1
|
Meng Y, Xu L, Cheng G. Bioelectronics hydrogels for implantable cardiac and brain disease medical treatment application. Int J Biol Macromol 2025; 299:139945. [PMID: 39837454 DOI: 10.1016/j.ijbiomac.2025.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Hydrogel-based bioelectronic systems offer significant benefits for point-of-care diagnosis, treatment of cardiac and cerebral disease, surgical procedures, and other medical applications, ushering in a new era of advancements in medical technology. Progress in hydrogel-based bioelectronics has advanced from basic instrument and sensing capabilities to sophisticated multimodal perceptions and feedback systems. Addressing challenges related to immune responses and inflammation regulation after implantation, physiological dynamic mechanism, biological toxicology as well as device size, power consumption, stability, and signal conversion is crucial for the practical implementation of hydrogel-based bioelectronics in medical implants. Therefore, further exploration of hydrogel-based bioelectronics is imperative, and a comprehensive review is necessary to steer the development of these technologies for use in implantable therapies for cardiac and brain/neural conditions. In this review, a concise overview is provided on the fundamental principles underlying ionic electronic and ionic bioelectronic mechanisms. Additionally, a comprehensive examination is conducted on various bioelectronic materials integrated within hydrogels for applications in implantable medical treatments. The analysis encompasses a detailed discussion on the representative structures and physical attributes of hydrogels. This includes an exploration of their intrinsic properties such as mechanical strength, dynamic capabilities, shape-memory features, stability, stretchability, and water retention characteristics. Moreover, the discussion extends to properties related to interactions with tissues or the environment, such as adhesiveness, responsiveness, and degradability. The intricate relationships between the structure and properties of hydrogels are thoroughly examined, along with an elucidation of how these properties influence their applications in implantable medical treatments. The review also delves into the processing techniques and characterization methods employed for hydrogels. Furthermore, recent breakthroughs in the applications of hydrogels are logically explored, covering aspects such as materials, structure, properties, functions, fabrication procedures, and hybridization with other materials. Finally, the review concludes by outlining the future prospects and challenges associated with hydrogels-based bioelectronics systems.
Collapse
Affiliation(s)
- Yanfang Meng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Lin Xu
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
2
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2024:10.1007/s11010-024-05145-3. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
3
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
4
|
Wang J, Song Y, Xie W, Zhao J, Wang Y, Yu W. Therapeutic angiogenesis based on injectable hydrogel for protein delivery in ischemic heart disease. iScience 2023; 26:106577. [PMID: 37192972 PMCID: PMC10182303 DOI: 10.1016/j.isci.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide and leads to myocardial necrosis and negative myocardial remodeling, ultimately leading to heart failure. Current treatments include drug therapy, interventional therapy, and surgery. However, some patients with severe diffuse coronary artery disease, complex coronary artery anatomy, and other reasons are unsuitable for these treatments. Therapeutic angiogenesis stimulates the growth of the original blood vessels by using exogenous growth factors to generate more new blood vessels, which provides a new treatment for IHD. However, direct injection of these growth factors can cause a short half-life and serious side effects owing to systemic spread. Therefore, to overcome this problem, hydrogels have been developed for temporally and spatially controlled delivery of single or multiple growth factors to mimic the process of angiogenesis in vivo. This paper reviews the mechanism of angiogenesis, some important bioactive molecules, and natural and synthetic hydrogels currently being applied for bioactive molecule delivery to treat IHD. Furthermore, the current challenges of therapeutic angiogenesis in IHD and its potential solutions are discussed to facilitate real translation into clinical applications in the future.
Collapse
Affiliation(s)
- Junke Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Shandong, Qingdao, Shandong 26000, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 26000, China
- Corresponding author
| | - Wenzhou Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26003, China
- Corresponding author
| |
Collapse
|
5
|
Hu W, Wang Y, Chen J, Yu P, Tang F, Hu Z, Zhou J, Liu L, Qiu W, Ye Y, Jia Y, Zhou S, Long J, Zeng Z. Regulation of biomaterial implantation-induced fibrin deposition to immunological functions of dendritic cells. Mater Today Bio 2022. [PMID: 35252832 DOI: 10.1016/j.mtadv.2022.100224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
The performance of implanted biomaterials is largely determined by their interaction with the host immune system. As a fibrous-like 3D network, fibrin matrix formed at the interfaces of tissue and material, whose effects on dendritic cells (DCs) remain unknown. Here, a bone plates implantation model was developed to evaluate the fibrin matrix deposition and DCs recruitment in vivo. The DCs responses to fibrin matrix were further analyzed by a 2D and 3D fibrin matrix model in vitro. In vivo results indicated that large amount of fibrin matrix deposited on the interface between the tissue and bone plates, where DCs were recruited. Subsequent in vitro testing denoted that DCs underwent significant shape deformation and cytoskeleton reorganization, as well as mechanical property alteration. Furthermore, the immune function of imDCs and mDCs were negatively and positively regulated, respectively. The underlying mechano-immunology coupling mechanisms involved RhoA and CDC42 signaling pathways. These results suggested that fibrin plays a key role in regulating DCs immunological behaviors, providing a valuable immunomodulatory strategy for tissue healing, regeneration and implantation.
Collapse
Affiliation(s)
- Wenhui Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yun Wang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jin Chen
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Peng Yu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Fuzhou Tang
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Zuquan Hu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Jing Zhou
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Lina Liu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Wei Qiu
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yuannong Ye
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Yi Jia
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
| | - Shi Zhou
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Jinhua Long
- Department of Head & Neck, Affiliated Tumor Hospital of Guizhou Medical University, Guiyang, 550004, PR China
| | - Zhu Zeng
- School of Basic Medical Sciences / School of Biology & Engineering, Guizhou Medical University, Guiyang, 550025, PR China
- Key Laboratory of Infectious Immunity and Antibody Engineering in Guizhou Province, Guiyang, 550025, PR China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
- State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550004, PR China
| |
Collapse
|
6
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
7
|
Hu W, Wang Y, Chen J, Yu P, Tang F, Hu Z, Zhou J, Liu L, Qiu W, Ye Y, Jia Y, Zhou S, Long J, Zeng Z. Regulation of biomaterial implantation-induced fibrin deposition to immunological functions of dendritic cells. Mater Today Bio 2022; 14:100224. [PMID: 35252832 PMCID: PMC8894278 DOI: 10.1016/j.mtbio.2022.100224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/04/2022] Open
Abstract
The performance of implanted biomaterials is largely determined by their interaction with the host immune system. As a fibrous-like 3D network, fibrin matrix formed at the interfaces of tissue and material, whose effects on dendritic cells (DCs) remain unknown. Here, a bone plates implantation model was developed to evaluate the fibrin matrix deposition and DCs recruitment in vivo. The DCs responses to fibrin matrix were further analyzed by a 2D and 3D fibrin matrix model in vitro. In vivo results indicated that large amount of fibrin matrix deposited on the interface between the tissue and bone plates, where DCs were recruited. Subsequent in vitro testing denoted that DCs underwent significant shape deformation and cytoskeleton reorganization, as well as mechanical property alteration. Furthermore, the immune function of imDCs and mDCs were negatively and positively regulated, respectively. The underlying mechano-immunology coupling mechanisms involved RhoA and CDC42 signaling pathways. These results suggested that fibrin plays a key role in regulating DCs immunological behaviors, providing a valuable immunomodulatory strategy for tissue healing, regeneration and implantation.
Collapse
|
8
|
Vasu S, Zhou J, Chen J, Johnston PV, Kim DH. Biomaterials-based Approaches for Cardiac Regeneration. Korean Circ J 2021; 51:943-960. [PMID: 34854577 PMCID: PMC8636758 DOI: 10.4070/kcj.2021.0291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease is a prevalent cause of mortality and morbidity, largely due to the limited ability of cardiomyocytes to proliferate. Existing therapies for cardiac regeneration include cell-based therapies and bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having significant clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in improving cardiac function, promoting angiogenesis, and reducing adverse immune response in both human clinical trials and animal studies. These advances in therapeutic delivery via extracellular vesicles, cardiac patches, and hydrogels have the potential to enable clinical impact of cardiac regeneration therapies. The limited ability of cardiomyocytes to proliferate is a major cause of mortality and morbidity in cardiovascular diseases. There exist therapies for cardiac regeneration that are cell-based as well as that involve bioactive molecules. However, delivery remains one of the major challenges impeding such therapies from having clinical impact. Recent advancements in biomaterials-based approaches for cardiac regeneration have shown promise in clinical trials and animal studies in improving cardiac function, promoting angiogenesis, and reducing adverse immune response. This review will focus on current clinical studies of three contemporary biomaterials-based approaches for cardiac regeneration (extracellular vesicles, injectable hydrogels, and cardiac patches), remaining challenges and shortcomings to be overcome, and future directions for the use of biomaterials to promote cardiac regeneration.
Collapse
Affiliation(s)
- Samhita Vasu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Justin Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter V Johnston
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
10
|
Rafatian N, Vizely K, Al Asafen H, Korolj A, Radisic M. Drawing Inspiration from Developmental Biology for Cardiac Tissue Engineers. Adv Biol (Weinh) 2021; 5:e2000190. [PMID: 34008910 DOI: 10.1002/adbi.202000190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/21/2020] [Indexed: 12/17/2022]
Abstract
A sound understanding of developmental biology is part of the foundation of effective stem cell-derived tissue engineering. Here, the key concepts of cardiac development that are successfully applied in a bioinspired approach to growing engineered cardiac tissues, are reviewed. The native cardiac milieu is studied extensively from embryonic to adult phenotypes, as it provides a resource of factors, mechanisms, and protocols to consider when working toward establishing living tissues in vitro. It begins with the various cell types that constitute the cardiac tissue. It is discussed how myocytes interact with other cell types and their microenvironment and how they change over time from the embryonic to the adult states, with a view on how such changes affect the tissue function and may be used in engineered tissue models. Key embryonic signaling pathways that have been leveraged in the design of culture media and differentiation protocols are presented. The cellular microenvironment, from extracellular matrix chemical and physical properties, to the dynamic mechanical and electrical forces that are exerted on tissues is explored. It is shown that how such microenvironmental factors can inform the design of biomaterials, scaffolds, stimulation bioreactors, and maturation readouts, and suggest considerations for ongoing biomimetic advancement of engineered cardiac tissues and regeneration strategies for the future.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Hadel Al Asafen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| | - Milica Radisic
- Toronto General Research Institute, Toronto, Ontario, M5G 2C4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
11
|
Hashemzadeh MR, Taghavizadeh Yazdi ME, Amiri MS, Mousavi SH. Stem cell therapy in the heart: Biomaterials as a key route. Tissue Cell 2021; 71:101504. [PMID: 33607524 DOI: 10.1016/j.tice.2021.101504] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases are one of the main concerns, nowadays causing a high rate of mortality in the world. The majority of conventional treatment protects the heart from failure progression. As a novel therapeutic way, Regenerative medicine in the heart includes cellular and noncellular approaches. Despite the irrefutable privileges of noncellular aspects such as administration of exosomes, utilizing of miRNAs, and growth factors, they cannot reverse necrotic or ischemic myocardium, hence recruiting of stem cells to help regenerative therapy in the heart seems indispensable. Stem cell lineages are varied and divided into two main groups namely pluripotent and adult stem cells. Not only has each of which own regenerative capacity, benefits, and drawbacks, but their turnover also close correlates with the target organ and/or tissue as well as the stage and level of failure. In addition to inefficient tissue integration due to the defects in delivering methods and poor retention of transplanted cells, the complexity of the heart and its movement also make more rigorous the repair process. Hence, utilizing biomaterials can make a key route to tackle such obstacles. In this review, we evaluate some natural products which can help stem cells in regenerative medicine of the cardiovascular system.
Collapse
Affiliation(s)
- Mohammad Reza Hashemzadeh
- Department of Stem Cells and Regenerative Medicine, Royesh Stem Cell Biotechnology Institute, Mashhad, Iran; Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Shen J, Chen B, Zhai X, Qiao W, Wu S, Liu X, Zhao Y, Ruan C, Pan H, Chu PK, Cheung KM, Yeung KW. Stepwise 3D-spatio-temporal magnesium cationic niche: Nanocomposite scaffold mediated microenvironment for modulating intramembranous ossification. Bioact Mater 2020; 6:503-519. [PMID: 32995676 PMCID: PMC7492774 DOI: 10.1016/j.bioactmat.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022] Open
Abstract
The fate of cells and subsequent bone regeneration is highly correlated with temporospatial coordination of chemical, biological, or physical cues within a local tissue microenvironment. Deeper understanding of how mammalian cells react to local tissue microenvironment is paramount important when designing next generation of biomaterials for tissue engineering. This study aims to investigate that the regulation of magnesium cationic (Mg2+) tissue microenvironment is able to convince early-stage bone regeneration and its mechanism undergoes intramembranous ossification. It was discovered that moderate Mg2+ content niche (~4.11 mM) led to superior bone regeneration, while Mg2+-free and strong Mg2+ content (~16.44 mM) discouraged cell adhesion, proliferation and osteogenic differentiation, thereby bone formation was rarely found. When magnesium ions diffused into free Mg zone from concentrated zone in late time point, new bone formation on free Mg zone became significant through intramembranous ossification. This study successfully demonstrates that magnesium cationic microenvironment serves as an effective biochemical cue and is able to modulate the process of bony tissue regeneration. The knowledge of how a Mg2+ cationic microenvironment intertwines with cells and subsequent bone formation gained from this study may provide a new insight to develop the next generation of tissue-repairing biomaterials. Regulation of Mg2+ concertation in tissue microenvironment can convince early-stage bone regeneration. Samples without and with strong Mg2+ microenvironments (16.44 mM) suppressed the osteogenic differentiation. When Mg2+ diffused into free Mg zone from concentrated zone over time, bone formation over free Mg zone becomes significant. Bone defect repair through intramembranous ossification was promoted by 3D-scaffold-created moderate Mg2+ microenvironment.
Collapse
Affiliation(s)
- Jie Shen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xinyun Zhai
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Wei Qiao
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, China
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, China
| | - Ying Zhao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Changshun Ruan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science & Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kenneth M.C. Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kelvin W.K. Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, the University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Nanoengineering in Cardiac Regeneration: Looking Back and Going Forward. NANOMATERIALS 2020; 10:nano10081587. [PMID: 32806691 PMCID: PMC7466652 DOI: 10.3390/nano10081587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM). The interaction of relevant stem, precursor, and differentiated cardiac cells with nanoengineered scaffolds is thoroughly presented. Another correspondingly relevant area of experimental study enclosing both nanotechnology and cardiac regeneration, e.g., nanoparticle applications in cardiac tissue engineering, is also discussed.
Collapse
|
14
|
Liew LC, Ho BX, Soh BS. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res Ther 2020; 11:138. [PMID: 32216837 PMCID: PMC7098097 DOI: 10.1186/s13287-020-01648-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
The versatility of pluripotent stem cells, attributable to their unlimited self-renewal capacity and plasticity, has sparked a considerable interest for potential application in regenerative medicine. Over the past decade, the concept of replenishing the lost cardiomyocytes, the crux of the matter in ischemic heart disease, with pluripotent stem cell-derived cardiomyocytes (PSC-CM) has been validated with promising pre-clinical results. Nevertheless, clinical translation was hemmed in by limitations such as immature cardiac properties, long-term engraftment, graft-associated arrhythmias, immunogenicity, and risk of tumorigenicity. The continuous progress of stem cell-based cardiac therapy, incorporated with tissue engineering strategies and delivery of cardio-protective exosomes, provides an optimistic outlook on the development of curative treatment for heart failure. This review provides an overview and current status of stem cell-based therapy for heart regeneration, with particular focus on the use of PSC-CM. In addition, we also highlight the associated challenges in clinical application and discuss the potential strategies in developing successful cardiac-regenerative therapy.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
15
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB, Zhou SY. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology 2019; 17:18. [PMID: 30683110 PMCID: PMC6346555 DOI: 10.1186/s12951-019-0451-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclosporin A (CsA) is a promising therapeutic drug for myocardial ischemia reperfusion injury (MI/RI) because of its definite inhibition to the opening of mitochondrial permeability transition pore (mPTP). However, the application of cyclosporin A to treat MI/RI is limited due to its immunosuppressive effect to other normal organ and tissues. SS31 represents a novel mitochondria-targeted peptide which can guide drug to accumulate into mitochondria. In this paper, mitochondria-targeted nanoparticles (CsA@PLGA-PEG-SS31) were prepared to precisely deliver cyclosporin A into mitochondria of ischemic cardiomyocytes to treat MI/RI. RESULTS CsA@PLGA-PEG-SS31 was prepared by nanoprecipitation. CsA@PLGA-PEG-SS31 showed small particle size (~ 50 nm) and positive charge due to the modification of SS31 on the surface of nanoparticles. CsA@PLGA-PEG-SS31 was stable for more than 30 days and displayed a biphasic drug release pattern. The in vitro results showed that the intracellular uptake of CsA@PLGA-PEG-SS31 was significantly enhanced in hypoxia reoxygenation (H/R) injured H9c2 cells. CsA@PLGA-PEG-SS31 delivered CsA into mitochondria of H/R injured H9c2 cells and subsequently increased the viability of H/R injured H9c2 cell through inhibiting the opening of mPTP and production of reactive oxygen species. In vivo results showed that CsA@PLGA-PEG-SS31 accumulated in ischemic myocardium of MI/RI rat heart. Apoptosis of cardiomyocyte was alleviated in MI/RI rats treated with CsA@PLGA-PEG-SS31, which resulted in the myocardial salvage and improvement of cardiac function. Besides, CsA@PLGA-PEG-SS31 protected myocardium from damage by reducing the recruitment of inflammatory cells and maintaining the integrity of mitochondrial function in MI/RI rats. CONCLUSION CsA@PLGA-PEG-SS31 exhibited significant cardioprotective effects against MI/RI in rats hearts through protecting mitochondrial integrity, decreasing apoptosis of cardiomyocytes and myocardial infract area. Thus, CsA@PLGA-PEG-SS31 offered a promising therapeutic method for patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Chang-Xiong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Dao-Zhou Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Han Cui
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bang-le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Qi-Bing Mei
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(ε-caprolactone) Copolymer for Soft Tissue Regeneration. MATERIALS 2019; 12:ma12010150. [PMID: 30621234 PMCID: PMC6337280 DOI: 10.3390/ma12010150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022]
Abstract
Tissue regeneration necessitates the development of appropriate scaffolds that facilitate cell growth and tissue development by providing a suitable substrate for cell attachment, proliferation, and differentiation. The optimized scaffolds should be biocompatible, biodegradable, and exhibit proper mechanical behavior. In the present study, the nanomechanical behavior of a chitosan-graft-poly(ε-caprolactone) copolymer, in hydrated and dry state, was investigated and compared to those of the individual homopolymers, chitosan (CS) and poly(ε-caprolactone) (PCL). Hardness and elastic modulus values were calculated, and the time-dependent behavior of the samples was studied. Submersion of PCL and the graft copolymer in α-MEM suggested the deterioration of the measured mechanical properties as a result of the samples’ degradation. However, even after three days of degradation, the graft copolymer presented sufficient mechanical strength and elastic properties, which resemble those reported for soft tissues. The in vitro biological evaluation of the material clearly demonstrated that the CS-g-PCL copolymer supports the growth of Wharton’s jelly mesenchymal stem cells and tissue formation with a simultaneous material degradation. Both the mechanical and biological data render the CS-g-PCL copolymer appropriate as a scaffold in a cell-laden construct for soft tissue engineering.
Collapse
|
18
|
Han Y, Yang W, Cui W, Yang K, Wang X, Chen Y, Deng L, Zhao Y, Jin W. Retracted Article: Development of functional hydrogels for heart failure. J Mater Chem B 2019; 7:1563-1580. [DOI: 10.1039/c8tb02591f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogel-based approaches were reviewed for cardiac tissue engineering and myocardial regeneration in ischemia-induced heart failure, with an emphasis on functional studies, translational status, and clinical advancements.
Collapse
Affiliation(s)
- Yanxin Han
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenbo Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Ke Yang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Xiaoqun Wang
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yanjia Chen
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Yuanjin Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Shanghai Institute of Traumatology and Orthopaedics
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wei Jin
- Department of Cardiology
- Institute of Cardiovascular Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
19
|
Vozzi F, Logrand F, Cabiati M, Cicione C, Boffito M, Carmagnola I, Vitale N, Gori M, Brancaccio M, Del Ry S, Gastaldi D, Cattarinuzzi E, Vena P, Rainer A, Domenici C, Ciardelli G, Sartori S. Biomimetic engineering of the cardiac tissue through processing, functionalization, and biological characterization of polyester urethanes. ACTA ACUST UNITED AC 2018; 13:055006. [PMID: 29869614 DOI: 10.1088/1748-605x/aaca5b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties, and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and preliminary biological validation of an innovative polyester urethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by thermally induced phase separation (TIPS) from poly(ε-caprolactone) diol, 1,4-butanediisocyanate, and l-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy, and micro-tensile and compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment, and the surface treatment was studied by x-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectra, and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds, and their colonization, survival, and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cells, the structural development of the heart, and its metabolism were analyzed. PUR scaffolds showed a porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. Serine/threonine kinase (AKT) and extracellular signal-regulated kinases (ERK) phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. Real-time polymerase chain reaction analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, prepro-ET-1), hypertrophy-specific (CTGF), and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds.
Collapse
Affiliation(s)
- Federico Vozzi
- Institute of Clinical Physiology, IFC-CNR, Via Moruzzi 1, I-56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Geng X, Liu B, Liu J, Liu D, Lu Y, Sun X, Liang K, Kong B. Interfacial tissue engineering of heart regenerative medicine based on soft cell-porous scaffolds. J Thorac Dis 2018; 10:S2333-S2345. [PMID: 30123574 DOI: 10.21037/jtd.2018.01.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Myocardial infarction (MI), occurs when the coronary artery is occluded resulting in the hypoxia of areas in heart tissue, is increasing in recent years because of the population ageing and lifestyle changes. Currently, there is no ideal therapeutic scheme because of the limitation of MI therapeutic strategies due to the lack of regenerative ability of the heart cells in adult humans. Recent advances in tissue engineering and regenerative medicine brings hope to the MI therapy and current studies are focusing on restoring the function and structure of damaged tissue by delivering exogenous cells or stimulating endogenous heart cells. However, attempts to directly inject stem cells or cardiomyocytes to the infract zone often lead to rapid cell death and abundant cell loss. To address this challenge, various soft repair cells and porous scaffold materials have been integrated to improve cell retention and engraftment and preventing left ventricle (LV) dilatation. In this article, we will review the current method for heart regeneration based on soft cell-porous scaffold interfacial tissue engineering including common stem cell types, biomaterials, and cardiac patch and will discuss potential future directions in this area.
Collapse
Affiliation(s)
- Xiwen Geng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China.,National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Bing Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.,Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250014, China
| | - Jiaqing Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Dong Liu
- National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250014, China.,School of Materials Science and Engineering, Shandong University, Jinan 250014, China
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kang Liang
- School of Chemical Engineering, and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
21
|
Chen G, Fang T, Qi Y, Yin X, Di T, Feng G, Lei Z, Zhang Y, Huang Z. Combined Use of Mesenchymal Stromal Cell Sheet Transplantation and Local Injection of SDF-1 for Bone Repair in a Rat Nonunion Model. Cell Transplant 2018; 25:1801-1817. [PMID: 26883892 DOI: 10.3727/096368916x690980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone nonunion treatments pose a challenge in orthopedics. This study investigated the joint effects of using mesenchymal stem cell (MSC) sheets with local injection of stromal cell-derived factor-1 (SDF-1) on bone formation. In vitro, we found that migration of MSCs was mediated by SDF-1 in a dose-dependent manner. Moreover, stimulation with SDF-1 had no direct effect on the proliferation or osteogenic differentiation of MSCs. Furthermore, the results indicated elevated expression levels of bone morphogenetic protein 2, alkaline phosphatase, osteocalcin, and vascular endothelial growth factor in MSC sheets compared with MSCs cultured in medium. New bone formation in fractures was evaluated by X-ray, micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, Safranin-O staining, and immunohistochemistry in vivo. In the rat bone fracture model, the MSC sheets transplanted into the injured site along with injection of SDF-1 showed significantly more new bone formation within the gap. Moreover, at 8 weeks, complete bone union was obtained in this group. In contrast, the control group showed nonunion of the bone. Our study suggests a new strategy involving the use of MSC sheets with a local injection of SDF-1 for hard tissue reconstruction, such as the healing of nonunions and bone defects.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China.,Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Shanghai Medical School of Fudan University, Shanghai, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaofan Yin
- Department of Orthopedic Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Tuoyu Di
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Gang Feng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhong Lei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yuxiang Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Zhongming Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China.,Department of Orthopaedic Surgery, Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China.,Department of Orthopaedic Surgery, Xiaoshan Chinese Medical Hospital, Hangzhou, P.R. China.,Institute of Orthopaedics and Traumatology of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
22
|
Bhutani S, Nachlas ALY, Brown ME, Pete T, Johnson CT, García AJ, Davis ME. Evaluation of Hydrogels Presenting Extracellular Matrix-Derived Adhesion Peptides and Encapsulating Cardiac Progenitor Cells for Cardiac Repair. ACS Biomater Sci Eng 2017; 4:200-210. [PMID: 29457128 DOI: 10.1021/acsbiomaterials.7b00502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell therapy is an emerging paradigm for the treatment of heart disease. In spite of the exciting and promising preclinical results, the benefits of cell therapy for cardiac repair in patients have been modest at best. Biomaterials-based approaches may overcome the barriers of poor differentiation and retention of transplanted cells. In this study, we prepared and tested hydrogels presenting extracellular matrix (ECM)-derived adhesion peptides as delivery vehicles for c-kit+ cardiac progenitor cells (CPCs). We assessed their effects on cell behavior in vitro as well as cardiac repair in rats undergoing ischemia reperfusion. Hydrogels presenting the collagen-derived GFOGER peptide induced cardiomyocyte differentiation of CPCs as demonstrated by increased expression of cardiomyocyte structural proteins. However, conditioned media obtained from GFOGER hydrogels showed lower levels of secreted reparative factors. Interestingly, following injection in rats undergoing ischemia-reperfusion, treatment with CPCs encapsulated in nonadhesive RDG-presenting hydrogels resulted in the preservation of cardiac contractility and attenuation of postinfarct remodeling whereas the adhesion peptide-presenting hydrogels did not induce any functional improvement. Retention of cells was significantly higher when delivered with nonadhesive hydrogels compared to ECM-derived peptide gels. These data suggest that factors including cell differentiation state, paracrine factors and interaction with biomaterials influence the effectiveness of biomaterials-based cell therapy. A holistic consideration of these multiple variables should be included in cell-biomaterial combination therapy designs.
Collapse
Affiliation(s)
- Srishti Bhutani
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Aline L Y Nachlas
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Tionne Pete
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States
| | - Christopher T Johnson
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States
| | - Andres J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, Georgia 30322, United States.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30313, United States.,Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Room 319, Atlanta, Georgia 30322, United States.,Children's Heart Research and Outcomes Center, Children's Healthcare of Atlanta, 1760 Haygood Drive, W400, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
24
|
Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties. Sci Rep 2017; 7:4345. [PMID: 28659629 PMCID: PMC5489531 DOI: 10.1038/s41598-017-04280-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022] Open
Abstract
Conventional methods to engineer electroconductive hydrogels (ECHs) through the incorporation of conductive nanomaterials and polymers exhibit major technical limitations. These are mainly associated with the cytotoxicity, as well as poor solubility, processability, and biodegradability of their components. Here, we describe the engineering of a new class of ECHs through the functionalization of non-conductive polymers with a conductive choline-based bio-ionic liquid (Bio-IL). Bio-IL conjugated hydrogels exhibited a wide range of highly tunable physical properties, remarkable in vitro and in vivo biocompatibility, and high electrical conductivity without the need for additional conductive components. The engineered hydrogels could support the growth and function of primary cardiomyocytes in both two dimentinal (2D) and three dimensional (3D) cultures in vitro. Furthermore, they were shown to be efficiently biodegraded and possess low immunogenicity when implanted subcutaneously in rats. Taken together, our results suggest that Bio-IL conjugated hydrogels could be implemented and readily tailored to different biomedical and tissue engineering applications.
Collapse
|
25
|
Zou Q, Fu Q. Tissue engineering for urinary tract reconstruction and repair: Progress and prospect in China. Asian J Urol 2017; 5:57-68. [PMID: 29736367 PMCID: PMC5934513 DOI: 10.1016/j.ajur.2017.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/10/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Several urinary tract pathologic conditions, such as strictures, cancer, and obliterations, require reconstructive plastic surgery. Reconstruction of the urinary tract is an intractable task for urologists due to insufficient autologous tissue. Limitations of autologous tissue application prompted urologists to investigate ideal substitutes. Tissue engineering is a new direction in these cases. Advances in tissue engineering over the last 2 decades may offer alternative approaches for the urinary tract reconstruction. The main components of tissue engineering include biomaterials and cells. Biomaterials can be used with or without cultured cells. This paper focuses on cell sources, biomaterials, and existing methods of tissue engineering for urinary tract reconstruction in China. The paper also details challenges and perspectives involved in urinary tract reconstruction.
Collapse
Affiliation(s)
- Qingsong Zou
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fu
- Department of Urology, Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Wang W, Tao H, Zhao Y, Sun X, Tang J, Selomulya C, Tang J, Chen T, Wang Y, Shu M, Wei L, Yi G, Zhou J, Wei L, Wang C, Kong B. Implantable and Biodegradable Macroporous Iron Oxide Frameworks for Efficient Regeneration and Repair of Infracted Heart. Am J Cancer Res 2017. [PMID: 28638482 PMCID: PMC5479283 DOI: 10.7150/thno.16866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The construction, characterization and surgical application of a multilayered iron oxide-based macroporous composite framework were reported in this study. The framework consisted of a highly porous iron oxide core, a gelatin-based hydrogel intermediary layer and a matrigel outer cover, which conferred a multitude of desirable properties including excellent biocompatibility, improved mechanical strength and controlled biodegradability. The large pore sizes and high extent of pore interconnectivity of the framework stimulated robust neovascularization and resulted in substantially better cell viability and proliferation as a result of improved transport efficiency for oxygen and nutrients. In addition, rat models with myocardial infraction showed sustained heart tissue regeneration over the infract region and significant improvement of cardiac functions following the surgical implantation of the framework. These results demonstrated that the current framework might hold great potential for cardiac repair in patients with myocardial infraction.
Collapse
|
27
|
Yi T, Wang Q, Fan F, Fan G. An Induced Adipocyte Sheet Reduces Inflammatory Reactions During Remodeling of Xenogeneic Scaffolds In Vivo. Tissue Eng Part A 2017; 23:640-649. [PMID: 28422570 DOI: 10.1089/ten.tea.2016.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Surgical therapy of cardiovascular diseases frequently requires replacement of diseased tissues with prosthetic devices or grafts. Calcification is the main reason for the degeneration of implanted grafts. However, some factors reduce stenosis and attenuate calcification of implanted grafts. In this study, we used an autologous induced adipocyte cell-sheet (IACS) as a drug delivery system to determine whether its secretion ability has a beneficial effect on the remodeling process of grafts in a rat subcutaneous model. IACSs were generated from rat adipose tissue-derived cells that secreted abundant adiponectin (APN), hepatocyte growth factor, and vascular endothelial growth factor in vitro. Two types of grafts were used in the rat subcutaneous model: decellularized and IACS-wrapped decellularized porcine vascular grafts. Transplanted IACSs secreted APN into the decellularized porcine vascular graft in rats at 4 weeks. After explanting from the rat subcutaneous model at 1, 2, 4, and 8 weeks, immunofluorescence staining showed that IACS-wrapped grafts had a dominant M2 phenotype of macrophages (p < 0.001) at all time points and showed constructive remodeling and less calcification at 8 weeks. The decellularized graft showed a predominately CCR7+ cell response (M1 phenotype) (p < 0.001) and was characterized by chronic inflammation and severe calcification at 8 weeks. Furthermore, the IACS-wrapped side of the graft showed less cell infiltration compared with the other side, which may have reduced inflammation in the area. Transplantation of IACSs with a biological scaffold had a profound influence on the macrophage phenotype and downstream remodeling processes. The method might reduce inflammatory reactions during remodeling of xenogeneic scaffolds and result in less calcification.
Collapse
Affiliation(s)
- Tong Yi
- 1 Department of Congenital Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiang Wang
- 1 Department of Congenital Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Fan
- 1 Department of Congenital Heart Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Gouhui Fan
- 2 Division of Prevention and Community Health, Fuwai Hospital, National Center for Cardiovascular Disease , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
28
|
RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother 2017; 89:297-304. [PMID: 28236703 DOI: 10.1016/j.biopha.2017.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CONTEXT Puerarin has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, its rapid elimination half-life in plasma and poor water solubility limits its clinical efficacy. OBJECTIVE RGD modified and PEGylated solid lipid nanoparticles loaded with puerarin (RGD/PEG-PUE-SLN) were developed to improve bioavailability of PUE, to prolong retention time in vivo and to enhance its protective effect on acute myocardial ischemia model. METHODS In the present study, RGD-PEG-DSPE was synthesized. RGD/PEG-PUE-SLN were prepared by the solvent evaporation method with some modifications. The physicochemical properties of NPs were characterized, the pharmacokinetics, biodistribution, pharmacodynamic behavior of RGD/PEG-PUE-SLN were evaluated in acute MI rats. RESULTS The mean diameter, zeta potential, entrapment efficiency and drug loading capacity for RGD/PEG-PUE-SLN were observed as 110.5nm, -26.2mV, 85.7% and 16.5% respectively. PUE from RGD/PEG-PUE-SLN exhibited sustained drug release with a burst release during the initial 12h and a followed sustained release. Pharmacokinetics results indicated that AUC increased from 52.93 (μg/mLh) for free PUE to 176.5 (μg/mLh) for RGD/PEG-PUE-SLN. Similarly, T1/2 increased from 0.73h for free PUE to 2.62h for RGD/PEG-PUE-SLN. RGD/PEG-PUE-SLN exhibited higher drug concentration in the heart and plasma compared with other PUE formulations. It can be clearly seen that the infarct size of RGD/PEG-PUE-SLN is the lowest among all the formulation. CONCLUSION We conclude that RGD modified and PEGylated SLN are promising candidate delivery vehicles for cardioprotective drugs in treatment of myocardial infarction.
Collapse
|
29
|
Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-Enabled Approaches for Stem Cell-Based Cardiac Tissue Engineering. Adv Healthc Mater 2016; 5:1533-53. [PMID: 27199266 DOI: 10.1002/adhm.201600088] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/01/2016] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are the most prevalent causes of mortality in the world, putting a major economic burden on global healthcare system. Tissue engineering strategies aim at developing efficient therapeutic approaches to overcome the current challenges in prolonging patients survival upon cardiac diseases. The integration of advanced biomaterials and stem cells has offered enormous promises for regeneration of damaged myocardium. Natural or synthetic biomaterials have been extensively used to deliver cells or bioactive molecules to the site of injury in heart. Additionally, nano-enabled approaches (e.g., nanomaterials, nanofeatured surfaces) have been instrumental in developing suitable scaffolding biomaterials and regulating stem cells microenvironment to achieve functional therapeutic outcomes. This review article explores tissue engineering strategies, which have emphasized on the use of nano-enabled approaches in combination with stem cells for regeneration and repair of injured myocardium upon myocardial infarction (MI). Primarily a wide range of biomaterials, along with different types of stem cells, which have utilized in cardiac tissue engineering will be presented. Then integration of nanomaterials and surface nanotopographies with biomaterials and stem cells for myocardial regeneration will be presented. The advantages and challenges of these approaches will be reviewed and future perspective will be discussed.
Collapse
Affiliation(s)
- Mahshid Kharaziha
- Biomaterials Research Group; Department of Materials Engineering; Isfahan University of Technology; Isfahan 8415683111 Iran
| | - Adnan Memic
- Center of Nanotechnology; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| | - Mohsen Akbari
- Department of Mechanical Engineering; University of Victoria; Victoria BC Canada
| | - David A. Brafman
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE) Harington; Bioengineering Program; Arizona State University; Tempe Arizona 85287 USA
| |
Collapse
|
30
|
Madl CM, Katz LM, Heilshorn SC. Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3612-3620. [PMID: 27642274 PMCID: PMC5019573 DOI: 10.1002/adfm.201505329] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.
Collapse
Affiliation(s)
| | - Lily M. Katz
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Kim JH, Park Y, Jung Y, Kim SH, Kim SH. Combinatorial therapy with three-dimensionally cultured adipose-derived stromal cells and self-assembling peptides to enhance angiogenesis and preserve cardiac function in infarcted hearts. J Tissue Eng Regen Med 2016; 11:2816-2827. [PMID: 27256923 DOI: 10.1002/term.2181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/24/2022]
Abstract
Even though stem cell therapy is a promising angiogenic strategy to treat ischaemic diseases, including myocardial infarction (MI), therapeutic efficacy is limited by low survival and retention of transplanted cells in ischaemic tissues. In addition, therapeutic angiogenesis depends on stimulating host angiogenesis with paracrine factors released by transplanted cells rather than on direct blood vessel formation by transplanted cells. In the present study, to overcome these limitations and to enhance the therapeutic efficacy of MI treatment, combinatorial therapy with three-dimensional cell masses (3DCMs) and self-assembling peptides (SAPs) was tested in a rat MI model. Spheroid-type 3DCMs, which are vascular differentiation-induced cells, were prepared by culturing human adipose-derived stromal cells on a fibroblast growth factor-immobilized surface. The SAPs were used as the carrier material to increase engraftment of transplanted cells. After coronary artery ligation, 3DCMs were combined with SAPs and were transplanted into ischaemic lesions. The therapeutic potential was evaluated 4 weeks after treatment. By combining 3DCMs and SAPs, survival and retention of transplanted cells increased threefold when compared with treatment with 3DCMs alone and transplanted cells established vascular networks in infarcted hearts. In addition, the size of the infarct in the 3DCM + SAP group was reduced to 6.09 ± 2.83% by the promotion of host angiogenesis and cardiac function was preserved, as demonstrated by a 54.25 ± 4.42% increase in the ejection fraction. This study indicates that combinatorial therapy with 3DCM and SAPs could be a promising strategy for therapeutic angiogenesis to treat MI. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yongdoo Park
- Korea Artificial Organ Centre, Korea University, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Youngmee Jung
- Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Soo Hyun Kim
- Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sang-Heon Kim
- Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biomedical Engineering, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Litvinov RI, Weisel JW. What Is the Biological and Clinical Relevance of Fibrin? Semin Thromb Hemost 2016; 42:333-43. [PMID: 27056152 DOI: 10.1055/s-0036-1571342] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As our knowledge of the structure and functions of fibrinogen and fibrin has increased tremendously, several key findings have given some people a superficial impression that the biological and clinical significance of these clotting proteins may be less than earlier thought. Most strikingly, studies of fibrinogen knockout mice demonstrated that many of these mice survive to weaning and beyond, suggesting that fibrin(ogen) may not be entirely necessary. Humans with afibrinogenemia also survive. Furthermore, in recent years, the major emphasis in the treatment of arterial thrombosis has been on inhibition of platelets, rather than fibrin. In contrast to the initially apparent conclusions from these results, it has become increasingly clear that fibrin is essential for hemostasis; is a key factor in thrombosis; and plays an important biological role in infection, inflammation, immunology, and wound healing. In addition, fibrinogen replacement therapy has become a preferred, major treatment for severe bleeding in trauma and surgery. Finally, fibrin is a unique biomaterial and is used as a sealant or glue, a matrix for cells, a scaffold for tissue engineering, and a carrier and/or a vector for targeted drug delivery.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Xu Y, Guan J. Biomaterial property-controlled stem cell fates for cardiac regeneration. Bioact Mater 2016; 1:18-28. [PMID: 29744392 PMCID: PMC5883968 DOI: 10.1016/j.bioactmat.2016.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction (MI) affects more than 8 million people in the United States alone. Due to the insufficient regeneration capacity of the native myocardium, one widely studied approach is cardiac tissue engineering, in which cells are delivered with or without biomaterials and/or regulatory factors to fully regenerate the cardiac functions. Specifically, in vitro cardiac tissue engineering focuses on using biomaterials as a reservoir for cells to attach, as well as a carrier of various regulatory factors such as growth factors and peptides, providing high cell retention and a proper microenvironment for cells to migrate, grow and differentiate within the scaffolds before implantation. Many studies have shown that the full establishment of a functional cardiac tissue in vitro requires synergistic actions between the seeded cells, the tissue culture condition, and the biochemical and biophysical environment provided by the biomaterials-based scaffolds. Proper electrical stimulation and mechanical stretch during the in vitro culture can induce the ordered orientation and differentiation of the seeded cells. On the other hand, the various scaffolds biochemical and biophysical properties such as polymer composition, ligand concentration, biodegradability, scaffold topography and mechanical properties can also have a significant effect on the cellular processes. Cell therapy is an attractive approach for cardiac regeneration after myocardial infarction. Biomaterials are used as cell carriers. This review highlights how biochemical and biophysical properties of biomaterials affect cell fates.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
35
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
36
|
Ong SG, Huber BC, Lee WH, Kodo K, Ebert AD, Ma Y, Nguyen PK, Diecke S, Chen WY, Wu JC. Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation 2015; 132:762-771. [PMID: 26304668 DOI: 10.1161/circulationaha.114.015231] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction. METHODS AND RESULTS Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule-based protocol. Troponin(+) iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×10(6) iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment. CONCLUSIONS Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.
Collapse
Affiliation(s)
- Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Bruno C Huber
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA.,Ludwig-Maximilians-University, Medical Department I, Campus Grosshadern, Munich, Germany
| | - Won Hee Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Yu Ma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Sebastian Diecke
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Wen-Yi Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA.,Depts of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
37
|
Gao Y, Jacot JG. Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomark Insights 2015; 10:139-46. [PMID: 26379417 PMCID: PMC4554358 DOI: 10.4137/bmi.s20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023] Open
Abstract
Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
Collapse
Affiliation(s)
- Yang Gao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeffrey G Jacot
- Department of Bioengineering, Rice University, Houston, TX, USA
- Congenital Heart Surgery Services, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
38
|
Cutts J, Nikkhah M, Brafman DA. Biomaterial Approaches for Stem Cell-Based Myocardial Tissue Engineering. Biomark Insights 2015; 10:77-90. [PMID: 26052226 PMCID: PMC4451817 DOI: 10.4137/bmi.s20313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022] Open
Abstract
Adult and pluripotent stem cells represent a ready supply of cellular raw materials that can be used to generate the functionally mature cells needed to replace damaged or diseased heart tissue. However, the use of stem cells for cardiac regenerative therapies is limited by the low efficiency by which stem cells are differentiated in vitro to cardiac lineages as well as the inability to effectively deliver stem cells and their derivatives to regions of damaged myocardium. In this review, we discuss the various biomaterial-based approaches that are being implemented to direct stem cell fate both in vitro and in vivo. First, we discuss the stem cell types available for cardiac repair and the engineering of naturally and synthetically derived biomaterials to direct their in vitro differentiation to the cell types that comprise heart tissue. Next, we describe biomaterial-based approaches that are being implemented to enhance the in vivo integration and differentiation of stem cells delivered to areas of cardiac damage. Finally, we present emerging trends of using stem cell-based biomaterial approaches to deliver pro-survival factors and fully vascularized tissue to the damaged and diseased cardiac tissue.
Collapse
Affiliation(s)
- Josh Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
39
|
Mu J, Niu H, Zhang J, Hu P, Bo P, Wang Y. Examination of bone marrow mesenchymal stem cells seeded onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) biological materials for myocardial patch. J Histotechnol 2015. [DOI: 10.1179/2046023615y.0000000006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D. Cardiac tissue engineering and regeneration using cell-based therapy. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:81-101. [PMID: 25999743 PMCID: PMC4437607 DOI: 10.2147/sccaa.s54204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy and tissue engineering represent a forefront of current research in the treatment of heart disease. With these technologies, advancements are being made into therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of the supplying vessels. The applications of these new technologies are not yet fully established as part of the management of cardiac diseases but will become so in the near future. The discussion presented here reviews some of the pioneering works at this new frontier. Key results of allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone marrow-derived, adipose-derived, and resident cardiac stem cells.
Collapse
Affiliation(s)
- Mohammad T Alrefai
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada ; Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada ; King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Divya Murali
- Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Arghya Paul
- Department of Chemical and Petroleum Engineering, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Khalid M Ridwan
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada ; Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada
| | - John M Connell
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada ; Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada ; Division of Surgical Research, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
41
|
Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S. Controlled delivery of stromal derived factor-1α from poly lactic-co-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. J Colloid Interface Sci 2015; 451:144-52. [PMID: 25897850 DOI: 10.1016/j.jcis.2015.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Stromal derived factor-1α (SDF-1α) has shown promising results in treatment of myocardial infarction (MI), via recruitment of endogenous stem cells into the injured myocardium. However, the bioactivity of this susceptible signalling chemokine is reduced significantly during the common fabrication processes of drug delivery systems, due to the exposure to organic-aqueous interfaces or elevated temperature. In this study, we developed a novel SDF-1α delivery system using coaxial electrospraying, the technique which enables fabrication of core-shell particles with minimized contact of organic-aqueous phases. The SDF-1α incorporated PLGA particles exhibited distinct core-shell structure, confirmed by transmission electron microscopy (TEM). Controlled release of SDF-1α was obtained for at least 40days, and the release rate was tailored by co-encapsulation of bovine serum albumin (BSA) into the core of the particles. The SDF-1α released from PLGA/SDF-1α and PLGA/BSA-SDF-1α particles retained its chemotactic activity, and enhanced the number of migrated mesenchymal stem cells (MSCs) by 38% and 54%, respectively, compared to basal medium used as the control. Moreover, both SDF-1α and BSA supported the proliferation of MSCs within 3days of cell culture. The SDF-1α incorporated core-shell particles developed by electrospraying technique, can be effectively employed as injectable drug delivery system for in situ cardiac regeneration.
Collapse
Affiliation(s)
- Maedeh Zamani
- Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576; Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Molamma P Prabhakaran
- Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576.
| | - Eng San Thian
- Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576; Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576
| |
Collapse
|
42
|
Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto M. Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 2015; 203:23-38. [DOI: 10.1016/j.jconrel.2015.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/24/2022]
|
43
|
Rodgers ZL, Hughes RM, Doherty LM, Shell JR, Molesky BP, Brugh AM, Forbes MDE, Moran AM, Lawrence DS. B(12)-mediated, long wavelength photopolymerization of hydrogels. J Am Chem Soc 2015; 137:3372-8. [PMID: 25697508 DOI: 10.1021/jacs.5b00182] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Medical hydrogel applications have expanded rapidly over the past decade. Implantation in patients by noninvasive injection is preferred, but this requires hydrogel solidification from a low viscosity solution to occur in vivo via an applied stimuli. Transdermal photo-cross-linking of acrylated biopolymers with photoinitiators and lights offers a mild, spatiotemporally controlled solidification trigger. However, the current short wavelength initiators limit curing depth and efficacy because they do not absorb within the optical window of tissue (600-900 nm). As a solution to the current wavelength limitations, we report the development of a red light responsive initiator capable of polymerizing a range of acrylated monomers. Photoactivation occurs within a range of skin type models containing high biochromophore concentrations.
Collapse
Affiliation(s)
- Zachary L Rodgers
- Department of Chemistry, ‡Division of Chemical Biology and Medicinal Chemistry, and § Department of Pharmacology, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yuan X, He B, Lv Z, Luo S. Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Adv 2014. [DOI: 10.1039/c4ra08582e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
45
|
Schesny MK, Monaghan M, Bindermann AH, Freund D, Seifert M, Eble JA, Vogel S, Gawaz MP, Hinderer S, Schenke-Layland K. Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials 2014; 35:7180-7. [DOI: 10.1016/j.biomaterials.2014.04.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 11/29/2022]
|
46
|
Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 2014; 10:1646-62. [PMID: 24334143 DOI: 10.1016/j.actbio.2013.12.006] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 11/28/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Alginate hydrogels are extremely versatile and adaptable biomaterials, with great potential for use in biomedical applications. Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration. A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently, which further allow their tailoring to the desired application. Additionally, their potential use as injectable materials offers several advantages over preformed scaffold-based approaches, namely: easy incorporation of therapeutic agents, such as cells, under mild conditions; minimally invasive local delivery; and high contourability, which is essential for filling in irregular defects. Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs. Here, the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed. In each example, the selected crosslinking approach, the cell type, the target tissue and the main findings of the study are highlighted.
Collapse
Affiliation(s)
- Sílvia J Bidarra
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| | - Pedro L Granja
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
47
|
Targeting extracellular DNA to deliver IGF-1 to the injured heart. Sci Rep 2014; 4:4257. [PMID: 24604065 PMCID: PMC3945489 DOI: 10.1038/srep04257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 02/13/2014] [Indexed: 02/08/2023] Open
Abstract
There is a great need for the development of therapeutic strategies that can target biomolecules to damaged myocardium. Necrosis of myocardium during a myocardial infarction (MI) is characterized by extracellular release of DNA, which can serve as a potential target for ischemic tissue. Hoechst, a histological stain that binds to double-stranded DNA can be conjugated to a variety of molecules. Insulin-like growth factor-1 (IGF-1), a small protein/polypeptide with a short circulating-half life is cardioprotective following MI but its clinical use is limited by poor delivery, as intra-myocardial injections have poor retention and chronic systemic presence has adverse side effects. Here, we present a novel delivery vehicle for IGF-1, via its conjugation to Hoechst for targeting infarcted tissue. Using a mouse model of ischemia-reperfusion, we demonstrate that intravenous delivery of Hoechst-IGF-1 results in activation of Akt, a downstream target of IGF-1 and protects from cardiac fibrosis and dysfunction following MI.
Collapse
|
48
|
Ceccaldi C, Bushkalova R, Alfarano C, Lairez O, Calise D, Bourin P, Frugier C, Rouzaud-Laborde C, Cussac D, Parini A, Sallerin B, Fullana SG. Evaluation of polyelectrolyte complex-based scaffolds for mesenchymal stem cell therapy in cardiac ischemia treatment. Acta Biomater 2014; 10:901-11. [PMID: 24211733 DOI: 10.1016/j.actbio.2013.10.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/20/2013] [Accepted: 10/25/2013] [Indexed: 11/15/2022]
Abstract
Three-dimensional (3D) scaffolds hold great potential for stem cell-based therapies. Indeed, recent results have shown that biomimetic scaffolds may enhance cell survival and promote an increase in the concentration of therapeutic cells at the injury site. The aim of this work was to engineer an original polymeric scaffold based on the respective beneficial effects of alginate and chitosan. Formulations were made from various alginate/chitosan ratios to form opposite-charge polyelectrolyte complexes (PECs). After freeze-drying, the resultant matrices presented a highly interconnected porous microstructure and mechanical properties suitable for cell culture. In vitro evaluation demonstrated their compatibility with mesenchymal stell cell (MSC) proliferation and their ability to maintain paracrine activity. Finally, the in vivo performance of seeded 3D PEC scaffolds with a polymeric ratio of 40/60 was evaluated after an acute myocardial infarction provoked in a rat model. Evaluation of cardiac function showed a significant increase in the ejection fraction, improved neovascularization, attenuated fibrosis as well as less left ventricular dilatation as compared to an animal control group. These results provide evidence that 3D PEC scaffolds prepared from alginate and chitosan offer an efficient environment for 3D culturing of MSCs and represent an innovative solution for tissue engineering.
Collapse
Affiliation(s)
- Caroline Ceccaldi
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France; INSERM, UMR 1048, F-31432 Toulouse, France.
| | - Raya Bushkalova
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France; INSERM, UMR 1048, F-31432 Toulouse, France
| | | | | | | | - Philippe Bourin
- EFS, Laboratoire de thérapie cellulaire, F-31027 Toulouse, France
| | | | - Charlotte Rouzaud-Laborde
- INSERM, UMR 1048, F-31432 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Daniel Cussac
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France
| | - Angelo Parini
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Brigitte Sallerin
- INSERM, UMR 1048, F-31432 Toulouse, France; Université de Toulouse, UPS, Faculté des Sciences Pharmaceutiques, F-31062 Toulouse, France; CHU Toulouse, Service de Pharmacie Hospitalière, F-31432 Toulouse, France
| | - Sophie Girod Fullana
- Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, F-31062 Toulouse, France
| |
Collapse
|
49
|
Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 2014; 15:635-43. [PMID: 24417502 PMCID: PMC3983145 DOI: 10.1021/bm401679q] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
In this work, carbon nanofibers were
used as doping material to
develop a highly conductive chitosan-based composite. Scaffolds based
on chitosan only and chitosan/carbon composites were prepared by precipitation.
Carbon nanofibers were homogeneously dispersed throughout the chitosan
matrix, and the composite scaffold was highly porous with fully interconnected
pores. Chitosan/carbon scaffolds had an elastic modulus of 28.1 ±
3.3 KPa, similar to that measured for rat myocardium, and excellent
electrical properties, with a conductivity of 0.25 ± 0.09 S/m.
The scaffolds were seeded with neonatal rat heart cells and cultured
for up to 14 days, without electrical stimulation. After 14 days of
culture, the scaffold pores throughout the construct volume were filled
with cells. The metabolic activity of cells in chitosan/carbon constructs
was significantly higher as compared to cells in chitosan scaffolds.
The incorporation of carbon nanofibers also led to increased expression
of cardiac-specific genes involved in muscle contraction and electrical
coupling. This study demonstrates that the incorporation of carbon
nanofibers into porous chitosan scaffolds improved the properties
of cardiac tissue constructs, presumably through enhanced transmission
of electrical signals between the cells.
Collapse
Affiliation(s)
- Ana M Martins
- Department of Biomedical Engineering, Columbia University , New York, New York 10032, United States
| | | | | | | | | | | |
Collapse
|
50
|
McCormick AM, Jarmusik NA, Endrizzi EJ, Leipzig ND. Expression, isolation, and purification of soluble and insoluble biotinylated proteins for nerve tissue regeneration. J Vis Exp 2014:e51295. [PMID: 24513608 PMCID: PMC4089494 DOI: 10.3791/51295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recombinant protein engineering has utilized Escherichia coli (E. coli) expression systems for nearly 4 decades, and today E. coli is still the most widely used host organism. The flexibility of the system allows for the addition of moieties such as a biotin tag (for streptavidin interactions) and larger functional proteins like green fluorescent protein or cherry red protein. Also, the integration of unnatural amino acids like metal ion chelators, uniquely reactive functional groups, spectroscopic probes, and molecules imparting post-translational modifications has enabled better manipulation of protein properties and functionalities. As a result this technique creates customizable fusion proteins that offer significant utility for various fields of research. More specifically, the biotinylatable protein sequence has been incorporated into many target proteins because of the high affinity interaction between biotin with avidin and streptavidin. This addition has aided in enhancing detection and purification of tagged proteins as well as opening the way for secondary applications such as cell sorting. Thus, biotin-labeled molecules show an increasing and widespread influence in bioindustrial and biomedical fields. For the purpose of our research we have engineered recombinant biotinylated fusion proteins containing nerve growth factor (NGF) and semaphorin3A (Sema3A) functional regions. We have reported previously how these biotinylated fusion proteins, along with other active protein sequences, can be tethered to biomaterials for tissue engineering and regenerative purposes. This protocol outlines the basics of engineering biotinylatable proteins at the milligram scale, utilizing a T7 lac inducible vector and E. coli expression hosts, starting from transformation to scale-up and purification.
Collapse
|