessel loss. Further, even two months post ovariectomy (OVX), dura mater microvessels remain destabilized due to a decline in estrogen-mediated angiopoietin-1 (Ang-1) expression and Ang-1/Tie-2 signaling. Such destabilized microvessels could be susceptible to either further regression or angiogenesis. In this study, we tested the hypothesis that initial estrogen-dependent loss of meningeal microvessels following OVX triggers stromal and vascular hypoxic responses aiming at restoring dura microvasculature. We demonstrate that two months post OVX, there is an activation of the hypoxia-inducible factor-1alpha (HIF-1alpha) and PDGF/VEGF system in the dura mater stroma and microvasculature of experimental animals accompanied by a shift in the balance between PI3K and PLCgamma activity downstream of PDGF/VEGF signaling toward PI3K. It appears that the latter serves as a molecular switch favoring angiogenic responses rather than further regression of destabilized microvessels. Indeed, consistent with this idea, we have found a considerable angiogenic activity in meningeal microvascular networks that previously underwent regression. These results indicate that angioadaptation of meningeal microvessels in response to cessation of ovarian hormone production is not a unidirectional, but a very complex multi-stage process regulated on many levels. The implication of this study is that therapeutic interventions, including estrogen-based hormone replacement therapy, with physiological angioadaptation in postmenopausal or post OVX women need to be approached with the extreme caution.
Collapse
Affiliation(s)
- Olga V Glinskii
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA.
| | | | | | | | | |
Collapse
|
36
|
Mantripragada KK, Spurlock G, Kluwe L, Chuzhanova N, Ferner RE, Frayling IM, Dumanski JP, Guha A, Mautner V, Upadhyaya M. High-Resolution DNA Copy Number Profiling of Malignant Peripheral Nerve Sheath Tumors Using Targeted Microarray-Based Comparative Genomic Hybridization. Clin Cancer Res 2008; 14:1015-24. [DOI: 10.1158/1078-0432.ccr-07-1305] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Rocha A, Azevedo I, Soares R. Anti-angiogenic effects of imatinib target smooth muscle cells but not endothelial cells. Angiogenesis 2007; 10:279-86. [PMID: 17876712 DOI: 10.1007/s10456-007-9080-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Knowing that progesterone up-regulates PDGF-A, which plays a relevant role in angiogenesis, and that imatinib mesylate targets PDGF receptor tyrosine kinase activity, the aim of the present study was to examine the effects of imatinib on Human Aortic Smooth Muscle Cells (HAoSMC) and Human Umbilical Vein Endothelial Cells (HUVEC) after incubation with progesterone. Expression of phosphorylated (activated) PDGFR-alpha was detected in HAoSMC, but in a very low extent in HUVEC. In agreement with the lack of active PDGFR-alpha, imatinib was unable to prevent HUVEC growth, survival or migration ability. In contrast, HAoSMC viability and proliferation were effectively inhibited by imatinib, as evaluated by MTT and BrdU incorporation assay, respectively. Corroborating these findings, a significant increase in the percentage of apoptotic cells was also observed after treatment with imatinib. Cell migration assays also showed a reduction in the migratory ability after incubation with imatinib. Altogether, these facts reveal that imatinib is able to affect HAoSMC survival, growth and migration. Furthermore, incubation with recombinant PDGF as well as, with progesterone seems to sustain PDGFR-alpha activity, prompting these cells to the inhibitory action of imatinib. These findings were restricted to smooth muscle cells, leading to the assumption that imatinib is probably preventing vessel stabilization, a crucial event for neovascular maturation. Our findings indicate that imatinib might be a good therapeutic agent against atherosclerosis and other vascular-associated disorders that carry in common smooth muscle cells abnormal growth.
Collapse
Affiliation(s)
- Ana Rocha
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | | | | |
Collapse
|
38
|
Kurmasheva RT, Harwood FC, Houghton PJ. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 2007; 6:1620-8. [PMID: 17483438 DOI: 10.1158/1535-7163.mct-06-0646] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Levels of vascular endothelial growth factor (VEGF) are regulated, in part, through activation of the phosphatidylinositol 3'-kinase/Akt pathway. Using pharmacologic inhibitors, we have examined the relative contributions of Akt and mammalian target of rapamycin (mTOR) signaling to VEGF production in neuroblastoma and rhabdomyosarcoma cells growing under normoxic (21% O(2)) or hypoxic (1% O(2)) conditions. Exogenous VEGF stimulated both Akt and extracellular signal-regulated kinase 1/2 phosphorylation in six of seven rhabdomyosarcoma cell lines but in only one of seven neuroblastoma cells, suggesting autocrine stimulation predominantly in rhabdomyosarcoma cell lines. In general, under normoxic conditions, neuroblastoma cells produced more VEGF (120-1,180 pg/10(6) cells/24 h) compared with rhabdomyosarcoma lines (0-200 pg/10(6) cells/24 h). Rapamycin, a selective inhibitor of mTOR, reduced VEGF production in rhabdomyosarcoma cells under normoxic conditions and partially suppressed hypoxia-driven increases in VEGF. However, it poorly inhibited VEGF production under either condition in the majority of neuroblastoma cell lines despite inhibition of mTOR signaling. Rapamycin failed to modulate levels of hypoxia-inducible factor 1alpha (HIF-1alpha) under normoxic conditions and modestly reduced hypoxia-driven increases in HIF-1alpha only in rhabdomyosarcoma cells. In contrast to rapamycin, inhibition of Akt by A-443654 completely blocked signaling to glycogen synthase kinase 3beta and had more dramatic effects on VEGF production. Notably, A-443654 significantly inhibited VEGF production in rapamycin-refractory neuroblastoma cell lines. Importantly, whereas combining A-443654 with rapamycin had variable effect on cell proliferation, the combination essentially blocked hypoxia-driven increases in VEGF in all cell lines examined, suggesting that dual blockade at different levels in the phosphatidylinositol 3'-kinase-initiated signaling pathway may be a reasonable strategy for preventing VEGF production in cancer cells derived from pediatric solid tumors. However, this will require formal testing in vivo using animal models of childhood cancer.
Collapse
Affiliation(s)
- Raushan T Kurmasheva
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105-2794, USA
| | | | | |
Collapse
|
39
|
Semela D, Piguet AC, Kolev M, Schmitter K, Hlushchuk R, Djonov V, Stoupis C, Dufour JF. Vascular remodeling and antitumoral effects of mTOR inhibition in a rat model of hepatocellular carcinoma. J Hepatol 2007; 46:840-8. [PMID: 17321636 DOI: 10.1016/j.jhep.2006.11.021] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 09/26/2006] [Accepted: 11/02/2006] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) is amenable to only few treatments. Inhibitors of the kinase mTOR are a new class of immunosuppressors already in use after liver transplantation. Their antiproliferative and antiangiogenic properties suggest that these drugs could be considered to treat HCC. We investigated the antitumoral effects of mTOR inhibition in a HCC model. METHODS Hepatoma cells were implanted into livers of syngeneic rats. Animals were treated with the mTOR inhibitor sirolimus for 4 weeks. Tumor growth was monitored by MR imaging. Antiangiogenic effects were assessed in vivo by microvessel density and corrosion casts and in vitro by cell proliferation, tube formation and aortic ring assays. RESULTS Treated rats had significantly longer survival and developed smaller tumors, fewer extrahepatic metastases and less ascites than controls. Sirolimus decreased intratumoral microvessel density resulting in extensive necrosis. Endothelial cell proliferation was inhibited at lower drug concentrations than hepatoma cells. Tube formation and vascular sprouting of aortic rings were significantly impaired by mTOR inhibition. Casts revealed that in tumors treated with sirolimus vascular sprouting was absent, whereas intussusception was observed. CONCLUSIONS mTOR inhibition significantly reduces HCC growth and improves survival primarily via antiangiogenic effects. Inhibitors of mTOR may have a role in HCC treatment.
Collapse
MESH Headings
- Angiogenesis Inhibitors/pharmacology
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Capillaries/drug effects
- Carcinoma, Hepatocellular/blood supply
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Enzyme Inhibitors/pharmacology
- Liver Neoplasms, Experimental/blood supply
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/enzymology
- Neoplasm Transplantation
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/enzymology
- Phosphorylation/drug effects
- Protein Kinases/drug effects
- Protein Kinases/metabolism
- Rats
- Regional Blood Flow/drug effects
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
Collapse
Affiliation(s)
- David Semela
- Institute of Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH-3010 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Barrette TR, Anstet MJ, Kincead-Beal C, Kulkarni P, Varambally S, Ghosh D, Chinnaiyan AM. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9:166-80. [PMID: 17356713 PMCID: PMC1813932 DOI: 10.1593/neo.07112] [Citation(s) in RCA: 1650] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 12/11/2022] Open
Abstract
DNA microarrays have been widely applied to cancer transcriptome analysis; however, the majority of such data are not easily accessible or comparable. Furthermore, several important analytic approaches have been applied to microarray analysis; however, their application is often limited. To overcome these limitations, we have developed Oncomine, a bioinformatics initiative aimed at collecting, standardizing, analyzing, and delivering cancer transcriptome data to the biomedical research community. Our analysis has identified the genes, pathways, and networks deregulated across 18,000 cancer gene expression microarrays, spanning the majority of cancer types and subtypes. Here, we provide an update on the initiative, describe the database and analysis modules, and highlight several notable observations. Results from this comprehensive analysis are available at http://www.oncomine.org.
Collapse
Affiliation(s)
- Daniel R Rhodes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0940, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shen YM, Zhu X. Signal transduction and activation of hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2007; 15:873-878. [DOI: 10.11569/wcjd.v15.i8.873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis, which leads to cirrhosis, occurs as a result of various injurious processes and it is the common pathologic basis of all the chronic hepatic diseases. At present, a good many researches demonstrate that the activation of hepatic stellate cells play a critical role in fibrogenesis. Prolonged liver injury results in hepatocyte damages and secretion of many fibrogenic cytokines such as transforming growth factor-beta 1, angiotensin, and leptin, which triggers the activation of hepatic stellate cells through different intracellular signal transduction pathways. In this article, we reviewed the research advancement in the signal transduction pathway of nuclear receptor and membrane receptor during the activation of hepatic stellate cells.
Collapse
|
42
|
Soares R, Guerreiro S, Botelho M. Elucidating progesterone effects in breast cancer: Cross talk with PDGF signaling pathway in smooth muscle cell. J Cell Biochem 2007; 100:174-83. [PMID: 16888808 DOI: 10.1002/jcb.21045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies indicate that progesterone exerts relevant effects in breast tissue. However, the exact role of this steroid in breast cancer development and progression has not been elucidated. Here, we show that platelet-derived growth factor (PDGF)-A is one of the progesterone target genes on breast cancer MCF7 and T47D cells. A paracrine role for PDGF-A was investigated, since its receptor expression was down-regulated from breast cancer cells. Progesterone increased PDGF-A protein release as evaluated by Western blotting and ELISA. Medium from Progesterone-treated MCF7 cells resulted in phosphorylation of smooth muscle cells PDGF receptor alpha. This effect was not observed after treatment with PDGF inhibitor. MCF7 cells-secreted PDGF-A was able to increase smooth muscle cell viability and proliferation and decrease apoptosis, effects that were prevented by the use of a PDGF-A neutralizing antibody. Notably, cell invasion was not influenced by PDGF-A secreted by MCF7 cells. Our results elucidated for the first time the cross talk between progesterone and PDGF signaling pathway. The fact that MCF7-secreted PDGF elicited crucial roles in vascular wall smooth muscle cells, suggested a paracrine pathway for progesterone. Targeting these progesterone-induced processes may provide novel therapeutic strategies for hormone-dependent human breast cancer.
Collapse
MESH Headings
- Apoptosis
- Breast Neoplasms/blood supply
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Estradiol/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Neovascularization, Pathologic
- Paracrine Communication
- Phosphorylation
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/physiology
- Progesterone/physiology
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Raquel Soares
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | |
Collapse
|
43
|
Yoon SS, Segal NH, Park PJ, Detwiller KY, Fernando NT, Ryeom SW, Brennan MF, Singer S. Angiogenic Profile of Soft Tissue Sarcomas Based on Analysis of Circulating Factors and Microarray Gene Expression. J Surg Res 2006; 135:282-90. [PMID: 16603191 DOI: 10.1016/j.jss.2006.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/23/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND Broader understanding of diverse angiogenic pathways in a particular cancer can lead to better utilization of anti-angiogenic therapies. The aim of this study was to develop profiles of angiogenesis-related gene and protein expression for various histologic subtypes of soft tissue sarcomas (STS) growing in different sites. MATERIALS AND METHODS Plasma levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin 2 (Ang2), and leptin were determined in 108 patients with primary STS. Gene expression patterns were analyzed in 38 STS samples and 13 normal tissues using oligonucleotide microarrays. RESULTS VEGF and bFGF plasma levels were elevated 10-13 fold in STS patients compared to controls. VEGF levels were broadly elevated while bFGF levels were higher in patients with fibrosarcomas and leiomyosarcomas. Ang2 levels correlated with tumor size and were most elevated for tumors located in the trunk, while leptin levels were highest in patients with liposarcomas. Hierarchical clustering of microarray data based on angiogenesis-related gene expression demonstrated that histologic subtypes of STS often shared similar expression patterns, and these patterns were distinctly different from those of normal tissues. Matrix metalloproteinase 2, platelet-derived growth factor receptor, alpha and Notch 4 were among several genes that were up-regulated at least 7-fold in STS. CONCLUSIONS STS demonstrate significant heterogeneity in their angiogenic profiles based on size, histologic subtype, and location of tumor growth, which may have implications for anti-angiogenic strategies. Comparison of STS to normal tissues reveals a panel of upregulated genes that may be targets for future therapies.
Collapse
Affiliation(s)
- Sam S Yoon
- Department of Surgery, Massachusetts General Hospital, Division of Surgical Oncology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, Sueishi K. Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2-mediated therapeutic neovascularization: critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 2006; 26:2483-9. [PMID: 16960104 DOI: 10.1161/01.atv.0000244684.23499.bf] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Monocyte chemoattractant protein-1 (MCP-1) is a C-C chemokine that is known as an inflammatory/arteriogenic factor. Angiogenesis contributes to the inflammatory process; however, the molecular and cellular mechanisms of the links among the inflammatory pathway, arteriogenesis, and angiogenesis have not been well elucidated. METHODS AND RESULTS Using murine models of fibroblast growth factor-2 (FGF-2)-mediated therapeutic neovascularization, we here show that FGF-2 targets nonendothelial mesenchymal cells (NEMCs) enhancing both angiogenic (vascular endothelial growth factor [VEGF]) and arteriogenic (MCP-1) signals via independent signal transduction pathways. Severe hindlimb ischemia stimulated MCP-1 expression that was strongly enhanced by FGF-2 gene transfer, and a blockade of MCP-1 activity via a dominant negative mutant as well as a deficiency of its functional receptor CCR2 resulted in the diminished recovery of blood flow attributable to adaptive and therapeutic neovascularization. Tumor necrosis factor (TNF)-alpha stimulated MCP-1 expression in all cell types tested, whereas FGF-2-mediated upregulation of MCP-1 was found only in NEMCs but not in others, a finding that was not affected by VEGF in vitro and in vivo. CONCLUSIONS These results indicate that FGF-2 targets NEMCs independently, enhancing both angiogenic (VEGF) as well as inflammatory/arteriogenic (MCP-1) pathways. Therefore, MCP-1/CCR2 plays a critical role in adaptive and FGF-2-mediated therapeutic neovascularization.
Collapse
Affiliation(s)
- Takaaki Fujii
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shibata S, Okano S, Yonemitsu Y, Onimaru M, Sata S, Nagata-Takeshita H, Inoue M, Zhu T, Hasegawa M, Moroi Y, Furue M, Sueishi K. Induction of Efficient Antitumor Immunity Using Dendritic Cells Activated by Recombinant Sendai Virus and Its Modulation by Exogenous IFN-β Gene. THE JOURNAL OF IMMUNOLOGY 2006; 177:3564-76. [PMID: 16951315 DOI: 10.4049/jimmunol.177.6.3564] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has been paid much attention as a new and cancer cell-specific therapeutic in the last decade; however, little clinical outcome has been reported. Current limitations of DC-based cancer immunotherapy include sparse information about which DC phenotype should be administered. We here report a unique, representative, and powerful method to activate DCs, namely recombinant Sendai virus-modified DCs (SeV/DC), for cancer immunotherapy. In vitro treatment of SeV without any bioactive gene solely led DCs to a mature phenotype. Even though the expression of surface markers for DC activation ex vivo did not always reach the level attained by an optimized amount of LPS, superior antitumor effects to B16F1 melanoma, namely tumor elimination and survival, were obtained with use of SeV-GFP/DC as compared with those seen with LPS/DC in vivo, and the effect was enhanced by SeV/DC-expressing IFN-beta (SeV-murine IFN-beta (mIFN-beta)/DC). In case of the treatment of an established tumor of B16F10 (7-9 mm in diameter), a highly malignant subline of B16 melanoma, SeV-modified DCs (both SeV-GFP/DC and SeV-mIFN-beta/DC), but not immature DC and LPS/DC, dramatically improved the survival of animals. Furthermore, SeV-mIFN-beta/DC but not other DCs could lead B16F10 tumor to the dormancy, associated with strongly enhanced CD8+ CTL responses. These results indicate that rSeV is a new and powerful tool as an immune booster for DC-based cancer immunotherapy that can be significantly modified by IFN-beta, and SeV/DC, therefore, warrants further investigation as a promising alternative for cancer immunotherapy.
Collapse
Affiliation(s)
- Satoko Shibata
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nakae M, Kamiya H, Naruse K, Horio N, Ito Y, Mizubayashi R, Hamada Y, Nakashima E, Akiyama N, Kobayashi Y, Watarai A, Kimura N, Horiguchi M, Tabata Y, Oiso Y, Nakamura J. Effects of basic fibroblast growth factor on experimental diabetic neuropathy in rats. Diabetes 2006; 55:1470-7. [PMID: 16644707 DOI: 10.2337/db05-1160] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Basic fibroblast growth factor (bFGF) stimulates angiogenesis and induces neural cell regeneration. We investigated the effects of bFGF on diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetic rats were treated with human recombinant bFGF as follows: 1) intravenous administration, 2) intramuscular injection into thigh and soleus muscles with cross-linked gelatin hydrogel (CGH), and 3) intramuscular injection with saline. Ten or 30 days later, the motor nerve conduction velocity (MNCV) of the sciatic-tibial and caudal nerves, sensitivity to mechanical stimuli, sciatic nerve blood flow (SNBF), and retinal blood flow (RBF) were measured. Delayed MNCV in the sciatic-tibial and caudal nerves, hypoalgesia, and reduced SNBF in diabetic rats were all ameliorated by intravenous administration of bFGF after 10, but not 30, days. Intramuscular injection of bFGF with CGH also improved sciatic-tibial MNCV, hypoalgesia, and SNBF after 10 and 30 days, but caudal MNCV was not improved. However, intramuscular injection of bFGF with saline had no significant effects. bFGF did not significantly alter RBF in either normal or diabetic rats. These observations suggest that bFGF could have therapeutic value for diabetic neuropathy and that CGH could play important roles as a carrier of bFGF.
Collapse
Affiliation(s)
- Mika Nakae
- Division of Metabolic Diseases, Department of Internal Medicine, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kaneko K, Yonemitsu Y, Fujii T, Onimaru M, Jin CH, Inoue M, Hasegawa M, Onohara T, Maehara Y, Sueishi K. A free radical scavenger but not FGF-2-mediated angiogenic therapy rescues myonephropathic metabolic syndrome in severe hindlimb ischemia. Am J Physiol Heart Circ Physiol 2006; 290:H1484-92. [PMID: 16301206 DOI: 10.1152/ajpheart.01006.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The therapeutic use of angiogenic factors shows promise in the treatment of critical limb ischemia; however, its potential for myonephropathic metabolic syndrome (MNMS), a fatal complication caused by arterial reconstruction, has not been elucidated. The objective of this study was to evaluate the effectiveness of recombinant Sendai virus-mediated gene transfer of fibroblast growth factor-2 (FGF-2) directly compared with that of a radical scavenger, MCI-186, in a rat model of MNMS. MNMS was surgically induced by aortic occlusion below renal arteries for 4 h, followed by 6 h of reperfusion. Administration of MCI-186 (twice; iv 5 min before induced ischemia and ip 5 min before reperfusion; 10 mg/kg, respectively), but not FGF-2 gene transfer (once, 48 h before induced ischemia), dramatically prevented the increase of serum biochemical markers as well as the edema of the gastrocnemius muscle. The effect of MCI-186 was accompanied by the marked suppression of the neutrophilic infiltration into the local (muscle) and remote (lung) organs. Although serum and muscular levels of a neutrophil-chemoattractant (growth-related oncogene/cytokine-induced neutrophil chemoattractant-1) were not affected by any treatment, the serum level of soluble intercellular adhesion molecule-1 was decreased by treatment with MCI-186 but not by treatment with FGF-2. These results suggest the distinct mechanism of MNMS from critical limb ischemia without reperfusion. Therefore, radical scavenging should be paid more attention than therapeutic angiogenesis when arterial circulation is reconstructed.
Collapse
Affiliation(s)
- Kazuhiro Kaneko
- Div. of Pathophysiological and Experimental Pathology, Dept. of Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tanii M, Yonemitsu Y, Fujii T, Shikada Y, Kohno RI, Onimaru M, Okano S, Inoue M, Hasegawa M, Onohara T, Maehara Y, Sueishi K. Diabetic Microangiopathy in Ischemic Limb Is a Disease of Disturbance of the Platelet-Derived Growth Factor-BB/Protein Kinase C Axis but Not of Impaired Expression of Angiogenic Factors. Circ Res 2006; 98:55-62. [PMID: 16306442 DOI: 10.1161/01.res.0000197842.38758.45] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diabetic foot is caused by microangiopathy and is suggested to be a result of impaired angiogenesis. Using a severe hindlimb ischemia model of streptozotocin-induced diabetic mice (STZ-DM), we show that diabetic foot is a disease solely of the disturbance of platelet-derived growth factor B-chain homodimer (PDGF-BB) expression but not responses of angiogenic factors. STZ-DM mice frequently lost their hindlimbs after induced ischemia, whereas non-DM mice did not. Screening of angiogenesis-related factors revealed that only the expression of PDGF-BB was impaired in the STZ-DM mice on baseline, as well as over a time course after limb ischemia. Supplementation of the PDGF-B gene resulted in the prevention of autoamputation, and, furthermore, a protein kinase C (PKC) inhibitor restored the PDGF-BB expression and also resulted in complete rescue of the limbs of the STZ-DM mice. Inhibition of overproduction of advanced-glycation end product resulted in dephosphorylation of PKC-α and restored expression of PDGF-BB irrespective of blood sugar and HbA1c, indicating that advanced-glycation end product is an essential regulator for PKC/PDGF-BB in diabetic state. These findings are clear evidence indicating that diabetic vascular complications are caused by impairment of the PKC/PDGF-B axis, but not by the impaired expression of angiogenic factors, and possibly imply the molecular target of diabetic foot.
Collapse
Affiliation(s)
- Mitsugu Tanii
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shikada Y, Yonemitsu Y, Koga T, Onimaru M, Nakano T, Okano S, Sata S, Nakagawa K, Yoshino I, Maehara Y, Sueishi K. Platelet-derived growth factor-AA is an essential and autocrine regulator of vascular endothelial growth factor expression in non-small cell lung carcinomas. Cancer Res 2005; 65:7241-8. [PMID: 16103075 DOI: 10.1158/0008-5472.can-04-4171] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is widely accepted that angiogenesis is required for tumor progression. Vascular endothelial growth factor (VEGF) is a key molecule for tumor angiogenesis; however, its expressional regulation is not well understood during all stages of tumorigenesis. Using cell lines and surgical specimens of human non-small cell lung cancers (NSCLCs), we here show that platelet-derived growth factor-AA (PDGF-AA) is an essential autocrine regulator for VEGF expression. To directly assess the expression of PDGF-AA-dependent VEGF and its roles in tumorigenesis, we stably transfected established cell lines with their antisense genes. In addition, the levels of PDGF-AA and VEGF expression in surgical sections were measured and compared with clinicopathologic findings such as tumor size and patient prognosis. PDGF-AA tightly regulated VEGF expression and had a greater effect on tumor size and patient prognosis than did VEGF in both cell lines and surgical sections. PDGF-AA expression was not seen in the atypical adenomatous hyperplasia at all, whereas VEGF was occasionally seen. Furthermore, the frequency of VEGF expression was higher in advanced NSCLCs than in precancerous lesions, which was tightly correspondent to the results for PDGF-AA. These results indicate that PDGF-AA is an important regulator of the frequency and level of VEGF expression during the transition from a precancerous lesion to advanced cancer. The PDGF-AA/VEGF axis, therefore, may be a ubiquitous autocrine system for enhancing angiogenic signals, and PDGF-AA, and its related pathways could be a more efficient target of antiangiogenic therapy for cancers than VEGF and its pathways.
Collapse
Affiliation(s)
- Yasunori Shikada
- Division of Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|