1
|
Kalia N. A historical review of experimental imaging of the beating heart coronary microcirculation in vivo. J Anat 2021; 242:3-16. [PMID: 34905637 PMCID: PMC9773169 DOI: 10.1111/joa.13611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Following a myocardial infarction (MI), the prognosis of patients is highly dependent upon the re-establishment of perfusion not only in the occluded coronary artery, but also within the coronary microcirculation. However, our fundamental understanding of the pathophysiology of the tiniest blood vessels of the heart is limited primarily because no current clinical imaging tools can directly visualise them. Moreover, in vivo experimental studies of the beating heart using intravital imaging have also been hampered due to obvious difficulties related to significant inherent contractile motion, movement of the heart brought about by nearby lungs and its location in an anatomically challenging position for microscopy. However, recent advances in microscopy techniques, and the development of fluorescent reporter mice and fluorescently conjugated antibodies allowing visualisation of vascular structures, thromboinflammatory cells and blood flow, have allowed us to overcome some of these challenges and increase our basic understanding of cardiac microvascular pathophysiology. In this review, the elegant attempts of the pioneers in intravital imaging of the beating heart will be discussed, which focussed on providing new insights into the anatomy and physiology of the healthy heart microvessels. The reviews end with the more recent studies that focussed on disease pathology and increasing our understanding of myocardial thromboinflammatory cell recruitment and flow disturbances, particularly in the setting of diseases such as MI.
Collapse
Affiliation(s)
- Neena Kalia
- Microcirculation Research GroupInstitute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
2
|
Namani R, Lee LC, Lanir Y, Kaimovitz B, Shavik SM, Kassab GS. Effects of myocardial function and systemic circulation on regional coronary perfusion. J Appl Physiol (1985) 2020; 128:1106-1122. [PMID: 32078466 DOI: 10.1152/japplphysiol.00450.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cardiac-coronary interaction and the effects of its pathophysiological variations on spatial heterogeneity of coronary perfusion and myocardial work are still poorly understood. This hypothesis-generating study predicts spatial heterogeneities in both regional cardiac work and perfusion that offer a new paradigm on the vulnerability of the subendocardium to ischemia, particularly at the apex. We propose a mathematical and computational modeling framework to simulate the interaction of left ventricular mechanics, systemic circulation, and coronary microcirculation. The computational simulations revealed that the relaxation rate of the myocardium has a significant effect whereas the contractility has a marginal effect on both the magnitude and transmural distribution of coronary perfusion. The ratio of subendocardial to subepicardial perfusion density (Qendo/Qepi) changed by -12 to +6% from a baseline value of 1.16 when myocardial contractility was varied by +25 and -10%, respectively; Qendo/Qepi changed by 37% when sarcomere relaxation rate, b, was faster and increased by 10% from the baseline value. The model predicts axial differences in regional myocardial work and perfusion density across the wall thickness. Regional myofiber work done at the apex is 30-50% lower than at the center region, whereas perfusion density in the apex is lower by only 18% compared with the center. There are large axial differences in coronary flow and myocardial work at the subendocardial locations, with the highest differences located at the apex region. A mismatch exists between perfusion density and regional work done at the subendocardium. This mismatch is speculated to be compensated by coronary autoregulation.NEW & NOTEWORTHY We present a model of left ventricle perfusion based on an anatomically realistic coronary tree structure that includes its interaction with the systemic circulation. Left ventricular relaxation rate has a significant effect on the regional distribution of coronary flow and myocardial work.
Collapse
Affiliation(s)
- Ravi Namani
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| | - Lik C Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| | - Yoram Lanir
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Benjamin Kaimovitz
- Faculty of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sheikh M Shavik
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| | - Ghassan S Kassab
- The California Medical Innovations Institute Inc., San Diego, California
| |
Collapse
|
3
|
Kavanagh DPJ, Kalia N. Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds. Front Immunol 2019; 10:2782. [PMID: 31849965 PMCID: PMC6901937 DOI: 10.3389/fimmu.2019.02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Although mortality rates from cardiovascular disease in the developed world are falling, the prevalence of cardiovascular disease (CVD) is not. Each year, the number of people either being diagnosed as suffering with CVD or undergoing a surgical procedure related to it, such as percutaneous coronary intervention, continues to increase. In order to ensure that we can effectively manage these diseases in the future, it is critical that we fully understand their basic physiology and their underlying causative factors. Over recent years, the important role of the cardiac microcirculation in both acute and chronic disorders of the heart has become clear. The recruitment of inflammatory cells into the cardiac microcirculation and their subsequent activation may contribute significantly to tissue damage, adverse remodeling, and poor outcomes during recovery. However, our basic understanding of the cardiac microcirculation is hampered by an historic inability to image the microvessels of the beating heart-something we have been able to achieve in other organs for over 100 years. This stems from a couple of clear and obvious difficulties related to imaging the heart-firstly, it has significant inherent contractile motion and is affected considerably by the movement of lungs. Secondly, it is located in an anatomically challenging position for microscopy. However, recent microscopic and technological developments have allowed us to overcome some of these challenges and to begin to answer some of the basic outstanding questions in cardiac microvascular physiology, particularly in relation to inflammatory cell recruitment. In this review, we will discuss some of the historic work that took place in the latter part of last century toward cardiac intravital, before moving onto the advanced work that has been performed since. This work, which has utilized technology such as spinning-disk confocal and multiphoton microscopy, has-along with some significant advancements in algorithms and software-unlocked our ability to image the "business end" of the cardiac vascular tree. This review will provide an overview of these techniques, as well as some practical pointers toward software and other tools that may be useful for other researchers who are considering utilizing this technique themselves.
Collapse
Affiliation(s)
- Dean Philip John Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Namani R, Kassab GS, Lanir Y. Morphometric Reconstruction of Coronary Vasculature Incorporating Uniformity of Flow Dispersion. Front Physiol 2018; 9:1069. [PMID: 30210353 PMCID: PMC6123366 DOI: 10.3389/fphys.2018.01069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/17/2018] [Indexed: 01/22/2023] Open
Abstract
Experimental limitations in measurements of coronary flow in the beating heart have led to the development of in silico models of reconstructed coronary trees. Previous coronary reconstructions relied primarily on anatomical data, including statistical morphometry (e.g., diameters, length, connectivity, longitudinal position). Such reconstructions are non-unique, however, often leading to unrealistic predicted flow features. Thus, it is necessary to impose physiological flow constraints to ensure realistic tree reconstruction. Since a vessel flow depends on its diameter to fourth power, diameters are the logical candidates to guide vascular reconstructions to achieve realistic flows. Here, a diameter assignment method was developed where each vessel diameter was determined depending on its downstream tree size, aimed to reduce flow dispersion to within measured range. Since the coronary micro-vessels are responsible for a major portion of the flow resistance, the auto regulated coronary flow was analyzed in a morphometry-based reconstructed 400 vessel arterial microvascular sub-tree spanning vessel orders 1–6. Diameters in this subtree were re-assigned based on the flow criteria. The results revealed that diameter re-assignment, while adhering to measured morphometry, significantly reduced the flow dispersion to realistic levels while adhering to measured morphometry. The resulting network flow has longitudinal pressure distribution, flow fractal nature, and near-neighboring flow autocorrelation, which agree with measured coronary flow characteristics. Collectively, these results suggest that a realistic coronary tree reconstruction should impose not only morphometric data but also flow considerations. The work is of broad significance in providing a novel computational framework in the field of coronary microcirculation. It is essential for the study of coronary circulation by model simulation, based on a realistic network structure.
Collapse
Affiliation(s)
- Ravi Namani
- California Medical Innovations Institute Inc., San Diego, CA, United States.,Faculty of Biomedical Engineering, Technion, Haifa, Israel
| | - Ghassan S Kassab
- California Medical Innovations Institute Inc., San Diego, CA, United States
| | - Yoram Lanir
- Faculty of Biomedical Engineering, Technion, Haifa, Israel
| |
Collapse
|
5
|
Namani R, Kassab GS, Lanir Y. Integrative model of coronary flow in anatomically based vasculature under myogenic, shear, and metabolic regulation. J Gen Physiol 2017; 150:145-168. [PMID: 29196421 PMCID: PMC5749109 DOI: 10.1085/jgp.201711795] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022] Open
Abstract
Coronary blood flow is regulated to match the oxygen demand of myocytes in the heart wall. Flow regulation is essential to meet the wide range of cardiac workload. The blood flows through a complex coronary vasculature of elastic vessels having nonlinear wall properties, under transmural heterogeneous myocardial extravascular loading. To date, there is no fully integrative flow analysis that incorporates global and local passive and flow control determinants. Here, we provide an integrative model of coronary flow regulation that considers the realistic asymmetric morphology of the coronary network, the dynamic myocardial loading on the vessels embedded in it, and the combined effects of local myogenic effect, local shear regulation, and conducted metabolic control driven by venous O2 saturation level. The model predicts autoregulation (approximately constant flow over a wide range of coronary perfusion pressures), reduced heterogeneity of regulated flow, and presence of flow reserve, in agreement with experimental observations. Furthermore, the model shows that the metabolic and myogenic regulations play a primary role, whereas shear has a secondary one. Regulation was found to have a significant effect on the flow except under extreme (high and low) inlet pressures and metabolic demand. Novel outcomes of the model are that cyclic myocardial loading on coronary vessels enhances the coronary flow reserve except under low inlet perfusion pressure, increases the pressure range of effective autoregulation, and reduces the network flow in the absence of metabolic regulation. Collectively, these findings demonstrate the utility of the present biophysical model, which can be used to unravel the underlying mechanisms of coronary physiopathology.
Collapse
Affiliation(s)
- Ravi Namani
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Yoram Lanir
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
7
|
|
8
|
van Horssen P, van den Wijngaard JPHM, Brandt MJ, Hoefer IE, Spaan JAE, Siebes M. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. Am J Physiol Heart Circ Physiol 2013; 306:H496-504. [PMID: 24363303 DOI: 10.1152/ajpheart.00584.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood flow distribution within the myocardium and the location and extent of areas at risk in case of coronary artery disease are dependent on the distribution and morphology of intramural vascular crowns. Knowledge of the intramural vasculature is essential in novel multiscale and multiphysics modeling of the heart. For this study, eight canine hearts were analyzed with an imaging cryomicrotome, developed to acquire high-resolution spatial data on three-dimensional vascular structures. The obtained vasculature was skeletonized, and for each penetrating artery starting from the epicardium, the dependent vascular crown was defined. Three-dimensional Voronoi tessellation was applied with the end points of the terminal segments as center points. The centroid of end points in each branch allowed classification of the corresponding perfusion territories in subendocardial, midmyocardial, and subepicardial. Subendocardial regions have relatively few territories of about 0.5 ml in volume having their own penetrating artery at the epicardium, whereas the subepicardium is perfused by a multitude of small perfusion territories, in the order of 0.01 ml. Vascular volume density of small arteries up till 400 μm was 3.2% at the subendocardium territories but only 0.8% in the subepicardium territories. Their higher volume density corresponds to compensation for flow impeding forces by cardiac contraction. These density differences result in different scaling law properties of vascular volume and tissue mass per territory type. This novel three-dimensional quantitative analysis may form the basis for patient-specific computational models on coronary perfusion and aid the interpretation of image-based clinical methods for assessing the transmural perfusion distribution.
Collapse
Affiliation(s)
- P van Horssen
- Department of Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and
| | | | | | | | | | | |
Collapse
|
9
|
Uchida Y, Uchida Y, Maezawa Y, Maezawa Y, Sakurai T, Kanai M, Shirai S, Tabata T. Nitroglycerin-induced heterogeneous subendocardial myocardial blood flow observed by cardioscopy in patients with coronary artery disease. Int Heart J 2011; 52:331-7. [PMID: 22188704 DOI: 10.1536/ihj.52.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is controversial as to whether or not nitroglycerin (NTG) increases subendocardial myocardial blood flow (SMBF), and if it does, whether arterial or venous blood flow is increased in patients with coronary artery disease. This study was performed to examine NTG-induced changes in SMBF.Changes in SMBF induced by NTG (200 µg, i.v.) were examined by cardioscopy in 58 left ventricular wall segments of 58 patients with coronary artery disease. NTG-induced red and purple endocardial colors were defined as increased arterial and venous SMBF, respectively. Endocardial color before NTG administration was classified into brown, light brown, pale and white. Endomyocardial biopsy of the observed portion and (201)Tl scintigraphy were performed in 40 of these patients immediately after cardioscopy and several days after cardioscopy, respectively.Upon administration of NTG, SMBF increased in 48 of 58 wall segments; arterial SMBF in 34 and venous SMBF in 12 wall segments; arterial SMBF in all 24 brown to light brown segments; venous SMBF, arterial SMBF and no change in 12, 10 and 5 of pale segments, respectively; and no change in all 10 white wall segments. (201)Tl-scintigraphy and endomyocardial biopsy revealed that brown, light brown, pale and white endocardial color represented no ischemia, mild ischemia, severe ischemia and fibrosis, respectively.NTG caused an increase in either arterial or venous SMBF depending on control endocardial color, wall motion and severity of coronary stenosis.
Collapse
Affiliation(s)
- Yasuto Uchida
- Department of Cardiology, Toho University Ohmori Hospital, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Uchida Y, Kanai M, Maezawa Y, Maezawa Y, Shirai S, Nakagawa O, Uchida Y. Cardioscopic observation of subendocardial microvessels in patients with coronary artery disease. Int Heart J 2011; 52:274-9. [PMID: 22008435 DOI: 10.1536/ihj.52.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coronary microvessels play a direct and critical role in determining the extent and severity of myocardial ischemia and cardiac function. However, because direct observation has never been performed in vivo, the functional properties of the individual microvesssels in patients with coronary artery disease remain unknown. Subendocardial coronary microvessels were observed by cardioscopy in 149 successive patients with coronary artery disease (81 with stable angina and 68 with old myocardial infarction). Twenty-four arterial microvessels (AMs) and 27 venous microvessels (VMs) were observed in the left ventricular subendocardium. All 12 AMs and 13 of 14 VMs that were located in normokinetic-to-hypokinetic left ventricular wall segments were filled with blood during diastole and were collapsed during systole. In contrast, 8 of 12 AMs and 9 of 13 VMs that were located in akinetic-to-dyskinetic wall segments were filled with blood during systole and were collapsed during diastole. There were no significant correlations between the timing of blood filling and the severity of coronary stenosis and collateral development. In patients with coronary artery disease, the timing of blood filling of AMs and VMs was dependent on the regional left ventricular contractile state; during diastole when contraction was preserved and during systole when it was not. It remains to be elucidated whether and how blood filling is disturbed in other categories of heart disease.
Collapse
Affiliation(s)
- Yasuto Uchida
- Department of Cardiology, Toho University Medical Center Ohmori Hospital, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Kaneko N, Matsuda R, Toda M, Shimamoto K. Three-dimensional reconstruction of the human capillary network and the intramyocardial micronecrosis. Am J Physiol Heart Circ Physiol 2011; 300:H754-61. [DOI: 10.1152/ajpheart.00486.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional reconstruction of the human heart was performed to define the structure of the intramyocardial microvasculature. A total of 200 consecutive serial sections of 6 μm each were prepared from the left ventricular tissue of an autopsied human heart with normal coronary arteries. The corresponding arteriole, venule, and all capillaries were reconstructed using three-dimensional software. The capillary network extended right and left along the cardiomyocyte with major and minor axes of about 130 and 120 μm, respectively. The capillary length from an arteriole to an adjacent venule was about 350 μm. Two types of sack-like structures, the precapillary sinus and the capillary sinus, were present in the capillary network, and many capillaries diverged from these sinuses. The cardiomyocytes were covered with reticular capillaries. In contrast, the precapillary and capillary sinuses were surrounded by many cardiomyocytes. The arterial and venous capillaries were positioned alternately, forming a lattice pattern. Intramyocardial microcirculatory units forming a capillary network from an arteriole to adjacent venules on both sides were present. The sizes of myocardial micronecroses corresponded to that of the intramyocardial microcirculatory unit. These results show that the capillary network is an ordered and anatomically regulated structure and that the microcirculatory unit and the precapillary and capillary sinuses may play an important role in maintaining the intramyocardial microcirculation during contraction and relaxation.
Collapse
Affiliation(s)
| | - Ryuko Matsuda
- Preventive Medical Science for the Heart, Dokkyo Medical University, Mibu, Tochigi
| | - Masashi Toda
- Department of R and D Planning, Aetas Pharma, Chuo-ku, Tokyo; and
| | - Ken Shimamoto
- Department of Cardiology, Tokyo Women's Medical University, Aoyama Hospital, Minato-ku, Tokyo, Japan
| |
Collapse
|
12
|
Kaimovitz B, Lanir Y, Kassab GS. A full 3-D reconstruction of the entire porcine coronary vasculature. Am J Physiol Heart Circ Physiol 2010; 299:H1064-76. [PMID: 20622105 PMCID: PMC2957345 DOI: 10.1152/ajpheart.00151.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
Abstract
We have previously reconstructed the entire coronary arterial tree of the porcine heart down to the first segment of capillaries. Here, we extend the vascular model through the capillary bed and the entire coronary venous system. The reconstruction was based on comprehensive morphometric data previously measured in the porcine heart. The reconstruction was formulated as a large-scale optimization process, subject to both global constraints relating to the location of the larger veins and to local constraints of measured morphological features. The venous network was partitioned into epicardial, transmural, and perfusion functional subnetworks. The epicardial portion was generated by a simulated annealing search for the optimal coverage of the area perfused by the arterial epicardial vessels. The epicardial subnetwork and coronary arterial capillary network served as boundary conditions for the reconstruction of the in-between transmural and perfusion networks, which were generated to optimize vascular homogeneity. Five sets of full coronary trees, which spanned the entire network down to the capillary level, were reconstructed. The total number of reconstructed venous segments was 17,148,946 ± 1,049,498 (n = 5), which spanned the coronary sinus (order -12) to the first segment of the venous capillary (order 0v). Combined with the reconstructed arterial network, the number of vessel segments for the entire coronary network added up to 27,307,376 ± 1,155,359 (n = 5). The reconstructed full coronary vascular network agreed with the gross anatomy of coronary networks in terms of structure, location of major vessels, and measured morphometric statistics of native coronary networks. This is the first full model of the entire coronary vasculature, which can serve as a foundation for realistic large-scale coronary flow analysis.
Collapse
Affiliation(s)
- Benjamin Kaimovitz
- Faculty of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
13
|
Algranati D, Kassab GS, Lanir Y. Mechanisms of myocardium-coronary vessel interaction. Am J Physiol Heart Circ Physiol 2009; 298:H861-73. [PMID: 19966048 DOI: 10.1152/ajpheart.00925.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The mechanisms by which the contracting myocardium exerts extravascular forces (intramyocardial pressure, IMP) on coronary blood vessels and by which it affects the coronary flow remain incompletely understood. Several myocardium-vessel interaction (MVI) mechanisms have been proposed, but none can account for all the major flow features. In the present study, we hypothesized that only a specific combination of MVI mechanisms can account for all observed coronary flow features. Three basic interaction mechanisms (time-varying elasticity, myocardial shortening-induced intracellular pressure, and ventricular cavity-induced extracellular pressure) and their combinations were analyzed based on physical principles (conservation of mass and force equilibrium) in a realistic data-based vascular network. Mechanical properties of both vessel wall and myocardium were coupled through stress analysis to simulate the response of vessels to internal blood pressure and external (myocardial) mechanical loading. Predictions of transmural dynamic vascular pressure, diameter, and flow velocity were determined under each MVI mechanism and compared with reported data. The results show that none of the three basic mechanisms alone can account for the measured data. Only the combined effect of the cavity-induced extracellular pressure and the shortening-induced intramyocyte pressure provides good agreement with the majority of measurements. These findings have important implications for elucidating the physical basis of IMP and for understanding coronary phasic flow and coronary artery and microcirculatory disease.
Collapse
|
14
|
Laird JD, Spaan JA. Coronary circulation in the presence of vascular disease. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 694:20-8. [PMID: 3859192 DOI: 10.1111/j.0954-6820.1985.tb08796.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper discusses three specific aspects of coronary circulation as they relate to the patient with coronary artery disease. Firstly, the normal autoregulatory and metabolic control of the coronary circulation is considered in the light of current understanding of the relevant processes. Secondly, the implications of microcirculatory heterogeneities are discussed. Thirdly, the implications of the current debate on the impact of cardiac contraction for our understanding of the perfusion of the myocardium in compromised circumstances are analysed in an attempt to provide the clinician with a tool for assessing current therapy.
Collapse
|
15
|
Coronary microcirculation in the beating heart. Med Biol Eng Comput 2008; 46:411-9. [PMID: 18365262 DOI: 10.1007/s11517-008-0335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
The phase opposition of velocity waveforms between coronary arteries (predominantly diastolic) and veins (systolic) is the most prominent characteristic of coronary hemodynamics. This unique arterial and venous flow patterns indicate the importance of intramyocardial capacitance vessels and variable resistance vessels during a cardiac cycle. It was shown that during diastole the intramyocardial capacitance vessels have two functional components, unstressed volume and ordinary capacitance. Unstressed volume is defined as the volume of blood in a vessel at zero transmural pressure. In vivo observation of systolic narrowing of arterioles in mid-wall and in subendocardium indicates the increase in resistance by cardiac contraction.
Collapse
|
16
|
Schramm R, Menger MD, Kirsch S, Langer F, Harder Y, Hamacher J, Schäfers HJ. The subepicardial microcirculation in heterotopically transplanted mouse hearts: An intravital multifluorescence microscopy study. J Thorac Cardiovasc Surg 2007; 134:210-7, 217.e1. [PMID: 17599511 DOI: 10.1016/j.jtcvs.2007.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 01/09/2007] [Accepted: 02/12/2007] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We developed a model for intravital microscopic analysis of the coronary microcirculation in transplanted murine hearts and assessed the influence of cold ischemia on postischemic microcirculatory dysfunctions. METHODS Murine hearts were exposed to 60 (n = 12) and 240 minutes (n = 8) of cold ischemia before syngeneic heterotopic transplantation. Intravital fluorescence microscopy allowed detailed analysis of the right ventricular coronary microcirculation, including feeding arterioles, nutritive capillaries, and postcapillary venules. With this technique, we further studied leukocyte-endothelial cell interactions, microvascular permeability, tissue oxygenation, and microlymphatics. RESULTS Cold ischemia of 240 minutes aggravated nutritive capillary perfusion failure, indicated by a significant reduction of functional capillary density and capillary flow velocity by 63% and 45% (P < .05 vs 60-minute cold ischemic isografts). The mitochondrial redox state, visualized by nicotinamide adenine dinucleotide hydrogen autofluorescence, was markedly deteriorated after 240-minute cold ischemia (P < .05), indicating a persistent mismatch between oxygen supply and demand resulting from pronounced capillary no-reflow. Prolonged ischemia further resulted in 6- and 11-fold higher numbers of rolling and firmly adherent leukocytes in postcapillary venules (P < .05), together with increased microvascular permeability. CONCLUSIONS We introduce a novel approach to visualize in detail the murine coronary microcirculation in vivo by multifluorescence microscopy. Our data demonstrate that prolonged cold ischemia provokes posttransplant capillary no-reflow, leukocytic inflammation, and persistent tissue hypoxia.
Collapse
Affiliation(s)
- René Schramm
- Department of Thoracic and Cardiovascular Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Li XF, Wang YP. Laser Doppler flowmetry for assessment of myocardial microperfusion in the beating rat heart. Vascul Pharmacol 2007; 46:207-14. [PMID: 17127098 DOI: 10.1016/j.vph.2006.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Accepted: 10/03/2006] [Indexed: 11/25/2022]
Abstract
Although laser Doppler flowmetry (LDF) is widely used for measuring microperfusion, it is rarely used to measure coronary microcirculation. The present in vivo study investigated the use of LDF to measure myocardial microperfusion in beating rat hearts. Ascending aortic flow and other hemodynamic parameters were simultaneously recorded. A needle probe with a holder was adhered to the epicardium of the left ventricular myocardium close to the left anterior descending coronary artery in an anaesthetized open-chest rat. Myocardial microperfusion was measured in response to bolus intravenous administration of both two representative vasodilators (captopril and nifedipine) and a vasoconstrictor (pituitrin). Myocardial microperfusion was found to be predominately diastolic, and in an opposing phase to the ascending aortic flow. Captopril (5 or 10 mg/kg) increased the initial myocardial microperfusion phase. Nifedipine at 75 microg/kg caused a sustained myocardial microperfusion elevation with a peak increase of 7.1+/-1.1%, but this was not observed using 150 microg/kg nifedipine. Both drugs caused an increase in the cardiac index. In contrast, myocardial microperfusion decreased (28.7+/-0.1% maximum decrease) in response to 1 IU/kg pituitrin. In conclusion, LDF provided a means of assessing myocardial microperfusion in beating rat hearts, and can be applied to evaluate the coronary microcirculation response to drugs.
Collapse
Affiliation(s)
- Xiao-Fen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | | |
Collapse
|
18
|
Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-Talk Between Cardiac Muscle and Coronary Vasculature. Physiol Rev 2006; 86:1263-308. [PMID: 17015490 DOI: 10.1152/physrev.00029.2005] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+transient, which is followed by an increase in Ca2+sensitivity and higher muscle contractility (Gregg effect). Thickening of the shortening cardiac muscle takes place at the expense of the vascular volume, which causes build-up of intracellular pressure. The intracellular pressure counteracts the tension generated by the contractile apparatus, leading to lower net force. Therefore, cardiac muscle contraction is augmented when vascular emptying is facilitated. During autoregulation, the microvasculature is protected against volume changes, and the Gregg effect is negligible. However, the effect is present in the right ventricle, as well as in pathological conditions with ineffective autoregulation. The beneficial effect of vascular emptying may be reduced in the presence of a stenosis. Thus cardiac contraction affects vascular diameters thereby reducing coronary inflow and enhancing venous outflow. Emptying of the vasculature, however, enhances muscle contraction. The extracellular matrix exerts its effect mainly on cardiac properties rather than on the cross-talk between cardiac muscle and coronary circulation.
Collapse
Affiliation(s)
- Nico Westerhof
- Laboratory of Physiology and Department of Anesthesiology, Institute for Cardiovascular Research Vrije Universiteit, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Brown MD, Davies MK, Hudlicka O. Angiogenesis in ischaemic and hypertrophic hearts induced by long-term bradycardia. Angiogenesis 2005; 8:253-62. [PMID: 16308735 DOI: 10.1007/s10456-005-9012-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
Angiogenesis and improved left ventricular function as a consequence of long-term bradycardia were first demonstrated in normal hearts, either electrically paced (rabbits, pigs) or treated with a selective sinus blocking drug alinidine (rats). Here we review the evidence that chronic heart rate reduction can have similar effects in the heart with compromised vascular supply, due to either hypertensive or haemodynamic overload hypertrophy (rats, rabbits) or ischaemic damage (rats, rabbits, pigs). Bradycardia induced over several weeks increased capillarity in all hypertrophied hearts, and in border and remote left ventricular myocardium of infarcted hearts. In some, but not all cases, coronary blood flow was improved by heart rate reduction, suggesting enlargement of the resistance vasculature in some circumstances. Cardiac or left ventricular function indices, which were depressed by hypertrophy or ischaemic damage, were preserved or even enhanced by chronic heart rate reduction. The expansion of the capillary bed in the vascularly compromised heart induced by bradycardia may be stimulated by mechanical stretch of the endothelium and/or VEGF activated by chamber dilation and myocyte stretch. The increased number of capillaries and more homogeneous distribution of capillary perfusion would support the better pump function, even in the absence of higher coronary flow. The beneficial impact of chronic heart rate reduction on myocardial angiogenesis and function in cardiac hypertrophy and infarction may be major factor in the success of beta-blockers in treatment of human heart failure.
Collapse
Affiliation(s)
- M D Brown
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK.
| | | | | |
Collapse
|
20
|
Kiyooka T, Hiramatsu O, Shigeto F, Nakamoto H, Tachibana H, Yada T, Ogasawara Y, Kajiya M, Morimoto T, Morizane Y, Mohri S, Shimizu J, Ohe T, Kajiya F. Direct observation of epicardial coronary capillary hemodynamics during reactive hyperemia and during adenosine administration by intravital video microscopy. Am J Physiol Heart Circ Physiol 2005; 288:H1437-43. [DOI: 10.1152/ajpheart.00088.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using high-resolution intravital charge-coupled device video microscopy, we visualized the epicardial capillary network of the beating canine heart in vivo to elucidate its functional role under control conditions, during reactive hyperemia (RH), and during intracoronary adenosine administration. The pencil-lens video-microscope probe was placed over capillaries fed by the left anterior descending artery in atrioventricular-blocked hearts of open-chest, anesthetized dogs paced at 60–90 beats/min ( n = 17). In individual capillaries under control conditions, red blood cell flow was predominant during systole or diastole, indicating that the watershed between diastolic arterial and systolic venous flows is located within the capillaries. Capillary flow increased during RH and reached a peak flow velocity (2.1 ± 0.6 mm/s), twice as high as control (1.2 ± 0.5 mm/s), with enhancement of intercapillary cross-connection flow and enlargement of diameter (by 17%). With adenosine, capillary flow velocity significantly increased (1.8 ± 0.7 mm/s). However, the increase in volumetric capillary flow with adenosine estimated from red blood cell velocity and diameter was less than the increase in arterial flow, whereas that during RH was nearly equivalent to the increase in arterial flow. There was a time lag of ∼1.5 s for refilling of capillaries during RH, indicating their function as capacitance vessels. In conclusion, the coronary capillary network functions as 1) the major watershed between diastolic-dominant arterial and systolic-dominant venous flows, 2) a capacitor, and 3) a significant local flow amplifier and homogenizer of blood supply during RH, but with adenosine the increase in capillary flow velocity was less than the increase in arterial flow.
Collapse
|
21
|
Lamberts RR, Willemsen MJJMF, Sipkema P, Westerhof N. Subendocardial and subepicardial pressure–flow relations in the rat heart in diastolic and systolic arrest. J Biomech 2004; 37:697-707. [PMID: 15046999 DOI: 10.1016/j.jbiomech.2003.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2003] [Indexed: 11/23/2022]
Abstract
Ischemic heart disease is more apparent in the subendocardial than in subepicardial layers. We investigated coronary pressure-flow relations in layers of the isolated rat left ventricle, using 15 microm microspheres during diastolic and systolic arrest in the vasodilated coronary circulation. A special cannula allowed for selective determination of left main stem pressure-flow relations. Arterio-venous shunt flow was derived from microspheres in the venous effluent. We quantitatively investigated the pressure-flow relations in diastolic arrest (n=8), systolic arrest at normal contractility (n=8) and low contractility (n=6). In all three groups normal and large ventricular volume was studied. In diastolic arrest, at a perfusion pressure of 90 mmHg, subendocardial flow is larger than subepicardial flow, i.e., the endo/epi ratio is approximately 1.2. In systolic arrest the endo/epi ratio is approximately 0.3, and subendocardial flow and subepicardial flow are approximately 12% and approximately 55% of their values during diastolic arrest. The endo/epi ratio in diastolic arrest decreases with increasing perfusion pressure, while in systole the ratio increases. The slope of the pressure-flow relations, i.e., inverse of resistance, changes by a factor of approximately 5.3 in the subendocardium and by a factor approximately 2.2 in the subepicardium from diastole to systole. Lowering contractility affects subendocardial flow more than subepicardial flow, but both contractility and ventricular volume changes have only a limited effect on both subendocardial and subepicardial flow. The resistance (inverse of slope) of the total left main stem pressure-flow relation changes by a factor of approximately 3.4 from diastolic to systolic arrest. The zero-flow pressure increases from diastole to systole. Thus, coronary perfusion flow in diastolic arrest is larger than systolic arrest, with the largest difference in the subendocardium, as a result of layer dependent increases in vascular resistance and intercept pressure. Shunt flow is larger in diastolic than in systolic arrest, and increases with perfusion pressure. We conclude that changes in contractility and ventricular volume have a smaller effect on pressure-flow relations than diastolic-systolic differences. A synthesis of models accounting for the effect of cardiac contraction on perfusion is suggested.
Collapse
Affiliation(s)
- Regis R Lamberts
- Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, Amsterdam 1081 BT, Netherlands
| | | | | | | |
Collapse
|
22
|
Ohmori K, DeMaria AN, Cotter B, Kwan OL, Oshita A, Kondo I, Mizushige K, Kohno M. Effect of microbubble fragility on transit rate measurement by contrast echography. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:271-276. [PMID: 12659914 DOI: 10.1016/s0301-5629(02)00711-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We sought to propose a simplified method to measure flow velocity based on ultrasonic microbubble destruction, and investigated the effect of microbubble shell fragility on such measurement. Acoustic density (AD) from the second harmonic short axis image of flow was obtained at variable velocities (2 to 73 mm/s) in an in vitro model during long (1000 ms) and short (33 ms) interval ultrasound (US) pulsing, allowing complete and partial microbubble replenishment between pulses, respectively. Microbubbles with shell elastic modulus of 0.4 MPa and 16 MPa were tested. By shortening pulsing interval, AD diminished gradually, rather than abruptly, to a plateau level for both microbubbles. The extent of AD decay was greater for the fragile than the strong microbubbles. A linear relationship existed between the magnitude of AD decay and flow velocity only in the higher and lower velocity range for the fragile and the strong microbubbles, respectively. Thus, difference in contrast intensities during long and short pulsing intervals, respectively, allowing complete and partial replenishment may provide for velocity measurement, in which choice of optimal microbubble fragility for the range of velocity to measure may increase the accuracy.
Collapse
Affiliation(s)
- Koji Ohmori
- Second Department of Internal Medicine, Kagawa Medical University, School of Medicine, Kita-gun, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Leistad E, Ohmori K, Peterson TA, Christensen G, DeMaria AN. Quantitative assessment of myocardial perfusion during graded coronary artery stenoses by intravenous myocardial contrast echocardiography. J Am Coll Cardiol 2001; 37:624-31. [PMID: 11216989 DOI: 10.1016/s0735-1097(00)01127-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The purpose of this study was to examine whether coronary stenoses of variable severity could be quantitatively assessed by analysis of myocardial perfusion as determined by intravenous (IV) myocardial contrast echocardiography. BACKGROUND Recently, new contrast agents and imaging technology have been developed that may enable improved assessment of myocardial perfusion by IV contrast injection. METHODS Variable obstruction of the left anterior descending (LAD) coronary artery in dogs was produced by a screw occluder. Coronary artery flow was measured with a transit time flowmeter during baseline, pharmacological vasodilation, a non-flow-limiting stenosis at rest in conjunction with vasodilation, a flow-limiting stenosis, and total occlusion. Myocardial contrast echocardiography was performed after IV injection of the contrast agent NC 100100. Time-intensity curves were obtained off-line for the LAD risk area and the adjacent left circumflex (LCx) territory, and peak background-subtracted video intensity was determined. Fluorescent microspheres were injected at each intervention for determination of regional myocardial blood flow. RESULTS During non-flow-limiting stenosis, flow limiting stenosis and total occlusion, LAD/LCx ratios of peak myocardial videointensity and blood flow decreased proportionately. Both LAD/LCx ratios of video intensity and blood flow identified the non-flow-limiting and the flow-limiting stenoses as well as total occlusion of the LAD artery. A significant correlation between LAD/LCx video intensity and blood flow ratios was observed (r = 0.83, p < 0.0001). CONCLUSIONS The degree of blood flow mismatch between ischemic and normal myocardial regions during graded coronary stenoses can be estimated in the dog by quantitative assessment of myocardial perfusion produced by IV myocardial contrast echocardiography.
Collapse
Affiliation(s)
- E Leistad
- Cardiovascular Division, University of California at San Diego, 92103-8411, USA
| | | | | | | | | |
Collapse
|
24
|
BARCLAY KATHERINED, KLASSEN GERALDA, YOUNG CHARLES. A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux. Microcirculation 2000. [DOI: 10.1111/j.1549-8719.2000.tb00132.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Abstract
Coronary microvessels play a pivotal role in determining the supply of oxygen and nutrients to the myocardium by regulating the coronary flow conductance and substance transport. Direct approaches analyzing the coronary microvessels have provided a large body of knowledge concerning the physiological and pharmacological characteristics of the coronary circulation, as has the rapid accumulation of biochemical findings about the substances that mediate vascular functions. Myogenic and flow-induced intrinsic vascular controls that determine basal tone have been observed in coronary microvessels in vitro. Coronary microvascular responses during metabolic stimulation, autoregulation, and reactive hyperemia have been analyzed in vivo, and are known to be largely mediated by metabolic factors, although the involvement of other factors should also be taken into account. The importance of ATP-sensitive K(+) channels in the metabolic control has been increasingly recognized. Furthermore, many neurohumoral mediators significantly affect coronary microvascular control in endothelium-dependent and -independent manners. The striking size-dependent heterogeneity of microvascular responses to all of these intrinsic, metabolic, and neurohumoral factors is orchestrated for optimal perfusion of the myocardium by synergistic and competitive interactions. The regulation of coronary microvascular permeability is another important factor for the nutrient supply and for edema formation. Analyses of collateral microvessels and subendocardial microvessels are important for understanding the pathophysiology of ischemic hearts and hypertrophied hearts. Studies of the microvascular responses to drugs and of the impairment of coronary microvessels in diseased conditions provide useful information for treating microvascular dysfunctions. In this article, the endogenous regulatory system and pharmacological responses of the coronary circulation are reviewed from the microvascular point of view.
Collapse
Affiliation(s)
- T Komaru
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, 980-8574, Sendai, Japan.
| | | | | |
Collapse
|
26
|
Kassab GS, Le KN, Fung YC. A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2158-66. [PMID: 10600833 DOI: 10.1152/ajpheart.1999.277.6.h2158] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An understanding of cardiac health and disease requires knowledge of the various factors that control coronary capillary blood flow. An analysis of coronary capillary blood flow based on a complete set of actual data on the capillary anatomy and elasticity does not exist. Previously, a complete set of data on the branching pattern and the vascular geometry of the pig coronary capillary network were obtained in our laboratory. In the present study, we obtained distensibility data on the coronary capillary blood vessels on the epicardial surface in the form of a pressure-diameter relationship using intravital microscopy. A mathematical model of the coronary capillary blood flow was then constructed on the basis of measured anatomic and elasticity data of the coronary capillary network, rheology of blood, physical laws governing blood flow, and appropriate boundary conditions. The constructed model was used to examine the heterogeneity of the spatial distribution of coronary blood flow, which is an important issue in coronary physiology. One interesting result of the model is that the dispersions of pressure and flow are significantly reduced in the presence of capillary cross-connections, and the resistance to flow is reduced as well. Finally, we found that the compliance of the epicardial surface capillary vessels is so small that its effect on the blood pressure drop is negligible in the diastolic state. However, the compliance of the intramyocardial capillaries remains unknown, and the interaction of the muscle contraction and blood vessel elasticity in systole remains to be studied.
Collapse
Affiliation(s)
- G S Kassab
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
| | | | | |
Collapse
|
27
|
Abstract
This review article discusses some of the potentially beneficial effects of calcium antagonists on the coronary microcirculation. These include their vasodilating action on coronary resistance vessels as well as their effects on extravascular resistance (i.e. intramyocardial pressure). Examples are presented of how the non-invasive measurement of myocardial blood flow and flow reserve by means of positron emission tomography (PET) can contribute to the understanding of the effects of drug treatment on the coronary microcirculation. The action of calcium antagonists on the coronary microcirculation can contribute to explain the efficacy of these drugs against ischemia and ischemia-reperfusion damage.
Collapse
Affiliation(s)
- O Rimoldi
- MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
28
|
Wang Y, Kanatsuka H, Akai K, Sugimura A, Kumagai T, Komaru T, Sato K, Shirato K. Effects of low doses of endothelin-1 on basal vascular tone and autoregulatory vasodilation in canine coronary microcirculation in vivo. JAPANESE CIRCULATION JOURNAL 1999; 63:617-23. [PMID: 10478812 DOI: 10.1253/jcj.63.617] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasma level of endothelin-1 (ET-1) increases in several cardiovascular disorders. The present study examined whether threshold doses of ET-1 affect vascular tone and autoregulatory vasodilation during a reduction in perfusion pressure in the coronary microcirculation in vivo. In anesthetized open-chest dogs, arterial microvessels in the epimyocardium were observed through a microscope equipped with a floating objective. In 6 dogs, ET-1 (10(-13) to 10(-8)mol/L) was superfused onto the epimyocardium in a cumulative fashion. In another set of dogs (n= 16), the perfusion pressure of the observed vascular bed was reduced to 60 mmHg (mild stenosis) and to 40 mmHg (severe stenosis) by a hydraulic occluder, and the microvascular responses were observed in the presence (n=9) or absence (n=7) of ET-1 (10(-12) or 10(-11) mol/L). ET-1 > or =10(-11) mol/L constricted coronary arterioles (< or =100 microm in diameter) and small arteries (>100 microm in diameter) in a dose-dependent fashion. ET-1 of 10(-12) mol/L affected neither the basal diameters nor the dilation of vessels during the pressure reduction. ET-1 of 10(-11) mol/L decreased the diameters of arterioles and small arteries before and during the mild and severe stenosis. However, ET-1 did not attenuate the percentage dilation of arterioles from the baseline in response to the mild and severe stenosis. The data indicates the following: (1) ET-1 at doses > or =10(-11) mol/L similarly constricts coronary arterioles and small arteries; (2) ET-1 at 10(-11) mol/L, which is slightly higher than the pathophysiological plasma level, increases the basal vascular tone, but does not attenuate the autoregulatory vasodilation of the coronary microcirculation.
Collapse
Affiliation(s)
- Y Wang
- The First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ozer K, Adanali G, Zins J, Siemionow M. In vivo microscopic assessment of cremasteric microcirculation during hindlimb allograft rejection in rats. Plast Reconstr Surg 1999; 103:1949-56. [PMID: 10359257 DOI: 10.1097/00006534-199906000-00020] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Experimental and clinical studies of vascular allogenic extremity transplantation have yielded disappointing results and have not been clinically useful. With recent advances in transplantation immunology, considerable interest has focused on the understanding of leukocyte-endothelial interaction at the microcirculatory level. The objective of this study was to characterize the alterations in leukocyte-endothelial interaction in the early stages of rat hindlimb allograft rejection. To study the changes at the microcirculatory level, a new microsurgical model was developed; the cremaster muscle was incorporated into the transplanted hindlimb. The purpose of this study was to report on the microcirculatory changes during rat hindlimb allograft rejection. A total of 24 transplantations were performed among the four experimental groups. In a control group, 12 rat hindlimb-cremaster grafts were transplanted between genetically identical animals, Lewis to Lewis. Microcirculatory measurements of graft survival were taken at 24 hours (group 1A, n = 6) and at 72 hours (group 1B, n = 6). In the rejection control group, 12 transplantations were performed across a major histocompatibility barrier between Lewis-Brown Norway and Lewis rats. Microcirculatory measurements were taken at 24 (group 2A, n = 6) and 72 hours (group 2A, n = 6) as above. The following parameters were evaluated to discover the leukocyte-endothelial interaction: endothelial edema index and the number of rolling, adherent, and transmigrating leukocytes and lymphocytes in the postcapillary venule. Physical signs of limb rejection, such as edema, erythema, scaling, plaque formation on the skin, hair loss, and skin surface temperature, were monitored. Microcirculatory signs of rejection included the following. There was a significant increase in the number of adherent leukocytes in allograft transplants at both 24 hours (205 percent; 2.05 +/- 0.38) and 72 hours (431 percent; 9.11 +/- 3.41) when compared with isograft controls (1.00 +/- 0.89 at 24 hours; 2.11 +/- 0.34 at 72 hours) (p < 0.05). The activation of leukocyte transmigration increased more than 7-fold in muscle allografts at 24 hours (0.55 +/- 0.25 versus 4.16 +/- 1.89) and more than 6-fold at 72 hours (0.72 +/- 0.38 versus 4.38 +/- 1.28) after transplantation (p < 0.05). Endothelial edema index, a measure of endothelial swelling and cellular deposit accumulation, increased more than 119 percent in the allograft group 72 hours after transplantation (1.23 +/- 0.07 versus 1.46 +/- 0.09) (p < 0.05). The first clinical signs of limb rejection were scaling of the skin or hair loss; they were observed between the seventh and ninth postoperative days. The composite rat hindlimb-cremaster model presented in this study introduces a new in vivo approach to monitor acute graft rejection using the intravital microscopy system. This is a valuable model for defining the timing, sequence, and correlation between immunologic events and clinical signs during the acute phase of allograft rejection.
Collapse
Affiliation(s)
- K Ozer
- Department of Plastic and Reconstructive Surgery, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Coronary capillaries are extensively tethered to adjacent myocytes by collagen fibers. The influence of this tethering in the beating heart is studied by structural mechanics as applied to the specific morphology of the capillary-myocyte system. The results show considerable effects of the tethering collagen fibers on the capillary deformation, especially during systole and in the deeper myocardial layers. The tethering fibers prevent total systolic collapse, being taut during systole but partially slack during diastole, in agreement with reported observations. At the deeper wall layers, the systolic/diastolic differences in capillary cross-sectional area are predicted to be more pronounced: about 30 and 50% area reduction in arterial and venous ends, respectively, compared with 10 and 20% increase of area in the subepicardial vessels. These predictions comply well with published, experimental data. A parametric investigation shows a variable effect of the capillary-myocyte distance on the dynamics of the capillary area, while the stiffnesses of both the fibers and wall membrane, and the extent of transmural transmission of intramyocardial pressure, have both considerable quantitative effects. These effects are found to be region dependent and vary along the capillary length and from diastole to systole. The results indicate that capillary tethering to the myocardial tissue has significant effect on its mechanics. Tethering should, therefore, be considered in analyzing the dynamics of coronary flow.
Collapse
Affiliation(s)
- M Abovsky
- Department of Biomedical Engineering, Julius Silver Institute of Biomedical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
32
|
Sakka SG, Wallbridge DR, Heusch G. Glossary: methods for the measurement of coronary blood flow and myocardial perfusion. Basic Res Cardiol 1996; 91:155-78. [PMID: 8740532 DOI: 10.1007/bf00799688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- S G Sakka
- Department of Pathophysiology, University of Essen Medical School, Universitätsklinikum Essen, FRG
| | | | | |
Collapse
|
33
|
Hudlická O, Brown MD, Walter H, Weiss JB, Bate A. Factors involved in capillary growth in the heart. Mol Cell Biochem 1995; 147:57-68. [PMID: 7494556 DOI: 10.1007/bf00944784] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Growth of capillaries in the heart occurs under physiological circumstances during endurance exercise training, exposure to high altitude and/or cold, and changes in cardiac metabolism or heart rate elicited by modification of thyroid hormone levels. Capillary growth in all these conditions can be linked with increased coronary blood flow, decreased heart rate, or both. This paper brings evidence that, although increased blood flow due to long-term administration of coronary vasodilators results in capillary growth, a long-term decrease in heart rate induced by electrical bradycardial pacing in rabbits and pigs, or by chronic administration of a bradycardic drug, alinidine, in rats, stimulates capillary growth with little or no change in coronary blood flow. Decreased heart rate results in increased capillary wall tension, increased end-diastolic volume and increased force of contraction, and thus stretch of the capillary wall. This could lead to release of various growth factors possibly stored in the capillary basement membrane. Correlation was found between capillary density (CD) and the levels of low molecular endothelial cell stimulating angiogenic factor (ESAF) both in rabbit and pig hearts with CD increased by pacing. There was no relation between expression of mRNA for basic fibroblast growth factor and CD in sham-operated and paced rabbit hearts. In contrast, mRNA for TGF beta was increased in paced hearts, and the possible role of this factor in the regulation of capillary growth induced by bradycardia is discussed.
Collapse
Affiliation(s)
- O Hudlická
- Department of Physiology, University of Birmingham Medical School, UK
| | | | | | | | | |
Collapse
|
34
|
Selliseth NJ, Selvig KA. The vasculature of the periodontal ligament: a scanning electron microscopic study using corrosion casts in the rat. J Periodontol 1994; 65:1079-87. [PMID: 7853133 DOI: 10.1902/jop.1994.65.11.1079] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to examine the 3-dimensional architecture of the microvascular system of the rat periodontal ligament (PDL). Vascular corrosion casts were prepared and examined by scanning electron microscopy. Cervically, arterioles and venules communicated with the profuse capillary network of the gingiva. The mid-root segment of the PDL contained arterioles and venules that mainly coursed occluso-apically near the alveolar wall, as well as capillary loops located closer to the root surface. Arterioles entered the PDL through vascular canals from the bone marrow, then coursed coronally and branched into an interconnected network of capillaries. The capillaries formed hairpin loops pointing coronally. At the tip, the capillary loops were enlarged in diameter and had an irregular luminar surface. The capillaries then coursed apically, anastomosing freely, until entering a venule. Large venules mainly followed a coronal-apical path, giving the PDL vasculature a palisade-like appearance. These vessels either left the PDL through vascular canals in the alveolar wall or connected in an apical, venous cap with venules exiting through the apical foramen. The results show that the microvasculature forms a highly organized system presumably related to the specialized functions of the periodontium. Cervically, a dense capillary system may be required for antimicrobial defense and rapid tissue turnover. The vasculature in the middle segment supports the suspensory structures, while the venous cap in the apical region may be designed to cushion masticatory forces.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N J Selliseth
- Department of Dental Research, University of Bergen School of Dentistry, Norway
| | | |
Collapse
|
35
|
Komaru T, Wang Y, Akai K, Sato K, Sekiguchi N, Sugimura A, Kumagai T, Kanatsuka H, Shirato K. Pertussis toxin-sensitive G protein mediates coronary microvascular control during autoregulation and ischemia in canine heart. Circ Res 1994; 75:556-66. [PMID: 7914838 DOI: 10.1161/01.res.75.3.556] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
GTP-binding regulatory proteins (G proteins) regulate various biological functions, but their participation in controlling coronary microvascular tone has not been established yet. The goal of the present study was to elucidate the role of pertussis toxin (PTX)-sensitive G protein in regulating coronary microvascular tone during autoregulation and ischemia. In 42 open-chest dogs, coronary arterial microvessels on the surface of the left ventricle were directly observed by epi-illuminated fluorescence microangiography using a floating objective system. PTX (300 ng/mL) was superfused onto the surface of the left ventricle for 2 hours to block Gi and G(o) protein in epimyocardial coronary microvessels in vivo. PTX superfusion caused no change in the resting diameters of microvessels and significantly blocked the vasoconstriction induced by BHT 920 (a selective alpha 2-agonist). After pretreatment with PTX or its vehicle, the left anterior descending coronary artery (LAD) was occluded by a hydraulic occluder to reduce coronary perfusion pressure (CPP) in a stepwise fashion. A mild stenosis (CPP, 60 mm Hg), a severe stenosis (CPP, 40 mm Hg), and complete occlusion were sequentially produced. Coronary flow velocity in the LAD distal to the stenotic site was continuously monitored. In both PTX and vehicle groups, flow velocity did not significantly decrease during mild stenosis, proving that transmural coronary autoregulatory function was well preserved in the preparation. During severe stenosis and complete occlusion, the coronary flow velocity significantly decreased. In the vehicle group, microvessels < 100 microns in inner diameter significantly dilated in response to the reduction in perfusion pressure (mild stenosis, 6.2 +/- 1.9%; severe stenosis, 21.1 +/- 4.4%; and complete occlusion, 16.8 +/- 5.9%; P < .05 versus baseline diameters). In the PTX group, microvessels did not dilate during each occlusion level (mild stenosis, -2.0 +/- 0.9%; severe stenosis, -3.9 +/- 1.9%; and complete occlusion, -13.4 +/- 2.9%; P < .05 versus vehicle group). PTX did not affect the microvascular dilation caused by nitroprusside. The present data indicate that PTX-sensitive G protein is crucially involved in microvascular control during autoregulation and ischemia.
Collapse
Affiliation(s)
- T Komaru
- First Department of Internal Medicine, Tohoku University, School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sekiguchi N, Kanatsuka H, Sato K, Wang Y, Akai K, Komaru T, Takishima T. Effect of calcitonin gene-related peptide on coronary microvessels and its role in acute myocardial ischemia. Circulation 1994; 89:366-74. [PMID: 8281672 DOI: 10.1161/01.cir.89.1.366] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a potent dilator of epicardial conduit vessels and is released during myocardial ischemia in humans. However, the effect of CGRP on coronary arterial microvessels is still unclear, and it is unknown if CGRP modulates the tone of coronary arterial microvessels during acute myocardial ischemia. METHODS AND RESULTS Epimyocardial microvessels were observed through a microscope equipped with a floating objective system in anesthetized open-chest dogs. Heart rate and aortic pressure were maintained at control levels. Flow velocity of the left anterior descending coronary artery (LAD) was measured with a suction-cup Doppler probe. When CGRP was cumulatively infused into the LAD (0.05, 0.5, 5.0, and 50 pmol/kg per minute) or superfused (0.03, 0.3, 3.0, and 30 nmol/L) over the left ventricular surface, arterial control microvessels > 100 microns in diameter dilated dose dependently at dosages of 0.5 to 50 pmol/kg per minute (infused) or 0.3 to 30 nmol/L (superfused), but those < 100 microns dilated only at the highest dose, and those > 100 microns had greater dilation in both groups. Only the highest dose of CGRP (infused) significantly increased coronary flow. The superfusion of CGRP(8-37) (CGRP receptor antagonist, 300 nmol/L) did not affect the control diameters of coronary arterial microvessels but completely abolished CGRP-induced vasodilation at the same doses (infused and superfused). However, 300 nmol/L of CGRP(8-37) did not affect the response of coronary arterial microvessels to the LAD occlusion in any size. CONCLUSIONS CGRP preferentially dilates the coronary arterial microvessels > 100 microns in diameter but has only a small effect on those < 100 microns. Endogenous CGRP does not modulate the tone of coronary arterial microvessels during acute myocardial ischemia in beating canine hearts.
Collapse
Affiliation(s)
- N Sekiguchi
- First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Menger MD, Lehr HA. Scope and perspectives of intravital microscopy--bridge over from in vitro to in vivo. IMMUNOLOGY TODAY 1993; 14:519-22. [PMID: 8274192 DOI: 10.1016/0167-5699(93)90179-o] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As observations in vitro become more sophisticated, it is increasingly important to be able to assess their relevance to the intact animal. Intravital microscopy provides an advanced set of tools for the dissection of the in vivo situation.
Collapse
Affiliation(s)
- M D Menger
- Institute for Surgical Research, University of Munich
| | | |
Collapse
|
38
|
Beyar R, Caminker R, Manor D, Sideman S. Coronary flow patterns in normal and ischemic hearts: transmyocardial and artery to vein distribution. Ann Biomed Eng 1993; 21:435-58. [PMID: 8214827 DOI: 10.1007/bf02368635] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The dynamics of the transmyocardial coronary flow patterns during normal and ischemic conditions are complex and relatively inaccessible to measurements. Therefore, theoretical analyses are needed to help in understanding these phenomena. The proposed model employs compartmental division to three layers, each with four vessel-size compartments which are characterized by resistance and compliance. These compartments are subjected to the extravascular compressive pressure (ECP) generated by cardiac contraction, which by modifying the transmural pressure causes changes in cross-sectional area of the vessels in each compartment continuously determining the resistance and capacitance values. Autoregulation and collaterals are also included in order to simulate the flow patterns during regional ischemia. Using these features, the model predicts the typical out of phase arterial and venous flow patterns. Systolic collapse of the large intramyocardial veins during the normal cycle, as well as systolic arteriolar collapse during ischemia are predicted. The transmural flow during ischemia is characterized by alternating flows between the layers. The ECP is considered here is two ways: (a) as a function of left ventricle (LV) pressure, decreasing linearly from endocardium to epicardium and (b) as the interstitial fluid pressure, employing a multilayer muscle-collagen model of the LV. While both of these approaches can describe the dynamics of coronary flow under normal conditions, only the second approach predicts the large compressive effects due to high ECP obtained at very low cavity pressure, resulting from significant muscle shortening and radial collagen stretch. This approach, combining a detailed description of transmural coronary circulation interacting with the contracting myocardium agrees with many observations on the dynamics of coronary flow and suggests that the type of LV mechanical model is important for that interaction.
Collapse
Affiliation(s)
- R Beyar
- Julius Silver Institute, Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa
| | | | | | | |
Collapse
|
39
|
Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993; 72:939-46. [PMID: 8477527 DOI: 10.1161/01.res.72.5.939] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We developed a portable needle-probe videomicroscope with a charge-coupled device (CCD) camera to visualize the subendocardial microcirculation. In 12 open-chest anesthetized pigs, the sheathed needle probe with a doughnut-shaped balloon and a microtube for flushing away the intervening blood was introduced into the left ventricle through an incision in the left atrial appendage via the mitral valve. Images of the subendocardial microcirculation of the beating heart magnified by 200 or 400 on a 15-in. monitor were obtained. The phasic diameter change in subendocardial arterioles during cardiac cycle was from 114 +/- 46 microns (mean +/- SD) in end diastole to 84 +/- 26 microns in end systole (p < 0.001, n = 13, ratio of change = 24%) and that in venules from 134 +/- 60 microns to 109 +/- 45 microns (p < 0.001, n = 15, ratio of change = 17%). In contrast, the diameter of subepicardial arterioles was almost unchanged (2% decrease, n = 5, p < 0.01), and the venular diameter increased by 19% (n = 8, p < 0.001) from end diastole to end systole. Partial kinking and/or pinching of vessels was observed in some segments of subendocardial arterioles and venules. The percentage of systolic decrease in the diameter from diastole in the larger (> 100 microns) subendocardial arterioles and venules was greater than smaller (50-100 microns) vessels (both p < 0.05). In conclusion, using a newly developed microscope system, we were able to observe the subendocardial vessels in diastole and systole.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Yada
- Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
In previous studies, we demonstrated that both endothelium-dependent flow-induced vasodilation and endothelium-independent myogenic responses occur in porcine coronary arterioles. However, it was not established whether these responses are present in the coronary venular microcirculation. The aim of this study was to test the hypotheses that 1) coronary venules, like arterioles, exhibit flow-induced dilation and myogenic responsiveness, and 2) venular flow-induced dilation is endothelium-dependent and is mediated by the release of a nitrovasodilator. Experiments were performed in porcine subepicardial coronary venules, 80-120 microns in diameter, by using cannulated isolated vessel techniques to allow intraluminal pressure and flow to be independently controlled. Flow was initiated by simultaneously moving two perfusion reservoirs connected to the cannulating pipettes in equal amounts but in opposite directions. In the absence of flow, i.e., zero pressure gradient (delta P) between the two reservoirs, venules developed spontaneous tone to 75-80% of maximum diameter at 10 cm H2O intraluminal pressure. Venules gradually dilated in response to stepwise increases in flow (i.e., delta P). The threshold for the flow-induced dilation occurred at delta P = 1 cm H2O (flow = 3.5 nl/sec), and the maximal response (dilation to 93 +/- 2% of maximum diameter) occurred when delta P was elevated to > or = 6 cm H2O (flow = 21 nl/sec at delta P = 6 cm H2O). Flow-induced dilation was abolished after the endothelium was damaged by perfusion of an air bolus through the lumen. Vasoconstriction was observed when denuded venules were subjected to relatively high luminal flows (> or = 21 nl/sec).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Kuo
- Department of Medical Physiology, Texas A&M University Health Science Center, College Station 77843
| | | | | | | |
Collapse
|
41
|
Kajiya F, Yada T, Kimura A, Hiramatsu O, Goto M, Ogasawara Y, Tsujioka K. Endocardial coronary microcirculation of the beating heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 346:173-80. [PMID: 8184755 DOI: 10.1007/978-1-4615-2946-0_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Direct and continuous observation of subendocardial (deep myocardial) microcirculation provides essential information on coronary circulation, since cardiac contraction affects subendocardial vessels most vigorously. To achieve this aim, we developed a portable needle-probe video-microscope with a charge-coupled-device (CCD) camera to visualize the subendocardial microcirculation. Images of the subendocardial microcirculation of a porcine beating heart were successfully observed in all cases. The vascular compression by cardiac contraction decreased the diameter of subendocardial arterioles and venules by about 20%.
Collapse
Affiliation(s)
- F Kajiya
- Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Kanatsuka H, Sekiguchi N, Sato K, Akai K, Wang Y, Komaru T, Ashikawa K, Takishima T. Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart. Circ Res 1992; 71:912-22. [PMID: 1516163 DOI: 10.1161/01.res.71.4.912] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our aim was to elucidate the site and mechanism responsible for reactive hyperemia in coronary circulation. In in vivo beating canine hearts, microvessels of the left anterior descending coronary artery (LAD) were observed through a microscope equipped with a floating objective. Flow velocity of the LAD was measured with a suction-type Doppler probe. The LAD was occluded for 20 or 30 seconds and then released, and reactive hyperemia was observed before and after 8-phenyltheophylline (7.5 mg/kg i.v.) or glibenclamide (200 micrograms/kg into the LAD) infusion. During the occlusion, only arterial microvessels smaller than 100 microns in diameter dilated. Dilation of those vessels was partially attenuated by 8-phenyltheophylline and completely abolished with glibenclamide. In the early phase of reactive hyperemia, all arterial microvessels dilated, and the magnitude of peak dilation was greater in vessels smaller than 100 microns compared with those larger than 100 microns. Vasodilation during reactive hyperemia ceased within 60 seconds in vessels smaller than 100 microns but was sustained for more than 120 seconds in those larger than 100 microns. 8-Phenyltheophylline did not change peak dilation of arterial microvessels but reduced dilation after the peak. Glibenclamide remarkably attenuated dilation of all arterial microvessels in the whole phase of reactive hyperemia. These results indicate that all arterial microvessels are responsible for reactive hyperemia after coronary artery occlusions of 20-30 seconds, but there is greater participation of vessels smaller than 100 microns in the early phase of reactive hyperemia. Dilation of vessels larger than 100 microns assumes an important role in the later phase. ATP-sensitive K+ channels mediate dilation of arterial microvessels both in brief ischemia and reactive hyperemia.
Collapse
Affiliation(s)
- H Kanatsuka
- First Department of Internal Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Goto M, Flynn AE, Doucette JW, Kimura A, Hiramatsu O, Yamamoto T, Ogasawara Y, Tsujioka K, Hoffman JI, Kajiya F. Effect of intracoronary nitroglycerin administration on phasic pattern and transmural distribution of flow during coronary artery stenosis. Circulation 1992; 85:2296-304. [PMID: 1591844 DOI: 10.1161/01.cir.85.6.2296] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitroglycerin is effective in relieving myocardial ischemia; however, intracoronary nitroglycerin often fails to relieve angina and has been reported to have deleterious effects on subendocardial blood flow. To understand the mechanisms involved, we evaluated the direct effect of nitroglycerin on coronary circulation of the ischemic hearts. METHODS AND RESULTS We measured the phasic pattern of intramyocardial coronary arterial flow with an 80-channel, 20-MHz pulsed Doppler ultrasound flowmeter under moderate to severe coronary artery stenosis (distal perfusion pressure approximately 45 mm Hg group 1, n = 6) and transmyocardial blood flow distribution using radioactive microspheres while maintaining coronary pressure at a low constant level (40 mm Hg, group 2, n = 6). In anesthetized open-chest dogs, the left main coronary artery was perfused directly from the right carotid or femoral artery. In this bypass circuit, pressure was controlled with an occluder or a reservoir was connected to the circuit. In group 1, the systolic and diastolic pressures distal to the stenosis decreased significantly after intracoronary administration of nitroglycerin at maximal coronary flow from 66.5 +/- 18.5 to 56.5 +/- 13.8 mm Hg (p less than 0.01) and from 36.6 +/- 14.4 to 27.5 +/- 8.9 mm Hg (p less than 0.01), respectively. The phasic pattern of the septal artery flow was predominantly diastolic and was characterized by systolic reverse flow even in the absence of stenosis. Coronary stenosis increased systolic reverse flow. Nitroglycerin increased diastolic forward flow (p less than 0.05) but augmented systolic reverse flow markedly (p less than 0.001). In group 2, nitroglycerin increased subepicardial flow (p less than 0.05) but failed to increase subendocardial flow. With the administration of nitroglycerin, the subendocardial-to-subepicardial flow ratio decreased significantly from 0.73 +/- 0.19 to 0.32 +/- 0.14 (p less than 0.01). CONCLUSIONS The increased systolic reverse flow after intracoronary administration of nitroglycerin may be closely related to failure of subendocardial blood flow to increase with increase subepicardial flow.
Collapse
Affiliation(s)
- M Goto
- Department of Medical Engineering and Systems Cardiology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cicutti N, Rakusan K. Microvascular flow vectors in normal and hypertrophic myocardium as determined by the method of colored microspheres. Microvasc Res 1992; 43:267-75. [PMID: 1386134 DOI: 10.1016/0026-2862(92)90024-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sequential in vivo infusion of two differently colored microsphere suspensions into the left atrium of normal and hypertrophic rat myocardium revealed that certain coronary capillaries contained microsphere aggregates of both colors. A capillary flow vector was established based on the sequence of colors embolized within each aggregate. Critical examination of flow vectors among neighboring capillaries enabled the characterization of capillary flow direction. Results indicated a predominance in concurrent flow direction, which decreased significantly (P less than 0.001) with capillaries further removed from an individual reference capillary. The percentage of concurrent flow was also found to be significantly lower in subendocardium (P less than 0.001) than in midmyocardium. Cardiac hypertrophy was not a contributing factor to the above findings. This study provides previously unattainable data regarding transmural capillary flow direction and suggests regional adaptations in coronary microvascular flow.
Collapse
Affiliation(s)
- N Cicutti
- Department of Physiology, Faculty of Medicine, University of Ottawa, Canada
| | | |
Collapse
|
45
|
Poole DC, Batra S, Mathieu-Costello O, Rakusan K. Capillary geometrical changes with fiber shortening in rat myocardium. Circ Res 1992; 70:697-706. [PMID: 1551196 DOI: 10.1161/01.res.70.4.697] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Capillary-to-fiber geometrical relations constitute an integral component of peripheral gas exchange. Determination of capillary length and surface area density necessitates quantification of capillary orientation (i.e., tortuosity and branching). In skeletal muscle, capillary tortuosity increases in a curvilinear fashion at reduced sarcomere length, and this compensates for decreased capillary density as fiber cross-sectional area increases. To investigate these relations in myocardium, rat hearts were glutaraldehyde perfusion-fixed in calcium- or barium-induced "systole" to provide varying degrees of fiber shortening. Morphometric techniques were used to analyze capillary geometry in subepicardium (EPI) and subendocardium (ENDO) using 1-micron sections cut transverse and longitudinal to the muscle fiber axis. Capillary density on transverse and longitudinal sections, capillary diameter, fiber cross-sectional area, and sarcomere length were determined in each region. Capillary surface density was computed, and values were related to sarcomere length and compared with published data for diastolic hearts. Sarcomere length in systole ranged from 2.06 +/- 0.03 to 1.35 +/- 0.02 microns (EPI) and from 1.93 +/- 0.04 to 1.44 +/- 0.04 microns (ENDO). Fiber cross-sectional area (EPI, 344 +/- 13 microns2; ENDO, 343 +/- 12 microns2) was significantly larger, and capillary density on transverse sections was significantly smaller (EPI, 4,105 +/- 318 mm-2; ENDO, 4,145 +/- 267 mm-2) than in hearts arrested in diastole. Compared with skeletal muscle, capillary tortuosity was substantially less increased by fiber shortening. Capillary tortuosity and branching did not differ between EPI and ENDO and contributed a maximum of 33% (range, 13-33%) to capillary length density and surface area at a sarcomere length of 1.45 +/- 0.04 microns. Compared with diastolic hearts, capillary length density decreased on average by 19.6% (EPI) and 17.7% (ENDO); similarly, capillary surface density decreased 19.9% (EPI) and 13.7% (ENDO). We conclude that, with fiber shortening in the heart, fiber cross-sectional area increases and capillary numerical density decreases as predicted from reduced sarcomere length. Combined with the minimal geometrical changes of the capillary bed at shorter fiber lengths, this results in a lower capillary length and surface area per fiber volume in systole. Consequently, the structural potential for O2 diffusion into myocytes is determined, in part, by fiber length.
Collapse
Affiliation(s)
- D C Poole
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623
| | | | | | | |
Collapse
|
46
|
Kuo L, Davis MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-arginine. Circ Res 1992; 70:465-76. [PMID: 1537085 DOI: 10.1161/01.res.70.3.465] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The goals of this study were 1) to quantitate the effects of atherosclerosis on physiological and pharmacological endothelium-dependent vasoactive responses in coronary arterioles downstream from arterial lesions and 2) to determine if administration of L-arginine, the precursor for endothelium-derived was induced in pigs, and vasomotor responses of isolated, cannulated coronary arterioles (30-70 microns in diameter) were assessed by measuring diameter changes in vitro. To assess pharmacological alterations of endothelium-dependent responses, dose-response curves were constructed to ADP, serotonin, and histamine. To assess physiological alterations in endothelial function, different flow rates were established across the vessel. Arteriolar diameters were measured in vessels from normal and atherosclerotic pigs under control conditions, after administration of L-arginine, and after endothelial denudation. In arterioles from normal pigs, administration of serotonin, histamine, or ADP produced dose-dependent vasodilation, which was abolished by endothelial denudation. In arterioles from atherosclerotic pigs, administration of histamine, serotonin, and ADP produced dilation at only the highest doses (10(-6)-10(-7) M), and the extent of dilation was only 20-30% of that observed in arterioles from normal pigs. Initiation of flow also produced vasodilation in arterioles from normal pigs that was completely abolished after endothelial denudation. In arterioles from atherosclerotic pigs, flow-induced responses were absent. These abnormal physiological and pharmacological responses (i.e., blunted vasodilation to pharmacological stimulation and to flow) were restored after administration of L-arginine for 40 minutes. The vascular responses after administration of L-arginine were not different from those observed under control conditions in arterioles from normal pigs. In addition, L-arginine did not restore vasodilation to the endothelium-dependent agonists in denuded segments. From these data in arterioles downstream from atherosclerotic lesions, we conclude that 1) the ED50 and maximal responses of endothelium-dependent vasodilation to ADP, histamine, and serotonin are attenuated; 2) the physiological response to flow, that is, flow-mediated endothelium-dependent vasodilation, is absent; and 3) the abnormality in arteriolar responsiveness during large vessel disease involves an impairment of the synthesis and/or release of endothelium-derived relaxing factor.
Collapse
Affiliation(s)
- L Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University, College Station 77843-1114
| | | | | | | |
Collapse
|
47
|
Abstract
Experiments were performed to test the hypothesis that increased stretch and/or tension of myocytes in the absence of changes in blood flow could induce capillary growth in the heart. Chronic treatment with either dobutamine (rabbits) or alinidine (rats) which increased force of contraction and/or stroke volume respectively without increases in coronary blood flow led to enlargement of the anatomical size of the capillary bed, with no change in cardiac weight, thus supporting the role of external mechanical factors in angiogenesis.
Collapse
Affiliation(s)
- M D Brown
- Department of Physiology, University of Birmingham, England
| | | |
Collapse
|
48
|
Affiliation(s)
- O Hudlicka
- Department of Physiology, University of Birmingham, Edgbaston
| |
Collapse
|
49
|
Heusch G. The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium. Basic Res Cardiol 1991; 86:197-218. [PMID: 1772385 DOI: 10.1007/bf02190600] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The prevailing paradigm of coronary physiology and pathophysiology is that a balance between blood flow (i.e., supply) and function (i.e., demand) exists under normal conditions and that an imbalance between supply and demand occurs during ischemia. However, this paradigm is derived largely from studies relating changes in total coronary inflow to global ventricular function. The present article examines the relationship between myocardial blood flow and function on a regional level and proposes that a change may be needed in the current paradigm of coronary pathophysiology. In normal myocardium, considerable heterogeneity of regional blood flow exists, indicating either similar heterogeneity of metabolic demand and function or questioning the precision of metabolic coupling between flow and function. After the onset of ischemia, a transient imbalance between the reduced blood flow and function may exist. However, myocardial function rapidly declines and during early steady-state ischemia regional myocardial blood flow and function are once again evenly matched. Such supply-demand balance may persist over prolonged periods of ischemia enabling the myocardium to remain viable through reduction of energy expenditure for contractile function, i.e., to "hibernate". Whereas in "hibernating" ischemic myocardium, regional myocardial blood flow and function are both reduced but appropriately matched to one another, flow and function appear to be largely uncoupled in reperfused "stunned" myocardium. The clinical identification of viable but ischemic (hibernating) and postischemic (stunned) myocardium is of utmost importance in patients undergoing reperfusion procedures. A new paradigm of coronary and myocardial pathophysiology, encompassing a regional as well as a global view of perfusion and function, will have to include explanations for phenomena such as myocardial hibernation and myocardial stunning.
Collapse
Affiliation(s)
- G Heusch
- Abteilung für Pathophysiologie, Universitätsklinkum Essen, FRG
| |
Collapse
|
50
|
Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 1991; 68:217-25. [PMID: 1984864 DOI: 10.1161/01.res.68.1.217] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have measured the effects of barium-induced cardiac contraction on the intramyocardial blood volume content of all vessels and have independently measured the blood volume content of vessels with a diameter greater than 100 microns in rat myocardium. Measurements of total intramyocardial blood volume were made by using [125I]albumin as a plasma marker and technetium-99m as a red blood cell marker. In one group of rats (n = 8), diastolic arrest was induced by an intravenous injection of KCl; in a second group (n = 8), systolic arrest was induced by an intravenous injection of BaCl2. In both groups, the hearts were frozen in situ immediately after heart arrest while aortic pressure was decaying from its former physiological level. The left ventricular free wall was sectioned transmurally in a cryomicrotome, and the blood volume within each tissue sample was calculated from its radioactivity. The volume of blood in vessels larger than 100 microns was independently estimated from the exposed cross-sectional area of these vessels in photographs of the frozen tissue taken during tissue sectioning in the cryomicrotome. Total intramyocardial blood volume was found to decrease by about 42% from 8.6 +/- 1.3 ml/100 g (mean +/- SEM) in the KCl group to 5.0 +/- 0.7 ml/100 g in the BaCl2 group (p less than 0.01). Total volume was greater in the epicardial than in the endocardial layers of both groups (p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R M Judd
- State University of New York, Department of Mechanical and Aerospace Engineering, Buffalo
| | | |
Collapse
|