1
|
Mitsuishi A, Miura Y, Arakawa Y, Noguchi T. Distinguishing sterile inflammation from graft infection. J Cardiothorac Surg 2024; 19:22. [PMID: 38263206 PMCID: PMC10804788 DOI: 10.1186/s13019-024-02504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024] Open
Abstract
We describe the case of a 68-year-old man who underwent ascending aortic replacement and thoracic endovascular aortic repair. Four years later, the patient developed neck pain on the right side and chest computed tomography showed expansion of fluid in the mediastinum which had extended to the neck. Echocardiography revealed advanced severity of aortic regurgitation and decreased ejection fraction. Given the progression of aortic regurgitation, decreased cardiac function, and rapidly expanding fluid accumulation causing neck pain, reoperation was indicated. All microbiological test including polymerase chain reaction were negative indicating absence of any infection. The patient is being followed-up without antibiotics and CT has not shown peri-graft fluid 2 years postoperatively. Since infection cannot be excluded completely, it is important to assess the condition with selective medium, extended culture periods, genetic testing, and consultations with microbiology laboratories when normal culture tests for general bacteria, and fungi are negative which can help avoid drug-resistant bacteria count, elevated medical costs, and drug side effects due to the improper use of antibiotics through proper diagnosis.
Collapse
Affiliation(s)
- Atsuyuki Mitsuishi
- Department of Cardiovascular Surgery, School of Medicine, Kochi University, 185-1, Kohasu, Nankoku-shi, Okohmachi, Kochi Prefecture, 783-8505, Japan.
| | - Yujiro Miura
- Department of Cardiovascular Surgery, Kochi Medical School, 185-1, Kohasu, Nankoku-shi, Okohcho, Kochi Prefecture, 783-8505, Japan
| | - Yu Arakawa
- Department of Clinical Infectious Diseases, Kochi Medical School, 185-1, Kohasu, Nankoku-shi, Okohcho, Kochi Prefecture, 783-8505, Japan
| | - Tatsuya Noguchi
- Department of Cardiology and Geriatrics, Kochi Medical School Hospital, 185-1, Kohasu, Nankoku-shi, Okohcho, Kochi Prefecture, 783-8505, Japan
| |
Collapse
|
2
|
Bendon CL, Hanssen E, Nowell C, Karnezis T, Shayan R. The Arteria Lymphatica and Lymphatic Microperforators: A Dedicated Blood Supply to Collecting Lymphatics and Their Potential Implications in Lymphedema: Anatomical Description. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5547. [PMID: 38268719 PMCID: PMC10807887 DOI: 10.1097/gox.0000000000005547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
Background Lymphedema is common after lymphatic damage in cancer treatment, with negative impacts on function and quality of life. Evidence suggests that blood vessel microvasculature is sensitive to irradiation and trauma; however, despite knowledge regarding dedicated mural blood supply to arteries and veins (vasa vasorum), equivalent blood vessels supplying lymphatics have not been characterized. We studied collecting lymphatics for dedicated mural blood vessels in our series of 500 lymphaticovenous anastomosis procedures for lymphedema, and equivalent controls. Methods Microscopic images of lymphatics from lymphedema and control patients were analyzed for lymphatic wall vascular density. Collecting lymphatics from 20 patients with lymphedema and 10 control patients were sampled for more detailed analysis (podoplanin immunostaining, light/confocal microscopy, microcomputed tomography, and transmission electron microscopy) to assess lymphatic wall ultrastructure and blood supply. Results Analysis revealed elaborate, dense blood microvessel networks associating with lymphatic walls in lymphedema patients and smaller equivalent vessels in controls. These vasa vasora or "arteria lymphatica" were supplied by regular axial blood vessels, parallel to lymphatic microperforators linking dermal and collecting lymphatics. Lymphatic walls were thicker in lymphedema patients than controls, with immunohistochemistry, computed tomography, transmission electron microscopy, and confocal microscopy characterizing abnormal blood vessels (altered appearance, thickened walls, elastin loss, narrow lumina, and fewer red blood cells) on these lymphatic walls. Conclusions Dedicated blood vessels on lymphatics are significantly altered in lymphedema. A better understanding of the role of these vessels may reveal mechanistic clues into lymphedema pathophysiology and technical aspects of lymphedema microsurgery, and suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Charlotte L. Bendon
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron Nowell
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tara Karnezis
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Ramin Shayan
- From The O’Brien Institute Department, St Vincent’s Institute for Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 With Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. Arterioscler Thromb Vasc Biol 2023; 43:2301-2311. [PMID: 37855127 PMCID: PMC10843096 DOI: 10.1161/atvbaha.123.319244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Pengjun Wang
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, KY
- Sanders-Brown Center on Aging, University of Kentucky, KY
| | - Lei Cai
- Saha Cardiovascular Research Center, College of Medicine
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| |
Collapse
|
4
|
Throop A, Neves M, Zakerzadeh R. Analyzing the contribution of vasa vasorum in oxygenation of the aneurysmal wall: A computational study. Comput Struct Biotechnol J 2023; 21:4859-4867. [PMID: 37860230 PMCID: PMC10582831 DOI: 10.1016/j.csbj.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
The mechanisms of abdominal aortic aneurysm (AAA) formation and rupture are controversial in the literature. While the intraluminal thrombus (ILT) plays a crucial role in reducing oxygen flux to the tissue and therefore decreasing the aortic wall strength, other physiological parameters such as the vasa vasorum (VV) oxygen flow and its consumption contribute to altered oxygenation responses of the arterial tissue as well. The goal of this research is to analyse the importance of the aforementioned parameters on oxygen delivery to the aneurysmal wall in a patient-specific AAA. Numerical simulations of coupled blood flow and mass transport with varying levels of VV concentration and oxygen reaction rate coefficient are performed. The hypoperfusion of the adventitial VV and high oxygen consumption are observed to have critical effects on reducing aneurysmal tissue oxygen supply and can therefore exacerbate localized oxygen deprivation.
Collapse
Affiliation(s)
- Alexis Throop
- Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Manoela Neves
- Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| | - Rana Zakerzadeh
- Department of Biomedical Engineering, School of Science and Engineering, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Burke-Kleinman J, Gotlieb AI. Progression of Arterial Vasa Vasorum from Regulator of Arterial Homeostasis to Promoter of Atherogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1468-1484. [PMID: 37356574 DOI: 10.1016/j.ajpath.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
The vasa vasorum (vessels of vessels) are a dynamic microvascular system uniquely distributed to maintain physiological homeostasis of the artery wall by supplying nutrients and oxygen to the outer layers of the artery wall, adventitia, and perivascular adipose tissue, and in large arteries, to the outer portion of the medial layer. Vasa vasorum endothelium and contractile mural cells regulate direct access of bioactive cells and factors present in both the systemic circulation and the arterial perivascular adipose tissue and adventitia to the artery wall. Experimental and human data show that proatherogenic factors and cells gain direct access to the artery wall via the vasa vasorum and may initiate, promote, and destabilize the plaque. Activation and growth of vasa vasorum occur in all blood vessel layers primarily by angiogenesis, producing fragile and permeable new microvessels that may cause plaque hemorrhage and fibrous cap rupture. Ironically, invasive therapies, such as angioplasty and coronary artery bypass grafting, injure the vasa vasorum, leading to treatment failures. The vasa vasorum function both as a master integrator of arterial homeostasis and, once perturbed or injured, as a promotor of atherogenesis. Future studies need to be directed at establishing reliable in vivo and in vitro models to investigate the cellular and molecular regulation of the function and dysfunction of the arterial vasa vasorum.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 with Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.530901. [PMID: 37767086 PMCID: PMC10522327 DOI: 10.1101/2023.03.04.530901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in non-human primates. Methods Aortic samples were harvested from the ascending, descending, suprarenal, and infrarenal regions of young control monkeys and adult monkeys provided with high fructose for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses. Results Immunostaining of CD31 and αSMA revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared to other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared to other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys provided with high fructose displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. Conclusions Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3. HIGHLIGHTS - The present study determined the regional heterogeneity of aortas from cynomolgus monkeys.- Aortas of young cynomolgus monkeys displayed region-specific aortic structure and transcriptomes.- Elastic fibers were dispersed in the infrarenal aorta along with increased NOTCH3 abundance in the media. GRAPHIC ABSTRACT
Collapse
|
7
|
Crandall CL, Wu Y, Kailash KA, Bersi MR, Halabi CM, Wagenseil JE. Changes in transmural mass transport correlate with ascending thoracic aortic aneurysm diameter in a fibulin-4 E57K knockin mouse model. Am J Physiol Heart Circ Physiol 2023; 325:H113-H124. [PMID: 37267118 PMCID: PMC10292979 DOI: 10.1152/ajpheart.00036.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Thoracic aortic aneurysm is characterized by dilation of the aortic diameter by greater than 50%, which can lead to dissection or rupture. Common histopathology includes extracellular matrix remodeling that may affect transmural mass transport, defined as the movement of fluids and solutes across the wall. We measured in vitro ascending thoracic aorta mass transport in a mouse model with partial aneurysm phenotype penetration due to a mutation in the extracellular matrix protein fibulin-4 [Fbln4E57K/E57K, referred to as MU-A (aneurysm) or MU-NA (no aneurysm)]. To push the aneurysm phenotype, we also included MU mice with reduced levels of lysyl oxidase [Fbln4E57K/E57K;Lox+/-, referred to as MU-XA (extreme aneurysm)] and compared all groups to wild-type (WT) littermates. The phenotype variation allows investigation of how aneurysm severity correlates with mass transport parameters and extracellular matrix organization. We found that MU-NA ascending thoracic aortae have similar hydraulic conductance (Lp) to WT, but 397% higher solute permeability (ω) for 4 kDa FITC-dextran. In contrast, MU-A and MU-XA ascending thoracic aortae have 44-68% lower Lp and similar ω to WT. The results suggest that ascending thoracic aortic aneurysm progression involves an initial increase in ω, followed by a decrease in Lp after the aneurysm has formed. All MU ascending thoracic aortae are longer and have increased elastic fiber fragmentation in the extracellular matrix. There is a negative correlation between diameter and Lp or ω in MU ascending thoracic aortae. Changes in mass transport due to elastic fiber fragmentation could contribute to aneurysm progression or be leveraged for treatment.NEW & NOTEWORTHY Transmural mass transport is quantified in the ascending thoracic aorta of mice with a mutation in fibulin-4 that is associated with thoracic aortic aneurysms. Fluid and solute transport depend on aneurysm severity, correlate with elastic fiber fragmentation, and may be affected by proteoglycan deposition. Transport properties of the ascending thoracic aorta are provided and can be used in computational models. The changes in mass transport may contribute to aneurysm progression or be leveraged for aneurysm treatment.
Collapse
Affiliation(s)
- Christie L Crandall
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Yufan Wu
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Keshav A Kailash
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Mathew R Bersi
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Pediatric Nephrology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
8
|
Burns N, Nijmeh H, Lapel M, Riddle S, Yegutkin GG, Stenmark KR, Gerasimovskaya E. Isolation of vasa vasorum endothelial cells from pulmonary artery adventitia: Implementation to vascular biology research. Microvasc Res 2023; 147:104479. [PMID: 36690271 DOI: 10.1016/j.mvr.2023.104479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall. However, despite the pathophysiological significance of the VV, methods for the isolation and culture of vasa vasorum endothelial cells (VVEC) have not yet been reported. In our prior studies, we demonstrated the presence of hypoxia-induced angiogenic expansion of the VV in the pulmonary artery (PA) of neonatal calves; an observation which has been followed by a series of in vitro studies on isolated PA VVEC. Here we present a detailed protocol for reproducible isolation, purification, and culture of PA VVEC. We show these cells to express generic endothelial markers, (vWF, eNOS, VEGFR2, Tie1, and CD31), as well as progenitor markers (CD34 and CD133), bind lectin Lycopersicon Esculentum, and incorporate acetylated low-density lipoproteins labeled with acetylated LDL (DiI-Ac-LDL). qPCR analysis additionally revealed the expression of CD105, VCAM-1, ICAM-1, MCAM, and NCAM. Ultrastructural electron microscopy and immunofluorescence staining demonstrated that VVEC are morphologically characterized by a developed actin and microtubular cytoskeleton, mitochondrial network, abundant intracellular vacuolar/secretory system, and cell-surface filopodia. VVEC exhibit exponential growth in culture and can be mitogenically activated by multiple growth factors. Thus, our protocol provides the opportunity for VVEC isolation from the PA, and potentially from other large vessels, enabling advances in VV research.
Collapse
Affiliation(s)
- Nana Burns
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Hala Nijmeh
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Martin Lapel
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Suzette Riddle
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Kurt R Stenmark
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America
| | - Evgenia Gerasimovskaya
- Department of Pediatric Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States of America.
| |
Collapse
|
9
|
Perinajová R, Álvarez-Cuevas CB, Juffermans J, Westenberg J, Lamb H, Kenjereš S. Influence of aortic aneurysm on the local distribution of NO and O 2 using image-based computational fluid dynamics. Comput Biol Med 2023; 160:106925. [PMID: 37141651 DOI: 10.1016/j.compbiomed.2023.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
There is a pressing need to establish novel biomarkers to predict the progression of thoracic aortic aneurysm (TAA) dilatation. Aside from hemodynamics, the roles of oxygen (O2) and nitric oxide (NO) in TAA pathogenesis are potentially significant. As such, it is imperative to comprehend the relationship between aneurysm presence and species distribution in both the lumen and aortic wall. Given the limitations of existing imaging methods, we propose the use of patient-specific computational fluid dynamics (CFD) to explore this relationship. We have performed CFD simulations of O2 and NO mass transfer in the lumen and aortic wall for two cases: a healthy control (HC) and a patient with TAA, both acquired using 4D-flow magnetic resonance imaging (MRI). The mass transfer of O2 was based on active transport by hemoglobin, while the local variations of the wall shear stress (WSS) drove NO production. Comparing hemodynamic properties, the time-averaged WSS was considerably lower for TAA, while the oscillatory shear index and endothelial cell activation potential were notably elevated. O2 and NO showed a non-uniform distribution within the lumen and an inverse correlation between the two species. We identified several locations of hypoxic regions for both cases due to lumen-side mass transfer limitations. In the wall, NO varied spatially, with a clear distinction between TAA and HC. In conclusion, the hemodynamics and mass transfer of NO in the aorta exhibit the potential to serve as a diagnostic biomarker for TAA. Furthermore, hypoxia may provide additional insights into the onset of other aortic pathologies.
Collapse
Affiliation(s)
- Romana Perinajová
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands.
| | | | - Joe Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saša Kenjereš
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; J.M. Burgerscentrum Research School for Fluid Mechanics, Delft, The Netherlands
| |
Collapse
|
10
|
Chu CQ. Animal models for large vessel vasculitis - The unmet need. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:4-10. [PMID: 37138652 PMCID: PMC10150876 DOI: 10.2478/rir-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 05/05/2023]
Abstract
Our understanding of the pathogenesis of large vessel vasculitis (LVV) are mainly achieved by studying the arteries taken from temporal artery biopsy in giant cell arteries (GCA) or surgical or autopsy specimens in Takayasu arteritis (TAK). These artery specimens provide invaluable information about pathological changes in these conditions that GCA and TAK are similar but are distinctly different in immune cell infiltrate and distribution of inflammatory cells in anatomical locations. However, these specimens of established arteritis do not provide information of the arteritis initiation and early events which are impossible to obtain in human artery specimens. Animal models for LVV are needed but not available. Here, several approaches are proposed for experimentation to generate animal models to aid in delineating the interaction of immune reaction with arterial wall components.
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, Oregon97239, USA
- Innovent Biologics (USA), Rockville, Maryland20850, USA
| |
Collapse
|
11
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
12
|
Phillippi JA. On vasa vasorum: A history of advances in understanding the vessels of vessels. SCIENCE ADVANCES 2022; 8:eabl6364. [PMID: 35442731 PMCID: PMC9020663 DOI: 10.1126/sciadv.abl6364] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
The vasa vasorum are a vital microvascular network supporting the outer wall of larger blood vessels. Although these dynamic microvessels have been studied for centuries, the importance and impact of their functions in vascular health and disease are not yet fully realized. There is now rich knowledge regarding what local progenitor cell populations comprise and cohabitate with the vasa vasorum and how they might contribute to physiological and pathological changes in the network or its expansion via angiogenesis or vasculogenesis. Evidence of whether vasa vasorum remodeling incites or governs disease progression or is a consequence of cardiovascular pathologies remains limited. Recent advances in vasa vasorum imaging for understanding cardiovascular disease severity and pathophysiology open the door for theranostic opportunities. Approaches that strive to control angiogenesis and vasculogenesis potentiate mitigation of vasa vasorum-mediated contributions to cardiovascular diseases and emerging diseases involving the microcirculation.
Collapse
Affiliation(s)
- Julie A. Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Van Hoof L, Verbrugghe P, Jones EAV, Humphrey JD, Janssens S, Famaey N, Rega F. Understanding Pulmonary Autograft Remodeling After the Ross Procedure: Stick to the Facts. Front Cardiovasc Med 2022; 9:829120. [PMID: 35224059 PMCID: PMC8865563 DOI: 10.3389/fcvm.2022.829120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
The Ross, or pulmonary autograft, procedure presents a fascinating mechanobiological scenario. Due to the common embryological origin of the aortic and pulmonary root, the conotruncus, several authors have hypothesized that a pulmonary autograft has the innate potential to remodel into an aortic phenotype once exposed to systemic conditions. Most of our understanding of pulmonary autograft mechanobiology stems from the remodeling observed in the arterial wall, rather than the valve, simply because there have been many opportunities to study the walls of dilated autografts explanted at reoperation. While previous histological studies provided important clues on autograft adaptation, a comprehensive understanding of its determinants and underlying mechanisms is needed so that the Ross procedure can become a widely accepted aortic valve substitute in select patients. It is clear that protecting the autograft during the early adaptation phase is crucial to avoid initiating a sequence of pathological remodeling. External support in the freestanding Ross procedure should aim to prevent dilatation while simultaneously promoting remodeling, rather than preventing dilatation at the cost of vascular atrophy. To define the optimal mechanical properties and geometry for external support, the ideal conditions for autograft remodeling and the timeline of mechanical adaptation must be determined. We aimed to rigorously review pulmonary autograft remodeling after the Ross procedure. Starting from the developmental, microstructural and biomechanical differences between the pulmonary artery and aorta, we review autograft mechanobiology in relation to distinct clinical failure mechanisms while aiming to identify unmet clinical needs, gaps in current knowledge and areas for further research. By correlating clinical and experimental observations of autograft remodeling with established principles in cardiovascular mechanobiology, we aim to present an up-to-date overview of all factors involved in extracellular matrix remodeling, their interactions and potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lucas Van Hoof
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verbrugghe
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Stefan Janssens
- Department of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Nele Famaey
- Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Filip Rega
- Department of Cardiac Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Karakaya C, van Asten JGM, Ristori T, Sahlgren CM, Loerakker S. Mechano-regulated cell-cell signaling in the context of cardiovascular tissue engineering. Biomech Model Mechanobiol 2022; 21:5-54. [PMID: 34613528 PMCID: PMC8807458 DOI: 10.1007/s10237-021-01521-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
Cardiovascular tissue engineering (CVTE) aims to create living tissues, with the ability to grow and remodel, as replacements for diseased blood vessels and heart valves. Despite promising results, the (long-term) functionality of these engineered tissues still needs improvement to reach broad clinical application. The functionality of native tissues is ensured by their specific mechanical properties directly arising from tissue organization. We therefore hypothesize that establishing a native-like tissue organization is vital to overcome the limitations of current CVTE approaches. To achieve this aim, a better understanding of the growth and remodeling (G&R) mechanisms of cardiovascular tissues is necessary. Cells are the main mediators of tissue G&R, and their behavior is strongly influenced by both mechanical stimuli and cell-cell signaling. An increasing number of signaling pathways has also been identified as mechanosensitive. As such, they may have a key underlying role in regulating the G&R of tissues in response to mechanical stimuli. A more detailed understanding of mechano-regulated cell-cell signaling may thus be crucial to advance CVTE, as it could inspire new methods to control tissue G&R and improve the organization and functionality of engineered tissues, thereby accelerating clinical translation. In this review, we discuss the organization and biomechanics of native cardiovascular tissues; recent CVTE studies emphasizing the obtained engineered tissue organization; and the interplay between mechanical stimuli, cell behavior, and cell-cell signaling. In addition, we review past contributions of computational models in understanding and predicting mechano-regulated tissue G&R and cell-cell signaling to highlight their potential role in future CVTE strategies.
Collapse
Affiliation(s)
- Cansu Karakaya
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jordy G M van Asten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cecilia M Sahlgren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi, Turku, Finland
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
15
|
Sano M, Sasaki T, Baba S, Inuzuka K, Katahashi K, Kayama T, Yamanaka Y, Tsuyuki H, Endo Y, Sato K, Takeuchi H, Unno N. Differences in Vasa Vasorum Distribution in Human Aortic Aneurysms and Atheromas. Angiology 2022; 73:546-556. [DOI: 10.1177/00033197211063655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pathophysiological difference between aortic atheromas and aneurysms is unknown. We focused on the vasa vasorum (VV), which play a critical role in maintaining aortic homeostasis and are also involved in vascular diseases. We investigated the differences in VV between the atheromas and aneurysms. Human abdominal aortic samples were obtained from patients with abdominal aortic aneurysm during surgery or autopsy cases. Autopsy cases were divided into 2 groups according to atheromas. The VV were evaluated using immunohistochemical staining for von Willebrand factor. Intimal VV increased in both the atheroma and aneurysm groups, medial VV increased, and adventitial VV decreased only in the aneurysm group. We also observed that the medial VV were connected to the adventitial VV in the atheroma group and to intimal VV in the aneurysm group. We suggest the outside-in VV or inside-out VV theories. Atheroma induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from adventitial VV (outside-in VV). However, adventitial VV decrease induces hypoxia of aortic walls, and angiogenic factors might induce an increase of intimal VV derived from aortic lumen (inside-out VV). These differences of VV may contribute in elucidating the pathophysiology of aortic diseases.
Collapse
Affiliation(s)
- Masaki Sano
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazunori Inuzuka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kazuto Katahashi
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Kayama
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yuta Yamanaka
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hajime Tsuyuki
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Yusuke Endo
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kohji Sato
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Naoki Unno
- Division of Vascular Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Vascular Surgery, Hamamatsu Medical Center, Hamamatsu 432-8580, Japan
| |
Collapse
|
16
|
Abstract
Several studies have investigated the pathogenesis of aortic wall abnormalities such as aortic dissection or aneurysm; however, the comprehensive pathological in situ event involved in the development of the disease is not understood well. The vasa vasorum form a network of capillaries or venules around the adventitia and outer media, which play an important role in the aortic wall structure and function. Impairment of their function may induce tissue hypoxia, impede the transfer of cellular nutrients, and cause aortic medial degeneration, which is considered the major predisposing factor to this aortic wall pathology. This review updates our understanding of the pathological changes in the aortic media and vasa vasorum of patients with aortic dissection and aortic aneurysm.
Collapse
Affiliation(s)
- Hiroaki Osada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
17
|
Dynamic Crosstalk between Vascular Smooth Muscle Cells and the Aged Extracellular Matrix. Int J Mol Sci 2021; 22:ijms221810175. [PMID: 34576337 PMCID: PMC8468233 DOI: 10.3390/ijms221810175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 01/15/2023] Open
Abstract
Vascular aging is accompanied by the fragmentation of elastic fibers and collagen deposition, leading to reduced distensibility and increased vascular stiffness. A rigid artery facilitates elastin to degradation by MMPs, exposing vascular cells to greater mechanical stress and triggering signaling mechanisms that only exacerbate aging, creating a self-sustaining inflammatory environment that also promotes vascular calcification. In this review, we highlight the role of crosstalk between smooth muscle cells and the vascular extracellular matrix (ECM) and how aging promotes smooth muscle cell phenotypes that ultimately lead to mechanical impairment of aging arteries. Understanding the underlying mechanisms and the role of associated changes in ECM during aging may contribute to new approaches to prevent or delay arterial aging and the onset of cardiovascular diseases.
Collapse
|
18
|
Ielapi N, Caprino F, Malizia B, Sisinni A, Ssempijja L, Andreucci M, Licastro N, Serra R. Infection, Infectious Agents and Vascular Disease. Rev Recent Clin Trials 2021; 16:262-271. [PMID: 33823769 DOI: 10.2174/1574887116666210325124045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious agents may be involved in the pathogenesis of vascular disease and related complications. The aim of this review is to analyze the most relevant information on the common infections related to vascular disease, discussing the main pathophysiological mechanisms. METHODS In the current review, the most important evidence on the issue of infections and vascular disease is searched on Medline, Scopus, and ScienceDirect database. RESULTS Among infectious agents, herpesviruses, parvovirus B19, hepatitis viruses, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, treponema pallidum, mycobacterium tuberculosis, pseudomonas aeruginosa, staphylococcus aureus, and candida albicans seem to particularly related to vascular disease. CONCLUSION Infectious agents may affect vessel's homeostasis and functionality, both on the arterial and venous side, by means of several pathophysiological mechanisms such as dysregulation in vasomotor function, thromboembolic complications, initiation and progression of atherosclerosis, alteration of perivascular adipose tissue, recruiting inflammatory cells and molecules.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Francesco Caprino
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Biagio Malizia
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Antonio Sisinni
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Lwanga Ssempijja
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Noemi Licastro
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| |
Collapse
|
19
|
Owusu J, Barrett E. Early Microvascular Dysfunction: Is the Vasa Vasorum a "Missing Link" in Insulin Resistance and Atherosclerosis. Int J Mol Sci 2021; 22:ijms22147574. [PMID: 34299190 PMCID: PMC8303323 DOI: 10.3390/ijms22147574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 11/16/2022] Open
Abstract
The arterial vasa vasorum is a specialized microvasculature that provides critical perfusion required for the health of the arterial wall, and is increasingly recognized to play a central role in atherogenesis. Cardio-metabolic disease (CMD) (including hypertension, metabolic syndrome, obesity, diabetes, and pre-diabetes) is associated with insulin resistance, and characteristically injures the microvasculature in multiple tissues, (e.g., the eye, kidney, muscle, and heart). CMD also increases the risk for atherosclerotic vascular disease. Despite this, the impact of CMD on vasa vasorum structure and function has been little studied. Here we review emerging information on the early impact of CMD on the microvasculature in multiple tissues and consider the potential impact on atherosclerosis development and progression, if vasa vasorum is similarly affected.
Collapse
Affiliation(s)
- Jeanette Owusu
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
| | - Eugene Barrett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA;
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence: ; Tel.: +1-434-924-1263
| |
Collapse
|
20
|
Sophie Zhao B, Belhoul‐Fakir H, Jansen S, Hamzah J, Mishani S, Lawrence Brown M. Major gaps in human evidence for structure and function of the vasa vasora limit our understanding of the link with atherosclerosis. J Anat 2021; 238:785-793. [PMID: 33084089 PMCID: PMC7855071 DOI: 10.1111/joa.13324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the major pathology causing death in the developed world and, although risk factor modification has improved outcomes over the last decade, there is no cure. The role of the vasa vasora (VV) in the pathogenesis of atherosclerotic plaque is unclear but must relate to the predictability of diseased sites in the arterial tree. VV are small vessels found on major arteries and veins which supply nutrients and oxygen to the vessel wall itself while removing waste. Numerous studies have been carried out to investigate the anatomy and function of the VV as well as their significance in vascular disease. There is convincing evidence that VV are related to atherosclerotic plaque progression and vessel thrombosis, however, their link to the pathology of plaque initiation remains an interesting but neglected topic. We aim to present the evidence on the anatomy and functional behaviour of VV as well as their relationship to the initiation of atherosclerosis. At the same time, we wish to highlight inconsistencies in, and limitations of, the evidence available.
Collapse
Affiliation(s)
- Bichen Sophie Zhao
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalNedlandsWAAustralia
| | - Hanane Belhoul‐Fakir
- Targeted Drug Delivery, Imaging & Therapy LaboratoryHarry Perkins Institute of Medical ResearchPerthWAAustralia
- School of Public Health, Faculty of Health SciencesCurtin UniversityPerthWAAustralia
| | - Shirley Jansen
- Department of Vascular and Endovascular SurgerySir Charles Gairdner HospitalNedlandsWAAustralia
- Curtin Medical SchoolCurtin UniversityPerthWAAustralia
- Heart and Vascular Research InstituteHarry Perkins Institute for Medical ResearchPerthWAAustralia
- Faculty Health SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Juliana Hamzah
- Targeted Drug Delivery, Imaging & Therapy LaboratoryHarry Perkins Institute of Medical ResearchPerthWAAustralia
| | - Siamak Mishani
- WA School of Mines: MECEFaculty of Science & EngineeringCurtin UniversityPerthWAAustralia
| | | |
Collapse
|
21
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
22
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
23
|
Jakic B, Kerjaschki D, Wick G. Lymphatic Capillaries in Aging. Gerontology 2020; 66:419-426. [PMID: 32580201 DOI: 10.1159/000508459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/04/2020] [Indexed: 11/19/2022] Open
Abstract
The lymphatic system is responsible for fluid drainage from almost every organ in the body. It sustains tissue homeostasis and is also a central part of the immune system. With the discovery of cell-specific markers and transgenic mouse models, it has become possible to gain some insight into the developmental and functional roles of lymphatic endothelial cells (LECs). Only recently, a more direct regulatory role has been assigned to LECs in their functions in immunity responses and chronic diseases. Here, we discuss the changes occurring in aged lymphatic system and the role of lymphatic capillaries in some age-related diseases and experimental animal models.
Collapse
Affiliation(s)
- Bojana Jakic
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria, .,Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden,
| | - Dontscho Kerjaschki
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Georg Wick
- Laboratory of Autoimmunity, Division of Experimental Pathophysiology and Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Tarbell J, Mahmoud M, Corti A, Cardoso L, Caro C. The role of oxygen transport in atherosclerosis and vascular disease. J R Soc Interface 2020; 17:20190732. [PMID: 32228404 PMCID: PMC7211472 DOI: 10.1098/rsif.2019.0732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis and vascular disease of larger arteries are often associated with hypoxia within the layers of the vascular wall. In this review, we begin with a brief overview of the molecular changes in vascular cells associated with hypoxia and then emphasize the transport mechanisms that bring oxygen to cells within the vascular wall. We focus on fluid mechanical factors that control oxygen transport from lumenal blood flow to the intima and inner media layers of the artery, and solid mechanical factors that influence oxygen transport to the adventitia and outer media via the wall's microvascular system-the vasa vasorum (VV). Many cardiovascular risk factors are associated with VV compression that reduces VV perfusion and oxygenation. Dysfunctional VV neovascularization in response to hypoxia contributes to plaque inflammation and growth. Disturbed blood flow in vascular bifurcations and curvatures leads to reduced oxygen transport from blood to the inner layers of the wall and contributes to the development of atherosclerotic plaques in these regions. Recent studies have shown that hypoxia-inducible factor-1α (HIF-1α), a critical transcription factor associated with hypoxia, is also activated in disturbed flow by a mechanism that is independent of hypoxia. A final section of the review emphasizes hypoxia in vascular stenting that is used to enlarge vessels occluded by plaques. Stenting can compress the VV leading to hypoxia and associated intimal hyperplasia. To enhance oxygen transport during stenting, new stent designs with helical centrelines have been developed to increase blood phase oxygen transport rates and reduce intimal hyperplasia. Further study of the mechanisms controlling hypoxia in the artery wall may contribute to the development of therapeutic strategies for vascular diseases.
Collapse
Affiliation(s)
- John Tarbell
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Marwa Mahmoud
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Andrea Corti
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Luis Cardoso
- Biomedical Engineering Department, The City College of New York, New York, NY, USA
| | - Colin Caro
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
25
|
Duque JC, Martinez L, Tabbara M, Parikh P, Paez A, Selman G, Salman LH, Velazquez OC, Vazquez-Padron RI. Vascularization of the arteriovenous fistula wall and association with maturation outcomes. J Vasc Access 2020; 21:161-168. [PMID: 31608758 PMCID: PMC10970689 DOI: 10.1177/1129729819863584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The venous vasa vasorum is the mesh of microvessels that provide oxygen and nutrients to the walls of large veins. Whether changes to the vasa vasorum have any effects on human arteriovenous fistula outcomes remains undetermined. In this study, we challenged the hypothesis that inadequate vascularization of the arteriovenous fistula wall is associated with maturation failure. DESIGN, SETTING, PARTICIPANTS, AND MEASUREMENTS This case-control pilot study includes pre-access veins and arteriovenous fistula venous samples (i.e. tissue pairs) from 30 patients undergoing two-stage arteriovenous fistula creation (15 matured and 15 failed to mature). Using anti-CD31 immunohistochemistry, we quantified vasa vasorum density and luminal area (vasa vasorum area) in the intima, media, and adventitia of pre-access veins and fistulas. We evaluated the association of pre-existing and postoperative arteriovenous fistula vascularization with maturation failure and with postoperative morphometry. RESULTS Vascularization of veins and arteriovenous fistulas was predominantly observed in the outer media and adventitia. Only the size of the microvasculature (vasa vasorum area), but not the number of vessels (vasa vasorum density), increased after arteriovenous fistula creation in the adventitia (median vasa vasorum area 1366 µm2/mm2 (interquartile range 495-2582) in veins versus 3077 µm2/mm2 (1812-5323) in arteriovenous fistulas, p < 0.001), while no changes were observed in the intima and media. Postoperative intimal thickness correlated with lower vascularization of the media (r 0.53, p = 0.003 for vasa vasorum density and r 0.37, p = 0.045 for vasa vasorum area). However, there were no significant differences in pre-existing, postoperative, or longitudinal change in vascularization between arteriovenous fistulas with distinct maturation outcomes. CONCLUSION The lack of change in intimal and medial vascularization after arteriovenous fistula creation argues against higher oxygen demand in the inner walls of the fistula during the vein to arteriovenous fistula transformation. Postoperative intimal hyperplasia in the arteriovenous fistula wall appears to thrive under hypoxic conditions. Vasa vasorum density and area by themselves are not predictive of maturation outcomes.
Collapse
Affiliation(s)
- Juan C Duque
- Katz Family Division of Nephrology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Punam Parikh
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Angela Paez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, NY, USA
| | - Omaida C Velazquez
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
26
|
Tinajero MG, Gotlieb AI. Recent Developments in Vascular Adventitial Pathobiology: The Dynamic Adventitia as a Complex Regulator of Vascular Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:520-534. [PMID: 31866347 DOI: 10.1016/j.ajpath.2019.10.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
The adventitia, the outer layer of the blood vessel wall, may be the most complex layer of the wall and may be the master regulator of wall physiology and pathobiology. This review proposes a major shift in thinking to apply a functional lens to the adventitia rather than only a structural lens. Human and experimental in vivo and in vitro studies show that the adventitia is a dynamic microenvironment in which adventitial and perivascular adipose tissue cells initiate and regulate important vascular functions in disease, especially intimal hyperplasia and atherosclerosis. Although well away from the blood-wall interface, where much pathology has been identified, the adventitia has a profound influence on the population of intimal and medial endothelial, macrophage, and smooth muscle cell function. Vascular injury and dysfunction of the perivascular adipose tissue promote expansion of the vasa vasorum, activation of fibroblasts, and differentiation of myofibroblasts. This regulates further biologic processes, including fibroblast and myofibroblast migration and proliferation, inflammation, immunity, stem cell activation and regulation, extracellular matrix remodeling, and angiogenesis. A debate exists as to whether the adventitia initiates disease or is just an important participant. We describe a mechanistic model of adventitial function that brings together current knowledge and guides the design of future investigations to test specific hypotheses on adventitial pathobiology.
Collapse
Affiliation(s)
- Maria G Tinajero
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Avrum I Gotlieb
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Chumachenko PV, Afanasyev MA, Ivanova AG, Drobkova IP, Kheimets GI, Postnov AY. [Inflammatory infiltrates, vasa vasorum, and endothelial NO synthase in the wall of thoracic aortic aneurysm]. Arkh Patol 2019; 81:45-52. [PMID: 31626204 DOI: 10.17116/patol20198105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To elucidate whether there is a relationship between inflammation of the wall of aortic aneurysm and the number of vasa vasorum in it. MATERIAL AND METHODS The investigation material was aortic aneurysm wall segments obtained during surgery. Among the patients, there were 20 men and 5 women. The patients' age ranged from 33 to 69 years. The investigation used monoclonal antibodies to macrophages (CD68), T cells (CD3, CD4, and CD8) and antibodies to von Willebrand factor, endothelial NO synthase, and alpha smooth muscle actin. A morphometric study was conducted. RESULTS Calculation of the number of vasa vasorum (including newly formed vessels) in the adventitia of aortic aneurysm revealed that there was a statistically significant difference between the number of vasa vasorum in patients with an active inflammatory response (Group 1) versus Group 2 patients with a moderate inflammatory process in the aneurysm wall (p≤0.05) and a statistically significant difference between Groups 1 and 3 (without inflammatory infiltrates) (p≤0.05). Endothelial vasa vasorum heterogeneity was found in case of an immune response to NO synthase. At the same time individual vasa vasorium did not contain NO synthase, this enzyme was identified in the endothelium in a number of nearby vessels. CONCLUSION The increase in the number of vasa vasorum in the aneurysm wall in patients with abundant inflammatory infiltrates is due to the fact that some of the inflammatory cytokines of T-cells and macrophages also contribute to angiogenesis.
Collapse
Affiliation(s)
- P V Chumachenko
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - M A Afanasyev
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - A G Ivanova
- Acad. B.V. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - I P Drobkova
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - G I Kheimets
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia
| | - A Yu Postnov
- National Medical Research Center of Cardiology, Ministry of Health of Russia, Moscow, Russia; Research Institute of Human Morphology, Ministry of Science and Higher Education of Russia, Moscow, Russia
| |
Collapse
|
28
|
Patzelt M, Kachlik D, Stingl J, Sach J, Stibor R, Benada O, Kofronova O, Musil V. Morphology of the vasa vasorum in coronary arteries of the porcine heart: A new insight. Ann Anat 2019; 223:119-126. [DOI: 10.1016/j.aanat.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/18/2019] [Accepted: 02/16/2019] [Indexed: 12/31/2022]
|
29
|
Phillippi JA, Aikawa E, Hutcheson J. Editorial: Exploring the Frontiers of Regenerative Cardiovascular Medicine. Front Cardiovasc Med 2019; 6:13. [PMID: 30873414 PMCID: PMC6401650 DOI: 10.3389/fcvm.2019.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julie A Phillippi
- Departments of Cardiothoracic Surgery and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elena Aikawa
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Josh Hutcheson
- Florida International University, Miami, FL, United States
| |
Collapse
|
30
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
31
|
Zheng L, Yang WJ, Niu CB, Zhao HL, Wong KS, Leung TWH, Chen XY. Correlation of Adventitial Vasa Vasorum with Intracranial Atherosclerosis: A Postmortem Study. J Stroke 2018; 20:342-349. [PMID: 30309229 PMCID: PMC6186920 DOI: 10.5853/jos.2018.01263] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/07/2018] [Indexed: 12/27/2022] Open
Abstract
Background and Purpose Vasa vasorum (VV) have been believed to be rare or non-existent in small-caliber intracranial arteries. In a series of human cerebral artery specimens, we identified and examined the distribution of VV in association with co-existing intracranial atherosclerosis.
Methods We obtained cerebral artery specimens from 32 consecutive autopsies of subjects aged 45 years or above. We scrutinized middle cerebral artery (MCA), vertebral artery (VA), and basilar artery (BA) for the presence of adventitial VV. We described the distribution of VV, and the characteristics of co-existing atherosclerotic lesions.
Results Among 157 intracranial arteries, adventitial VV were present in 74 of the 157 specimens (47%), involving MCA (n=13, 18%), BA (n=14, 19%), and VA (n=47, 64%). Although qualitatively these 74 adventitial VV distributed similarly in arteries with or without atherosclerotic lesions (disease-free arteries n=4/8; arteries of pre-atherosclerosis n=17/42; and arteries of progressive atherosclerosis n=53/107), the presence of adventitial VV in intracranial VA was associated with a heavier plaque load (1.72±1.66 mm2 vs. 0.40±0.32 mm2, P<0.001), severer luminal stenosis (25%±21% vs. 12%±9%, P=0.002), higher rate of concentric lesions (79% vs. 36%, P=0.002), and denser intraplaque calcification (44% vs. 0%, P=0.003). Histologically, intracranial VA with VV had a larger diameter (3.40±0.79 mm vs. 2.34±0.58 mm, P<0.001), thicker arterial wall (0.31±0.13 mm vs. 0.23±0.06 mm, P=0.002), and a larger intima-media (0.19±0.09 mm vs. 0.13± 0.04 mm, P=0.003) than VA without VV.
Conclusions Our study demonstrated the distribution of adventitial VV within brain vasculature and association between vertebral VV and progressive atherosclerotic lesions with a heavier plaque load and denser intraplaque calcification.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Wen Jie Yang
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chun Bo Niu
- Department of Pathology, China-Japan Union Hospital of Jilin University, Jilin, China
| | - Hai Lu Zhao
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| | - Ka Sing Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Thomas Wai Hong Leung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Xiang Yan Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
32
|
Billaud M, Hill JC, Richards TD, Gleason TG, Phillippi JA. Medial Hypoxia and Adventitial Vasa Vasorum Remodeling in Human Ascending Aortic Aneurysm. Front Cardiovasc Med 2018; 5:124. [PMID: 30276199 PMCID: PMC6151311 DOI: 10.3389/fcvm.2018.00124] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
Human ascending aortic aneurysms characteristically exhibit cystic medial degeneration of the aortic wall encompassing elastin degeneration, proteoglycan accumulation and smooth muscle cell loss. Most studies have focused on the aortic media and there is a limited understanding of the importance of the adventitial layer in the setting of human aneurysmal disease. We recently demonstrated that the adventitial ECM contains key angiogenic factors that are downregulated in aneurysmal aortic specimens. In this study, we investigated the adventitial microvascular network (vasa vasorum) of aneurysmal aortic specimens of different etiology and hypothesized that the vasa vasorum is disrupted in patients with ascending aortic aneurysm. Morphometric analyses of hematoxylin and eosin-stained human aortic cross-sections revealed evidence of vasa vasorum remodeling in aneurysmal specimens, including reduced density of vessels, increased lumen area and thickening of smooth muscle actin-positive layers. These alterations were inconsistently observed in specimens of bicuspid aortic valve (BAV)-associated aortopathy, while vasa vasorum remodeling was typically observed in aneurysms arising in patients with the morphologically normal tricuspid aortic valve (TAV). Gene expression of hypoxia-inducible factor 1α and its downstream targets, metallothionein 1A and the pro-angiogenic factor vascular endothelial growth factor, were down-regulated in the adventitia of aneurysmal specimens when compared with non-aneurysmal specimens, while the level of the anti-angiogenic factor thrombospondin-1 was elevated. Immunodetection of glucose transporter 1 (GLUT1), a marker of chronic tissue hypoxia, was minimal in non-aneurysmal medial specimens, and locally accumulated within regions of elastin degeneration, particularly in TAV-associated aneurysms. Quantification of GLUT1 revealed elevated levels in the aortic media of TAV-associated aneurysms when compared to non-aneurysmal counterparts. We detected evidence of chronic inflammation as infiltration of lymphoplasmacytic cells in aneurysmal specimens, with a higher prevalence of lymphoplasmacytic infiltrates in aneurysmal specimens from patients with TAV compared to that of patients with BAV. These data highlight differences in vasa vasorum remodeling and associated medial chronic hypoxia markers between aneurysms of different etiology. These aberrations could contribute to malnourishment of the aortic media and could conceivably participate in the pathogenesis of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Marie Billaud
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
33
|
Hayward CS, Adji A, O'Rourke MF. Arterial stiffening and arterial dilation as heritable traits caused by defective vital rubber? Eur Heart J 2018; 39:2289-2290. [PMID: 29688395 DOI: 10.1093/eurheartj/ehy231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
34
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann Med 2017; 49:661-677. [PMID: 28797175 DOI: 10.1080/07853890.2017.1366041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
According to the current paradigm, chronic vascular inflammation plays a central role in the pathogenesis of atherosclerosis. The plaque progression is typically completed with rupture and subsequent acute cardiovascular complications. Previously, the role of adventitial vasa vasorum in atherogenesis was underestimated. However, investigators then revealed that vasa vasorum neovascularization can be observed when no clinical manifestation of atherosclerosis is present. Vasa vasorum is involved in various proatherogenic processes such as intimal accumulation of inflammatory leukocytes, intimal thickening, necrotic core formation, intraplaque haemorrhage, lesion rupture and atherothrombosis. Due to the destabilizing action of the intraplaque microenvironment, lesional vasa vasorum neovessels experience serious defects and abnormalities during development that leads to their immaturity, fragility and leakage. Indeed, intraplaque neovessels are a main cause of intraplaque haemorrhage. Visualization techniques showed that presence of neovascularization/haemorrhage can serve as a good indicator of lesion instability and higher risk of rupture. Vasa vasorum density is a strong predictor of acute cardiovascular events such as sudden death, myocardial infarction and stroke. At present, arterial vasa vasorum neovascularization is under intensive investigation along with development of therapeutic tools focused on the control of formation of vasa vasorum neovessels in order to prevent plaque haemorrhage/rupture and thromboembolism. KEY MESSAGE Neovascularization plays an important role in atherosclerosis, being involved in unstable plaque formation. Presence of neovascularization and haemorrhage indicates plaque instability and risk of rupture. Various imaging techniques are available to study neovascularization.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Neurochemistry, Division of Basic and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Alexandra A Melnichenko
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Veronika A Myasoedova
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia
| | - Andrey V Grechko
- c Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology , Moscow , Russia
| | - Alexander N Orekhov
- b Laboratory of Angiopathology , Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences , Moscow , Russia.,d Institute for Atherosclerosis Research, Skolkovo Innovative Center , Moscow , Russia
| |
Collapse
|
35
|
Yang WJ, Wong KS, Chen XY. Intracranial Atherosclerosis: From Microscopy to High-Resolution Magnetic Resonance Imaging. J Stroke 2017; 19:249-260. [PMID: 28877564 PMCID: PMC5647638 DOI: 10.5853/jos.2016.01956] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/26/2017] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Intracranial atherosclerosis is one of the leading causes of ischemic stroke and occurs more commonly in patients of Asian, African or Hispanic origin than in Caucasians. Although the histopathology of intracranial atherosclerotic disease resembles extracranial atherosclerosis, there are some notable differences in the onset and severity of atherosclerosis. Current understanding of intracranial atherosclerotic disease has been advanced by the high-resolution magnetic resonance imaging (HRMRI), a novel emerging imaging technique that can directly visualize the vessel wall pathology. However, the pathological validation of HRMRI signal characteristics remains a key step to depict the plaque components and vulnerability in intracranial atherosclerotic lesions. The purpose of this review is to describe the histological features of intracranial atherosclerosis and to state current evidences regarding the validation of MR vessel wall imaging with histopathology.
Collapse
Affiliation(s)
- Wen-Jie Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Ka-Sing Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| | - Xiang-Yan Chen
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, Hong Kong
| |
Collapse
|
36
|
Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol 2017; 96-98:5-10. [DOI: 10.1016/j.vph.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
37
|
Beltrão-Braga PCB, Koh IHJ, Silva MRR, Gutierrez PS, Han SW. Vascular Adventitia is a Suitable Compartment to Transplant Transduced Vascular Smooth Muscle Cells for Ex Vivo Gene Expression. Cell Transplant 2017. [DOI: 10.3727/000000002783985486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) are ideal for systemic gene therapy because of their proximity to blood vessels and they have demonstrated long-term exogenous gene expression in vivo. However, the procedure generally followed to seed the transduced VSMC onto arteries denuded of endothelial cells usually induces stenosis and thrombosis, with a consequent high risk for use in humans. We demonstrate here that the vascular adventitia is a suitable place to introduce transduced VSMC and to secrete therapeutic proteins into the blood stream by a simple procedure, avoiding postoperative vascular complications. Transduced VSMC, with the retroviral vectors carrying the human growth hormone gene (hGH), were seeded into the adventitia of the rat abdominal aorta by single injection of a cell suspension. Based on the hGH and anti-hGH production in serum and on histological analysis of the removed aortas, we demonstrated hGH production over the 2-month experimental period. None of the animals used in the experiment showed stenosis, thrombosis, or other vascular or visible physiological abnormalities.
Collapse
Affiliation(s)
| | - Ivan H. J. Koh
- Department of Pediatrics, UNIFESP-EPM, São Paulo, 04023-062, Brazil
| | | | | | - Sang W. Han
- Department of Biophysics, UNIFESP-EPM, São Paulo, 04023-062, Brazil
| |
Collapse
|
38
|
Billaud M, Donnenberg VS, Ellis BW, Meyer EM, Donnenberg AD, Hill JC, Richards TD, Gleason TG, Phillippi JA. Classification and Functional Characterization of Vasa Vasorum-Associated Perivascular Progenitor Cells in Human Aorta. Stem Cell Reports 2017; 9:292-303. [PMID: 28552602 PMCID: PMC5511043 DOI: 10.1016/j.stemcr.2017.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/27/2023] Open
Abstract
In the microcirculation, pericytes are believed to function as mesenchymal stromal cells (MSCs). We hypothesized that the vasa vasorum harbor progenitor cells within the adventitia of human aorta. Pericytes, endothelial progenitor cells, and other cell subpopulations were detected among freshly isolated adventitial cells using flow cytometry. Purified cultured pericytes were enriched for the MSC markers CD105 and CD73 and depleted of the endothelial markers von Willebrand factor and CD31. Cultured pericytes were capable of smooth muscle lineage progression including inducible expression of smooth muscle myosin heavy chain, calponin, and α-smooth muscle actin, and adopted a spindle shape. Pericytes formed spheroids when cultured on Matrigel substrates and peripherally localized with branching endothelial cells in vitro. Our results indicate that the vasa vasorum form a progenitor cell niche distinct from other previously described progenitor populations in human adventitia. These findings could have important implications for understanding the complex pathophysiology of human aortic disease. Perivascular progenitor cells were classified in human ascending aorta Adventitial vasa vasorum were identified as a progenitor cell niche Purified pericytes were functional in vitro as smooth muscle cell progenitors Branching endothelial cell networks were associated with pericytes in vitro
Collapse
Affiliation(s)
- Marie Billaud
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley W Ellis
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - E Michael Meyer
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Albert D Donnenberg
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
39
|
Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 2016; 40:311-323. [PMID: 27784889 DOI: 10.1038/hr.2016.145] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.
Collapse
|
40
|
Subbotin VM. Excessive intimal hyperplasia in human coronary arteries before intimal lipid depositions is the initiation of coronary atherosclerosis and constitutes a therapeutic target. Drug Discov Today 2016; 21:1578-1595. [DOI: 10.1016/j.drudis.2016.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/19/2022]
|
41
|
Tonar Z, Tomášek P, Loskot P, Janáček J, Králíčková M, Witter K. Vasa vasorum in the tunica media and tunica adventitia of the porcine aorta. Ann Anat 2016; 205:22-36. [DOI: 10.1016/j.aanat.2016.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/14/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
|
42
|
Sano M, Unno N, Sasaki T, Baba S, Sugisawa R, Tanaka H, Inuzuka K, Yamamoto N, Sato K, Konno H. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia – Implications for the prevalence of aortic diseases. Atherosclerosis 2016; 247:127-34. [DOI: 10.1016/j.atherosclerosis.2016.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
43
|
Roberts WC, Barbin CM, Weissenborn MR, Ko JM, Henry AC. Syphilis as a Cause of Thoracic Aortic Aneurysm. Am J Cardiol 2015; 116:1298-303. [PMID: 26307174 DOI: 10.1016/j.amjcard.2015.07.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022]
Abstract
In 2009, we described morphologic findings in 22 patients having resection of an ascending aortic aneurysm in the previous 11 years at the Baylor University Medical Center, and histologic examination of the aneurysmal wall disclosed classic findings of syphilitic aortitis. The major purpose of that extensively illustrated report was to describe the characteristic gross features of the aneurysm such that syphilitic aortitis might be better recognized at operation and appropriate antibiotics administered postoperatively. The aim of the present study was to emphasize that syphilis remains a major cause of ascending aortic aneurysm. From January 1, 2009, to December 31, 2014, we studied additional 23 patients who had resection of an ascending aortic aneurysm that again histologically had classic features of syphilitic aortitis. All 23 patients were found to have syphilitic aortitis grossly and histologically. The aneurysm involved the ascending portion of aorta in all 23, the arch portion in 12, and the descending thoracic portion in 10. In conclusion, syphilis has far from disappeared. It remains a major cause of ascending aortic aneurysm.
Collapse
|
44
|
Barbin CM, Weissenborn MR, Ko JM, Guileyardo JE, Roberts WC. Computed Tomographic and Morphologic Features of Syphilis of the Aorta. Am J Cardiol 2015; 116:1311-4. [PMID: 26294135 DOI: 10.1016/j.amjcard.2015.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 11/17/2022]
Abstract
This report describes certain computed tomographic and morphologic features of syphilitic aortitis in 2 patients in whom the process involved the entire thoracic aorta.
Collapse
Affiliation(s)
- Clay M Barbin
- Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas
| | | | - Jong M Ko
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| | | | - William C Roberts
- Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas; Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas; Department of Pathology, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|
45
|
Taruya A, Tanaka A, Nishiguchi T, Matsuo Y, Ozaki Y, Kashiwagi M, Shiono Y, Orii M, Yamano T, Ino Y, Hirata K, Kubo T, Akasaka T. Vasa Vasorum Restructuring in Human Atherosclerotic Plaque Vulnerability. J Am Coll Cardiol 2015; 65:2469-77. [DOI: 10.1016/j.jacc.2015.04.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/13/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022]
|
46
|
Xu J, Lu X, Shi GP. Vasa vasorum in atherosclerosis and clinical significance. Int J Mol Sci 2015; 16:11574-608. [PMID: 26006236 PMCID: PMC4463718 DOI: 10.3390/ijms160511574] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that leads to several acute cardiovascular complications with poor prognosis. For decades, the role of the adventitial vasa vasorum (VV) in the initiation and progression of atherosclerosis has received broad attention. The presence of VV neovascularization precedes the apparent symptoms of clinical atherosclerosis. VV also mediates inflammatory cell infiltration, intimal thickening, intraplaque hemorrhage, and subsequent atherothrombosis that results in stroke or myocardial infarction. Intraplaque neovessels originating from VV can be immature and hence susceptible to leakage, and are thus regarded as the leading cause of intraplaque hemorrhage. Evidence supports VV as a new surrogate target of atherosclerosis evaluation and treatment. This review provides an overview into the relationship between VV and atherosclerosis, including the anatomy and function of VV, the stimuli of VV neovascularization, and the available underlying mechanisms that lead to poor prognosis. We also summarize translational researches on VV imaging modalities and potential therapies that target VV neovascularization or its stimuli.
Collapse
Affiliation(s)
- Junyan Xu
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
| | - Xiaotong Lu
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
| | - Guo-Ping Shi
- Second Clinical Medical College, Zhujiang Hospital and Southern Medical University, Guangzhou 510280, China.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Levitt DG, Levitt MD. Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol 2015; 7:37-56. [PMID: 25750547 PMCID: PMC4348054 DOI: 10.2147/cpaa.s79626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Endogenously produced carbon monoxide (CO) is commonly believed to be a ubiquitous second messenger involved in a wide range of physiological and pathological responses. The major evidence supporting this concept is that CO is produced endogenously via heme oxygenase-catalyzed breakdown of heme and that experimental exposure to CO alters tissue function. However, it remains to be conclusively demonstrated that there are specific receptors for CO and that endogenous CO production is sufficient to alter tissue function. Unlike other signaling molecules, CO is not significantly metabolized, and it is removed from cells solely via rapid diffusion into blood, which serves as a near infinite sink. This non-metabolizable nature of CO renders the physiology of this gas uniquely susceptible to quantitative modeling. This review analyzes each of the steps involved in CO signaling: 1) the background CO partial pressure (PCO) and the blood and tissue CO binding; 2) the affinity of the putative CO receptors; 3) the rate of endogenous tissue CO production; and 4) the tissue PCO that results from the balance between this endogenous CO production and diffusion to the blood sink. Because existing data demonstrate that virtually all endogenous CO production results from the routine "housekeeping" turnover of heme, only a small fraction can play a signaling role. The novel aspect of the present report is to demonstrate via physiological modeling that this small fraction of CO production is seemingly insufficient to raise intracellular PCO to the levels required for the conventional, specific messenger receptor activation. It is concluded that the many physiological alterations observed with exogenous CO administration are probably produced by the non-specific CO inhibition of cytochrome C oxidase activity, with release of reactive oxygen species (ROS) and that this ROS signaling pathway is a potential effector mechanism for endogenously produced CO.
Collapse
Affiliation(s)
- David G Levitt
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael D Levitt
- Research Service, Veterans Affairs Medical Center, Minneapolis, MN, USA
| |
Collapse
|
48
|
Herbst M, Hölzenbein TJ, Minnich B. Characterization of the vasa vasorum in the human great saphenous vein: a scanning electron microscopy and 3D-morphometry study using vascular corrosion casts. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1120-1133. [PMID: 24913662 DOI: 10.1017/s1431927614001287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The vasa vasorum (VV) of explanted segments of the human great saphenous vein (Vena saphena magna; HGSV), harvested during dissection for coronary bypass grafts or diseased vein segments from the "Salzburger Landesklinikum," were studied by scanning electron microscopy and three-dimensional morphometry of microvascular corrosion casts. The main objective of this study was to examine the VV's structural arrangement in order to find the most vital segments of the HGSV and in turn to improve the results of coronary bypass surgeries. The study presents a meticulous analysis of the whole microvascular system of the VV of the HGSV and its three-dimensional arrangement. It is one of the first studies yielding detailed quantitative data on geometry of the VV of the HGSV. A detailed insight into different vascular parameters such as vessel diameter, interbranching, intervascular distances, and branching angles at different levels of the VV's angioarchitecture and in different parts of the HGSV in health and disease is given. Further, the geometry of bifurcations was examined in order to compute the physiological optimality principles of this delicate vascular system based on its construction, maintenance, and function.
Collapse
Affiliation(s)
- Markus Herbst
- 1Department of Cell Biology,Division of Animal Structure & Function,Vascular & Exercise Biology Unit,University of Salzburg,5020 Salzburg,Austria
| | | | - Bernd Minnich
- 1Department of Cell Biology,Division of Animal Structure & Function,Vascular & Exercise Biology Unit,University of Salzburg,5020 Salzburg,Austria
| |
Collapse
|
49
|
|
50
|
Atherosclerosis and atheroma plaque rupture: normal anatomy of vasa vasorum and their role associated with atherosclerosis. ScientificWorldJournal 2014; 2014:285058. [PMID: 24790560 PMCID: PMC3980984 DOI: 10.1155/2014/285058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/31/2013] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is primarily a degenerative disorder related to aging with a chronic inflammatory component. There are differences in expression among different vascular beds, inflicting a range of vascular diseases. The majority of studies focus on the inner and medial vascular layers, which are affected at the development of atherosclerosis. Recent evidence shows that the outer layer of blood vessels, composed of the adventitial layer and the vasa vasorum, not only plays a significant role in maintaining vessel integrity, but also reacts to atheroma. What is not clear is the extent of contribution of the outer layer to the process of atherosclerosis. Is it involved in the initiation, progression, and clinical expression of atheroma? Is the inflammation associated with atheroma limited to being merely reactive or is there a proactive element? This paper provides an overview of the normal anatomy of vasa vasorum and potential mechanism of plaque formation due to vascular injury (vasa vasorum) and microhemorrhage.
Collapse
|