1
|
Huang J, Ruse RB, Walcott GP, Litovsky S, Bohanan SJ, Gong DW, Kroll MW. Ascending Defibrillation Waveform Significantly Reduces Myocardial Morphological Damage and Injury Current. JACC Clin Electrophysiol 2019; 5:854-862. [PMID: 31320015 DOI: 10.1016/j.jacep.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVES This study tested the hypothesis that a biphasic defibrillation waveform with an ascending first phase (ASC) causes less myocardial damage by pathology and injury current than a standard biphasic truncated exponential (BTE) waveform in a swine model. BACKGROUND Although lifesaving, defibrillation shocks have significant iatrogenic effects that reduce their benefit for patient survival. METHODS An ASC waveform with an 8-ms linear ramp followed by an additional positive 0.5-ms decaying portion with amplitudes of 20 J (ASC 20J) and 25 J (ASC 25J) was used. The control was a 25-J BTE conventional waveform (BTE 25J) RESULTS: The ASC 20J and ASC 25J shocks were both successful in 6 of 6 pigs, but the BTE 25J was successful in only 6 of 14 pigs (p < 0.05). Post-shock ST-segment elevation (injury current) in the right ventricular electrode was significantly greater with BTE 25J than with ASC 20J and ASC 25J. With a blinded pathology reading, hemorrhage, inflammation, thrombi, and necrosis 24 h post-shock were significantly greater with BTE 25J than with ASC 20J and ASC 25J. Troponin levels were also markedly lower at 3, 4, 5, and 6 h post-shock. CONCLUSIONS Defibrillation shocks cause electrophysiological, histological, and biochemical signs of myocardial damage and necrosis. These signs of damage are markedly less for an ASC waveform than for a conventional BTE waveform.
Collapse
Affiliation(s)
- Jian Huang
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Gregory P Walcott
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Silvio Litovsky
- Department of Medicine, Department of Pathology, University of Alabama at Birmingham, Alabama
| | | | - Da-Wei Gong
- School of Medicine, University of Maryland, Baltimore, Maryland
| | - Mark W Kroll
- Department of Biomedical Engineering, University of Minnesota Crystal Bay, Minnesota; Department of Biomedical Engineering, California Polytechnical University, San Luis Obispo, California.
| |
Collapse
|
2
|
Prajapati C, Pölönen RP, Aalto-Setälä K. Simultaneous recordings of action potentials and calcium transients from human induced pluripotent stem cell derived cardiomyocytes. Biol Open 2018; 7:bio.035030. [PMID: 29970475 PMCID: PMC6078349 DOI: 10.1242/bio.035030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) offer a unique in vitro platform to study cardiac diseases, as they recapitulate many disease phenotypes. The membrane potential (Vm) and intracellular calcium (Ca2+) transient (CaT) are usually investigated separately, because incorporating different techniques to acquire both aspects concurrently is challenging. In this study, we recorded Vm and CaT simultaneously to understand the interrelation between these parameters in hiPSC-CMs. For this, we used a conventional patch clamp technique to record Vm, and synchronized this with a Ca2+ imaging system to acquire CaT from same hiPSC-CMs. Our results revealed that the CaT at 90% decay (CaT90) was longer than action potential (AP) duration at 90% repolarization (APD90). In addition, there was also a strong positive correlation between the different parameters of CaT and AP. The majority of delayed after depolarizations (DADs) observed in the Vm recording were also characterized by elevations in the intracellular Ca2+ level, but in some cases no abnormalities were observed in CaT. However, simultaneous fluctuations in CaT were always observed during early after depolarizations (EADs) in Vm In summary, simultaneous recording of Vm and CaT broadens the understanding of the interrelation between Vm and CaT and could be used to elucidate the mechanisms underlying arrhythmia in cardiac disease condition.
Collapse
Affiliation(s)
| | | | - Katriina Aalto-Setälä
- BioMediTech, University of Tampere, 33520 Tampere, Finland .,Faculty of Medicine and Life Science, University of Tampere, 33520 Tampere, Finland.,Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
3
|
Semenov I, Grigoryev S, Neuber JU, Zemlin CW, Pakhomova ON, Casciola M, Pakhomov AG. Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci Rep 2018; 8:8233. [PMID: 29844431 PMCID: PMC5974370 DOI: 10.1038/s41598-018-26521-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Intense electric shocks of nanosecond (ns) duration can become a new modality for more efficient but safer defibrillation. We extended strength-duration curves for excitation of cardiomyocytes down to 200 ns, and compared electroporative damage by proportionally more intense shocks of different duration. Enzymatically isolated murine, rabbit, and swine adult ventricular cardiomyocytes (VCM) were loaded with a Ca2+ indicator Fluo-4 or Fluo-5N and subjected to shocks of increasing amplitude until a Ca2+ transient was optically detected. Then, the voltage was increased 5-fold, and the electric cell injury was quantified by the uptake of a membrane permeability marker dye, propidium iodide. We established that: (1) Stimuli down to 200-ns duration can elicit Ca2+ transients, although repeated ns shocks often evoke abnormal responses, (2) Stimulation thresholds expectedly increase as the shock duration decreases, similarly for VCMs from different species, (3) Stimulation threshold energy is minimal for the shortest shocks, (4) VCM orientation with respect to the electric field does not affect the threshold for ns shocks, and (5) The shortest shocks cause the least electroporation injury. These findings support further exploration of ns defibrillation, although abnormal response patterns to repetitive ns stimuli are of a concern and require mechanistic analysis.
Collapse
Affiliation(s)
- Iurii Semenov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Sergey Grigoryev
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Johanna U Neuber
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Christian W Zemlin
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.,Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, 23508, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, 23508, USA.
| |
Collapse
|
4
|
Daily NJ, Du ZW, Wakatsuki T. High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. Assay Drug Dev Technol 2017; 15:178-188. [PMID: 28525289 DOI: 10.1089/adt.2017.781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments.
Collapse
|
5
|
Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol 2016; 310:H1388-401. [PMID: 27016580 DOI: 10.1152/ajpheart.00665.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
Optical mapping of Ca(2+)-sensitive fluorescence probes has become an extremely useful approach and adopted by many cardiovascular research laboratories to study a spectrum of myocardial physiology and disease conditions. Optical mapping data are often displayed as detailed pseudocolor images, providing unique insight for interpreting mechanisms of ectopic activity, action potential and Ca(2+) transient alternans, tachycardia, and fibrillation. Ca(2+)-sensitive fluorescent probes and optical mapping systems continue to evolve in the ongoing effort to improve therapies that ease the growing worldwide burden of cardiovascular disease. In this technical review we provide an updated overview of conventional approaches for optical mapping of Cai (2+) within intact myocardium. In doing so, a brief history of Cai (2+) probes is provided, and nonratiometric and ratiometric Ca(2+) probes are discussed, including probes for imaging sarcoplasmic reticulum Ca(2+) and probes compatible with potentiometric dyes for dual optical mapping. Typical measurements derived from optical Cai (2+) signals are explained, and the analytics used to compute them are presented. Last, recent studies using Cai (2+) optical mapping to study arrhythmias, heart failure, and metabolic perturbations are summarized.
Collapse
Affiliation(s)
- Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia
| | - Richard D Walton
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Olivier Bernus
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia;
| |
Collapse
|
6
|
Tsuji Y, Ishikawa T, Makita N. Molecular mechanisms of heart failure progression associated with implantable cardioverter-defibrillator shocks for ventricular tachyarrhythmias. J Arrhythm 2014. [DOI: 10.1016/j.joa.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
7
|
Colli Franzone P, Pavarino LF, Scacchi S. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models. Europace 2014; 16:736-42. [PMID: 24798963 DOI: 10.1093/europace/euu010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiac unipolar electrode stimulations induce a particular structure of the transmembrane potential distribution (Vm), called virtual electrode polarization (VEP), which plays an important role in the mechanisms of cardiac excitation, reentry induction, and ventricular defibrillation. Recent experimental studies, based on the optical mapping techniques, have shown that premature stimulations also induce significant changes in the intracellular calcium (Cai) spatial distribution. The aim of this work is to investigate and compare by means of numerical simulations the morphology of the Vm and Cai patterns, generated by applying an S1-S2 stimulation protocol with a premature S2 anodal pulse. METHODS AND RESULTS We perform parallel finite element simulations of a three-dimensional orthotropic Bidomain model on a block of ventricular tissue by using four membrane models of two species (guinea pig and rabbit), that incorporate the phenomenological or more detailed mechanistic descriptions of the calcium dynamics. During the S2 anodal stimulus, the Cai spatial distribution, computed with all the considered models, presents a configuration similar to the typical VEP pattern of Vm, with a minimum inside the virtual anode and two maxima in the virtual cathodes. After the S2 stimulus turns off, the anode break excitation mechanism yields a Vm pattern exhibiting a clearly propagating wavefront. Differently, the Cai patterns do not show a clear separation between the resting and the activated regions, with the exception of one of the phenomenological models considered, but they show warped dog-bone shaped equi-level lines around an elevation in the virtual anode region. CONCLUSION The VEP pattern of the Cai spatial distribution during the S2 stimulus is in agreement with the previous experimental studies. Moreover, the Cai minimum in the virtual anode can be mainly attributable to the outflow of calcium ions produced by the sodium-calcium (NCX) exchanger, without a significant contribution of the ICaL current.
Collapse
Affiliation(s)
- Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | |
Collapse
|
8
|
Kong W, Fast VG. The role of dye affinity in optical measurements of Cai(2+) transients in cardiac muscle. Am J Physiol Heart Circ Physiol 2014; 307:H73-9. [PMID: 24791783 DOI: 10.1152/ajpheart.00751.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous experiments in cultures of neonatal rat myocytes demonstrated that the shape of Cai(2+) transients measured using high-affinity Ca(2+)-sensitive dyes may be misrepresented. The purpose of this study was to examine the role of dye affinity in Cai(2+) measurements in intact adult cardiac tissue by comparing optical recordings obtained with high- and low-affinity dyes. Experiments were carried out in porcine left ventricular (LV) wedge preparations stained locally by intramural injection via microcapillaries (diameter = 150 μm) with a low-affinity Ca(2+)-sensitive dye Fluo-4FF or Fluo-2LA (nominal Kd, ~7-10 μmol/l), high-affinity dye Rhod-2 (Kd = 0.57 μmol/l), and Fluo-4 or Fluo-2MA (Kd, ~0.4 μmol/l); in addition, tissue was stained with transmembrane potential (Vm)-sensitive dye RH-237. Optical recordings of Vm and Cai(2+) were made using optical fibers (diameter = 325 μm) glued with the microcapillaries. The durations of Cai(2+) transients measured at 50% level of recovery (CaD50) using high-affinity Fluo-4/Fluo-2MA dyes were up to ~81% longer than those measured with low-affinity Fluo-4FF/Fluo-2LA at long pacing cycle lengths (CL). In Fluo-4/Fluo-2MA measurements at long CLs, Cai(2+) transients often (~50% of cases) exhibited slow upstroke rise and extended plateau. In Rhod-2 measurements, CaD50 was moderately longer (up to ~35%) than in Fluo-4FF recordings, but Cai(2+) transient shapes were similar. In all series of measurements, mean action potential duration values were not significantly different (P > 0.05). The delays between Vm and Cai(2+) upstrokes were comparable for low- and high-affinity dyes (P > 0.05). In conclusion, measurements of Cai(2+) transient in ventricular myocardium are strongly affected by the affinity of Ca(2+) dyes. The high-affinity dyes may overestimate the duration and alter the shape of Cai(2+) transients.
Collapse
Affiliation(s)
- Wei Kong
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vladimir G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Toh N, Nishii N, Nakamura K, Tada T, Oe H, Nagase S, Kohno K, Morita H, Kusano KF, Ito H. Cardiac dysfunction and prolonged hemodynamic deterioration after implantable cardioverter-defibrillator shock in patients with systolic heart failure. Circ Arrhythm Electrophysiol 2012; 5:898-905. [PMID: 22837155 DOI: 10.1161/circep.111.970285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the acute effects of implantable cardioverter-defibrillator shock on myocardium, cardiac function, and hemodynamics in relation to left ventricular systolic function. METHODS AND RESULTS We studied 50 patients who underwent implantable cardioverter-defibrillator implantation and defibrillation threshold (DFT) testing: 25 patients with left ventricular ejection fraction (LVEF) ≥ 45% and 25 patients with LVEF <45%. We measured cardiac biomarkers (creatine kinase, creatine kinase-MB, myoglobin, cardiac troponin T and I, and N-terminal probrain natriuretic peptide). Left ventricular relaxation was assessed by global longitudinal strain rate during the isovolumetric relaxation period using speckle-tracking echocardiography. Blood sampling and echocardiography were performed before, immediately after, and 5 minutes and 4 hours after DFT testing. Mean arterial pressure was measured directly during DFT testing. Cardiac biomarkers showed no significant changes in either group. LVEF was decreased until 5 minutes after DFT testing and had recovered to the baseline at 4 hours in the group with reduced LVEF (P<0.001), whereas LVEF reduction was not observed in the group with preserved LVEF (P=0.637). Global isovolumetric relaxation period was decreased until 5 minutes after DFT testing and had recovered to the baseline at 4 hours in both groups (preserved LVEF: 0.39 ± 0.14 versus 0.23 ± 0.13* versus 0.23 ± 0.13* versus 0.40 ± 0.13 s(-1), *P<0.001 versus baseline; reduced LVEF: 0.15 ± 0.05 versus 0.08 ± 0.04† versus 0.09 ± 0.04† versus 0.15 ± 0.05 s(-1), †P<0.001 versus baseline, repeated-measures ANOVA). Time to recovery of mean arterial pressure to the baseline was prolonged in the group with reduced LVEF (P<0.001). CONCLUSIONS Implantable cardioverter-defibrillator shock transiently impairs cardiac function and hemodynamics especially in patients with systolic dysfunction, although significant tissue injury is not observed.
Collapse
Affiliation(s)
- Norihisa Toh
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang YT, Efimov IR, Cheng Y. Electroporation induced by internal defibrillation shock with and without recovery in intact rabbit hearts. Am J Physiol Heart Circ Physiol 2012; 303:H439-49. [PMID: 22730387 DOI: 10.1152/ajpheart.01121.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Defibrillation shocks from implantable cardioverter defibrillators can be lifesaving but can also damage cardiac tissues via electroporation. This study characterizes the spatial distribution and extent of defibrillation shock-induced electroporation with and without a 45-min postshock period for cell membranes to recover. Langendorff-perfused rabbit hearts (n = 31) with and without a chronic left ventricular (LV) myocardial infarction (MI) were studied. Mean defibrillation threshold (DFT) was determined to be 161.4 ± 17.1 V and 1.65 ± 0.44 J in MI hearts for internally delivered 8-ms monophasic truncated exponential (MTE) shocks during sustained ventricular fibrillation (>20 s, SVF). A single 300-V MTE shock (twice determined DFT voltage) was used to terminate SVF. Shock-induced electroporation was assessed by propidium iodide (PI) uptake. Ventricular PI staining was quantified by fluorescent imaging. Histological analysis was performed using Masson's Trichrome staining. Results showed PI staining concentrated near the shock electrode in all hearts. Without recovery, PI staining was similar between normal and MI groups around the shock electrode and over the whole ventricles. However, MI hearts had greater total PI uptake in anterior (P < 0.01) and posterior (P < 0.01) LV epicardial regions. Postrecovery, PI staining was reduced substantially, but residual staining remained significant with similar spacial distributions. PI staining under SVF was similar to previously studied paced hearts. In conclusion, electroporation was spatially correlated with the active region of the shock electrode. Additional electroporation occurred in the LV epicardium of MI hearts, in the infarct border zone. Recovery of membrane integrity postelectroporation is likely a prolonged process. Short periods of SVF did not affect electroporation injury.
Collapse
Affiliation(s)
- Yves T Wang
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
11
|
Sowell B, Fast VG. Ionic mechanism of shock-induced arrhythmias: role of intracellular calcium. Heart Rhythm 2012; 9:96-104. [PMID: 21878203 PMCID: PMC3246125 DOI: 10.1016/j.hrthm.2011.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/24/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Strong electrical shocks can cause focal arrhythmias, the mechanism of which is not well known. Strong shocks have been shown to produce diastolic Ca(i)(2+) increase, which may initiate focal arrhythmias via spontaneous Ca(i)(2+) rise (SCR), activation of inward Na(+)/Ca(2+) exchange current (I(NCX)), and rise in membrane potential (V(m)). It can be hypothesized that this mechanism is responsible for generation of shock-induced arrhythmias. OBJECTIVE The purpose of this study was to examine the roles of SCRs and I(NCX) in shock-induced arrhythmias. METHODS The occurrence of SCRs during shock-induced arrhythmias was assessed in neonatal rat myocyte cultures. RESULTS Simultaneous V(m)-Ca(i)(2+) optical mapping at arrhythmia source demonstrated that V(m) upstrokes always preceded Ca(i)(2+) transients, and V(m)-Ca(i)(2+) delays were not different between arrhythmic and paced beats (5.5 ± 0.9 and 5.7 ± 0.4 ms, respectively, P = .5). Shocks caused gradual rise of diastolic Ca(i)(2+) consistent with membrane electroporation but no significant Ca(i)(2+) rises immediately before V(m) upstrokes. Application of the Ca(i)(2+) chelator BAPTA-AM (10 μmol/L) decreased the duration of shock-induced arrhythmias whereas application of the I(NCX) inhibitor KB-R7943 (2 μmol/L) increased it, indicating that, despite the absence of SCRs, changes in Ca(i)(2+) affected arrhythmias. It is hypothesized that this effect is mediated by Ca(i)(2+) inhibition of outward I(K1) current and destabilization of resting V(m). The possible role of I(K1) was supported by application of the I(K1) inhibitor BaCl(2) (0.2 mmol/L), which increased the arrhythmia duration. CONCLUSION Shock-induced arrhythmias in neonatal rat myocyte monolayers are not caused by SCRs and inward I(NCX). However, these arrhythmias depend on Ca(i)(2+) changes, possibly via Ca(i)(2+)-dependent modulation of outward I(K1) current.
Collapse
Affiliation(s)
- Brittany Sowell
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
12
|
Scull JA, McSpadden LC, Himel HD, Badie N, Bursac N. Single-detector simultaneous optical mapping of V(m) and [Ca(2+)](i) in cardiac monolayers. Ann Biomed Eng 2011; 40:1006-17. [PMID: 22124794 DOI: 10.1007/s10439-011-0478-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022]
Abstract
Simultaneous mapping of transmembrane voltage (V(m)) and intracellular Ca(2+) concentration (Ca(i)) has been used for studies of normal and abnormal impulse propagation in cardiac tissues. Existing dual mapping systems typically utilize one excitation and two emission bandwidths, requiring two photodetectors with precise pixel registration. In this study we describe a novel, single-detector mapping system that utilizes two excitation and one emission band for the simultaneous recording of action potentials and calcium transients in monolayers of neonatal rat cardiomyocytes. Cells stained with the Ca(2+)-sensitive dye X-Rhod-1 and the voltage-sensitive dye Di-4-ANEPPS were illuminated by a programmable, multicolor LED matrix. Blue and green LED pulses were flashed 180° out of phase at a rate of 488.3 Hz using a custom-built dual bandpass excitation filter that transmitted blue (482 ± 6 nm) and green (577 ± 31 nm) light. A long-pass emission filter (>605 nm) and a 504-channel photodiode array were used to record combined signals from cardiomyocytes. Green excitation yielded Ca(i) transients without significant crosstalk from V(m). Crosstalk present in V(m) signals obtained with blue excitation was removed by subtracting an appropriately scaled version of the Ca(i) transient. This method was applied to study delay between onsets of action potentials and Ca(i) transients in anisotropic cardiac monolayers.
Collapse
Affiliation(s)
- James A Scull
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | | | |
Collapse
|
13
|
Lou Q, Fedorov VV, Glukhov AV, Moazami N, Fast VG, Efimov IR. Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure. Circulation 2011; 123:1881-90. [PMID: 21502574 DOI: 10.1161/circulationaha.110.989707] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excitation-contraction (EC) coupling is altered in end-stage heart failure. However, spatial heterogeneity of this remodeling has not been established at the tissue level in failing human heart. The objective of this article was to study functional remodeling of excitation-contraction coupling and calcium handling in failing and nonfailing human hearts. METHODS AND RESULTS We simultaneously optically mapped action potentials and calcium transients in coronary perfused left ventricular wedge preparations from nonfailing (n=6) and failing (n=5) human hearts. Our major findings are the following. First, calcium transient duration minus action potential duration was longer at subendocardium in failing compared with nonfailing hearts during bradycardia (40 bpm). Second, the transmural gradient of calcium transient duration was significantly smaller in failing hearts compared with nonfailing hearts at fast pacing rates (100 bpm). Third, calcium transient in failing hearts had a flattened plateau at the midmyocardium and exhibited a 2-component slow rise at the subendocardium in 3 failing hearts. Fourth, calcium transient relaxation was slower at the subendocardium than at the subepicardium in both groups. Protein expression of sarcoplasmic reticulum Ca(2+)-ATPase 2a was lower at the subendocardium than the subepicardium in both nonfailing and failing hearts. Sarcoplasmic reticulum Ca(2+)-ATPase 2a protein expression at subendocardium was lower in hearts with ischemic cardiomyopathy compared with those with nonischemic cardiomyopathy. CONCLUSIONS For the first time, we present direct experimental evidence of transmural heterogeneity of excitation-contraction coupling and calcium handling in human hearts. End-stage heart failure is associated with the heterogeneous remodeling of excitation-contraction coupling and calcium handling.
Collapse
Affiliation(s)
- Qing Lou
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Electrical shock has been the one effective treatment for ventricular fibrillation for several decades. With the advancement of electrical and optical mapping techniques, histology, and computer modeling, the mechanisms responsible for defibrillation are now coming to light. In this review, we discuss recent work that demonstrates the various mechanisms responsible for defibrillation. On the cellular level, membrane depolarization and electroporation affect defibrillation outcome. Cell bundles and collagenous septae are secondary sources and cause virtual electrodes at sites far from shocking electrodes. On the whole-heart level, shock field gradient and critical points determine whether a shock is successful or whether reentry causes initiation and continuation of fibrillation.
Collapse
Affiliation(s)
- Derek J Dosdall
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
15
|
Kroll MW, Schwab JO. Achieving low defibrillation thresholds at implant: pharmacological influences, RV coil polarity and position, SVC coil usage and positioning, pulse width settings, and the azygous vein. Fundam Clin Pharmacol 2010; 24:561-73. [DOI: 10.1111/j.1472-8206.2010.00848.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
High-energy defibrillation impairs myocyte contractility and intracellular calcium dynamics. Crit Care Med 2010; 36:S422-7. [PMID: 20449905 DOI: 10.1097/ccm.0b013e31818a84c5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We examined the effects of energy delivered with electrical defibrillation on myocyte contractility and intracellular Ca2+ dynamics. We hypothesized that increasing the defibrillation energy would produce correspondent reduction in myocyte contractility and intracellular Ca2+ dynamics. DESIGN Randomized prospective study. SETTING University-affiliated research laboratory. SUBJECTS Ventricular myocytes from male Sprague-Dawley rat hearts. MATERIALS AND METHODS Ventricular cardiomyocytes loaded with Fura-2/AM were placed in a chamber mounted on an inverted microscope and superfused with a buffer solution at 37 degrees C. The cells were field stimulated to contract and mechanical properties were assessed using a video-based edge-detection system. Intracellular Ca2+ dynamics were evaluated with a dual-excitation fluorescence photomultiplier system. Myocytes were then randomized to receive 1) a single 0.5-J biphasic shock; 2) a single 1-J biphasic shock; 3) a single 2-J biphasic shock; and 4) a control group without shock. After the shock, myocytes were paced for an additional 4 mins. RESULTS A single 0.5-J shock did not have effects on contractility and intracellular Ca2+ dynamics. Higher energy shocks, i.e., 1- or 2-J shocks, significantly impaired contractility and intracellular Ca2+ dynamics. The adverse effects were greater after a 2-J shock compared with a 1-J shock. CONCLUSIONS Higher defibrillation energy significantly impairs ventricular contractility at the myocyte level. Reductions in cardiomyocyte shortening and intracellular Ca2+ dynamics abnormalities were greater when higher energy shock was used.
Collapse
|
17
|
Bursac N, Kirkton RD, McSpadden LC, Liau B. Characterizing functional stem cell-cardiomyocyte interactions. Regen Med 2010; 5:87-105. [PMID: 20017697 DOI: 10.2217/rme.09.69] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease.
Collapse
Affiliation(s)
- Nenad Bursac
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
18
|
Turner JD, Gaspers LD, Wang G, Thomas AP. Uncoupling protein-2 modulates myocardial excitation-contraction coupling. Circ Res 2010; 106:730-8. [PMID: 20056920 DOI: 10.1161/circresaha.109.206631] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Uncoupling protein (UCP)2 is a mitochondrial inner membrane protein that is expressed in mammalian myocardium under normal conditions and upregulated in pathological states such as heart failure. UCP2 is thought to protect cardiomyocytes against oxidative stress by dissipating the mitochondrial proton gradient and mitochondrial membrane potential (DeltaPsi(m)), thereby reducing mitochondrial reactive oxygen species generation. However, in apparent conflict with its uncoupling role, UCP2 has also been proposed to be essential for mitochondrial Ca(2+) uptake, which could have a protective action by stimulating mitochondrial ATP production. OBJECTIVE The goal of this study was to better understand the role of myocardial UCP2 by examining the effects of UCP2 on bioenergetics, Ca(2+) homeostasis, and excitation-contraction coupling in neonatal cardiomyocytes. METHODS AND RESULTS Adenoviral-mediated expression of UCP2 caused a mild depression of DeltaPsi(m) and increased the basal rate of oxygen consumption but did not affect total cellular ATP levels. Mitochondrial Ca(2+) uptake was examined in permeabilized cells loaded with the mitochondria-selective Ca(2+) probe, rhod-2. UCP2 overexpression markedly inhibited mitochondrial Ca(2+) uptake. Pretreatment with the UCP2-specific inhibitor genipin largely reversed the effects UCP2 expression on mitochondrial Ca(2+) handling, bioenergetics, and oxygen utilization. Electrically evoked cytosolic Ca(2+) transients and spontaneous cytosolic Ca(2+) sparks were examined using fluo-based probes and confocal microscopy in line scan mode. UCP2 overexpression significantly prolonged the decay phase of [Ca(2+)](c) transients in electrically paced cells, increased [Ca(2+)](c) spark activity and increased the probability that Ca(2+) sparks propagated into Ca(2+) waves. This dysregulation results from a loss of the ability of mitochondria to suppress local Ca(2+)-induced Ca(2+) release activity of the sarcoplasmic reticulum. CONCLUSION Increases in UCP2 expression that lower DeltaPsi(m) and contribute to protection against oxidative stress, also have deleterious effects on beat-to-beat [Ca(2+)](c) handling and excitation-contraction coupling, which may contribute to the progression of heart disease.
Collapse
Affiliation(s)
- Jay D Turner
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
19
|
Individual effect of components of defibrillation waveform on the contractile function and intracellular calcium dynamics of cardiomyocytes. Crit Care Med 2009; 37:2394-401. [PMID: 19531953 DOI: 10.1097/ccm.0b013e3181a02ea1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Although electrical shock is a unique and effective treatment for fatal arrhythmia, it produces myocardial dysfunction closely related to the intensity of shock delivered. The isolated contribution of defibrillator components to postshock contractile impairment is not yet securely established. We sought to evaluate contractile function in cardiomyocytes following electrical shocks with different peak currents, energies, and durations. We hypothesized that peak current may play a more important role than energy in determining postshock dysfunction. Prolongation of the duration may reduce contractile impairment. DESIGN Prospective, randomized, controlled study. SETTING University-affiliated research institute. SUBJECTS Male albino Sprague-Dawley rats. INTERVENTIONS We assigned 324 cardiomyocytes isolated from adult male rats to 11 groups having different waveforms (triangular and square), peak currents (derived from peak voltage gradients of 25 V/cm, 35.4 V/cm, 50 V/cm, 70.7 V/cm, and 100 V/cm), and durations (10 and 20 msecs) of shocks delivered. One single shock was given to each cardiomyocyte, and length shortening and Ca transients were recorded optically with fura-2 loading. MEASUREMENTS AND MAIN RESULTS Increase of peak current and corresponding energy caused more cells to have irregular beating (p < .001) and reduced length shortening (p < .001). This was associated with increased Ca abnormality (p < .05). Increasing peak current independent of energy significantly impaired postshock contractile function (p < .05), whereas the change of energy alone did not. Prolongation of duration independent of energy and peak current reduced postshock contractile impairment (p < .05). CONCLUSIONS Peak current may play a more determinative role in producing postshock contractile dysfunction than does energy.
Collapse
|
20
|
Abstract
OBJECTIVE Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. DESIGN Randomized prospective animal study. SETTING University affiliated research laboratory. SUBJECTS Sprague-Dawley rats. INTERVENTIONS Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. MEASUREMENTS AND MAIN RESULTS DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. CONCLUSION Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.
Collapse
|
21
|
Bourgeois EB, Fast VG, Collins RL, Gladden JD, Rogers JM. Change in conduction velocity due to fiber curvature in cultured neonatal rat ventricular myocytes. IEEE Trans Biomed Eng 2008; 56:855-61. [PMID: 19272891 DOI: 10.1109/tbme.2008.2007501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computer modeling of cardiac propagation suggests that curvature of muscle fibers modulates conduction velocity (CV). The effect could be involved in arrhythmogenesis by altering the dynamics of reentrant wavefronts or by causing propagation block. To verify the existence of this effect experimentally, we measured CV in anisotropic neonatal rat ventricular myocyte monolayers. The orientation of the cells was directed by scratches machined into plastic coverslips. Each substrate contained a region in which scratch radius of curvature varied from 0.25 to 1.0 cm. The CV anisotropy ratio (longitudinal CV/transverse CV in straight fiber regions) was 2.3 +/- 0.3 (n = 38). We initiated wavefronts transverse to fibers with the fibers either curving toward or away from the wavefronts. Action potentials were recorded using a potentiometric dye and a video camera. Propagation was faster (p = 0.0003) when fibers curved toward wavefronts than when fibers curved in the opposite direction. The mean CV difference was 0.38 +/- 0.44 cm/s (n = 24), which is 3.5% of nominal straight fiber transverse CV (11.0 +/- 3.2 cm/s). The effect was also present (p = 0.07) when pacing was slowed from 350 to 500 ms (n = 6). In a control group (n = 8) with uncurved fibers, CV was the same in both directions (p = NS). We conclude that fiber curvature is a factor in modulating cardiac propagation.
Collapse
Affiliation(s)
- Elliot B Bourgeois
- Department of Biomedical Engineering, University of Alabama, Birmingham, AL 35294-0019, USA.
| | | | | | | | | |
Collapse
|
22
|
Hayashi H, Lin SF, Joung B, Karagueuzian HS, Weiss JN, Chen PS. Virtual electrodes and the induction of fibrillation in Langendorff-perfused rabbit ventricles: the role of intracellular calcium. Am J Physiol Heart Circ Physiol 2008; 295:H1422-8. [PMID: 18676691 DOI: 10.1152/ajpheart.00001.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A strong premature electrical stimulus (S(2)) induces both virtual anodes and virtual cathodes. The effects of virtual electrodes on intracellular Ca(2+) concentration ([Ca(2+)](i)) transients and ventricular fibrillation thresholds (VFTs) are unclear. We studied 16 isolated, Langendorff-perfused rabbit hearts with simultaneous voltage and [Ca(2+)](i) optical mapping and for vulnerable window determination. After baseline pacing (S(1)), a monophasic (10 ms anodal or cathodal) or biphasic (5 ms-5 ms) S(2) was applied to the left ventricular epicardium. Virtual electrode polarizations and [Ca(2+)](i) varied depending on the S(2) polarity. Relative to the level of [Ca(2+)](i) during the S(1) beat, the [Ca(2+)](i) level 40 ms after the onset of monophasic S(2) increased by 36+/-8% at virtual anodes and 20+/-5% at virtual cathodes (P<0.01), compared with 25+/-5% at both virtual cathode-anode and anode-cathode sites for biphasic S(2). The VFT was significantly higher and the vulnerable window significantly narrower for biphasic S(2) than for either anodal or cathodal S(2) (n=7, P<0.01). Treatment with thapsigargin and ryanodine (n=6) significantly prolonged the action potential duration compared with control (255+/-22 vs. 189+/-6 ms, P<0.05) and eliminated the difference in VFT between monophasic and biphasic S(2), although VFT was lower for both cases. We conclude that virtual anodes caused a greater increase in [Ca(2+)](i) than virtual cathodes. Monophasic S(2) is associated with lower VFT than biphasic S(2), but this difference was eliminated by the inhibition of the sarcoplasmic reticulum function and the prolongation of the action potential duration. However, the inhibition of the sarcoplasmic reticulum function also reduced VFT, indicating that the [Ca(2+)](i) dynamics modulate, but are not essential, to ventricular vulnerability.
Collapse
Affiliation(s)
- Hideki Hayashi
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Effects of unipolar stimulation on voltage and calcium distributions in the isolated rabbit heart. Basic Res Cardiol 2008; 103:537-51. [PMID: 18642125 DOI: 10.1007/s00395-008-0740-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 07/02/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND The effect of electric stimulation on the polarization of cardiac tissue (virtual electrode effect) is well known; the corresponding response of intracellular calcium concentration ([Ca(2+)](i)) and its dependence on coupling interval between conditioning stimulus (S1) and test stimulus (S2) has yet to be elucidated. OBJECTIVE Because uncovering the transmembrane potential (V(m))-[Ca(2+)](i) relationship during an electric shock is imperative for understanding arrhythmia induction and defibrillation, we aimed to study simultaneous V(m) and [Ca(2+)](i) responses to strong unipolar stimulation. METHODS We used a dual-camera optical system to image concurrently V (m) and [Ca(2+)](i) responses to unipolar stimulation (20 ms +/- 20 mA) in Langendorff-perfused rabbit hearts. RH-237 and Rhod-2 fluorescent dyes were used to measure V(m) and [Ca(2+)](i), respectively. The S1-S2 interval ranged from 10 to 170 ms to examine stimulation during the action potential. RESULTS The [Ca(2+)](i) deflections were less pronounced than changes in V(m) for all S1-S2 intervals. For cathodal stimulation, [Ca(2+)](i) at the central virtual cathode region increased with prolongation of S1-S2 interval. For anodal stimulation, [Ca(2+)](i) at the central virtual anode area decreased with shortening of the S1-S2 interval. At very short S1-S2 intervals (10-20 ms), when S2 polarization was superimposed on the S1 action potential upstroke, the [Ca(2+)](i) distribution did not follow V(m) and produced a more complex pattern. After S2 termination [Ca(2+)](i) exhibited three outcomes in a manner similar to V(m): non-propagating response, break stimulation, and make stimulation. CONCLUSIONS Changes in the [Ca(2+)](i) distribution correlate with the behavior of the V (m) distribution for S1-S2 coupling intervals longer than 20 ms; at shorter intervals S2 creates more heterogeneous [Ca(2+)](i) distribution in comparison with V(m). Stimulation in diastole and at very short coupling intervals caused V(m)-[Ca(2+)](i) uncoupling at the regions of positive polarization (virtual cathode).
Collapse
|
24
|
de Diego C, Pai RK, Dave AS, Lynch A, Thu M, Chen F, Xie LH, Weiss JN, Valderrábano M. Spatially discordant alternans in cardiomyocyte monolayers. Am J Physiol Heart Circ Physiol 2008; 294:H1417-25. [PMID: 18223190 DOI: 10.1152/ajpheart.01233.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repolarization alternans is a harbinger of sudden cardiac death, particularly when it becomes spatially discordant. Alternans, a beat-to-beat alternation in the action potential duration (APD) and intracellular Ca (Cai), can arise from either tissue heterogeneities or dynamic factors. Distinguishing between these mechanisms in normal cardiac tissue is difficult because of inherent complex three-dimensional tissue heterogeneities. To evaluate repolarization alternans in a simpler two-dimensional cardiac substrate, we optically recorded voltage and/or Cai in monolayers of cultured neonatal rat ventricular myocytes during rapid pacing, before and after exposure to BAY K 8644 to enhance dynamic factors promoting alternans. Under control conditions (n = 37), rapid pacing caused detectable APD alternans in 81% of monolayers, and Cai transient alternans in all monolayers, becoming spatially discordant in 62%. After BAY K 8644 (n = 28), conduction velocity restitution became more prominent, and APD and Cai alternans developed and became spatially discordant in all monolayers, with an increased number of nodal lines separating out-of-phase alternating regions. Nodal lines moved closer to the pacing site with faster pacing rates and changed orientation when the pacing site was moved, as predicted for the dynamically generated, but not heterogeneity-based, alternans. Spatial APD gradients during spatially discordant alternans were sufficiently steep to induce conduction block and reentry. These findings indicate that spatially discordant alternans severe enough to initiate reentry can be readily induced by pacing in two-dimensional cardiac tissue and behaves according to predictions for a predominantly dynamically generated mechanism.
Collapse
Affiliation(s)
- Carlos de Diego
- Cardiovascular Research Laboratory, Department of Medicine, Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells, resulting in resynchronization of electrical activity in the heart. If shock-induced transmembrane potentials are large enough, they can cause transient tissue damage due to electroporation. In this review, evidence is presented that electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and that electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.Here, we present experimental evidence for electroporation in cardiac tissue, which occurs above a threshold of 25 V/cm as evident from propidium iodide uptake, transient diastolic depolarization, and reductions of action potential amplitude and its derivative. These electrophysiological changes can induce tachyarrhythmia, due to conduction block and possibly triggered activity; however, our findings provide the foundation for future design of effective methods to deliver genes and drugs to cardiac tissues, while avoiding possible side effects such as arrhythmia and mechanical stunning.
Collapse
Affiliation(s)
- Vadim V Fedorov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
26
|
Hwang GS, Hayashi H, Tang L, Ogawa M, Hernandez H, Tan AY, Li H, Karagueuzian HS, Weiss JN, Lin SF, Chen PS. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles. Circulation 2006; 114:2595-603. [PMID: 17116770 DOI: 10.1161/circulationaha.106.630509] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The role of intracellular calcium (Ca(i)) in defibrillation and vulnerability is unclear. METHODS AND RESULTS We simultaneously mapped epicardial membrane potential and Ca(i) during shock on T-wave episodes (n=104) and attempted defibrillation episodes (n=173) in 17 Langendorff-perfused rabbit ventricles. Unsuccessful and type B successful defibrillation shocks were followed by heterogeneous distribution of Ca(i), including regions of low Ca(i) surrounded by elevated Ca(i) ("Ca(i) sinkholes") 31+/-12 ms after shock. The first postshock activation then originated from the Ca(i) sinkhole 53+/-14 ms after the shock. No sinkholes were present in type A successful defibrillation. A Ca(i) sinkhole also was present 39+/-32 ms after a shock on T that induced ventricular fibrillation, followed 22+/-15 ms later by propagated wave fronts that arose from the same site. This wave propagated to form a spiral wave and initiated ventricular fibrillation. Thapsigargin and ryanodine significantly decreased the upper limit of vulnerability and defibrillation threshold. We studied an additional 7 rabbits after left ventricular endocardial cryoablation, resulting in a thin layer of surviving epicardium. Ca(i) sinkholes occurred 31+/-12 ms after the shock, followed in 19+/-7 ms by first postshock activation in 63 episodes of unsuccessful defibrillation. At the Ca(i) sinkhole, the rise of Ca(i) preceded the rise of epicardial membrane potential in 5 episodes. CONCLUSIONS There is a heterogeneous postshock distribution of Ca(i). The first postshock activation always occurs from a Ca(i) sinkhole. The Ca(i) prefluorescence at the first postshock early site suggests that reverse excitation-contraction coupling might be responsible for the initiation of postshock activations that lead to ventricular fibrillation.
Collapse
Affiliation(s)
- Gyo-Seung Hwang
- Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fast VG. Simultaneous optical imaging of membrane potential and intracellular calcium. J Electrocardiol 2006; 38:107-12. [PMID: 16226084 DOI: 10.1016/j.jelectrocard.2005.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/20/2022]
Abstract
Imaging of membrane potential (Vm) and intracellular calcium (Cai2+) is important for studying mechanisms of cardiac excitation, arrhythmias and defibrillation. We have developed an optical technique for simultaneous mapping of Vm and Cai2+ in cultured cell monolayers using fluorescent Vm- and Ca2+-sensitive dyes. Cultures of neonatal rat myocytes were double-stained with dyes RH-237 (Vm) and an analog of Fluo-3 or Rhod-2 dyes (Ca2+). These dyes have overlapping excitation spectra, allowing simultaneous excitation at the same wavelength range, and separate emission spectra allowing division of the fluorescent light into components sensitive to Vm and Cai2+, which were measured with two 16x16 photodiode arrays. It was found that Cai2+ measurements were strongly dependent on the properties of Ca2+-sensitive dyes. Thus, high-affinity Ca2+ dyes such as Fluo-4 and Rhod-2 reported Cai2+ transients approximately twice as long as those reported by low-affinity dyes Fluo-4FF and Rhod-FF. In addition, dyes with different affinities resulted in different measurements of Cai2+ responses to electrical shocks. When shocks were applied during the early plateau phase of the action potential, low-affinity dyes reported transient Cai2+ decreases at sites of both negative and positive Vm changes. In contrast, high-affinity Ca2+ dyes reported only a negligible change of plateau Cai2+ and a large elevation of diastolic Cai2+. These discrepancies between high- and low-affinity dyes were explained by a model of dye-ion interaction, which indicated that apparently long Cai2+ transients and Cai2+ responses to electrical shocks measured with high-affinity dyes were due to their non-linear response. These results indicate that optical measurements of Cai2+ transient duration and shock-induced Cai2+ changes require the use of low-affinity Cai2+ dyes.
Collapse
Affiliation(s)
- Vladimir G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Pollard AE, Barr RC. Cardiac microimpedance measurement in two-dimensional models using multisite interstitial stimulation. Am J Physiol Heart Circ Physiol 2005; 290:H1976-87. [PMID: 16373582 DOI: 10.1152/ajpheart.01180.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed central interstitial potential differences during multisite stimulation to assess the feasibility of using those recordings to measure cardiac microimpedances in multidimensional preparations. Because interstitial current injected and removed using electrodes with different proximities allows modulation of the portion of current crossing the membrane, we hypothesized that multisite interstitial stimulation would give rise to central interstitial potential differences that depend on intracellular and interstitial microimpedances, allowing measurement of those microimpedances. Simulations of multisite stimulation with fine and wide spacing in two-dimensional models that included dynamic membrane equations for guinea pig ventricular myocytes were performed to generate test data ( partial differentialphio). Isotropic interstitial and intracellular microimpedances were prescribed for one set of simulations, and anisotropic microimpedances with unequal ratios (intracellular to interstitial) along and across fibers were prescribed for another set of simulations. Microimpedance measurements were then obtained by making statistical comparisons between partial differentialphio values and interstitial potential differences from passive bidomain simulations (Deltaphio) in which a wide range of possible microimpedances were considered. Possible microimpedances were selected at 25% increments. After demonstrating the effectiveness of the overall method with microimpedance measurements using one-dimensional test data, we showed microimpedance measurements within 25% of prescribed values in isotropic and anisotropic models. Our findings suggest that development of microfabricated devices to implement the procedure would facilitate routine measurement as a component of cardiac electrophysiological study.
Collapse
Affiliation(s)
- Andrew E Pollard
- Cardiac Rhythm Management Laboratory, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|
29
|
Ashihara T, Trayanova NA. Cell and tissue responses to electric shocks. Europace 2005; 7 Suppl 2:155-65. [PMID: 16102513 DOI: 10.1016/j.eupc.2005.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/01/2005] [Accepted: 03/18/2005] [Indexed: 11/19/2022] Open
Abstract
AIM Existing models of myocardial membrane kinetics have not been able to reproduce the experimentally-observed negative bias in the asymmetry of transmembrane potential changes (DeltaV(m)) induced by strong electric shocks. The goals of this study are (1) to demonstrate that this negative bias could be reproduced by the addition, to the membrane model, of electroporation and an outward current, I(a), part of the K(+) flow through the L-type Ca(2+)-channel, and (2) to determine how such modifications in the membrane model affect shock-induced break excitation in a 2D preparation. METHODS AND RESULTS We conducted simulations of shocks in bidomain fibres and sheets with membrane dynamics represented by the Luo-Rudy dynamic model (LRd'2000), to which electroporation (LRd + EP model) and the outward current, I(a), activated upon strong shock-induced depolarization (aLRd model) was added. Assuming I(a) is a part of K(+) flow through the L-type Ca(2+)-channel enabled us to reproduce both the experimentally observed rectangularly-shaped positive DeltaV(m) and the value of near 2 of the negative-to-positive DeltaV(m) ratio. In the sheet, I(a) not only contributed to the negative bias in DeltaV(m) asymmetry at sites polarized by physical and virtual electrodes, but also restricted positive DeltaV(m). Electroporation, in its turn, was responsible for the decrease in cathode-break excitation threshold in the aLRd sheet, compared with the other two cases, as well as for the occurrence of the excitation after the shock-end rather than during the shock. CONCLUSIONS The incorporation of electroporation and I(a) in a membrane model ensures match between simulation results and experimental data. The use of the aLRd model results in a lower threshold for shock-induced break excitation.
Collapse
Affiliation(s)
- Takashi Ashihara
- Department of Biomedical Engineering, Tulane University, Boggs Center, New Orleans, LA 70118, USA
| | | |
Collapse
|
30
|
Nikolski VP, Efimov IR. Electroporation of the heart. Europace 2005; 7 Suppl 2:146-54. [PMID: 16102512 DOI: 10.1016/j.eupc.2005.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/18/2005] [Accepted: 05/03/2005] [Indexed: 11/26/2022] Open
Abstract
Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells resulting in resynchronization of electrical activity in the heart. If shock-induced changes in transmembrane potential are large enough, they can cause transient tissue damage due to electroporation. In this review evidence is presented that (a) electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field, and (b) electroporation can affect the outcome of defibrillation therapy; being both pro- and anti-arrhythmic.
Collapse
Affiliation(s)
- Vladimir P Nikolski
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
31
|
Entcheva E, Bien H. Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 92:232-57. [PMID: 16330086 DOI: 10.1016/j.pbiomolbio.2005.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optical mapping of cardiac excitation using voltage- and calcium-sensitive dyes has allowed a unique view into excitation wave dynamics, and facilitated scientific discovery in the cardiovascular field. At the same time, the structural complexity of the native heart has prompted the design of simplified experimental models of cardiac tissue using cultured cell networks. Such reduced experimental models form a natural bridge between single cells and tissue/organ level experimental systems to validate and advance theoretical concepts of cardiac propagation and arrhythmias. Macroscopic mapping (over >1cm(2) areas) of transmembrane potentials and intracellular calcium in these cultured cardiomyocyte networks is a relatively new development and lags behind whole heart imaging due to technical challenges. In this paper, we review the state-of-the-art technology in the field, examine specific aspects of such measurements and outline a rational system design approach. Particular attention is given to recent developments of sensitive detectors allowing mapping with ultra-high spatiotemporal resolution (>5 megapixels/s). Their interfacing with computer platforms to match the high data throughput, unique for this new generation of detectors, is discussed here. This critical review is intended to guide basic science researchers in assembling optical mapping systems for optimized macroscopic imaging with high resolution in a cultured cell setting. The tools and analysis are not limited to cardiac preparations, but are applicable for dynamic fluorescence imaging in networks of any excitable media.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, HSC T18-030, Stony Brook, NY 11794-8181, USA.
| | | |
Collapse
|
32
|
Aihara R, Hara M. Synchronization of electrically induced calcium firings in self-assembled cardiac cells. Biophys Chem 2005; 116:33-9. [PMID: 15911080 DOI: 10.1016/j.bpc.2005.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
We study the adaptive changes of a population of cells responding to external stimulus. Two-dimensionally distributed cardiac cells were homogeneously subjected to periodic electrical stimulus and intracellular calcium concentration ([Ca(2+)](i)) changes were simultaneously observed. In the absence of stimulation, coupled cells in monolayer formed groups of several cells oscillating in similar phase, while isolated cells showed irregular periodicity. In both systems, [Ca(2+)](i) oscillations were modulated by periodic stimulation, and ascending degrees of synchronization among [Ca(2+)](i) oscillations were shown as stimulation intensity increased. In a population of coupled cells, the cells act like a single robust oscillator. These results are evaluated using statistical calculations, comparing the response manner of isolated cells.
Collapse
Affiliation(s)
- Ryoichi Aihara
- Local Spatio-Temporal Functions Laboratory, Frontier Research System, Riken, Hirosawa 2-1, Wako 351-0198, Japan.
| | | |
Collapse
|