1
|
Shoemaker JK, Gros R. A century of exercise physiology: key concepts in neural control of the circulation. Eur J Appl Physiol 2024; 124:1323-1336. [PMID: 38441688 PMCID: PMC11055701 DOI: 10.1007/s00421-024-05451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/28/2024]
Abstract
Early in the twentieth century, Walter B. Cannon (1871-1945) introduced his overarching hypothesis of "homeostasis" (Cannon 1932)-the ability to sustain physiological values within a narrow range necessary for life during periods of stress. Physical exercise represents a stress in which motor, respiratory and cardiovascular systems must be integrated across a range of metabolic stress to match oxygen delivery to oxygen need at the cellular level, together with appropriate thermoregulatory control, blood pressure adjustments and energy provision. Of these, blood pressure regulation is a complex but controlled variable, being the function of cardiac output and vascular resistance (or conductance). Key in understanding blood pressure control during exercise is the coordinating role of the autonomic nervous system. A long history outlines the development of these concepts and how they are integrated within the exercise context. This review focuses on the renaissance observations and thinking generated in the first three decades of the twentieth century that opened the doorway to new concepts of inquiry in cardiovascular regulation during exercise. The concepts addressed here include the following: (1) exercise and blood pressure, (2) central command, (3) neurovascular transduction with emphasis on the sympathetic nerve activity and the vascular end organ response, and (4) tonic neurovascular integration.
Collapse
Affiliation(s)
- J Kevin Shoemaker
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Robert Gros
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, N6A 3K7, Canada
- Department of Medicine, The University of Western Ontario, London, ON, N6A 3K7, Canada
| |
Collapse
|
2
|
Wang D, Veltmann C, Bauersachs J, Duncker D. Antiarrhythmic effects of baroreceptor activation therapy in chronic heart failure: a case report. Eur Heart J Case Rep 2023; 7:ytad520. [PMID: 37954563 PMCID: PMC10633707 DOI: 10.1093/ehjcr/ytad520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/01/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Background Autonomic imbalance represents a keystone of chronic heart failure (HF) with substantial clinical and prognostic implications. Baroreceptor activation therapy (BAT) is a new therapeutic strategy to target the autonomic dysbalance by electrical stimulation of carotid baroreceptors. Besides its known beneficial effects on HF parameters, BAT is also supposed to trigger potential antiarrhythmic effects, which may additionally contribute to HF improvement. Case summary We report on a 70-year-old male with progredient shortness of breath and advanced HF in the context of an extensive cardiovascular history. After optimization of pharmacologic and device-related therapy, the decision was made to implant a BAT system (Barostim Neo, CVRx) to improve functional cardiac parameters and support symptomatic improvement. Implantation was associated with an overall clinical improvement assessed during outpatient visits every 6 months. Frequency of ventricular arrhythmic events declined, and atrial fibrillation ceased spontaneously. Echocardiography revealed an amelioration in left ventricular systolic function. Numbers of HF hospitalization decreased after Barostim implantation. Discussion We present a patient with an extensive cardiovascular history and fully exploited pharmacologic and device-related therapy, who showed improvement in New York Heart Association (NYHA) functional classification, left ventricular systolic function, and reduction of arrhythmic events following implantation of the BAT device. This case presents an additional positive potential of BAT for HF patients in terms of reduction of arrhythmia burden. These results should be confirmed by further clinical trials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Christian Veltmann
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - David Duncker
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Suarez-Roca H, Mamoun N, Sigurdson MI, Maixner W. Baroreceptor Modulation of the Cardiovascular System, Pain, Consciousness, and Cognition. Compr Physiol 2021; 11:1373-1423. [PMID: 33577130 DOI: 10.1002/cphy.c190038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Baroreceptors are mechanosensitive elements of the peripheral nervous system that maintain cardiovascular homeostasis by coordinating the responses to external and internal environmental stressors. While it is well known that carotid and cardiopulmonary baroreceptors modulate sympathetic vasomotor and parasympathetic cardiac neural autonomic drive, to avoid excessive fluctuations in vascular tone and maintain intravascular volume, there is increasing recognition that baroreceptors also modulate a wide range of non-cardiovascular physiological responses via projections from the nucleus of the solitary tract to regions of the central nervous system, including the spinal cord. These projections regulate pain perception, sleep, consciousness, and cognition. In this article, we summarize the physiology of baroreceptor pathways and responses to baroreceptor activation with an emphasis on the mechanisms influencing cardiovascular function, pain perception, consciousness, and cognition. Understanding baroreceptor-mediated effects on cardiac and extra-cardiac autonomic activities will further our understanding of the pathophysiology of multiple common clinical conditions, such as chronic pain, disorders of consciousness (e.g., abnormalities in sleep-wake), and cognitive impairment, which may result in the identification and implementation of novel treatment modalities. © 2021 American Physiological Society. Compr Physiol 11:1373-1423, 2021.
Collapse
Affiliation(s)
- Heberto Suarez-Roca
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| | - Negmeldeen Mamoun
- Department of Anesthesiology, Division of Cardiothoracic Anesthesia and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Martin I Sigurdson
- Department of Anesthesiology and Critical Care Medicine, Landspitali, University Hospital, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Frangos E, Komisaruk BR. Access to Vagal Projections via Cutaneous Electrical Stimulation of the Neck: fMRI Evidence in Healthy Humans. Brain Stimul 2017; 10:19-27. [DOI: 10.1016/j.brs.2016.10.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 01/30/2023] Open
|
6
|
Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev 2015; 95:549-601. [PMID: 25834232 DOI: 10.1152/physrev.00035.2013] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P Casey
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; and Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| |
Collapse
|
7
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Autonomic dysregulation is a feature of heart failure (HF) characterized by sustained increase of sympathetic drive and by withdrawal of parasympathetic activity. Both maladaptations are independent predictors of poor long-term outcome in patients with HF. Considerable evidence exists that supports the use of pharmacologic agents that partially inhibit sympathetic activity as an effective long-term therapy for patients with HF; the classic example being the use of selective and nonselective β-adrenergic receptor blockers. In contrast, modulation of parasympathetic activation as potential therapy for HF has received only limited attention. This review discusses the results of recent preclinical animal studies that provide support for the possible use of baroreflex electrical stimulation, also known as baroreflex activation therapy (BAT), as a long-term therapeutic approach for the treatment of patients with chronic HF. In addition to exploring the effects of chronic BAT on left ventricular (LV) function and chamber remodeling, the review will also address the effects of long-term BAT on ventricular arrhythmias and on potential modifiers of the HF state that include maladaptations of both the nitric oxide and β-adrenergic receptor signal transduction pathways. The results of the preclinical studies conducted to date have shown that in dogs with advanced HF, monotherapy with BAT improves global LV systolic and diastolic function and partially reverses LV remodeling both globally and at cellular and molecular levels. In addition, BAT therapy was shown to markedly increase the threshold for lethal ventricular arrhythmias in dogs with chronic HF. These benefits of BAT support the continued exploration of this therapeutic modality for treating patients with chronic HF and those with increased risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| |
Collapse
|
9
|
Rodrigues FL, de Oliveira M, Salgado HC, Fazan R. Effect of baroreceptor denervation on the autonomic control of arterial pressure in conscious mice. Exp Physiol 2011; 96:853-62. [PMID: 21666038 DOI: 10.1113/expphysiol.2011.057067] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 days prior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low- (LF; 0.25-1 Hz) and high-frequency bands (HF; 1-5 Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Collapse
Affiliation(s)
- Fernanda Luciano Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto/USP, Avenida Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
10
|
|
11
|
Sabbah HN, Gupta RC, Imai M, Irwin ED, Rastogi S, Rossing MA, Kieval RS. Chronic electrical stimulation of the carotid sinus baroreflex improves left ventricular function and promotes reversal of ventricular remodeling in dogs with advanced heart failure. Circ Heart Fail 2011; 4:65-70. [PMID: 21097604 PMCID: PMC3048958 DOI: 10.1161/circheartfailure.110.955013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Autonomic abnormalities exist in heart failure and contribute to disease progression. Activation of the carotid sinus baroreflex (CSB) has been shown to reduce sympathetic outflow and augment parasympathetic vagal tone. This study tested the hypothesis that long-term electric activation of the CSB improves left ventricular (LV) function and attenuates progressive LV remodeling in dogs with advanced chronic heart failure. METHODS AND RESULTS Studies were performed in 14 dogs with coronary microembolization-induced heart failure (LV ejection fraction ≈25%). Eight dogs were chronically instrumented for bilateral CSB activation using the Rheos System (CVRx Inc, Minneapolis, Minn) and 6 were not and served as controls. All dogs were followed for 3 months, and none received other background therapy. During follow-up, treatment with CSB increased LV ejection fraction 4.0±2.4% compared with a reduction in control dogs of −2.8±1.0% (P<0.05). Similarly, treatment with CSB decreased LV end-systolic volume -2.5±2.7 mL compared with an increase in control dogs of 6.7±2.9 mL (P<0.05). Compared with control, CSB activation significantly decreased LV end-diastolic pressure and circulating plasma norepinephrine, normalized expression of cardiac β(1)-adrenergic receptors, β-adrenergic receptor kinase, and nitric oxide synthase and reduced interstitial fibrosis and cardiomyocyte hypertrophy. CONCLUSIONS In dogs with advanced heart failure, CSB activation improves global LV function and partially reverses LV remodeling both globally and at cellular and molecular levels.
Collapse
Affiliation(s)
- Hani N Sabbah
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart and Vascular Institute, 2799 W Grand Blvd., Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
|
14
|
|
15
|
Laughlin MH, Korthuis RJ, Duncker DJ, Bache RJ. Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120116] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Rowell LB, O'Leary DS, Kellogg DL. Integration of Cardiovascular Control Systems in Dynamic Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Ogoh S, Fisher JP, Young CN, Raven PB, Fadel PJ. Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans. Am J Physiol Heart Circ Physiol 2009; 296:H1416-24. [PMID: 19286945 DOI: 10.1152/ajpheart.01223.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated an increase in the arterial baroreflex (ABR) control of muscle sympathetic nerve activity (MSNA) during isolated activation of the muscle metaboreflex with postexercise muscle ischemia (PEMI). However, the increased ABR-MSNA control does not appear to manifest in an enhancement in the ABR control of arterial blood pressure (BP), suggesting alterations in the transduction of MSNA into a peripheral vascular response and a subsequent ABR-mediated change in BP. Thus we examined the operating gains of the neural and peripheral arcs of the ABR and their interactive relationship at rest and during muscle metaboreflex activation. In nine healthy subjects, graded isolation of the muscle metaboreflex was achieved by PEMI following isometric handgrip performed at 15% and 30% maximal voluntary contraction (MVC). To obtain the sensitivities of the ABR neural and peripheral arcs, the transfer function gain from BP to MSNA and MSNA to femoral vascular conductance, respectively, was analyzed. No changes from rest were observed in the ABR neural or peripheral arcs during PEMI after 15% MVC handgrip. However, PEMI following 30% MVC handgrip increased the low frequency (LF) transfer function gain between BP and MSNA (ABR neural arc; +58 +/- 28%, P = 0.036), whereas the LF gain between MSNA and femoral vascular conductance (ABR peripheral arc) was decreased from rest (-36 +/- 8%, P = 0.017). These findings suggest that during high-intensity muscle metaboreflex activation an increased ABR gain of the neural arc appears to offset an attenuation of the peripheral arc gain to help maintain the overall ABR control of systemic BP.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Dept. of Integrative Physiology, Univ. of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
18
|
Sugimachi M, Sunagawa K. Bionic cardiology: exploration into a wealth of controllable body parts in the cardiovascular system. IEEE Rev Biomed Eng 2009; 2:172-86. [PMID: 22275044 DOI: 10.1109/rbme.2009.2034623] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bionic cardiology is the medical science of exploring electronic control of the body, usually via the neural system. Mimicking or modifying biological regulation is a strategy used to combat diseases. Control of ventricular rate during atrial fibrillation by selective vagal stimulation, suppression of ischemia-related ventricular fibrillation by vagal stimulation, and reproduction of neurally commanded heart rate are some examples of bionic treatment for arrhythmia. Implantable radio-frequency-coupled on-demand carotid sinus stimulators succeeded in interrupting or preventing anginal attacks but were replaced later by coronary revascularization. Similar but fixed-intensity carotid sinus stimulators were used for hypertension but were also replaced by drugs. Recently, however, a self-powered implantable device has been reappraised for the treatment of drug-resistant hypertension. Closed-loop spinal cord stimulation has successfully treated severe orthostatic hypotension in a limited number of patients. Vagal nerve stimulation is effective in treating heart failure in animals, and a small-size clinical trial has just started. Simultaneous corrections of multiple hemodynamic abnormalities in an acute decompensated state are accomplished simply by quantifying fundamental cardiovascular parameters and controlling these parameters. Bionic cardiology will continue to promote the development of more sophisticated device-based therapies for otherwise untreatable diseases and will inspire more intricate applications in the twenty-first century.
Collapse
Affiliation(s)
- Masaru Sugimachi
- Department of Cardiovascular Dynamics, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5658565 Suita, Japan.
| | | |
Collapse
|
19
|
Yamamoto K, Kawada T, Kamiya A, Takaki H, Shishido T, Sunagawa K, Sugimachi M. Muscle mechanoreflex augments arterial baroreflex-mediated dynamic sympathetic response to carotid sinus pressure. Am J Physiol Heart Circ Physiol 2008; 295:H1081-H1089. [DOI: 10.1152/ajpheart.00023.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the muscle mechanoreflex is one of the pressor reflexes during exercise, its interaction with dynamic characteristics of the arterial baroreflex remains to be quantitatively analyzed. In anesthetized, vagotomized, and aortic-denervated rabbits ( n = 7), we randomly perturbed isolated carotid sinus pressure (CSP) using binary white noise while recording renal sympathetic nerve activity (SNA) and arterial pressure (AP). We estimated the transfer functions of the baroreflex neural arc (CSP to SNA) and peripheral arc (SNA to AP) under conditions of control and muscle stretch of the hindlimb (5 kg of tension). The muscle stretch increased the dynamic gain of the neural arc while maintaining the derivative characteristics [gain at 0.01 Hz: 1.0 ± 0.2 vs. 1.4 ± 0.6 arbitrary units (au)/mmHg, gain at 1 Hz: 1.7 ± 0.6 vs. 2.7 ± 1.4 au/mmHg; P < 0.05, control vs. stretch]. In contrast, muscle stretch did not affect the peripheral arc. In the time domain, muscle stretch augmented the steady-state response at 50 s (−1.1 ± 0.3 vs. −1.7 ± 0.7 au; P < 0.05, control vs. stretch) and negative peak response (−2.1 ± 0.5 vs. −3.1 ± 1.5 au; P < 0.05, control vs. stretch) in the SNA step response. A simulation experiment using the results indicated that the muscle mechanoreflex would accelerate the closed-loop AP regulation via the arterial baroreflex.
Collapse
|
20
|
Liang F, Liu H. Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system. J Physiol Sci 2006; 56:45-65. [PMID: 16779913 DOI: 10.2170/physiolsci.rp001305] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The Valsalva maneuver is a frequently used physiological test in evaluating the cardiovascular autonomic functions in human. Although a large pool of experimental data has provided substantial insights into different aspects of the mechanisms underlying the cardiovascular regulations during the Valsalva maneuver, so far a complete comprehension of these mechanisms and the interactions among them is unavailable. In the present study, a computational model of the cardiovascular system (CVS) and its interaction with the autonomic nervous system (ANS) was developed for the purpose of quantifying the individual roles of the CVS and the ANS in the hemodynamic regulations during the Valsalva maneuver. A detailed computational compartmental parameter model of the global CVS, a system of mathematical equations representing the autonomic nervous reflex regulatory functions, and an empirical cerebral autoregulation (CA) model formed the main body of the present model. Based on simulations of the Valsalva maneuvers at several typical postures, it was demonstrated that hemodynamic responses to the maneuver were not only determined by the ANS-mediated cardiovascular regulations, but also significantly affected by the postural-change-induced hemodynamic alterations preceding the maneuver. Moreover, the large-magnitude overshoot in cerebral perfusion immediately after the Valsalva maneuver was found to result from a combined effect of the circulatory autonomic functions, the CA, and the cerebral venous blood pressure.
Collapse
Affiliation(s)
- Fuyou Liang
- Graduate School of Science and Technology, Chiba University, Chiba, Japan
| | | |
Collapse
|
21
|
Khan MH, Sinoway LI. Muscle reflex control of sympathetic nerve activity in heart failure: the role of exercise conditioning. Heart Fail Rev 2005; 5:87-100. [PMID: 16228918 DOI: 10.1023/a:1009802308872] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Muscle reflex control of sympathetic nerve activity has been an area of considerable investigation. During exercise, the capacity of the peripheral vasculature to dilate far exceeds the maximal attainable levels of cardiac output. The activation of sympathetic nervous system and engagement of the myogenic reflex serve as the controlling influence between the heart and the muscle vasculature to maintain blood pressure (BP). Two basic theories of neural control have evolved. The first termed "central command", suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. According to the second theory the stimulation of mechanical and chemical afferents in exercising muscle lead to engagement of the "exercise pressor reflex". Some earlier studies suggested that group III muscle afferent fibers are predominantly mechanically sensitive whereas unmyelinated group IV muscle afferents respond to chemical stimuli. In recent years new evidence is emerging which challenges the concept of functional differentiation of muscle afferents as well as the classic description of muscle "mechano" and "metabo" receptors. Studies measuring concentrations of interstitial substances during exercise suggest that K(+) and phosphate, but not H(+) and lactate, may be important muscle afferent stimulants. The role of adenosine as a muscle afferent stimulant remains an area of debate. There is strong evidence that sympathetic vasoconstriction due to muscle reflex engagement plays an important role in restricting blood flow to the exercising muscle. In heart failure (HF), exercise leads to premature fatigue and accumulation of muscle metabolites resulting in a greater degree of muscle reflex engagement and in the process further decreasing the muscle blood flow. Conditioning leads to an increased ability of the muscle to maintain aerobic metabolism, lower interstitial accumulation of metabolites, less muscle reflex engagement and a smaller sympathetic response. Beneficial effects of physical conditioning may be mediated by a direct reduction of muscle metaboreflex activity or via reduction of metabolic signals activating these receptors. In this review, we will discuss concepts of flow and reflex engagement in normal human subjects and then contrast these findings with those seen in heart failure (HF). We will then examine the effects of exercise conditioning on these parameters in normal subjects and those with congestive heart failure (CHF).
Collapse
Affiliation(s)
- M H Khan
- Department of Medicine, Section of Cardiology, Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, USA
| | | |
Collapse
|
22
|
Sinoway LI, Li J. A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol (1985) 2005; 99:5-22. [PMID: 16036901 DOI: 10.1152/japplphysiol.01405.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review we examine the exercise pressor reflex in health and disease. The role of metabolic and mechanical stimulation of thin fiber muscle afferents is discussed. The role ATP and lactic acid play in stimulating and sensitizing these afferents is examined. The role played by purinergic receptors subdivision 2, subtype X, vanilloid receptor subtype 1, and acid-sensing ion channels in mediating the effects of ATP and H+ are discussed. Muscle reflex activation in heart failure is then examined. Data supporting the concept that the metaboreflex is attenuated and that the mechanoreflex is accentuated are presented. The role the muscle mechanoreflex plays in evoking renal vasoconstriction is also described.
Collapse
Affiliation(s)
- Lawrence I Sinoway
- Division of Cardiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| | | |
Collapse
|
23
|
Rowell LB. Ideas about control of skeletal and cardiac muscle blood flow (1876-2003): cycles of revision and new vision. J Appl Physiol (1985) 2004; 97:384-92. [PMID: 15220321 DOI: 10.1152/japplphysiol.01220.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This perspective examines origins of some key ideas central to major issues to be addressed in five subsequent mini-reviews related to Skeletal and Cardiac Muscle Blood Flow. The questions discussed are as follows. 1). What causes vasodilation in skeletal and cardiac muscle and 2). might the mechanisms be the same in both? 3). How important is muscle's mechanical contribution (via muscle pumping) to muscle blood flow, including its effect on cardiac output? 4). Is neural (vasoconstrictor) control of muscle vascular conductance and muscle blood flow significantly blunted in exercise by muscle metabolites and what might be a dominant site of action? 5). What reflexes initiate neural control of muscle vascular conductance so as to maintain arterial pressure at its baroreflex operating point during dynamic exercise, or is muscle blood flow regulated so as to prevent accumulation of metabolites and an ensuing muscle chemoreflex or both?
Collapse
Affiliation(s)
- Loring B Rowell
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Buckwalter JB, Taylor JC, Hamann JJ, Clifford PS. Role of nitric oxide in exercise sympatholysis. J Appl Physiol (1985) 2004; 97:417-23; discussion 416. [PMID: 15020577 DOI: 10.1152/japplphysiol.01181.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The production of nitric oxide is the putative mechanism for the attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during exercise. We hypothesized that nitric oxide synthase blockade would eliminate the reduction in alpha-adrenergic-receptor responsiveness in exercising skeletal muscle. Ten mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective alpha(1)-adrenergic agonist (phenylephrine) or the selective alpha(2)-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Before nitric oxide synthase inhibition with N(G)-nitro-l-arginine methyl ester (l-NAME), intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of -91 +/- 3, -80 +/- 5, and -75 +/- 6% (means +/- SE) at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by -65 +/- 6, -39 +/- 4, and -30 +/- 3%. After l-NAME, intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of -85 +/- 5, -85 +/- 5, and -84 +/- 5%, whereas clonidine reduced vascular conductance by -67 +/- 5, -45 +/- 3, and -35 +/- 3%, at rest, 3 miles/h, and 6 miles/h and 10% grade. alpha(1)-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, alpha(2)-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. Whereas the inhibition of nitric oxide production eliminated the exercise-induced attenuation of alpha(1)-adrenergic-receptor responsiveness, the attenuation of alpha(2)-adrenergic-receptor responsiveness was unaffected. These results suggest that the mechanism of exercise sympatholysis is not entirely mediated by the production of nitric oxide.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | | | |
Collapse
|
25
|
Buckwalter JB, Taylor JC, Hamann JJ, Clifford PS. Do P2X purinergic receptors regulate skeletal muscle blood flow during exercise? Am J Physiol Heart Circ Physiol 2003; 286:H633-9. [PMID: 14551053 DOI: 10.1152/ajpheart.00572.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although there is evidence that sympathetic nerves release ATP as a neurotransmitter to produce vasoconstriction via P2X purinergic receptors, the role of these receptors in the regulation of blood flow to exercising skeletal muscle has yet to be determined. We hypothesized that there is tonic P2X receptor-mediated vasoconstriction in exercising skeletal muscle. To test this hypothesis, the effect of P2X receptor blockade on skeletal muscle blood flow was examined in six exercising mongrel dogs. P2X receptor antagonism was accomplished with pyridoxal-phosphate-6-azophenyl-2'4'-disulfonic acid (PPADs). Animals were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. PPADs (40 mg) was infused as a bolus into the femoral artery catheter during steady-state exercise at 6 miles/h. Intra-arterial infusion of PPADs increased iliac blood flow from 542 +/- 55 to 677 +/- 69 ml/min (P < 0.05) and iliac vascular conductance from 5.17 +/- 0.62 to 6.53 +/- 0.80 ml.min(-1).mmHg(-1). The PPADs infusion did not affect blood flow in the contralateral iliac artery. These data support the hypothesis that P2X purinergic receptors produce vasoconstriction in exercising skeletal muscle.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | | | | | |
Collapse
|
26
|
Buckwalter JB, Hamann JJ, Clifford PS. Vasoconstriction in active skeletal muscles: a potential role for P2X purinergic receptors? J Appl Physiol (1985) 2003; 95:953-9. [PMID: 12766177 DOI: 10.1152/japplphysiol.00173.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence that ATP acts as a neurotransmitter in vascular smooth muscle and is coreleased with norepinephrine from sympathetic nerves. We hypothesized that P2X-receptor stimulation with the selective P2X-receptor agonist alpha,beta-methylene ATP would produce vasoconstriction in resting and exercising skeletal muscle. Six mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective P2X agonist alpha,beta-methylene ATP was infused as a bolus into the femoral artery catheter at rest and during mild, moderate, and heavy exercise. Intra-arterial infusions of alpha,beta-methylene ATP elicited reductions in vascular conductance of 54 +/- 5, 49 +/- 8, 39 +/- 8, and 30 +/- 6% at rest, 3 miles/h, 6 miles/h, and 6 miles/h at a 10% grade, respectively. The agonist infusions did not affect blood flow in the contralateral iliac artery. To examine whether nitric oxide is responsible for the attenuated vasoconstrictor response to P2X stimulation, the infusions were repeated in the presence of NG-nitro-l-arginine methyl ester. After nitric oxide synthase blockade, intra-arterial infusions of alpha,beta-methylene ATP elicited reductions in vascular conductance of 56 +/- 7, 61 +/- 8, 52 +/- 9, and 40 +/- 7% at rest, 3 miles/h, 6 miles/h, and 6 miles/h at a 10% grade, respectively. P2X-receptor responsiveness was attenuated during exercise compared with rest. Blockade of nitric oxide production did not affect the attenuation of P2X-receptor responsiveness during exercise. These data support the hypothesis that P2X purinergic receptors can produce vasoconstriction in exercising skeletal muscle.
Collapse
Affiliation(s)
- John B Buckwalter
- Department of Anesthesiology and Physiology, Medical College of Wisconsin, Milwaukee, WI 53295, USA.
| | | | | |
Collapse
|
27
|
Komine H, Matsukawa K, Tsuchimochi H, Murata J. Central command blunts the baroreflex bradycardia to aortic nerve stimulation at the onset of voluntary static exercise in cats. Am J Physiol Heart Circ Physiol 2003; 285:H516-26. [PMID: 12860562 DOI: 10.1152/ajpheart.00013.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine whether the central characteristics of the aortic baroreflex alter from moment to moment during static exercise, we identified the dynamic changes in the sizes of the bradycardia and depressor response evoked by stimulation of the aortic depressor nerve (ADN). Three conscious cats were trained to voluntarily extend the right forelimb and press a bar for 31 +/- 1 s with a peak force of 337 +/- 22 g while maintaining a sitting posture. The ADN stimulation-induced bradycardia was attenuated at the initial period of exercise (up to 8 s from the exercise onset) to 62 +/- 5% of the preexercise bradycardia and remained blunted until the end of exercise. The most blunted bradycardia was observed immediately before or when the forelimb was extended before force development. The baroreflex-induced bradycardia was suppressed again at cessation of exercise when the forelimb was retracted and recovered within a few seconds. In contrast, static exercise did not affect the ADN stimulation-induced depressor response. The ADN stimulation-induced bradycardia was also blunted at the beginning of naturally occurring body movement such as spontaneous postural change or grooming behavior. Thus it is likely that the central characteristics of the aortic baroreflex dynamically change from moment to moment during voluntary static exercise and during natural body movement and that particularly a central inhibition of the cardiac component of the aortic baroreflex is induced by central command at the onset of static exercise, whereas the central property of the vasomotor component of the baroreflex is preserved.
Collapse
Affiliation(s)
- Hidehiko Komine
- Dept. of Physiology, Institute of Health Sciences, Hiroshima University Faculty of Medicine, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | | | |
Collapse
|
28
|
Sunagawa K, Ikeda Y, Kawada T, Sugimachi M, Shishido T, Sato T, Miyano H, Matsuura W, Inagaki M, Alexander J. Dynamic control of arterial blood pressure by the sympathetic baroreflex. Fundam Clin Pharmacol 2001; 12 Suppl 1:23s-28s. [PMID: 9794137 DOI: 10.1111/j.1472-8206.1998.tb01028.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Sunagawa
- National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Buckwalter JB, Naik JS, Valic Z, Clifford PS. Exercise attenuates alpha-adrenergic-receptor responsiveness in skeletal muscle vasculature. J Appl Physiol (1985) 2001; 90:172-8. [PMID: 11133908 DOI: 10.1152/jappl.2001.90.1.172] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during dynamic exercise is controversial. A potential mechanism is a reduction in alpha-adrenergic-receptor responsiveness. The purpose of this study was to examine alpha(1)- and alpha(2)-adrenergic-receptor-mediated vasoconstriction in resting and exercising skeletal muscle using intra-arterial infusions of selective agonists. Thirteen mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. The selective alpha(1)-adrenergic agonist (phenylephrine) or the selective alpha(2)-adrenergic agonist (clonidine) was infused as a bolus into the femoral artery catheter at rest and during mild and heavy exercise. Intra-arterial infusions of phenylephrine elicited reductions in vascular conductance of 76 +/- 4, 71 +/- 5, and 31 +/- 2% at rest, 3 miles/h, and 6 miles/h and 10% grade, respectively. Intra-arterial clonidine reduced vascular conductance by 81 +/- 5, 49 +/- 4, and 14 +/- 2%, respectively. The response to intra-arterial infusion of clonidine was unaffected by surgical sympathetic denervation. Agonist infusion did not affect either systemic blood pressure, heart rate, or blood flow in the contralateral iliac artery. alpha(1)-Adrenergic-receptor responsiveness was attenuated during heavy exercise. In contrast, alpha(2)-adrenergic-receptor responsiveness was attenuated even at a mild exercise intensity. These results suggest that the mechanism of exercise sympatholysis may involve reductions in postsynaptic alpha-adrenergic-receptor responsiveness.
Collapse
Affiliation(s)
- J B Buckwalter
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | | | |
Collapse
|
30
|
Lee F, Shoemaker JK, McQuillan PM, Kunselman AR, Smith MB, Yang QX, Smith H, Gray K, Sinoway LI. Effects of forearm bier block with bretylium on the hemodynamic and metabolic responses to handgrip. Am J Physiol Heart Circ Physiol 2000; 279:H586-93. [PMID: 10924057 DOI: 10.1152/ajpheart.2000.279.2.h586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that a reduction in sympathetic tone to exercising forearm muscle would increase blood flow, reduce muscle acidosis, and attenuate reflex responses. Subjects performed a progressive, four-stage rhythmic handgrip protocol before and after forearm bier block with bretylium as forearm blood flow (Doppler) and metabolic (venous effluent metabolite concentration and (31)P-NMR indexes) and autonomic reflex responses (heart rate, blood pressure, and sympathetic nerve traffic) were measured. Bretylium inhibits the release of norepinephrine at the neurovascular junction. Bier block increased blood flow as well as oxygen consumption in the exercising forearm (P < 0.03 and P < 0.02, respectively). However, despite this increase in flow, venous K(+) release and H(+) release were both increased during exercise (P < 0.002 for both indexes). Additionally, minimal muscle pH measured during the first minute of recovery with NMR was lower after bier block (6.41 +/- 0.08 vs. 6.20 +/- 0.06; P < 0.036, simple effects). Meanwhile, reflex effects were unaffected by the bretylium bier block. The results support the conclusion that sympathetic stimulation to muscle during exercise not only limits muscle blood flow but also appears to limit anaerobiosis and H(+) release, presumably through a preferential recruitment of oxidative fibers.
Collapse
Affiliation(s)
- F Lee
- Section of Cardiology, Center for Nuclear Magnetic Resonance Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey 17033, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Buckwalter JB, Clifford PS. Autonomic control of skeletal muscle blood flow at the onset of exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1872-7. [PMID: 10564142 DOI: 10.1152/ajpheart.1999.277.5.h1872] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether the autonomic nervous system is involved in skeletal muscle vasodilation at the onset of exercise. Mongrel dogs (n = 7) were instrumented with flow probes on both external iliac arteries. Before treadmill exercise at 3 miles/h, 0% grade, hexamethonium (10 mg/kg) and atropine (0.2 mg/kg) or saline was infused intravenously. Ganglionic blockade increased resting heart rate from 87 +/- 5 to 145 +/- 8 beats/min (P < 0.01) and reduced mean arterial pressure from 100 +/- 4 to 88 +/- 5 mmHg (P < 0.01). During steady-state exercise, heart rate was unaffected by ganglionic blockade (from 145 +/- 8 to 152 +/- 5 beats/min), whereas mean arterial pressure was reduced (from 115 +/- 4 to 72 +/- 4 mmHg; P < 0.01). Immediate and rapid increases in iliac blood flow and conductance occurred with initiation of exercise with or without ganglionic blockade. Statistical analyses of hindlimb conductance at 5-s intervals over the first 30 s of exercise revealed a statistically significant difference between the control and ganglionic blockade conditions at 20, 25, and 30 s (P < 0.01) but not at 5, 10, and 15 s of exercise. Hindlimb conductance at 1 min of exercise was 9.21 +/- 0.68 and 11.82 +/- 1.32 ml. min(-1). mmHg(-1) for the control and ganglionic blockade conditions, respectively. Because ganglionic blockade did not affect the initial rise in iliac conductance, we concluded that the autonomic nervous system is not essential for the rapid vasodilation in active skeletal muscle at the onset of exercise in dogs. Autonomic control of skeletal muscle blood flow during exercise is manifested through vasoconstriction and not vasodilation.
Collapse
Affiliation(s)
- J B Buckwalter
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53295, USA.
| | | |
Collapse
|
32
|
De Paula PM, Castania JA, Bonagamba LG, Salgado HC, Machado BH. Hemodynamic responses to electrical stimulation of the aortic depressor nerve in awake rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:R31-8. [PMID: 10409255 DOI: 10.1152/ajpregu.1999.277.1.r31] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in mean arterial pressure (MAP), heart rate (HR), and vascular resistance (hindquarter and mesenteric territories) in response to electrical stimulation (ES) of the aortic depressor nerve (ADN) were evaluated in conscious freely moving rats. Platinum electrodes were implanted into the ADN of all rats studied, and some of these animals were also implanted with miniaturized Doppler probes around the superior mesenteric artery and inferior abdominal aorta (hindquarter). In both groups, the femoral artery and vein were catheterized one day before the experiments. In the first group of rats (n = 7), the control ES of the ADN in the range from 0.5 to 3.0 V (50 Hz, 10 ms) produced bradycardia and hypotension in an intensity-dependent manner, and treatment with methylatropine (intravenously) blocked the bradycardia but produced no significant changes in the hypotensive response. In a second group (n = 6), ES of the ADN was performed with the intensity fixed at 3 V and the frequency of the stimuli varying from 10 to 50 Hz. In this group, the hypotensive response was frequency dependent, whereas the bradycardic response was not. In a third group of rats (n = 6), ES of the ADN (2.5 V) produced hypotension (-35 +/- 4 mmHg), minor changes in the mesenteric (+5 +/- 14%), and vasodilation in hindquarter (-32 +/- 6%) vascular beds. The data show that 1) ES of the ADN produces a fall in pressure, bradycardia, vasodilation in the hindquarter, and no changes in the mesenteric vascular resistance, 2) methylatropine blocked the bradycardia and produced no effect on the hypotensive response to ES of the ADN, and 3) the baroreceptor afferent fibers involved in the hypotensive response to ES of ADN are sensitive to the variation of the frequency of the stimuli, whereas the fibers involved in the bradycardic response are not.
Collapse
Affiliation(s)
- P M De Paula
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Buckwalter JB, Clifford PS. alpha-adrenergic vasoconstriction in active skeletal muscles during dynamic exercise. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H33-9. [PMID: 10409179 DOI: 10.1152/ajpheart.1999.277.1.h33] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic vasoconstriction in working muscles during dynamic exercise has been demonstrated by intra-arterial administration of alpha(1)-adrenergic antagonists. The purpose of this study was to examine the existence of alpha(1)- and alpha(2)-adrenergic receptor-mediated vasoconstriction in active skeletal muscles during exercise. Six mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs, and a catheter was inserted in one femoral artery. All dogs ran on a motorized treadmill at three exercise intensities (3 miles/h, 6 miles/h, and 6 miles/h at 10% grade) on separate days. After 5 min of exercise, a selective alpha(1)- (prazosin) or a selective alpha(2)-adrenergic antagonist (rauwolscine) was infused as a bolus into the femoral arterial catheter (only one drug per day). The doses of the antagonists were adjusted to maintain the same effective concentration at each exercise intensity. At the mild, moderate, and heavy workloads prazosin infusion produced immediate increases in iliac conductance of 65 +/- 9, 35 +/- 6, and 18 +/- 4% (means +/- SE), respectively, and increases in blood flow of 290 +/- 24, 216 +/- 23, and 172 +/- 18 ml/min, respectively. Rauwolscine infusion produced increases in conductance of 52 +/- 5%, 36 +/- 5%, and 26 +/- 3%, respectively, and blood flow increases of 250 +/- 34, 244 +/- 39, and 259 +/- 35 ml/min at the three workloads. Systemic blood pressure and blood flow in the contralateral iliac artery were unaffected by any of the antagonist infusions. These results demonstrate that there is ongoing alpha(1)- and alpha(2)-adrenergic receptor-mediated vasoconstriction in exercising skeletal muscles even at heavy workloads and that the magnitude of vasoconstriction decreases as exercise intensity increases.
Collapse
Affiliation(s)
- J B Buckwalter
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | |
Collapse
|
34
|
Buckwalter JB, Mueller PJ, Clifford PS. alpha1-adrenergic-receptor responsiveness in skeletal muscle during dynamic exercise. J Appl Physiol (1985) 1998; 85:2277-83. [PMID: 9843553 DOI: 10.1152/jappl.1998.85.6.2277] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Attenuation of sympathetic vasoconstriction (sympatholysis) in working muscles during dynamic exercise is controversial. One potential mechanism is a reduction in alpha1-adrenergic-receptor responsiveness. The purpose of this study was to examine alpha1-adrenergic-receptor-mediated vasoconstriction in resting and working skeletal muscles by using intra-arterial infusions of a selective agonist. Seven mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and a catheter in one femoral artery. A selective alpha1-adrenergic-receptor agonist (phenylephrine) was infused as a bolus into the femoral artery catheter at rest and during exercise. All dogs ran on a motorized treadmill at two exercise intensities (3 and 6 miles/h). Intra-arterial infusions of the same effective concentration of phenylephrine elicited reductions in vascular conductance of 76 +/- 4, 76 +/- 6, and 67 +/- 5% (P > 0.05) at rest, 3 miles/h, and 6 miles/h, respectively. Systemic blood pressure and blood flow in the contralateral iliac artery were unaffected by phenylephrine. These results do not demonstrate an attenuation of vasoconstriction to a selective alpha1-agonist during exercise and do not support the concept of sympatholysis.
Collapse
Affiliation(s)
- J B Buckwalter
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | |
Collapse
|
35
|
Buckwalter JB, Ruble SB, Mueller PJ, Clifford PS. Skeletal muscle vasodilation at the onset of exercise. J Appl Physiol (1985) 1998; 85:1649-54. [PMID: 9804565 DOI: 10.1152/jappl.1998.85.5.1649] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether beta-adrenergic or muscarinic receptors are involved in skeletal muscle vasodilation at the onset of exercise. Mongrel dogs (n = 7) were instrumented with flow probes on both external iliac arteries and a catheter in one femoral artery. Propranolol (1 mg), atropine (500 microgram), both drugs, or saline was infused intra-arterially immediately before treadmill exercise at 3 miles/h, 0% grade. Immediate and rapid increases in iliac blood flow occurred with initiation of exercise under all conditions. Peak blood flows were not significantly different among conditions (682 +/- 35, 646 +/- 49, 637 +/- 68, and 705 +/- 50 ml/min, respectively). Although the doses of antagonists employed had no effect on heart rate or systemic blood pressure, they were adequate to abolish agonist-induced increases in iliac blood flow. Because neither propranolol nor atropine affected iliac blood flow, we conclude that activation of beta-adrenergic and muscarinic receptors is not essential for the rapid vasodilation in active skeletal muscle at the onset of exercise in dogs.
Collapse
Affiliation(s)
- J B Buckwalter
- Departments of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA
| | | | | | | |
Collapse
|
36
|
Buckwalter JB, Mueller PJ, Clifford PS. Sympathetic vasoconstriction in active skeletal muscles during dynamic exercise. J Appl Physiol (1985) 1997; 83:1575-80. [PMID: 9375322 DOI: 10.1152/jappl.1997.83.5.1575] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies utilizing systemic administration of alpha-adrenergic antagonists have failed to demonstrate sympathetic vasoconstriction in working muscles during dynamic exercise. The purpose of this study was to examine the existence of active sympathetic vasoconstriction in working skeletal muscles by using selective intra-arterial blockade. Six mongrel dogs were instrumented chronically with flow probes on the external iliac arteries of both hindlimbs and with a catheter in one femoral artery. All dogs ran on a motorized treadmill at three intensities on separate days. After 2 min, the selective alpha 1-adrenergic antagonist prazosin (0.1 mg) was infused as a bolus into the femoral artery catheter. At mild, moderate, and heavy workloads, there were immediate increases in iliac conductance of 76 +/- 7, 54 +/- 11, and 22 +/- 6% (mean +/- SE), respectively. Systemic blood pressure and blood flow in the contralateral iliac artery were unaffected. These results demonstrate that there is sympathetic vasoconstriction in active skeletal muscles even at high exercise intensities.
Collapse
Affiliation(s)
- J B Buckwalter
- Department of Anesthesiology, Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
37
|
Shoemaker JK, Pandey P, Herr MD, Silber DH, Yang QX, Smith MB, Gray K, Sinoway LI. Augmented sympathetic tone alters muscle metabolism with exercise: lack of evidence for functional sympatholysis. J Appl Physiol (1985) 1997; 82:1932-8. [PMID: 9173961 DOI: 10.1152/jappl.1997.82.6.1932] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is unclear whether sympathetic tone opposes dilator influences in exercising skeletal muscle. We examined high levels of sympathetic tone, evoked by lower body negative pressure (LBNP, -60 mmHg) on intramuscular pH and phosphocreatine (PCr) levels (31P-nuclear magnetic resonance spectroscopy) during graded rhythmic handgrip (30 contractions/min; approximately 17, 34, 52 and 69% maximal voluntary contraction). Exercise was performed with LBNP and without LBNP (Control). At the end of exercise, LBNP caused lower levels of muscle pH (6.59 +/- 0.09) compared with Control (6.78 +/- 0.05; P < 0.05). PCr recovery, an index of mitochondrial respiration, was less during the recovery phase of the LBNP trial. Exercise mean arterial pressure was not altered by LBNP. The protocols were repeated with measurements of forearm blood flow velocity and deep venous samples (active forearm) of hemoglobin (Hb) saturation, pH, and lactate. With LBNP, mean blood velocity was reduced at rest, during exercise, and during recovery compared with Control (P < 0.05). Also, venous Hb saturation and pH levels during exercise and recovery were lower with LBNP and lactate was higher compared with Control (P < 0.05). We conclude that LBNP enhanced sympathetic tone and reduced oxygen transport. At high workloads, there was a greater reliance on nonoxidative metabolism. In other words, sympatholysis did not occur.
Collapse
Affiliation(s)
- J K Shoemaker
- Division of Cardiology, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
1. The present review examines the control of muscle vascular conductance by the sympathetic nervous system during exercise. 2. Evidence for tonic sympathetic neural control of active muscle rests on three findings: (i) directly measured muscle sympathetic nerve traffic is increased; (ii) spillover of noradrenaline from active muscles is also increased; and (iii) withdrawal of sympathetic outflow to active muscle either by acute blockade of its sympathetic nerve supply or by reflex inhibition of sympathetic nervous activity raises muscle vascular conductance via inhibition of tonic vasoconstriction. 3. Loss of tonic sympathetic control of muscle vascular conductance during mild to severe exercise caused marked hypotension despite maintenance of a normal cardiac output. 4. The extent to which active muscle can vasodilate in intact animals appears to have been hidden by tonic vasoconstriction. This vasoconstriction appears to be minimally affected by metabolites in oxidative (red) muscle, but may be inhibited in predominantly glycolytic (white) muscle owing to different spatial distributions of alpha 1- and alpha 2-adrenoceptors in the two muscle types and to the different susceptibilities of the two receptor types to interference by metabolites. 5. The reflexes causing vasoconstriction in active and inactive muscles are unknown. One hypothesis is that a flow-sensitive muscle chemoreflex raises sympathetic outflow to reduce accumulations of muscle metabolites caused by mismatches between muscle blood flow and metabolism, called 'flow errors'. Another hypothesis is that the arterial baroreflex corrects mismatches between cardiac output and vascular conductance called 'pressure errors'. This review argues for a dominance of control by the baroreflex based on the following observations: (i) the arterial baroreflex is essential to the normal rise in sympathetic nervous activity and arterial pressure at the onset of exercise; (ii) during submaximal exercise, a functioning arterial baroreflex is required to maintain tonic sympathetic activity and prevent arterial hypotension; and (iii) whereas a muscle chemoreflex may be needed to guard against hypoperfusion of active muscle, the arterial baroreflex must oppose hypotension by initiating sympathetic vasoconstriction to oppose muscle vasodilation.
Collapse
Affiliation(s)
- L B Rowell
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195-7290, USA
| |
Collapse
|
39
|
Janicki JS, Sheriff DD, Robotham JL, Wise RA. Cardiac Output During Exercise: Contributions of the Cardiac, Circulatory, and Respiratory Systems. Compr Physiol 1996. [DOI: 10.1002/cphy.cp120115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Edfeldt H, Lundvall J. Sympathetic baroreflex control of vascular resistance in comfortably warm man. Analyses of neurogenic constrictor responses in the resting forearm and in its separate skeletal muscle and skin tissue compartments. ACTA PHYSIOLOGICA SCANDINAVICA 1993; 147:437-47. [PMID: 8493877 DOI: 10.1111/j.1748-1716.1993.tb09519.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Resting forearm vascular resistance changes elicited in male volunteers by graded reflex sympathetic activation evoked by graded lower body negative pressure (LBNP) were studied at room temperatures of 24-25 and 20-21 degrees C. The latter condition caused strong suppression of skin flow and permitted preferential analysis of muscle responses and, by comparison with responses at 24-25 degrees C, secondary estimation of circulatory reactions in the skin. Short-lasting LBNP-bouts (1.5 min) allowed analyses of reflex vascular reactions to high and barely tolerated LBNP (85 mmHg) and thereby to high levels of circulatory stress and sympathetic nerve discharge, yet without risks for the subjects under study. Both muscle and skin reacted intensely and in a graded manner to graded sympathetic activation with very pronounced resistance change (74-77% flow decline; 350-400% resistance rise above control level) at high LBNP. Therefore, the sympathetic vasomotor fibres can exert a very potent control of vascular resistance both in skeletal muscle and in skin under thermoneutral conditions, and both tissues apparently can serve as major targets for powerful sympathetic homeostatic baroreflexes. Evidence indicated that this control is exerted from both low-pressure cardiopulmonary and high-pressure arterial baroreceptor areas. These conclusions deviate from previous literature, in which baroreflex sympathetic vasoconstriction in the human limb has been proposed to be more or less selectively mediated from cardiopulmonary receptors and, further, muscle to respond fully already at mild circulatory stress without further constriction if the stimulus is increased.
Collapse
Affiliation(s)
- H Edfeldt
- Department of Clinical Physiology, Växjö Hospital, Sweden
| | | |
Collapse
|
41
|
Kubota T, Alexander J, Itaya R, Todaka K, Sugimachi M, Sunagawa K, Nose Y, Takeshita A. Dynamic effects of carotid sinus baroreflex on ventriculoarterial coupling studied in anesthetized dogs. Circ Res 1992; 70:1044-53. [PMID: 1568296 DOI: 10.1161/01.res.70.5.1044] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We evaluated dynamic effects of the carotid sinus baroreflex on ventriculoarterial coupling. In seven anesthetized, vagotomized dogs, we bilaterally isolated carotid sinuses and randomly changed carotid sinus pressure while measuring aortic pressure, aortic flow, and left ventricular pressure. Estimating left ventricular end-systolic elastance (Ees) and effective arterial elastance (Ea) on a beat-to-beat basis, we determined transfer functions from the carotid sinus pressure to Ees (HEes) and from the carotid sinus pressure to Ea (HEa) over the frequency range spanning 0.002-0.25 Hz. Both HEes and HEa exhibited characteristics of a second-order low-pass filter. The gains of HEes and HEa were 0.085 +/- 0.065 (mean +/- SD) and 0.081 +/- 0.049 mm Hg/ml/mm Hg, respectively. There were no significant differences in natural frequencies (0.039 +/- 0.013 versus 0.039 +/- 0.007 Hz) or damping ratios (0.65 +/- 0.11 versus 0.64 +/- 0.24). The results indicated that the carotid sinus baroreflex dynamically altered Ees and Ea to the same extent in the process of stabilizing arterial pressure. Because the arterial system extracts maximal external work from a given heart when Ea equals Ees, the carotid sinus baroreflex appeared to be designed to regulate the ventricular and arterial properties to optimize the energy transmission from the left ventricle to the arterial system in anesthetized, vagotomized dogs.
Collapse
Affiliation(s)
- T Kubota
- Research Institute of Angiocardiology, Kyushu University Medical School, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rutherfurd SD, Widdop RE, Sannajust F, Louis WJ, Gundlach AL. Expression of c-fos and NGFI-A messenger RNA in the medulla oblongata of the anaesthetized rat following stimulation of vagal and cardiovascular afferents. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 13:301-12. [PMID: 1320720 DOI: 10.1016/0169-328x(92)90213-u] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Messenger RNA encoding the immediate early genes (IEGs) c-fos and NGFI-A was localized by in situ hybridization of specific 35S-labelled oligonucleotides to detect activated neurones in the medulla oblongata following unilateral electrical stimulation of the vagus (nX) and aortic depressor nerve (ADN), and following mechanical stimulation of the left carotid sinus (CS). In electrically stimulated rats, c-fos and NGFI-A mRNA was strongly expressed in the nucleus tractus solitarius (NTS) (predominantly ipsilaterally), area postrema (AP) and in a dorsal subregion of the paratrigeminal nucleus (PTN). Lower levels of c-fos and NGFI-A mRNA were seen in the ipsilateral NTS and PTN following mechanical stimulation of the left CS. In general these data correlate with the topography of innervation by the different nerve afferents, although the expression in the PTN (and in some cases the AP) would not be predicted on the basis of neuronal innervation patterns reported for the rat. Expression of these IEGs also occurred in the rostral and caudal ventrolateral medulla and inferior olive of both stimulated and sham-operated rats; presumably due to effects of the anaesthesia and surgical procedures. In conclusion the localization of the expression of c-fos and NGFI-A mRNAs represents a useful neuroanatomical technique for detecting the cell bodies of neurones that are activated by cardiovascular nerve afferents and should allow the further characterization of the neurochemical identity of these neurones.
Collapse
Affiliation(s)
- S D Rutherfurd
- Clinical Pharmacology and Therapeutics Unit, Austin Hospital, Heidelberg, Vic., Australia
| | | | | | | | | |
Collapse
|
43
|
Richter EA, Kiens B, Hargreaves M, Kjaer M. Effect of arm-cranking on leg blood flow and noradrenaline spillover during leg exercise in man. ACTA PHYSIOLOGICA SCANDINAVICA 1992; 144:9-14. [PMID: 1595357 DOI: 10.1111/j.1748-1716.1992.tb09261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Controversy exists whether recruitment of a large muscle mass in dynamic exercise may outstrip the pumping capacity of the heart and require neurogenic vasoconstriction in exercising muscle to prevent a fall in arterial blood pressure. To elucidate this question, seven healthy young men cycled for 70 minutes at a work load of 55-60% VO2max. At 30 to 50 minutes, arm cranking was added and total work load increased to (mean +/- SE) 82 +/- 4% of VO2max. During leg exercise, leg blood flow average 6.15 +/- .511 minutes-1, mean arterial blood pressure 137 +/- 4 mmHg and leg conductance 42.3 +/- 2.2 ml minutes-1 mmHg-1. When arm cranking was added to leg cycling, leg blood flow did not change significantly, mean arterial blood pressure increased transiently to 147 +/- 5 mmHg and leg vascular conductance decreased transiently to 33.5 +/- 3.1 ml minutes-1 mmHg-1. Furthermore, arm cranking doubled leg noradrenaline spillover. When arm cranking was discontinued and leg cycling continued, leg blood flow was unchanged but mean arterial blood pressure decreased to values significantly below those measured in the first leg exercise period. Furthermore, leg vascular conductance increased transiently, and noradrenaline spillover decreased towards values measured during the first leg exercise period. It is concluded that addition of arm cranking to leg cycling increases leg noradrenaline spillover and decreases leg vascular conductance but leg blood flow remains unchanged because of a simultaneous increase in mean arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E A Richter
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
44
|
Strange S, Rowell LB, Christensen NJ, Saltin B. Cardiovascular responses to carotid sinus baroreceptor stimulation during moderate to severe exercise in man. ACTA PHYSIOLOGICA SCANDINAVICA 1990; 138:145-53. [PMID: 2316377 DOI: 10.1111/j.1748-1716.1990.tb08826.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our objective was to assess the importance of arterial baroreflexes in maintaining vasoconstriction in active muscle during moderate to severe exercise. Eight subjects exercised for 8-15 min on a cycle ergometer at three levels (averages 94, 194, 261 W) requiring 40-88% of VO2 max. Four times during each exercise level pulsatile negative pressure (-50 mmHg) was applied over the carotid sinuses for 30 s; suction was applied at each ECG R-wave for 250-400 ms. Before and during each neck suction, femoral venous blood flow (FVBF) was measured by constant infusion thermal dilution. At 94 W neck suction significantly reduced blood pressure (BP) (15 mmHg) and heart rate (HR) (7 beats min-1), and raised leg vascular conductance (LVC) (11.4%) without changing FVBF. At 194 W, neck suction reduced BP (9 mmHg), HR (4 beats min-1) and FVBF (5.1%, 240 ml min-1), and raised LVC (5.2%). At 261 W, LVC was unchanged by neck suction, but BP and FVBF both fell (9 mmHg and 650 ml min-1 or 7.4%). We conclude that competing local vasodilation and sympathetic vasoconstriction control muscle blood flow during moderate exercise, and vasoconstrictor tone can be withdrawn by baroreceptor stimulation. High levels of vasoconstrictor outflow to muscle in severe exercise may not originate from baroreflexes.
Collapse
Affiliation(s)
- S Strange
- August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
45
|
Nosaka S, Nakase N, Murata K. Somatosensory and hypothalamic inhibitions of baroreflex vagal bradycardia in rats. Pflugers Arch 1989; 413:656-66. [PMID: 2726429 DOI: 10.1007/bf00581817] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Somatosensory and forebrain mechanisms inhibiting arterial baroreflexes were investigated in chloralose-urethane anesthetized and artificially ventilated rats. Electrical stimulation of the sciatic nerve (ScN) and the hypothalamic pressor area (HP) suppressed baroreflex vagal bradycardia (BVB) and hypotension provoked by electrical stimulation of the aortic depressor nerve (ADN). Suppression of BVB was more marked, but inhibitory potencies of ScN and HP were not different. These two inhibitions were considered to have a functional implication in common, since both were accompanied by increase in hindlimb vascular conductance. A variety of experiments were conducted to localize the target site of ScN and HP inhibitions of BVB. Either ScN or HP stimulations was without effect on antidromic compound spike potentials along ADN evoked by microstimulation of the nucleus tractus solitarius (NTS), precluding the possibility of these inhibitions being presynaptic. Both ScN and HP stimulation suppressed ADN-induced field potentials in the NA region which provoked vagal bradycardia upon microstimulation, but failed to affect ADN-induced responses, either field or unitary, in the NTS region. Antidromic unitary responses in the NA region to vagus cardiac branch stimulation were suppressed by ScN and HP stimulations in NTS-lesioned rats. Intracisternal bicuculline, a GABA antagonist, was found to abolish both ScN and HP inhibitions of BVB, while intracisternal muscimol, a GABA agonist, eliminated bradycardia. These findings suggest that somatosensory and forebrain inhibition of BVB occur principally at the preganglionic cell level and are probably mediated by a GABAergic mechanism.
Collapse
Affiliation(s)
- S Nosaka
- Department of Physiology, Mie University School of Medicine, Japan
| | | | | |
Collapse
|
46
|
Sanders JS, Mark AL, Ferguson DW. Importance of aortic baroreflex in regulation of sympathetic responses during hypotension. Evidence from direct sympathetic nerve recordings in humans. Circulation 1989; 79:83-92. [PMID: 2910547 DOI: 10.1161/01.cir.79.1.83] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Arterial baroreceptors in the carotid sinus and aortic arch regions reflexly regulate heart rate and peripheral vascular responses during changes in arterial pressure. The relative influence of these two arterial baroreflex pathways on the control of these autonomic responses is debatable. Recent studies in our laboratory demonstrate that the aortic baroreflex produces substantial and sustained inhibition of efferent sympathetic nerve activity to muscle (MSNA) during increases in arterial pressure. The regulation of MSNA by these two baroreflexes in humans during hypotension, and particularly the role of the aortic baroreflex, remains undefined. We therefore performed a new series of studies to assess the relative influence of the aortic and carotid baroreflexes on MSNA responses during sustained decreases in arterial pressure. In eight normal male subjects, aged 23 +/- 1 years (mean +/- SEM), we directly measured mean arterial pressure, heart rate, central venous pressure, and MSNA (microneurography) during hypotension (combined aortic and carotid baroreceptor deactivation) produced by intravenous infusion of sodium nitroprusside and during nitroprusside infusion with superimposed application of external neck suction. Neck suction was applied at levels sufficient to maintain transmural carotid sinus pressure above control levels (carotid baroreceptor activation) while the aortic baroreflexes remained deactivated. Central venous pressure was maintained constant with volume infusion. We also studied responses of these same subjects to direct carotid baroreceptor deactivation with the application of external neck pressure. During neck pressure alone, there was a reflex increase in mean arterial pressure; thus, during this portion of the protocol, we achieved carotid baroreceptor deactivation with some aortic baroreceptor activation. Nitroprusside infusion (combined aortic and carotid deactivation) decreased mean arterial pressure from 90.8 +/- 3.1 to 77.8 +/- 1.1 mm Hg (p less than 0.01) with concomitant increases in heart rate from 62.6 +/- 3.0 to 89.7 +/- 6.1 beats/min (p less than 0.001) and in MSNA from 273.8 +/- 43.0 to 950.6 +/- 133.5 units (p less than 0.001). During continued nitroprusside infusion with superimposed neck suction (aortic baroreceptor deactivation and carotid baroreceptor activation), mean arterial pressure decreased to 70.3 +/- 1.9 mm Hg (p less than 0.001 vs. control), heart rate decreased to 82.5 +/- 6.5 beats/min (p less than 0.01 vs. control or vs. nitroprusside alone), but MSNA remained markedly increased at 889.7 +/- 105.1 units (p less than 0.001 vs. control; p = NS vs. nitroprusside alone).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J S Sanders
- Department of Internal Medicine, University of Iowa Hospitals, Iowa City, 52242
| | | | | |
Collapse
|
47
|
Vatner DE, Lee DL, Schwarz KR, Longabaugh JP, Fujii AM, Vatner SF, Homcy CJ. Impaired cardiac muscarinic receptor function in dogs with heart failure. J Clin Invest 1988; 81:1836-42. [PMID: 3290256 PMCID: PMC442633 DOI: 10.1172/jci113528] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prior physiological studies have suggested that parasympathetic control is altered in heart failure. The goal of our studies was to investigate the influence of heart failure on the muscarinic receptor, and its coupling to adenylate cyclase. Ligand binding studies using [3H]quinuclidinyl benzilate and enriched left ventricular (LV) sarcolemma, demonstrated that muscarinic receptor density in heart failure declined 36% from a control of 5.6 +/- 0.6 pmol/mg, with no change in antagonist affinity. However, agonist competition studies with both carbachol and oxotremorine showed that it was a loss of high affinity agonist binding sites in the sarcolemma from failing LV that accounted for this difference. The functional efficacy of the muscarinic receptor was also examined. When 1 microM methacholine was added to 0.1 mM GTP and 0.1 mM isoproterenol, adenylate cyclase stimulated activity was inhibited by 15% in normal LV but only 5% in LV sarcolemma from animals with heart failure even when the reduced adenylate cyclase in these heart failure animals was taken into account. Even at 100-fold greater concentrations of methacholine, significantly less inhibition of adenylate cyclase activity was observed in LV failure as compared with normal LV sarcolemma. Levels of the GTP-inhibitory protein known to couple the muscarinic receptor to adenylate cyclase, as measured with pertussis toxin labeling, were not depressed in LV failure. Thus, the inhibitory pathway regulating LV adenylate cyclase activity is defective in heart failure. The decrease in muscarinic receptor density, and in particular the specific loss of the high affinity agonist binding component of this receptor population, appears to be the major factor underlying this abnormality.
Collapse
Affiliation(s)
- D E Vatner
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
| | | | | | | | | | | | | |
Collapse
|
48
|
Sanders JS, Ferguson DW, Mark AL. Arterial baroreflex control of sympathetic nerve activity during elevation of blood pressure in normal man: dominance of aortic baroreflexes. Circulation 1988; 77:279-88. [PMID: 3338124 DOI: 10.1161/01.cir.77.2.279] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Arterial baroreceptors in the carotid sinus (CBR) and aortic arch (ABR) regions exert important control over heart rate and peripheral vascular responses to changes in arterial pressure. The relative roles of these two baroreflex pathways on control of sympathetic nerve activity during sustained elevation of arterial pressure in man is unknown. We therefore studied the relative contributions of the carotid versus the aortic baroreflexes on the control of muscle sympathetic nerve activity (MSNA) during elevation of arterial pressure in normal human subjects. In eight normal men (group I), we measured MSNA (microneurography) during sustained elevation of arterial pressure produced by intravenous infusion of phenylephrine (PE) alone (combined ABR and CBR activation) versus during PE infusion with superimposed application of sustained external neck pressure (NP). NP was applied during sustained PE infusion to eliminate the increase in transmural carotid sinus pressure and thus remove CBR activation, thereby causing ABR stimulation alone. Mean arterial pressure was measured directly, central venous pressure was held constant during PE infusion, and MSNA was measured as total activity (burst frequency X amplitude) and expressed as units. Infusion of PE (ABR and CBR activation) increased mean arterial pressure from 87.2 +/- 2.8 to 94.9 +/- 2.9 mm Hg (+/- SE, p less than .001). This was accompanied by a decrease in heart rate from 65.8 +/- 3.4 to 56.1 +/- 3.3 beats/min (p less than .001) and a decrease in MSNA from 236.2 +/- 47.5 to 84.5 +/- 19.3 units (p less than .001). During infusion of PE with superimposed NP (ABR activation alone), mean arterial pressure increased further to 101.2 +/- 2.9 mm Hg (p less than .001 versus control or PE alone), and heart rate returned to control levels of 62.9 +/- 2.0 beats/min (p = NS vs control; p less than .01 PE vs PE plus NP), but MSNA remained reduced at 48.6 +/- 9.2 units (p less than .01 vs control; p = NS vs PE alone). Thus, combined activation of ABR and CBR resulted in a 65 +/- 5% attenution of MSNA, while activation of ABR alone resulted in a 73 +/- 7% attenuation of MSNA. In a separate series of experiments in seven subjects (group II) we used sustained external neck suction alone to activate the CBR (leaving the ABR either unchanged or minimally deactivated) and studied the MSNA responses to this CBR activation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J S Sanders
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
49
|
Ferguson DW. Influence of nifedipine on arterial baroreflex modulation of heart rate control during dynamic increases in arterial pressure: studies in normal man. Am Heart J 1987; 114:773-81. [PMID: 3661368 DOI: 10.1016/0002-8703(87)90788-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies in animals have demonstrated that calcium channel blocking agents exert important influences on autonomic mechanisms in addition to their direct vascular effects. Previous studies in our laboratory showed that clinical doses of nifedipine sensitized baroreceptor-mediated control of peripheral vascular resistance in normal human subjects. However, baroreflex control of vascular tone does not necessarily imply parallel control of heart rate. A series of experiments was therefore performed to test the hypothesis that therapeutic doses of nifedipine would potentiate arterial baroreflex modulation of heart rate during ramp increases of arterial pressure in normal volunteers. Arterial baroreflex control was assessed by measuring heart interval (HI) responses to dynamic ramp elevation of systolic arterial pressure (SAP) with bolus administration of phenylephrine (PE) before and after nifedipine or placebo in 19 normal subjects. Arterial baroreflex control was calculated from the slope of the regression of SAP on succeeding HI during the first 18 cardiac cycles following onset of rise of SAP after PE bolus. In 13 subjects, bolus PE produced an increase in SAP from 125 +/- 3 mm Hg to 152 +/- 5 mm Hg (p less than 0.01), with a resultant increase in HI from 1110 +/- 57 msec to 1541 +/- 87 msec (p less than 0.01). The baroreflex response was linear (r greater than 0.80, p less than 0.025) and = 17.8 +/- 3.3 msec/mm Hg.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D W Ferguson
- Department of Medicine, University of Vermont College of Medicine, Burlington
| |
Collapse
|
50
|
Aksamit TR, Floras JS, Victor RG, Aylward PE. Paroxysmal hypertension due to sinoaortic baroreceptor denervation in humans. Hypertension 1987; 9:309-14. [PMID: 3818023 DOI: 10.1161/01.hyp.9.3.309] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 41-year-old man with a remote history of neck and mediastinal radiation was seen with severe paroxysms of hypertension, headache, and cutaneous flushing after bilateral carotid bypass surgery. Investigation revealed marked parallel fluctuations in blood pressure and heart rate and elevation of plasma norepinephrine to 1164 pg/ml during a paroxysm. We systematically evaluated his arterial and cardiopulmonary baroreceptor reflex function by assessing changes in heart rate, arterial pressure, and efferent muscle sympathetic nerve activity, which was measured directly by the microneurographic technique. Elevating resting arterial pressure from 130/88 to 164/100 mm Hg with phenylephrine or lowering it to 88/56 mm Hg with nitroprusside produced no reflex changes in heart rate or efferent sympathetic nerve activity. In contrast, decreases in cardiac filling pressures with lower body negative pressure produced a marked increase in sympathetic nerve activity. These findings indicate complete loss of the afferent limb of the arterial baroreceptor reflex but preservation of the cardiopulmonary baroreceptor reflex. They suggest that both carotid and aortic baroreceptors were impaired by the previous radiation and surgery. Despite the loss of arterial baroreceptor function, the patient did not have sustained hypertension. The paroxysms of hypertension appear to be due to spontaneous fluctuations in central sympathetic drive not buffered by arterial baroreceptors in a manner similar to that seen in sinoaortic-denervated animals.
Collapse
|