1
|
Isoda R, Morita I, Isida A, Mikami Y, Monobe Y, Sato Y, Moriya T. Pathological Study on the Expression of Vasohibins in Peripheral Artery Disease. TOHOKU J EXP MED 2022; 258:121-128. [PMID: 35922907 DOI: 10.1620/tjem.2022.j063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ryutaro Isoda
- Department of Pathology, Kawasaki Medical School.,Department of Surgery, Kawasaki Medical School General Medical Center
| | - Ichiro Morita
- Department of Surgery, Kawasaki Medical School General Medical Center
| | - Atsuhisa Isida
- Department of Surgery, Kawasaki Medical School General Medical Center
| | - Yuka Mikami
- Department of Pathology, Kawasaki Medical School
| | | | - Yasufumi Sato
- New Industry Creation Hatchery Center, Tohoku University
| | | |
Collapse
|
2
|
Nagashima D, Furukawa M, Yamano Y, Yamauchi T, Okubo S, Toho M, Ito Y, Izumo N. Zinc-containing Mohs' paste affects blood flow and angiogenesis suppression. ACTA ACUST UNITED AC 2021; 29:321-328. [PMID: 34417987 DOI: 10.1007/s40199-021-00409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Mohs' paste, which is composed of zinc chloride and zinc oxide starch, is used for hemostasis of superficial malignancy in the clinical setting. We investigated the concentration of intramuscular zinc in mice after Mohs' paste application and evaluated its relationship with angiogenesis from the perspective of blood flow levels within 24 h. METHODS Male C57BL/6JJmsSlc mice were administered single dose of Mohs' paste at 25%, 50%, and 75% after unilateral hind limb surgery, and glycerin, a viscosity modifier, was administered to the control group (0%). Hind limb blood flow levels were measured with a laser Doppler perfusion imaging system (n = 6). The amounts of intramuscular zinc and vascular endothelial growth factor-A (VEGF-A) expression were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and western blotting, respectively (n = 5 or 3). RESULTS Blood flow levels were significantly decreased in the 50% group after 8 h, and significantly decreased in the 25% and 50% groups after 24 h. Intramuscular zinc was significantly increased in the 50% and 75% groups after 8 h. Western blotting showed that VEGF-A levels were significantly increased in the 25% and 50% groups after 8 h. Based on analytical experiments and biological investigation, we predicated the pharmacological effect of Mohs' paste and found over 50% of it is critical in the blood flow and angiogenesis suppression after more than 8 h of its application. CONCLUSIONS The results suggest that the mechanism of blood flow suppression is independent of VEGF-A levels and might suppress future angiogenesis. Our findings support that of previous studies, in which Mohs' paste was expected to induce hemostasis and suppress angiogenesis. It is an excellent ointment that facilitates hemostasis by suppressing blood flow regardless of angiogenesis, and may be apt for situations where hemostasis is required in the clinical setting.
Collapse
Affiliation(s)
- Daichi Nagashima
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan.,General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Megumi Furukawa
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Yuko Yamano
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Takenori Yamauchi
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Shigeko Okubo
- Department of Hygiene and Preventive Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Toho
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Yoshihisa Ito
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan. .,Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0066, Japan.
| |
Collapse
|
3
|
Chen DY, Sawamura T, Dixon RAF, Sánchez-Quesada JL, Chen CH. Autoimmune Rheumatic Diseases: An Update on the Role of Atherogenic Electronegative LDL and Potential Therapeutic Strategies. J Clin Med 2021; 10:1992. [PMID: 34066436 PMCID: PMC8124242 DOI: 10.3390/jcm10091992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis has been linked with an increased risk of atherosclerotic cardiovascular disease (ASCVD). Autoimmune rheumatic diseases (AIRDs) are associated with accelerated atherosclerosis and ASCVD. However, the mechanisms underlying the high ASCVD burden in patients with AIRDs cannot be explained only by conventional risk factors despite disease-specific factors and chronic inflammation. Nevertheless, the normal levels of plasma low-density lipoprotein (LDL) cholesterol observed in most patients with AIRDs do not exclude the possibility of increased LDL atherogenicity. By using anion-exchange chromatography, human LDL can be divided into five increasingly electronegative subfractions, L1 to L5, or into electropositive and electronegative counterparts, LDL (+) and LDL (-). Electronegative L5 and LDL (-) have similar chemical compositions and can induce adverse inflammatory reactions in vascular cells. Notably, the percentage of L5 or LDL (-) in total LDL is increased in normolipidemic patients with AIRDs. Electronegative L5 and LDL (-) are not recognized by the normal LDL receptor but instead signal through the lectin-like oxidized LDL receptor 1 (LOX-1) to activate inflammasomes involving interleukin 1β (IL-1β). Here, we describe the detailed mechanisms of AIRD-related ASCVD mediated by L5 or LDL (-) and discuss the potential targeting of LOX-1 or IL-1β signaling as new therapeutic modalities for these diseases.
Collapse
Affiliation(s)
- Der-Yuan Chen
- Translational Medicine Center, China Medical University Hospital, Taichung 404, Taiwan;
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Richard A. F. Dixon
- Molecular Cardiology Research Laboratories, Texas Heart Institute, Houston, TX 77030, USA;
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Biomedical Research Institute IIB Sant Pau, 08041 Barcelona, Spain;
- CIBER of Diabetes and Metabolic Diseases (CIBERDEM), 08041 Barcelona, Spain
| | - Chu-Huang Chen
- Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA
- New York Heart Research Foundation, Mineola, NY 11501, USA
| |
Collapse
|
4
|
Suzuki S, Mori A, Fukui A, Ema Y, Nishiwaki K. Lidocaine inhibits vascular endothelial growth factor-A-induced angiogenesis. J Anesth 2020; 34:857-864. [PMID: 32734387 DOI: 10.1007/s00540-020-02830-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Angiogenesis is closely related to the pathophysiology of diseases such as cancer or ischemia. Here, we investigated the effect of lidocaine at clinically effective blood concentrations on vascular endothelial growth factor A (VEGF-A)-induced angiogenesis. In addition, we aimed to clarify the mechanisms by which lidocaine could inhibit angiogenesis. METHODS Angiogenesis was analyzed using commercially available in vitro assay kits in human umbilical vein endothelial cells (HUVECs)/normal human dermal fibroblast co-culture systems. The effects of lidocaine on cytotoxicity, VEGF-induced cell migration, and VEGF-induced cell proliferation were examined in HUVECs using lactate dehydrogenase cytotoxic, Boyden chamber, and WST-8 assays, respectively. The VEGF signaling pathway via VEGF receptor 2 (VEGFR-2) was analyzed by western blotting. RESULTS Lidocaine elicited a significant dose-dependent, angiogenesis-inhibitory effect at a concentration range of 1-10 μg/ml. At this concentration range, cell death was not observed. Lidocaine, at a concentration of 10 μg/ml, significantly inhibited cell proliferation but not cell migration, induced by VEGF-A in HUVECs. Furthermore, lidocaine, in a dose-dependent manner, significantly inhibited the VEGF-A-induced phosphorylation of VEGFR-2 at 3 and 10 μg/ml. CONCLUSION We demonstrated that lidocaine has an anti-angiogenesis effect on clinically effective blood concentrations without causing cell death. This finding could represent a new avenue for future research into anesthesia, cancer-related analgesia, and revascularization therapy.
Collapse
Affiliation(s)
- Shogo Suzuki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Mori
- Department of Perioperative Management System, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Aya Fukui
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yoshiaki Ema
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kimitoshi Nishiwaki
- Department of Anesthesiology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
5
|
Basic J, Stojkovic S, Assadian A, Rauscher S, Duschek N, Kaun C, Wojta J, Falkensammer J. The Relevance of Vascular Endothelial Growth Factor, Hypoxia Inducible Factor-1 Alpha, and Clusterin in Carotid Plaque Instability. J Stroke Cerebrovasc Dis 2019; 28:1540-1545. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 03/03/2019] [Indexed: 10/27/2022] Open
|
6
|
Analysis of interleukin-17 and interleukin-18 levels in animal models of atherosclerosis. Exp Ther Med 2019; 18:517-522. [PMID: 31281442 PMCID: PMC6580100 DOI: 10.3892/etm.2019.7634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
This study investigated the correlation between the levels of interleukin (IL)-17 and IL-18 and atherosclerotic plaques. A total of 60 Apo E gene (Apo E-/-) mice were fed with high-fat diet in the model group and 20 wild male C57BL/6 mice were fed with the basic diet in the control group. The serum levels of IL-17 and IL-18 were determined by enzyme-linked immunosorbent assay. Carotid artery ultrasonography was performed and divided into stable plaque, unstable plaque and non-plaque groups. The severity of plaque was estimated by semi-quantitative method and divided into grades I, II and III. The expression levels of low-density lipoprotein cholesterol, plasma total cholesterol and blood glucose level in the model group induced by high-fat diet were significantly higher than those in the control group (P<0.05). The level in the model group was significantly higher than in the control group at the 16th week (P<0.05). The expression of IL-17 and IL-18 in the model group was significantly higher than that in the control group (t=6.903, 11.02, P<0.05). The concentration of IL-17 and IL-18 in the non-plaque group was significantly lower than that in the stable plaque and unstable plaque groups (P<0.05). The concentration of IL-17 and IL-18 in the stable plaque group was significantly lower than that in the unstable plaque group (P<0.05). Based on the correlation of IL-17 and IL-18 expressions in the model group, the expression of IL-18 increased with the expression of IL-17, indicating that the expression of IL-17 was positively correlated with that of IL-18 (r=0.7195, P<0.001). In conclusion, serum IL-17 and IL-18 played an important role in the formation and development of atherosclerotic plaque, and were related to the stability and severity of plaque. The expression of IL-17 and IL-18 was positively correlated.
Collapse
|
7
|
CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway. Arch Biochem Biophys 2016; 609:31-38. [PMID: 27619643 DOI: 10.1016/j.abb.2016.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/14/2016] [Accepted: 09/08/2016] [Indexed: 11/23/2022]
Abstract
Intraplaque angiogenesis has been recognized as an important risk factor for the rupture of advanced atherosclerotic plaques in recent years. CD147, also called Extracellular Matrix Metalloproteinase Inducer, has been found the ability to promote angiogenesis in many pathological conditions such as cancer diseases and rheumatoid arthritis via the up-regulation of vascular endothelial growth factor (VEGF), a critical mediator of angiogenesis. We investigated whether CD147 would also induce the up-regulation of VEGF in the foam cells formation process and explored the probable signaling pathway. The results showed the expression of CD147 and VEGF was significantly higher in U937-derived foam cells. After CD147 stealth siRNA transfection treatment, the production of VEGF was reduced depended on the inhibition efficiency of CD147 siRNAs.The special signaling pathway inhibitors LY294002, SP600125, SB203580 and U0126 were added to cultures respectively and the results showed LY294002 dose-dependently inhibited the expression of VEGF. The reduction of phospho-Akt was observed in both LY294002 and siRNA groups, suggested that the phosphatidylinositol 3-kinase/Akt pathway may be the probable signaling pathway underlying CD147 induced up-regulation of VEGF in U937-derived foam cells.
Collapse
|
8
|
Zimmermann A, Senner S, Eckstein HH, Pelisek J. Histomorphological evaluation of atherosclerotic lesions in patients with peripheral artery occlusive disease. Adv Med Sci 2015; 60:236-9. [PMID: 25925508 DOI: 10.1016/j.advms.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Peripheral arterial occlusive disease (PAOD) is mainly caused by atherosclerosis of the vessel wall. These pathological changes are classified into different stages and are well described for carotid and coronary vessels, but not for PAOD. The aim of our study was to analyze plaque morphology of femoral arteries in patients with intermittent claudication and critical limb ischemia. PATIENTS AND METHODS In this retrospective study 85 atherosclerotic plaques (common and superficial femoral artery) of 71 patients with a clinical symptomatic PAOD were analyzed, by histology (01/2009-07/2010). Atherosclerotic lesions were classified according to Stary (type I-VIII). For further characterization, plaques were evaluated for the presence of collagen, elastin, calcifications, smooth muscle cells, macrophages, leucocytes, and cellularity. RESULTS The majority (91%) of atherosclerotic lesions were of advanced types according to Stary (V-VII). Atherosclerotic lesion type VI was associated with significant higher amount of inflammatory cells in comparison to all other atherosclerotic plaque types (CD45: p<0.001; CD68: p=0.013). In addition, atherosclerotic plaques with a pronounced neovascularization contained a higher amount of CD45 (p=0.015; rho=0.273) and CD68 (p=0.016; rho=0.275) positive cells. CONCLUSION Atherosclerotic lesions of femoral arteries show similar morphological changes as coronary or carotid arteries. But inflammatory cells had a higher impact on plaque progression and destabilization than any other factor.
Collapse
Affiliation(s)
- Alexander Zimmermann
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | - Simon Senner
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Jaroslav Pelisek
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
9
|
Dworacka M, Iskakova S, Krzyżagórska E, Wesołowska A, Kurmambayev Y, Dworacki G. Alpha-lipoic acid modifies circulating angiogenic factors in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2015; 107:273-9. [PMID: 25511715 DOI: 10.1016/j.diabres.2014.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/08/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022]
Abstract
AIMS In recent years interest has been focused on angiogenesis as a process involved in coronary artery disease (CAD) and diabetic distal sensorimotor polyneuropathy (DSPN). Recent studies have demonstrated the possible angiogenesis-modulating potential of alpha-lipoic acid (ALA) for DSPN and CAD. The aim of our study was to investigate the influence of ALA on serum angiogenic factors in patients with DM-2 (type 2 diabetes) with CAD and DSPN. METHODS Sixty patients with type 2 DM (T2DM) and CAD and 25 non-diabetic subjects were studied. Thirty patients with T2DM, CAD and DSPN were given 600 mg of ALA a day for 90 days. VEGF, bFGF, MCP-1, angiogenin, IL-12 and IL-10 concentrations in the sera were measured by flow cytometry. RESULTS ALA significantly increased VEGF, bFGF and IL-10 and decreased MCP-1 serum concentrations in patients with T2DM and CAD and DSPN. VEGF and IL-10 serum levels, both before and after ALA-treatment, were higher in this group than in T2DM and CAD patients, while circulating bFGF was higher and MCP-1 serum level lower in patients with T2DM and CAD and DSPN only in the post-ALA-treatment, compared to the T2DM and CAD group. CONCLUSIONS ALA may influence angiogenesis in type 2 diabetic patients through an effect on some circulating factors including VEGF, bFGF, MCP-1 and IL-10.
Collapse
Affiliation(s)
- Marzena Dworacka
- Department of Pharmacology, Poznan University of Medical Sciences, Poznań, Poland.
| | - Saule Iskakova
- Department of Pharmacology, West Kazakhstan State Medical University, Aktobe, Kazakhstan
| | - Ewa Krzyżagórska
- Poznan Specialist Center of Medical Care, Diabetology Out-patient Clinic, Poznań, Poland
| | - Anna Wesołowska
- Department of Pharmacology, Poznan University of Medical Sciences, Poznań, Poland
| | - Yergen Kurmambayev
- Department of Pharmacology, West Kazakhstan State Medical University, Aktobe, Kazakhstan
| | - Grzegorz Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
10
|
Dworacka M, Krzyżagórska E, Wesołowska A, Zharmakhanova G, Iskakova S, Dworacki G. Circulating monocyte chemotactic protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1) and angiogenin in type 2 diabetic patients treated with statins in low doses. Eur J Pharmacol 2014; 740:474-9. [PMID: 24991787 DOI: 10.1016/j.ejphar.2014.06.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/29/2023]
Abstract
Statins are known as agents promoting a biphasic dose-dependent effect on angiogenesis under experimental conditions. Dysregulation of angiogenesis plays an important role in the development of atherosclerosis and it may be affected by metabolic factors. The aim of this research was to explain how low doses of statins modify serum concentrations of pro-angiogenic factors MCP-1 and angiogenin in type 2 diabetic patients. Measurements of metabolic control parameters were performed in 30 patients with type 2 diabetes treated with low doses of statin, and in 34 statin-free patients with type 2 diabetes. The serum levels of MCP-1 and VCAM-1 in statin-treated patients were lower than those of the statin-free group. ANCOVA results revealed that these effects were dependent only on the use of statins. In type 2 diabetic subjects, overall positive correlation was found between total cholesterol or LDL serum concentration and MCP-1 serum level. The angiogenin concentration in the serum did not show differences and was comparable in both groups. The angiogenin serum level correlated negatively with HDL, LDL and with HbA1c. Multivariate regression analysis indicated that angiogenin serum levels in type 2 diabetic patients were determined mainly by HbA1c, HDL-cholesterol and diabetes duration. It has been shown that statins used in low doses in type 2 diabetic subjects decrease MCP-1 and VCAM-1serum levels, most likely due to the statins-related effect on the lipid profile, while angiogenin serum levels in this group are determined rather by the current metabolic control.
Collapse
Affiliation(s)
- Marzena Dworacka
- Department of Pharmacology Poznan University of Medical Sciences, Rokietnicka 5a, 60-805 Poznań, Poland.
| | - Ewa Krzyżagórska
- Poznan Specialist Center of Medical Care, Diabetology Out-patient Clinic, Poznan, Poland.
| | - Anna Wesołowska
- Department of Pharmacology Poznan University of Medical Sciences, Rokietnicka 5a, 60-805 Poznań, Poland.
| | - Gulmira Zharmakhanova
- Department of Pharmacology, West Kazakhstan State Medical University, Maresev str. 68, Aktobe, Kazakhstan.
| | - Saule Iskakova
- Department of Pharmacology, West Kazakhstan State Medical University, Maresev str. 68, Aktobe, Kazakhstan.
| | - Grzegorz Dworacki
- Department of Clinical Immunology Poznan University of Medical Sciences, Rokietnicka 5d, 60-805 Poznan, Poland.
| |
Collapse
|
11
|
Pathophysiological Mechanisms of Carotid Plaque Vulnerability: Impact on Ischemic Stroke. Arch Immunol Ther Exp (Warsz) 2012; 60:431-42. [DOI: 10.1007/s00005-012-0192-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
|
12
|
Pelisek J, Well G, Reeps C, Rudelius M, Kuehnl A, Culmes M, Poppert H, Zimmermann A, Berger H, Eckstein HH. Neovascularization and Angiogenic Factors in Advanced Human Carotid Artery Stenosis. Circ J 2012; 76:1274-82. [DOI: 10.1253/circj.cj-11-0768] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaroslav Pelisek
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Georg Well
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Christian Reeps
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Martina Rudelius
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Andreas Kuehnl
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Mihaela Culmes
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Holger Poppert
- Institute of Neurology, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Alexander Zimmermann
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Hermann Berger
- Department of Radiology, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| | - Hans-Henning Eckstein
- Clinic of Vascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen
| |
Collapse
|
13
|
Andrikopoulos P, Fraser SP, Patterson L, Ahmad Z, Burcu H, Ottaviani D, Diss JKJ, Box C, Eccles SA, Djamgoz MBA. Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. J Biol Chem 2011; 286:16846-60. [PMID: 21385874 DOI: 10.1074/jbc.m110.187559] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and β-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCβ1, and VGSCβ3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jenkins AJ, McBride JD, Januszewski AS, Karschimkus CS, Zhang B, O'Neal DN, Nelson CL, Chung JS, Harper CA, Lyons TJ, Ma JX. Increased serum kallistatin levels in type 1 diabetes patients with vascular complications. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:19. [PMID: 20860825 PMCID: PMC2954956 DOI: 10.1186/2040-2384-2-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/22/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Kallistatin, a serpin widely produced throughout the body, has vasodilatory, anti-angiogenic, anti-oxidant, and anti-inflammatory effects. Effects of diabetes and its vascular complications on serum kallistatin levels are unknown. METHODS Serum kallistatin was quantified by ELISA in a cross-sectional study of 116 Type 1 diabetic patients (including 50 with and 66 without complications) and 29 non-diabetic controls, and related to clinical status and measures of oxidative stress and inflammation. RESULTS Kallistatin levels (mean(SD)) were increased in diabetic vs. control subjects (12.6(4.2) vs. 10.3(2.8) μg/ml, p = 0.007), and differed between diabetic patients with complications (13.4(4.9) μg/ml), complication-free patients (12.1(3.7) μg/ml), and controls; ANOVA, p = 0.007. Levels were higher in diabetic patients with complications vs. controls, p = 0.01, but did not differ between complication-free diabetic patients and controls, p > 0.05. On univariate analyses, in diabetes, kallistatin correlated with renal dysfunction (cystatin C, r = 0.28, p = 0.004; urinary albumin/creatinine, r = 0.34, p = 0.001; serum creatinine, r = 0.23, p = 0.01; serum urea, r = 0.33, p = 0.001; GFR, r = -0.25, p = 0.009), total cholesterol (r = 0.28, p = 0.004); LDL-cholesterol (r = 0.21, p = 0.03); gamma-glutamyltransferase (GGT) (r = 0.27, p = 0.04), and small artery elasticity, r = -0.23, p = 0.02, but not with HbA1c, other lipids, oxidative stress or inflammation. In diabetes, geometric mean (95%CI) kallistatin levels adjusted for covariates, including renal dysfunction, were higher in those with vs. without hypertension (13.6 (12.3-14.9) vs. 11.8 (10.5-13.0) μg/ml, p = 0.03). Statistically independent determinants of kallistatin levels in diabetes were age, serum urea, total cholesterol, SAE and GGT, adjusted r2 = 0.24, p < 0.00001. CONCLUSIONS Serum kallistatin levels are increased in Type 1 diabetic patients with microvascular complications and with hypertension, and correlate with renal and vascular dysfunction.
Collapse
Affiliation(s)
- Alicia J Jenkins
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia.,Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Jeffrey D McBride
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Andrzej S Januszewski
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Connie S Karschimkus
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Bin Zhang
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - David N O'Neal
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Craig L Nelson
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Jasmine S Chung
- University of Melbourne, Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - C Alex Harper
- University of Melbourne, Department of Ophthalmology, Melbourne, Australia
| | - Timothy J Lyons
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Harold Hamm Oklahoma Diabetes Center and Section of Endocrinology and Diabetes, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.,Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
15
|
Slevin M, Krupinski J, Badimon L. Controlling the angiogenic switch in developing atherosclerotic plaques: possible targets for therapeutic intervention. JOURNAL OF ANGIOGENESIS RESEARCH 2009; 1:4. [PMID: 19946412 PMCID: PMC2776234 DOI: 10.1186/2040-2384-1-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/21/2009] [Indexed: 11/10/2022]
Abstract
Plaque angiogenesis may have an important role in the development of atherosclerosis. Vasa vasorum angiogenesis and medial infiltration provides nutrients to the developing and expanding intima and therefore, may prevent cellular death and contribute to plaque growth and stabilization in early lesions. However in more advanced plaques, inflammatory cell infiltration, and concomitant production of numerous pro-angiogenic cytokines may be responsible for induction of uncontrolled neointimal microvessel proliferation resulting in production of immature and fragile neovessels similar to that seen in tumour development. These could contribute to development of an unstable haemorrhagic rupture-prone environment. Increasing evidence has suggested that the expression of intimal neovessels is directly related to the stage of plaque development, the risk of plaque rupture, and subsequently, the presence of symptomatic disease, the timing of ischemic neurological events and myocardial/cerebral infarction. Despite this, there is conflicting evidence regarding the causal relationship between neovessel expression and plaque thrombosis with some in vivo experimental models suggesting the contrary and as yet, few direct mediators of angiogenesis have been identified and associated with plaque instability in vivo.In recent years, an increasing number of angiogenic therapeutic targets have been proposed in order to facilitate modulation of neovascularization and its consequences in diseases such as cancer and macular degeneration. A complete knowledge of the mechanisms responsible for initiation of adventitial vessel proliferation, their extension into the intimal regions and possible de-novo synthesis of neovessels following differentiation of bone-marrow-derived stem cells is required in order to contemplate potential single or combinational anti-angiogenic therapies. In this review, we will examine the importance of angiogenesis in complicated plaque development, describe the current knowledge of molecular mechanisms of its initiation and maintenance, and discuss possible future anti-angiogenic therapies to control plaque stability.
Collapse
Affiliation(s)
- Mark Slevin
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | |
Collapse
|
16
|
Chen CH, Dixon RAF, Ke LY, Willerson JT. Vascular progenitor cells in diabetes mellitus: roles of Wnt signaling and negatively charged low-density lipoprotein. Circ Res 2009; 104:1038-40. [PMID: 19423862 DOI: 10.1161/circresaha.109.198051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Riazy M, Chen JH, Steinbrecher UP. VEGF secretion by macrophages is stimulated by lipid and protein components of OxLDL via PI3-kinase and PKCζ activation and is independent of OxLDL uptake. Atherosclerosis 2009; 204:47-54. [DOI: 10.1016/j.atherosclerosis.2008.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/03/2008] [Accepted: 08/01/2008] [Indexed: 01/24/2023]
|
18
|
Rivera-Lopez CM, Tucker AL, Lynch KR. Lysophosphatidic acid (LPA) and angiogenesis. Angiogenesis 2008; 11:301-10. [PMID: 18504643 DOI: 10.1007/s10456-008-9113-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple lipid with many important biological functions such as the regulation of cellular proliferation, cellular migration, differentiation, and suppression of apoptosis. Although a direct angiogenic effect of LPA has not been reported to date, there are indications that LPA promotes angiogenesis. In addition, LPA is a chemoattractant for cultured endothelial cells and promotes barrier function in such cultures. To test the hypothesis that LPA is angiogenic, we used the chicken chorio-allantoic membrane (CAM) assay. Sequence analysis of the cloned, full-length chicken LPA receptor cDNAs revealed three receptor types that are orthologous to the mammalian LPA(1), LPA(2), and LPA(3) receptors. We document herein that LPA is angiogenic in the CAM system and further that synthetic LPA receptor agonists and antagonists mimic or block this response, respectively. Our results predict that LPA receptor antagonists are a possible therapeutic route to interdicting angiogenesis.
Collapse
Affiliation(s)
- Carol M Rivera-Lopez
- Department of Pharmacology, University of Virginia, School of Medicine, Box 800735, 1340 Jefferson Park Avenue, Charlottesville, VA 22903-0735, USA
| | | | | |
Collapse
|
19
|
Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, Chang SF, Liao WSL, Chen CH, Lee YT. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res 2008; 102:933-41. [PMID: 18309099 DOI: 10.1161/circresaha.108.171082] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Homocysteine (Hcy) contributes to atherogenesis and angiostasis by altering the phenotype of arterial endothelial cells (ECs). The present study was aimed at elucidating potential mechanisms by which Hcy can slow EC proliferation and induce EC apoptosis, thereby disrupting endothelial integrity. Given the strong mitogenic and antiapoptotic properties of fibroblast growth factor (FGF)2, we examined whether Hcy can modulate its expression. In cultured human coronary and bovine aortic ECs, Hcy exerted time- and concentration-dependent (0 to 500 micromol/L) reduction of the mRNA and protein levels of FGF2, whereas vascular endothelial growth factor expression was not affected until Hcy reached a proapoptotic 500 micromol/L. By testing a panel of signal transduction inhibitors, we found that the Hcy-induced downregulation of FGF2 was specifically attenuated by pertussis toxin, an inhibitor of Gi protein signaling. Hcy induced cell cycle arrest at the G(1)/S transition and increased TUNEL-positive apoptotic cells in a graded manner. These effects were effectively counteracted by exogenous FGF2. Reporter gene assays showed that Hcy downregulated FGF2 by transcriptional repression of the gene promoter encompassed in a CpG dinucleotide-rich island. This region was heavily methylated at the cytosine residues by Hcy despite decreased methylation potential (S-adenosylmethionine to S-adenosylhomocysteine ratio). Normal levels of FGF2 transcription were restored to ECs simultaneously exposed to Hcy and 5-aza-deoxycytidine. We conclude that homocysteine disrupts the growth and survival of ECs through a G protein-mediated pathway associated with altered promoter DNA methylation and the transcriptional repression of FGF2.
Collapse
Affiliation(s)
- Po-Yuan Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lu J, Jiang W, Yang JH, Chang PY, Walterscheid JP, Chen HH, Marcelli M, Tang D, Lee YT, Liao WSL, Yang CY, Chen CH. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 2008; 57:158-66. [PMID: 17959932 DOI: 10.2337/db07-1287] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE L5, a circulating electronegative LDL identified in patients with hypercholesterolemia or type 2 diabetes, induces endothelial cell (EC) apoptosis by suppressing fibroblast growth factor (FGF)2 expression. FGF2 plays a pivotal role in endothelial regeneration and compensatory arteriogenesis. It is likely that vasculopathy and poor collateralization in diabetes is a result of FGF2 dysregulation. RESEARCH DESIGN AND METHODS To investigate this mechanism, we isolated L5 from type 2 diabetic patients. In cultured bovine aortic ECs (BAECs), L5 inhibited FGF2 transcription and induced apoptosis. Because FGF2 stimulates the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, we examined whether FGF2 transcription is regulated by Akt through a feedback mechanism. RESULTS Diabetic L5 reduced FGF2 release to the medium but enhanced caspase-3 activity, with resultant apoptosis. Inhibition of PI3K with wortmannin or suppression of Akt activation with dominant-negative Akt inhibited FGF2 expression. Transfection of BAECs with FGF2 antisense cDNA depleted endogenous FGF2 protein. In these cells, not only was Akt phosphorylation inhibited, but FGF2 transcription was also critically impaired. In contrast, transfecting BAECs with FGF2 sense cDNA augmented Akt phosphorylation. Treatment with constitutively active Akt enhanced FGF2 expression. Augmentation of either FGF2 transcription or Akt phosphorylation rendered BAECs resistant to L5. CONCLUSIONS These findings suggest that FGF2 is the primary initiator of its own expression, which is autoregulated through a novel FGF2-PI3K-Akt loop. Thus, by disrupting FGF2 autoregulation in vascular ECs, L5 may impair reendothelialization and collateralization in diabetes.
Collapse
Affiliation(s)
- Jonathan Lu
- Department of Medicine, Baylor College of Medicine, 6565 Fannin St., MS A-601, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang D, Lu J, Walterscheid JP, Chen HH, Engler DA, Sawamura T, Chang PY, Safi HJ, Yang CY, Chen CH. Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX-1. J Lipid Res 2007; 49:33-47. [PMID: 17909223 DOI: 10.1194/jlr.m700305-jlr200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endothelial progenitor cells (EPCs), important for endothelial regeneration and vasculogenesis, are reduced by cigarette smoking. To elucidate the mechanisms, we examined the effects of electronegative LDL, circulating in chronic smokers, on EPC differentiation. Using ion-exchange chromatography, we purified smoker LDL into five subfractions, L1-L5. In matched, nonsmoking healthy subjects, L5, the most electronegative subfraction, was either absent or scanty. Sustained L5 treatment inhibited CD31 and KDR expression and EPC differentiation, whereas L1-L4 had no effect. L5 also inhibited telomerase activity to accelerate EPC senescence in correlation with reduced Akt phosphorylation. Transfection of day 3 EPCs with dominant negative Akt constructs inhibited CD31 and KDR expression, stalled EPC differentiation, and promoted early senescence. In contrast, transfection with constitutively active Akt rendered the EPCs resistant to L5, allowing normal maturation. L5 upregulated the lectin-like oxidized low density lipoprotein receptor 1 (LOX-1), and pretreatment of EPCs with TS20, a LOX-1-neutralizing antibody, blocked internalization of L5 by EPCs and prevented L5-mediated inhibition of EPC differentiation. Mixing L5 with L1 to physiological L5/L1 ratios did not attenuate L5's effects. These findings suggest that cigarette smoking is associated with the formation of L5, which inhibits EPC differentiation by impairing Akt phosphorylation via the LOX-1 receptor.
Collapse
Affiliation(s)
- Daming Tang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab Vasc Dis Res 2007; 4:103-11. [PMID: 17654443 DOI: 10.3132/dvdr.2007.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The structural and functional integrity of the vascular endothelium plays a critical role in vascular homeostasis. Insulin resistance, an important risk factor for cardiovascular disease, is thought to promote atherosclerosis through a reciprocal relationship with endothelial dysfunction. In health, cumulative damage to endothelial cells incurred by exposure to risk factors is mitigated by endogenous reparative processes. Disruption of the balance between endothelial damage and repair may mediate atherosclerotic progression. Bone marrow-derived 'endothelial progenitor cells' (EPC) have been identified as significant contributors to endogenous vascular repair. Insulin resistance is associated with a spectrum of biochemical abnormalities which have the potential to reduce the availability of EPCs and diminish their capacity for vascular repair. Many lifestyle and pharmacological interventions which improve insulin resistance also increase the numbers and functionality of EPCs. Cell-based therapies may also hold promise for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Richard M Cubbon
- The Academic Unit of Cardiovascular Medicine, The LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds, UK
| | | | | |
Collapse
|
23
|
Isenberg JS, Romeo MJ, Abu-Asab M, Tsokos M, Oldenborg A, Pappan L, Wink DA, Frazier WA, Roberts DD. Increasing Survival of Ischemic Tissue by Targeting CD47. Circ Res 2007; 100:712-20. [PMID: 17293482 DOI: 10.1161/01.res.0000259579.35787.4e] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombospondin-1 (TSP1) limits the angiogenic and vasodilator activities of NO. This activity of TSP1 can be beneficial in some disease states, but endogenous TSP1 limits recovery of tissue perfusion following fixed ischemic injury in dorsal skin flaps in mice. Using mice lacking the TSP1 receptors CD36 or CD47, we now show that CD47 is the necessary receptor for limiting NO-mediated vascular smooth muscle relaxation and tissue survival following ischemic injury in skin flaps and hindlimbs. We further show that blocking CD47 or TSP1 using monoclonal antibodies and decreasing CD47 expression using an antisense morpholino oligonucleotide are effective therapeutic approaches to dramatically increase survival of soft tissue subjected to fixed ischemia. These treatments facilitate rapid vascular remodeling to restore tissue perfusion and increase skin and muscle viability. Thus, limiting CD47-dependent antagonism of NO-mediated vasodilation and vascular remodeling is a promising therapeutic modality to preserve tissues subject to ischemic stress.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|