1
|
Giorgetti A, Emdin M. Dogmas and heresies in coronary blood flow regulation. Int J Cardiol 2024; 395:131558. [PMID: 37913959 DOI: 10.1016/j.ijcard.2023.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Affiliation(s)
| | - Michele Emdin
- Fondazione CNR/Regione Toscana"Gabriele Monasterio", Pisa, Italy; Scuola Superiore "S. Anna", Pisa, Italy
| |
Collapse
|
2
|
Joyner MJ, Wiggins CC, Baker SE, Klassen SA, Senefeld JW. Exercise and Experiments of Nature. Compr Physiol 2023; 13:4879-4907. [PMID: 37358508 PMCID: PMC10853940 DOI: 10.1002/cphy.c220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
In this article, we highlight the contributions of passive experiments that address important exercise-related questions in integrative physiology and medicine. Passive experiments differ from active experiments in that passive experiments involve limited or no active intervention to generate observations and test hypotheses. Experiments of nature and natural experiments are two types of passive experiments. Experiments of nature include research participants with rare genetic or acquired conditions that facilitate exploration of specific physiological mechanisms. In this way, experiments of nature are parallel to classical "knockout" animal models among human research participants. Natural experiments are gleaned from data sets that allow population-based questions to be addressed. An advantage of both types of passive experiments is that more extreme and/or prolonged exposures to physiological and behavioral stimuli are possible in humans. In this article, we discuss a number of key passive experiments that have generated foundational medical knowledge or mechanistic physiological insights related to exercise. Both natural experiments and experiments of nature will be essential to generate and test hypotheses about the limits of human adaptability to stressors like exercise. © 2023 American Physiological Society. Compr Physiol 13:4879-4907, 2023.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Chad C Wiggins
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah E Baker
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Klassen
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Lipoprotein(a) in Atherosclerotic Diseases: From Pathophysiology to Diagnosis and Treatment. Molecules 2023; 28:molecules28030969. [PMID: 36770634 PMCID: PMC9918959 DOI: 10.3390/molecules28030969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.
Collapse
|
4
|
Suvorava T, Metry S, Pick S, Kojda G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 2022; 205:115256. [DOI: 10.1016/j.bcp.2022.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
|
5
|
Kemna MS, Shaw DW, Kronmal RA, Ameduri RK, Azeka E, Bradford TT, Kindel SJ, Lin KY, Möller T, Reardon LC, Schumacher KR, Shih R, Stendahl GL, West SC, Wisotzkey B, Zangwill S, Menteer J. Posterior reversible encephalopathy syndrome (PRES) after pediatric heart transplantation: A multi-institutional cohort. J Heart Lung Transplant 2022. [DOI: 10.1016/j.healun.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
6
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
7
|
Ambrosino P, Bachetti T, D’Anna SE, Galloway B, Bianco A, D’Agnano V, Papa A, Motta A, Perrotta F, Maniscalco M. Mechanisms and Clinical Implications of Endothelial Dysfunction in Arterial Hypertension. J Cardiovasc Dev Dis 2022; 9:136. [PMID: 35621847 PMCID: PMC9146906 DOI: 10.3390/jcdd9050136] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Tiziana Bachetti
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Direction, 27100 Pavia, Italy;
| | - Silvestro Ennio D’Anna
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Brurya Galloway
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Antimo Papa
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy;
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (B.G.); (A.B.); (V.D.); (F.P.)
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy;
- Department of Clinical Medicine and Surgery, “Federico II” University, 80131 Naples, Italy
| |
Collapse
|
8
|
|
9
|
Răzvan-Valentin S, Güler SA, Utkan T, Şahin TD, Gacar G, Yazir Y, Rencber SF, Mircea L, Cristian B, Bogdan P, Utkan NZ. Etanercept Prevents Endothelial Dysfunction in Cafeteria Diet-Fed Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042138. [PMID: 35206342 PMCID: PMC8872388 DOI: 10.3390/ijerph19042138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023]
Abstract
Obesity is associated with endothelial dysfunction and this relationship is probably mediated in part by inflammation. Objective: The current study evaluated the effects of etanercept, a tumor necrosis factor-alpha (TNF-α) inhibitor, on endothelial and vascular reactivity, endothelial nitric oxide synthase (eNOS) immunoreactivity, and serum and aortic concentrations of TNF-α in a diet-induced rat model. Design and results: Male weanling Wistar rats were exposed to a standard diet and cafeteria diet (CD) for 12 weeks and etanercept was administered during CD treatment. Isolated aortas of the rats were used for isometric tension recording. Carbachol-induced relaxant responses were impaired in CD-fed rats, while etanercept treatment improved these endothelium-dependent relaxations. No significant change was observed in papaverine- and sodium nitroprusside (SNP)-induced relaxant responses. eNOS expression decreased in CD-fed rats, but no change was observed between etanercept-treated CD-fed rats and control rats. CD significantly increased both the serum and the aortic levels of TNF-α, while etanercept treatment suppressed these elevated levels. CD resulted in a significant increase in the body weight of the rats. Etanercept-treated (ETA) CD-fed rats gained less weight than both CD-fed and control rats.
Collapse
Affiliation(s)
- Scăunaşu Răzvan-Valentin
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Sertaç Ata Güler
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
- Correspondence: (S.R.-V.); (S.A.G.)
| | - Tijen Utkan
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
- Experimental Medical Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey
| | - Tuğçe Demirtaş Şahin
- Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey; (T.U.); (T.D.Ş.)
| | - Gulcin Gacar
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
| | - Yusufhan Yazir
- Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli 41380, Turkey; (G.G.); (Y.Y.)
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Selenay Furat Rencber
- Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| | - Lupușoru Mircea
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Bălălău Cristian
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Popescu Bogdan
- Department of General Surgery, Faculty of General Medicine, “Coltea” Hospital, Carol Davila University, 020021 Bucharest, Romania; (L.M.); (B.C.); (P.B.)
| | - Nihat Zafer Utkan
- Department of General Surgery, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey;
| |
Collapse
|
10
|
Somarathna M, Hwang PT, Millican RC, Alexander GC, Isayeva-Waldrop T, Sherwood JA, Brott BC, Falzon I, Northrup H, Shiu YT, Stubben CJ, Totenhagen J, Jun HW, Lee T. Nitric oxide releasing nanomatrix gel treatment inhibits venous intimal hyperplasia and improves vascular remodeling in a rodent arteriovenous fistula. Biomaterials 2022; 280:121254. [PMID: 34836683 PMCID: PMC8724452 DOI: 10.1016/j.biomaterials.2021.121254] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Vascular access is the lifeline for hemodialysis patients and the single most important component of the hemodialysis procedure. Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis patients, but nearly 60% of AVFs created fail to successfully mature due to early intimal hyperplasia development and poor outward remodeling. There are currently no therapies available to prevent AVF maturation failure. First, we showed the important regulatory role of nitric oxide (NO) on AVF development by demonstrating that intimal hyperplasia development was reduced in an overexpressed endothelial nitric oxide synthase (NOS3) mouse AVF model. This supported the rationale for the potential application of NO to the AVF. Thus, we developed a self-assembled NO releasing nanomatrix gel and applied it perivascularly at the arteriovenous anastomosis immediately following rat AVF creation to investigate its therapeutic effect on AVF development. We demonstrated that the NO releasing nanomatrix gel inhibited intimal hyperplasia formation (more than 70% reduction), as well as improved vascular outward remodeling (increased vein diameter) and hemodynamic adaptation (lower wall shear stress approaching the preoperative level and less vorticity). Therefore, direct application of the NO releasing nanomatrix gel to the AVF anastomosis immediately following AVF creation may enhance AVF development, thereby providing long-term and durable vascular access for hemodialysis.
Collapse
Affiliation(s)
- Maheshika Somarathna
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA
| | - Patrick Tj Hwang
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | | | - Grant C Alexander
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | - Tatyana Isayeva-Waldrop
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA
| | | | - Brigitta C Brott
- Endomimetics, LLC, Birmingham, AL, 35242, USA; Department of Medicine and Division of Cardiovascular Disease, University of Alabama at Birmingham, AL, 35233, USA
| | - Isabelle Falzon
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Hannah Northrup
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Yan-Ting Shiu
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, UT, 84132, USA; Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham, AL, 35294, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, 35294, USA; Endomimetics, LLC, Birmingham, AL, 35242, USA
| | - Timmy Lee
- Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, AL, 35294, USA; Veterans Affairs Medical Center, Birmingham, AL, 35233, USA
| |
Collapse
|
11
|
de Oliveira AA, Priviero F, Webb RC, Nunes KP. Impaired HSP70 Expression in the Aorta of Female Rats: A Novel Insight Into Sex-Specific Differences in Vascular Function. Front Physiol 2021; 12:666696. [PMID: 33967836 PMCID: PMC8100344 DOI: 10.3389/fphys.2021.666696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 12/19/2022] Open
Abstract
Heat-shock protein 70 (HSP70) contributes to cellular calcium (Ca2+) handling mechanisms during receptor-mediated vascular contraction. Interestingly, previous studies have independently reported sex-related differences in HSP70 expression and Ca2+ dynamics. Still, it is unknown if sex, as a variable, plays a role in the impact that HSP70 has upon vascular contraction. To narrow this gap, we investigated if differences exist in the expression levels of HSP70 in the aorta, and if targeting this protein contributes to sex disparity in vascular responses. We report that, compared with male animals, female rats present a reduction in the basal levels of HSP70. More compelling, we found that the blockade of HSP70 has a greater impact on phenylephrine-induced phasic and tonic vascular contraction in female animals. In fact, it seems that the inhibition of HSP70 significantly affects vascular Ca2+ handling mechanisms in females, which could be associated with the fact that these animals have impaired HSP70 expression. Corroborating this idea, we uncovered that the higher sensitivity of female rats to HSP70 inhibition does not involve an increase in NO-dependent vasodilation nor a decrease in vascular oxidative stress. In summary, our findings reveal a novel mechanism associated with sex-specific differences in vascular responses to α-1 adrenergic stimulation, which might contribute to unraveling the network of intertwined pathways conferring female protection to (cardio)vascular diseases.
Collapse
Affiliation(s)
- Amanda Almeida de Oliveira
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Fernanda Priviero
- Department of Physiology, Augusta University, Augusta, GA, United States
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - R. Clinton Webb
- Department of Cell Biology and Anatomy, Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
12
|
Glucocorticoid and Breviscapine Combination Therapy Versus Glucocorticoid Alone on Sudden Sensorineural Hearing Loss in Patients with Different Audiometric Curves. Adv Ther 2020; 37:4959-4968. [PMID: 33034871 DOI: 10.1007/s12325-020-01513-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION We aimed to retrospectively analyze the therapeutic outcomes of using glucocorticoid combined with a vasodilator, breviscapine, versus glucocorticoid alone in patients with sudden sensorineural hearing loss (SSNHL) and to explore the impact on different audiometric curves. METHODS Data from 154 patients were collected between January 2017 and December 2018. Patients received treatments of either glucocorticoid combined with breviscapine (GC + Bre) or glucocorticoid alone (GC). These two groups were stratified into low frequencies SSNHL (LF-SSNHL), high frequencies SSNHL (HF-SSNHL), all frequencies SSNHL (AF-SSNHL), and total deafness SSNHL (TD-SSNHL) subgroups according to their corresponding audiograms. The hearing level was evaluated by pure tone audiometry, and hearing recovery was calculated by comparing the pure tone average (PTA) at pretreatment and 4 weeks after therapy. RESULTS Hearing recovery was significantly greater for GC + Bre than GC-only treatment in the AF-SSNHL and TD-SSNHL subgroups (P < 0.05) and to a lesser extent in the LF-SSNHL and HF-SSNHL subgroups (P > 0.05). Logistic regression analysis also showed a favorable outcome for SSNHL in the GC + Bre group (odds ratio 2.848, P < 0.05). CONCLUSION Treating SSNHL using glucocorticoid combined with breviscapine could be more beneficial than using glucocorticoid alone, especially for patients with AF-SSNHL and TD-SSNHL. TRIAL REGISTRATION NUMBER ChiCTR18000170072.
Collapse
|
13
|
Kataoka T, Harada K, Tanaka A, Onishi T, Matsunaga S, Funakubo H, Harada K, Nagao T, Shinoda N, Marui N, Niwa K, Tashiro H, Hitora Y, Furusawa K, Ishii H, Amano T, Murohara T. Relationship between epicardial adipose tissue volume and coronary artery spasm. Int J Cardiol 2020; 324:8-12. [PMID: 33017629 DOI: 10.1016/j.ijcard.2020.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/15/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) is considered to play a critical role in vascular endothelial function. Coronary artery spasm has been postulated to be a causal factor in vascular endothelial abnormalities and atherosclerosis. This study aimed to investigate the relationship between coronary artery spasm and EAT volume, total abdominal adipose tissue (AAT) area, and abdominal visceral adipose tissue (AVAT) area. METHOD Among patients undergoing coronary computed tomography (CT) to evaluate coronary artery disease, we identified 110 patients who did not have significant coronary artery stenosis and underwent a coronary spasm provocation test with cardiac catheterization. They were divided into two groups according to the results of the spasm provocation test: spasm-positive and spasm-negative. EAT volume, total AAT area, and AVAT area were evaluated using CT images. RESULTS Seventy-seven patients were included in the spasm-positive group and 33 patients in the spasm-negative group. There were no significant differences in baseline clinical characteristics between the two groups, except for the prevalence of current smoking (48% vs. 27%, p = 0.04). EAT volume was significantly higher in the spasm-positive group (108 ± 38 mL vs. 87 ± 34 mL, p = 0.007), while no significant difference was seen in total AAT area (280 ± 113 cm2 vs. 254 ± 128 cm2, p = 0.32) or AVAT area (112 ± 54 cm2 vs. 98 ± 55 cm2, p = 0.27). Multivariate logistic analysis indicated that EAT volume (per 10 cm3) (odds ratio, 1.198; 95% confidence interval, 1.035-1.388; p = 0.016) was a significant predictor of coronary artery spasm. CONCLUSION Our results suggest that EAT has a strong association with coronary artery spasm, while AAT may not.
Collapse
Affiliation(s)
- Takashi Kataoka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Ken Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomohiro Onishi
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan; Department of Cardiology, Aichi Medical University Hospital, Nagakute, Japan
| | - Shun Matsunaga
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Hiroshi Funakubo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Kazuhiro Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Tomoyuki Nagao
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | | | - Nobuyuki Marui
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Kiyoshi Niwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Tashiro
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Hitora
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Tetsuya Amano
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan; Department of Cardiology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
[Peripheral intravenous lines : A multifaceted topic]. Med Klin Intensivmed Notfmed 2020; 115:550-556. [PMID: 32880673 DOI: 10.1007/s00063-020-00732-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Peripheral intravenous lines are indispensable for emergency and intensive medical care. They have a high importance, especially in the context of primary care as well as in the early stages of treatment initiation. This requires in-depth knowledge of the persons being treated. This article describes the most important aspects of the indications, puncture and fixation techniques as well as special features in terms of management and hygiene.
Collapse
|
15
|
An additional physiological role for HSP70: Assistance of vascular reactivity. Life Sci 2020; 256:117986. [PMID: 32585245 DOI: 10.1016/j.lfs.2020.117986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
AIMS HSP70, a molecular chaperone, helps to maintain proteostasis. In muscle biology, however, evidence suggests HSP70 to have a more versatile range of functions, as genetic deletion of its inducible genes impairs Ca2+ handling, and consequently, cardiac and skeletal muscle contractility. Still, it is unknown whether HSP70 is involved in vascular reactivity, an intrinsic physiological mechanism of blood vessels. Therefore, we designed this study to test the hypothesis that proper vascular reactivity requires the assistance of HSP70. MAIN METHODS We performed functional studies in a wire-myograph using thoracic aorta isolated from male Sprague Dawley rats. Experiments were conducted with and without an HSP70 inhibitor as well as in heat-stressed vessels. The expression levels of HSP70 were evaluated with Western blotting. NO and ROS levels were assessed with fluorescence microscopy. KEY FINDINGS We report that blockade of HSP70 weakens contraction in response to phenylephrine (dose-response) in the aorta. Additionally, we demonstrated that inhibition of HSP70 affects the amplitude of the fast and of the slow components of the time-force curve. Corroborating these findings, we found that inhibition of HSP70, in vessels over-expressing this protein, partly rescues the contractile phenotype of aortic rings. Furthermore, we show that blockade of HSP70 facilitates relaxation in response to acetylcholine and clonidine without affecting the basal levels of NO and ROS. SIGNIFICANCE Our work introduces an additional physiological role for HSP70, the assistance of vascular reactivity, which highlights this protein as a new player in vascular physiology, and therefore, uncovers a promising research avenue for vascular diseases.
Collapse
|
16
|
Sanches E, Topal B, Proczko M, Stepaniak PS, Severin R, Phillips SA, Sabbahi A, Pujol Rafols J, Pouwels S. Endothelial function in obesity and effects of bariatric and metabolic surgery. Expert Rev Cardiovasc Ther 2020; 18:343-353. [DOI: 10.1080/14779072.2020.1767594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Elijah Sanches
- Department of Surgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Besir Topal
- Department of Cardiothoracic Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Monika Proczko
- Department of General, Endocrine and Transplant Surgery, University Medical Center, Gdansk University, Gdansk, Poland
| | - Pieter S. Stepaniak
- Department of Operating Rooms, Catharina Hospital, Eindhoven, The Netherlands
| | - Rich Severin
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Doctor of Physical Therapy Program, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Shane A. Phillips
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Sabbahi
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
17
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
18
|
Luo T, Chen Z, Wang F, Yin S, Liu P, Zhang J, Yang Z. Endothelium-Independent Vasodilatory Effects of Isodillapiolglycol Isolated from Ostericum citriodorum. Molecules 2020; 25:molecules25040885. [PMID: 32079290 PMCID: PMC7070945 DOI: 10.3390/molecules25040885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/01/2022] Open
Abstract
Ostericum citriodorum is a plant with a native range in China used in herbal medicine for treating angina pectoris. In this study, we investigated the vasodilatory effects of isodillapiolglycol (IDG), which is one of the main ingredients isolated from O. citriodorum ethyl acetate extract, in Sprague–Dawley rat aortic rings, and measured intracellular Ca2+ ([Ca2+]in) using a molecular fluo-3/AM probe. The results show that IDG dose-dependently relaxed endothelium-intact or -denuded aortic rings pre-contracted with noradrenaline (NE) or potassium chloride (KCl), and inhibited CaCl2-induced contraction in high K+ depolarized aortic rings. Tetraethyl ammonium chloride (a Ca2+-activated K+ channel blocker) or verapamil (an L-type Ca2+ channel blocker) significantly reduced the relaxation of IDG in aortic rings pre-contracted with NE. In vascular smooth muscle cells, IDG inhibited the increase in [Ca2+]in stimulated by KCl in Krebs solution; likewise, IDG also attenuated the increase in [Ca2+]in induced by NE or subsequent supplementation of CaCl2. These findings demonstrate that IDG relaxes aortic rings in an endothelium-independent manner by reducing [Ca2+]in, likely through inhibition of the receptor-gated Ca2+ channel and the voltage-dependent Ca2+ channel, and through opening of the Ca2+-activated K+ channel.
Collapse
Affiliation(s)
- Tengshuo Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (T.L.); (Z.C.)
| | - Zewei Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (T.L.); (Z.C.)
| | - Fengyun Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Shanshan Yin
- HEC Pharm R&D Center, Dongguan 523871, China; (S.Y.); (P.L.)
| | - Pan Liu
- HEC Pharm R&D Center, Dongguan 523871, China; (S.Y.); (P.L.)
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (T.L.); (Z.C.)
- Correspondence: (J.Z.); (Z.Y.); Tel.: +86-020-39356997 (J.Z.)
| | - Zhonghua Yang
- Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Correspondence: (J.Z.); (Z.Y.); Tel.: +86-020-39356997 (J.Z.)
| |
Collapse
|
19
|
Lozano-Cuenca J, Valencia-Hernández I, López-Canales OA, Flores-Herrera H, López-Mayorga RM, Castillo-Henkel EF, López-Canales JS. Possible mechanisms involved in the effect of the subchronic administration of rosuvastatin on endothelial function in rats with metabolic syndrome. ACTA ACUST UNITED AC 2020; 53:e9304. [PMID: 32049102 PMCID: PMC7011172 DOI: 10.1590/1414-431x20199304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
Metabolic syndrome is a multifaceted condition associated with a greater risk of various disorders (e.g., diabetes and heart disease). In a rat model of metabolic syndrome, an acute in vitro application of rosuvastatin causes relaxation of aortic rings. Since the outcome of a subchronic rosuvastatin treatment is unknown, the present study explored its effect on acetylcholine-induced vasorelaxation of aortic rings from rats with metabolic syndrome. Animals were submitted to a 16-week treatment, including a standard diet, a cafeteria-style diet (CAF-diet), or a CAF-diet with daily rosuvastatin treatment (10 mg/kg). After confirming the development of metabolic syndrome in rats, aortic segments were extracted from these animals (those treated with rosuvastatin and untreated) and the acetylcholine-induced relaxant effect on the corresponding rings was evaluated. Concentration-response curves were constructed for this effect in the presence/absence of L-NAME, ODQ, KT 5823, 4-aminopyridine (4-AP), tetraethylammonium (TEA), apamin plus charybdotoxin, glibenclamide, indomethacin, clotrimazole, and cycloheximide pretreatment. Compared to rings from control rats, acetylcholine-induced vasorelaxation decreased in rings from animals with metabolic syndrome, and was maintained at a normal level in animals with metabolic syndrome plus rosuvastatin treatment. The effect of rosuvastatin was inhibited by L-NAME, ODQ, KT 5823, TEA, apamin plus charybdotoxin, but unaffected by 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. In conclusion, the subchronic administration of rosuvastatin to rats with metabolic syndrome improved the acetylcholine-induced relaxant response, involving stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.
Collapse
Affiliation(s)
- J Lozano-Cuenca
- Department of Physiology and Cell Development, National Institute of Perinatology, Mexico City, Mexico
| | - I Valencia-Hernández
- Section of Postgraduate Studies and Investigation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - O A López-Canales
- Section of Postgraduate Studies and Investigation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - H Flores-Herrera
- Department of Immuno-Biochemistry, National Institute of Perinatology, Mexico City, Mexico
| | - R M López-Mayorga
- Section of Postgraduate Studies and Investigation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - E F Castillo-Henkel
- Section of Postgraduate Studies and Investigation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - J S López-Canales
- Department of Physiology and Cell Development, National Institute of Perinatology, Mexico City, Mexico.,Section of Postgraduate Studies and Investigation, Higher School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
20
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
21
|
Affiliation(s)
- Matthias Barton
- University of Zürich and Andreas Grüntzig Foundation Zürich Switzerland
| | - Carmine Cardillo
- Policlinico A. Gemelli IRCCS and Università Cattolica del Sacro Cuore Roma Italy
| |
Collapse
|
22
|
Amssayef A, Eddouks M. Aqueous Extract of Matricaria pubescens Exhibits Antihypertensive Activity in L-NAME-induced Hypertensive Rats through its Vasorelaxant Effect. Cardiovasc Hematol Agents Med Chem 2019; 17:135-143. [PMID: 31589128 DOI: 10.2174/1871525717666191007151413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Matricaria pubescens is a medicinal plant from North Africa. This plant is widely used in alternative medicine as a remedy against rheumatism, inflammation, diabetes and hypertension. AIM The aim of the study was to evaluate the possible antihypertensive and vasodilator activity of the aqueous extract of Matricaria pubescens (M. pubescens). MATERIAL AND METHODS In the current study, the aqueous extract of the aerial parts of M. pubescens (AEMP) was prepared and its antihypertensive activity was examined in N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced hypertensive rats. RESULTS The results indicated that AEMP reduced the systolic, diastolic, mean arterial blood pressure in hypertensive rats but not in normotensive rats. The data revealed that AEMP exhibits its antihypertensive effect through vasorelaxant activity. More interestingly, this study approved that the vasorelaxant capacity of AEMP seems to be mediated through vascular cyclooxygenase pathway, the opening of K+ channels and sGC-cGMP induction pathway. CONCLUSION The study illustrates the beneficial action of M. pubescens as an antihypertensive agent.
Collapse
Affiliation(s)
- Ayoub Amssayef
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, 52000, Errachidia, Morocco
| |
Collapse
|
23
|
Silva JDPD, Ballejo G. Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells. EINSTEIN-SAO PAULO 2019; 17:eAO4600. [PMID: 31166411 PMCID: PMC6550436 DOI: 10.31744/einstein_journal/2019ao4600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 12/20/2018] [Indexed: 11/06/2022] Open
Abstract
Objective: To characterize the calcium influx pathways implicated in the sustained elevation of endothelial intracellular calcium concentration, required for the synthesis and release of relaxing factors. Methods: We evaluated the effect of the newly synthesized pyrazole derivatives, described as selective inhibitors for ORAI (BTP2/Pyr2 and Pyr6) and TRPC3 (Pyr3 and Pyr10) channels, upon endothelium- and extracellular calcium-dependent relaxations stimulated by acetylcholine and thapsigargin, in pre-constricted rat thoracic aortic rings. Results: Acetylcholine and thapsigargin responses were completely reverted by Pyr2 and Pyr6 (1 to 3μM). Pyr3 (0.3 to 3μM) caused a rapid reversal of acetylcholine (6.2±0.08mg.s−1) and thapsigargin (3.9±0.25mg.s−1) relaxations, whereas the more selective TRPC3 blocker Pyr10 (1 to 3μM) had no effect. The recently described TRPC4/5 selective blocker, ML204 (1 to 3μM), reverted completely acetylcholine relaxations, but minimally thapsigargin induced ones. Noteworthy, relaxations elicited by GSK1016790A (TRPV4 agonist) were unaffected by pyrazole compounds or ML204. After Pyr2 and Pyr6 pre-incubation, acetylcholine and thapsigargin evoked transient relaxations similar in magnitude and kinetics to those observed in the absence of extracellular calcium. Sodium nitroprusside relaxations as well as phenylephrine-induced contractions (denuded aorta) were not affected by any of pyrazole compounds (1 to 3μM). Conclusion: These observations revealed a previously unrecognized complexity in rat aorta endothelial calcium influx pathways, which result in production and release of nitric oxide. Pharmacologically distinguishable pathways mediate acetylcholine (ORAI/TRPC other than TRPC3/TRPC4 calcium-permeable channels) and thapsigargin (TRPC4 not required) induced calcium influx.
Collapse
Affiliation(s)
| | - Gustavo Ballejo
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
24
|
Al-Badri A, Kim JH, Liu C, Mehta PK, Quyyumi AA. Peripheral Microvascular Function Reflects Coronary Vascular Function. Arterioscler Thromb Vasc Biol 2019; 39:1492-1500. [PMID: 31018659 PMCID: PMC6594879 DOI: 10.1161/atvbaha.119.312378] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives- Coronary endothelial dysfunction is a precursor of atherosclerosis and adverse outcomes. Whether endothelial dysfunction is a localized or generalized phenomenon in humans remains uncertain. We simultaneously measured femoral and coronary vascular function with the hypothesis that peripheral vascular endothelial function will be reflective of coronary endothelial function. Approach and Results- Eighty-five subjects underwent coronary angiography for evaluation of chest pain or abnormal stress tests. Endothelium-dependent and -independent vascular function were measured using intracoronary and intrafemoral infusions of acetylcholine and sodium nitroprusside, respectively. Coronary flow reserve was assessed using intracoronary adenosine infusion. Flow velocity was measured in each circulation using a Doppler wire (FloWire, EndoSonics). Coronary vascular resistance and femoral vascular resistance were calculated as mean arterial pressure (mm Hg)/coronary blood flow (mL/min) and mean arterial pressure (mm Hg)/femoral average peak velocity (cm/s), respectively. Mean age was 53±11 years, 37% were female, 44% had hypertension, 12% had diabetes mellitus, and 38% had obstructive coronary artery disease. There was a correlation between the change in femoral vascular resistance with acetylcholine and acetylcholine-mediated changes in both the coronary vascular resistance ( r=0.27; P=0.014) and in the epicardial coronary artery diameter ( r=-0.25; P=0.021), indicating that subjects with normal endothelial function in the femoral circulation had normal endothelial function in the coronary epicardial and microcirculation and vice versa. The coronary vasodilator response to adenosine also correlated with the femoral vasodilatation with acetylcholine ( r=0.4; P=0.0002). There was no correlation between the coronary and femoral responses to sodium nitroprusside. Conclusions- Endothelial functional changes in the peripheral and coronary circulations were modestly correlated. Thus, peripheral microvascular endothelial function reflects endothelium-dependent coronary epicardial and microvascular function and the coronary flow reserve. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Ahmed Al-Badri
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jeong Hwan Kim
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chang Liu
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Puja K Mehta
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
25
|
Cao X, Ye Z, Jin M, Yan S, Song X, Huang R. Downregulated caveolin-1 expression serves a potential role in coronary artery spasm by inducing nitric oxide production in vitro. Exp Ther Med 2018; 16:3567-3573. [PMID: 30233709 PMCID: PMC6143842 DOI: 10.3892/etm.2018.6646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
The present study aimed to investigate the effects of downregulated caveolin-1 (Cav-1) expression on nitric oxide (NO) production in lipopolysaccharide (LPS)-damaged primary human umbilical vein endothelial cells (HUVECs) in a model of coronary artery spasm (CAS) microenvironment induced by acetylcholine (ACh) treatment. Small interfering RNA (siRNA)-mediated Cav-1 downregulation in HUVECs was confirmed by western blotting. The cell viability and superoxide dismutase (SOD) inhibition in HUVECs incubated with LPS (0, 10, 25, 50, 75 and 100 µg/ml) were measured by cell counting kit-8 assay and a SOD kit, respectively. Intracellular Ca2+ [(Ca2+)i] in Fluo4-acetoxymethyl ester-loaded cells was detected by fluorescence microscopy. NO levels in the cell culture supernatants were measured by the nitrate reductase method. The results indicated that transfection with Cav-1 siRNA, in particular siCav-1 (2), downregulated the Cav-1 protein expression. LPS at a dose of 75 µg/ml induced a significant decrease in HUVECs/si-NC and HUVECs/siCav-1 viability compared with the other concentrations of LPS. Compared with the effects of untreated cells, SOD inhibition in HUVECs/si-NC and HUVECs/siCav-1 was significantly decreased by LPS (75 µg/ml). In addition, ACh stimulation caused a greater increase in [Ca2+]i in HUVECs/si-NC as compared with LPS-treated HUVECs/si-NC. ACh stimulation also induced significantly higher NO levels in LPS-treated HUVECs/siCav-1 compared with LPS-treated HUVECs/si-NC cells (P<0.05). In conclusion, the downregulated Cav-1 expression served a key role in NO production in the in vitro model of CAS induced by ACh stimulation of LPS-damaged HUVECs.
Collapse
Affiliation(s)
- Xingmei Cao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Zhishuai Ye
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mingyu Jin
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shuai Yan
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Rongchong Huang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
26
|
Kishimoto S, Matsumoto T, Oki K, Maruhashi T, Kajikawa M, Matsui S, Hashimoto H, Kihara Y, Yusoff FM, Higashi Y. Microvascular endothelial function is impaired in patients with idiopathic hyperaldosteronism. Hypertens Res 2018; 41:932-938. [PMID: 30206323 DOI: 10.1038/s41440-018-0093-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
The aims were to evaluate the relationship between idiopathic hyperaldosteronism (IHA) and grade of vascular function in the macrovasculature and microvasculature. Vascular function, including reactive hyperemia index (RIH), flow-mediated vasodilation (FMD), and nitroglycerine-induced vasodilation (NID) were evaluated in 52 patients with IHA, 53 patients with aldosterone-producing adenoma (APA), and 52 age-, sex-, and blood pressure-matched patients with essential hypertension (EHT). Log RHI was lower in the IHA and APA groups than in the EHT group (0.54 ± 0.25 and 0.55 ± 0.23 versus 0.79 ± 0.28; P < 0.01, respectively). FMD was lower in the APA group than in the EHT group (3.4 ± 2.1% versus 4.8 ± 2.8%; P = 0.02), whereas there was no significant difference in FMD between the IHA and the APA and EHT groups. NID was lower in the APA group than in the EHT group (10.0 ± 4.5% versus 12.5 ± 5.7%; P = 0.03), whereas there was no significant difference in NID between the IHA, APA, and EHT groups. Multiple regression analysis revealed an association of log RHI with plasma aldosterone concentration (t = -2.24; P = 0.03) and an association of FMD with plasma aldosterone concentration (t = -3.07; P < 0.01). Microvascular endothelial function was impaired in patients with IHA compared with that in patients with EHT.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takeshi Matsumoto
- Department of Cardiovascular Medicine, JA Onomichi General Hospital, Hiroshima, Japan
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
27
|
Hydroxyl Group and Vasorelaxant Effects of Perillyl Alcohol, Carveol, Limonene on Aorta Smooth Muscle of Rats. Molecules 2018; 23:molecules23061430. [PMID: 29899230 PMCID: PMC6099955 DOI: 10.3390/molecules23061430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023] Open
Abstract
The present study used isometric tension recording to investigate the vasorelaxant effect of limonene (LM), carveol (CV), and perillyl alcohol (POH) on contractility parameters of the rat aorta, focusing in particular on the structure-activity relationship. LM, CV, and POH showed a reversible inhibitory effect on the contraction induced by electromechanical and pharmacomechanical coupling. In the case of LM, but not CV and POH, this effect was influenced by preservation of the endothelium. POH and CV but not LM exhibited greater pharmacological potency on BayK-8644-induced contraction and on electromechanical coupling than on pharmacomechanical coupling. In endothelium-denuded preparations, the order of pharmacological potency on electrochemical coupling was LM < CV < POH. These compounds inhibited also, with grossly similar pharmacological potency, the contraction induced by phorbol ester dibutyrate. The present results suggest that LM, CV and POH induced relaxant effect on vascular smooth muscle by means of different mechanisms likely to include inhibition of PKC and IP3 pathway. For CV and POH, hydroxylated compounds, it was in electromechanical coupling that the greater pharmacological potency was observed, thus suggesting a relative specificity for a mechanism likely to be important in electromechanical coupling, for example, blockade of voltage-dependent calcium channel.
Collapse
|
28
|
Abstract
Nasal reflexes are neurally mediated reactions which arise either through direct stimulation of the nasal mucosa or through stimulation of pathways elsewhere in the body which indirectly involve the nose. The neural pathways involved in these reactions are complex, and the exact nature of the stimuli which trigger these reflexes has not been completely detailed. This review presents a discussion on the innervation of the nose, updates the current understanding about nasal neuropeptides, and then summarizes information about several different types of nasal reflexes.
Collapse
Affiliation(s)
- Gordon D. Raphael
- Allergic Disease Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Scott D. Meredith
- Allergic Disease Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - James N. Baraniuk
- Allergic Disease Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michael A. Kaliner
- Allergic Disease Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Bogorad MI, DeStefano J, Wong AD, Searson PC. Tissue-engineered 3D microvessel and capillary network models for the study of vascular phenomena. Microcirculation 2018; 24. [PMID: 28164421 DOI: 10.1111/micc.12360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/29/2017] [Indexed: 12/13/2022]
Abstract
Advances in tissue engineering, cell biology, microfabrication, and microfluidics have led to the development of a wide range of vascular models. Here, we review platforms based on templated microvessel fabrication to generate increasingly complex vascular models of (i) the tumor microenvironment, (ii) occluded microvessels, and (iii) perfused capillary networks. We outline fabrication guidelines and demonstrate a number of experimental methods for probing vascular function such as permeability measurements, tumor cell intravasation, flow characterization, and endothelial cell morphology and proliferation.
Collapse
Affiliation(s)
- Max I Bogorad
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson DeStefano
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew D Wong
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Impact of Trimetazidine Treatment on 5-year Clinical Outcomes in Patients with Significant Coronary Artery Spasm: A Propensity Score Matching Study. Am J Cardiovasc Drugs 2018; 18:117-127. [PMID: 29143297 DOI: 10.1007/s40256-017-0254-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We aimed to evaluate the additive benefit of trimetazidine with well-known antispasmodic agents such as calcium channel blockers and nitrate in patients with significant coronary artery spasm (CAS) as assessed by acetylcholine provocation test up to 5 years. METHODS A total 1727 patients with significant CAS were enrolled. They were divided into two groups: a trimetazidine group (trimetazidine, diltiazem, and nitrate, n = 695), and control group (diltiazem and nitrate, n = 473). After propensity score matching analysis, two matched groups (441 pairs, n = 882, C-statistic = 0.673) were generated. The individual and composite clinical end points [mortality, myocardial infarction (MI), revascularization, cerebrovascular accident (CVA), major adverse cardiac events (MACE), major adverse cardiac or cerebrovascular events (MACCE), and recurrent angina] were assessed up to 5 years for the two groups. RESULTS At 5 years, there were similar incidences of individual and composite hard endpoints including mortality, MI, revascularization, CVA, MACE, MACCE, and recurrent angina in the two groups. CONCLUSIONS Additional long-term (5-year) treatment with trimetazidine in combination with diltiazem and nitrate in patients with significant CAS was not associated with improved clinical outcomes compared with combination therapy with diltiazem and nitrate only (without trimetazidine).
Collapse
|
31
|
Affiliation(s)
- D. Dave Roh
- Division of Nephrology, Department of Medicine, University of California, Irvine Nephrology Section, Department of Veterans Affairs Medical Center, Long Beach, California - USA
| |
Collapse
|
32
|
O'Keeffe MB, FitzGerald RJ. Whey protein hydrolysate induced modulation of endothelial cell gene expression. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Ximenes CF, Rodrigues SML, Podratz PL, Merlo E, de Araújo JFP, Rodrigues LCM, Coitinho JB, Vassallo DV, Graceli JB, Stefanon I. Tributyltin chloride disrupts aortic vascular reactivity and increases reactive oxygen species production in female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24509-24520. [PMID: 28900851 DOI: 10.1007/s11356-017-0061-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Organotin compounds, such as tributyltin (TBT), are environment contaminants that induce bioaccumulation and have potential toxic effects on marine species and mammals. TBT have been banned by the International Maritime Organization in 2003. However, the assessment of butyltin and metal contents in marine sediments has demonstrated high residual levels of TBT in some cases exceeding 7000 ng Sn g-1. The acceptable daily intake (ADI) level for TBT established by the World Health Organization is 0.5 μg/kg bw/day is based on genotoxicity, reproduction, teratogenicity, immunotoxicity, and mainly neurotoxicity. However, their effect on the cardiovascular system is not well understood. In this study, female rats were exposed to 0.5 μg/kg/day of TBT for 15 days with the goal of understanding the effect of TBT on vascular function. Female Wistar rats were treated daily by gavage and divided into control (n = 10) and TBT (n = 10) groups. The aortic rings were incubated with phenylephrine in both the presence and absence of endothelium. The phenylephrine concentration-response curves were generated by exposing endothelium-intact samples to NG-nitro-L-arginine methyl ester (L-NAME), apocynin, superoxide dismutase (SOD), catalase, tiron, and allopurinol. Acetylcholine (ACh) and sodium nitroprusside (SNP) were used to evaluate the relaxation response. Exposure to TBT reduced serum 17β-estradiol E2 levels and increased vascular reactivity. After incubation with L-NAME, the vascular reactivity to phenylephrine was significantly higher. Apocynin, SOD, catalase, and tiron decreased the vascular reactivity to phenylephrine to a significantly greater extent in TBT-treated rats than in the control rat. The relaxation induced by ACh and SNP was significantly reduced in TBT rats. Exposure to TBT induced aortic wall atrophy and increased superoxide anion production and collagen deposition. These results provide evidence that exposing rats to the current ADI for TBT (0.5 μg/kg) for 15 days induced vascular dysfunction due to oxidative stress and morphological damage and should be considered an important cardiovascular risk factor.
Collapse
Affiliation(s)
- Carolina Falcão Ximenes
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Samya Mere Lima Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Priscila Lang Podratz
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Eduardo Merlo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Julia Fernandez Puñal de Araújo
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil
| | - Lívia Carla Melo Rodrigues
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Juliana Barbosa Coitinho
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology/CCS, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 290440-090, Brazil.
| | - Ivanita Stefanon
- Department of Physiological Sciences, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Maruípe, Vitória, Espirito Santo, 29042-755, Brazil.
| |
Collapse
|
34
|
Dobson GP, Arsyad A, Letson HL. The Adenosine Hypothesis Revisited: Modulation of Coupling between Myocardial Perfusion and Arterial Compliance. Front Physiol 2017; 8:824. [PMID: 29104545 PMCID: PMC5654924 DOI: 10.3389/fphys.2017.00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
For over four decades the thoracic aortic ring model has become one of the most widely used methods to study vascular reactivity and electromechanical coupling. A question that is rarely asked, however, is what function does a drug-mediated relaxation (or contraction) in this model serve in the intact system? The physiological significance of adenosine relaxation in rings isolated from large elastic conduit arteries from a wide range of species remains largely unknown. We propose that adenosine relaxation increases aortic compliance in acute stress states and facilitates ventricular-arterial (VA) coupling, and thereby links compliance and coronary artery perfusion to myocardial energy metabolism. In 1963 Berne argued that adenosine acts as a local negative feedback regulator between oxygen supply and demand in the heart during hypoxic/ischemic stress. The adenosine VA coupling hypothesis extends and enhances Berne's "adenosine hypothesis" from a local regulatory scheme in the heart to include conduit arterial function. In multicellular organisms, evolution may have selected adenosine, nitric oxide, and other vascular mediators, to modulate VA coupling for optimal transfer of oxygen (and nutrients) from the lung, heart, large conduit arteries, arterioles and capillaries to respiring mitochondria. Finally, a discussion of the potential clinical significance of adenosine modulation of VA coupling is extended to vascular aging and disease, including hypertension, diabetes, obesity, coronary artery disease and heart failure.
Collapse
Affiliation(s)
- Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Aryadi Arsyad
- Physiology Department, Medical Faculty, Hasanuddin University, Makassar, Indonesia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
35
|
Qaradakhi T, Matsoukas MT, Hayes A, Rybalka E, Caprnda M, Rimarova K, Sepsi M, Büsselberg D, Kruzliak P, Matsoukas J, Apostolopoulos V, Zulli A. Alamandine reverses hyperhomocysteinemia-induced vascular dysfunction via PKA-dependent mechanisms. Cardiovasc Ther 2017; 35. [PMID: 28901725 DOI: 10.1111/1755-5922.12306] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Hyperhomocysteinemia (HHcy) impairs nitric oxide endothelium-dependent vasodilation, consequently leading to atherosclerosis, a risk factor for cardiovascular disease. Novel treatments for HHcy are necessary. AIM We tested the hypothesis that alamandine, a vasoactive peptide of the renin-angiotensin system (RAS), could reverse HHcy-induced vascular dysfunction through the MrgD receptor and that this is mediated by the protein kinase A (PKA) pathway. Furthermore, we sought to determine a putative binding model of alamandine to the MrgD receptor through docking and molecular dynamics simulations. METHOD The abdominal aorta was excised from New Zealand white rabbits (n = 15) and incubated with 3 mmol/L Hcy (to mimic HHcy) to induce vascular dysfunction in vitro. Vascular function was assessed by vasodilatory responses to cumulative doses of acetylcholine. RESULT Vasodilation was significantly impaired in HHcy-incubated aortic rings while alamandine reversed this effect (control, 74.2 ± 5.0%; Hcy, 30.3 ± 9.8%; alamandine + Hcy, 59.7 ± 4.8%, P < .0001). KT5720 (PKA inhibitor) significantly inhibited the ability of alamandine to attenuate the impaired vasodilation caused by HHcy (KT5720 + Hcy + alamandine, 27.1 ± 24.1, P < .01). Following immunohistochemistry analysis, the MrgD receptor was highly expressed within the media and endothelial layer of aortic rings in HHcy compared to control (media: 0.23 ± 0.003 vs control 0.16 ± 0.01, P < .05 and endothelium: 0.68 ± 0.07 vs control 0.13 ± 0.02, P < .01, in PA/I (A.U) units). Computational studies also propose certain interactions of alamandine within the MrgD transmembrane domain. CONCLUSION This study shows that alamandine is effective in reversing HHcy-induced vascular dysfunction, possibly through the PKA signaling pathway via MrgD. Our results indicate a therapeutic potential of alamandine in reversing the detrimental effects of HHcy.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| | | | - Alan Hayes
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Kvetoslava Rimarova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Milan Sepsi
- Department of Internal Medicine and Cardiology, University Hospital, Brno, Czech Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, Doha, Qatar
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | | | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| | - Anthony Zulli
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia
| |
Collapse
|
36
|
Mostaço-Guidolin L, Rosin NL, Hackett TL. Imaging Collagen in Scar Tissue: Developments in Second Harmonic Generation Microscopy for Biomedical Applications. Int J Mol Sci 2017; 18:E1772. [PMID: 28809791 PMCID: PMC5578161 DOI: 10.3390/ijms18081772] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.
Collapse
Affiliation(s)
- Leila Mostaço-Guidolin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Nicole L Rosin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada.
| |
Collapse
|
37
|
Viscoelastic dynamic arterial response. Comput Biol Med 2017; 89:337-354. [PMID: 28858648 DOI: 10.1016/j.compbiomed.2017.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 07/22/2017] [Accepted: 07/29/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Arteries undergo large deformations under applied intraluminal pressure and may exhibit small hysteresis due to creep or relaxation process. The mechanical response of arteries depends, among others, on their topology along the arterial tree. Viscoelasticity of arterial tissues, which is the topic investigated in this study, is mainly a characteristic mechanical response of arteries that are located away from the heart and have increased smooth muscle cells content. METHODS The arterial wall viscosity is simulated by adopting a generalized Maxwell model and the method of internal variables, as proposed by Bonet and Holzapfel et al. The total stresses consist of elastic long-term stresses and viscoelastic stresses, requiring an iterative procedure for their calculation. The cross-section of the artery is modeled as a circular ring, consisting of a single homogenized layer, under a time-varying blood pressure. Two different loading approximations for the aortic pressure vs time are considered. A novel numerical method is developed in order to solve the controlling integro-differential equation. RESULTS A large number of numerical investigations are performed and typical response time-profiles are presented in pictorial form. Results suggest that the viscoelastic arterial response is mainly affected by the ratio of the relaxation time to the characteristic time of the response and by the pressure-time approximation. Numerical examples, based on data available in the literature, are conducted. CONCLUSIONS The investigation presented in this study reveals the effect of each material parameter on the viscoelastic arterial response. Thus, a better understanding of the behavior of viscoelastic arteries is achieved.
Collapse
|
38
|
Dib I, Tits M, Angenot L, Wauters JN, Assaidi A, Mekhfi H, Aziz M, Bnouham M, Legssyer A, Frederich M, Ziyyat A. Antihypertensive and vasorelaxant effects of aqueous extract of Artemisia campestris L. from Eastern Morocco. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:224-235. [PMID: 28578165 DOI: 10.1016/j.jep.2017.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia campestris L. (Asteraceae) has many traditional uses, among which treatment of diabetes and hypertension. AIM OF THE STUDY This study was conducted in order to confirm the antihypertensive and hypotensive effects of A. campestris L. aqueous extract (AcAE) and to explore the underlying mechanism of action of its vasorelaxant effect, besides the acute toxicity. Also, the chemical composition of AcAE was investigated. MATERIAL AND METHODS the chemical content of AcAE was determined by using HPLC and NMR techniques. The antihypertensive effect was assessed indirectly by tail-cuff method on L-NAME induced hypertensive rats, while the hypotensive action was monitored intravenously by invasive method on normotensive rats. The vasorelaxant effect and vascular mechanism of action were studied in the presence of antagonists and blockers on aorta isolated from normotensive rats. On the other side, the acute toxicity was studied by oral feeding of extract to the mice. RESULTS The global phytochemical profile of AcAE reveals the presence of several polyphenols as main components. A. campestris L. infusion was characterized by mono- and di-cinnamoyl compounds, with 3,5-dicaffeoylquinic (isochlorogenic A) acid being the main compound, followed by 5-caffeoylquinic (chlorogenic) acid. Vicenin-2 (apigenin 6,8-di-C-glucoside) appeared to be the most abundant compound among flavonoids. The daily treatment with AcAE at 150mg/kg/day prevented the installation of hypertension on L-NAME hypertensive rats, and reduced SBP from 172mmHg up to 144mmHg. At the dose 40mg/kg, AcAE provoked reduction of systolic (SBP), diastolic (DBP) and mean arterial pressure (MAP), without affecting the heart rate. Also, AcAE (10-2-2mg/ml) relaxed the precontracted aorta by 95.8±1.3%. The denudation and preincubation of aorta with atropine, calmidazolium, L-NAME, hydroxycobalamin, ODQ, 8-RP-Br-PET-cGMP, thapsigargin and verapamil attenuated the vasorelaxant response, while the pre-treatment with 4-AP, TEA, glibenclamide and BaCl2 did not alter this effect. The oral administration of AcAE (0-6g/kg) reveals no mortality or toxicity. CONCLUSIONS our study proved that AcAE possess an important antihypertensive, hypotensive and vasorelaxant effect, which is mediated via calmodulin-NO-cGC-PKG pathway, and via inhibition of calcium influx through voltage-operated calcium channels and activation of intracellular calcium mobilization into sarcoplasmic reticulum. Therefore, our findings give first evidence about the traditional use of A. campestris L. as antihypertensive plant.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Monique Tits
- Laboratoire de Pharmacognosie, Centre Interfacultaire de Recherche sur les Médicaments (CIRM), Université de Liège, Belgium.
| | - Luc Angenot
- Laboratoire de Pharmacognosie, Centre Interfacultaire de Recherche sur les Médicaments (CIRM), Université de Liège, Belgium.
| | - Jean Noel Wauters
- Laboratoire de Pharmacognosie, Centre Interfacultaire de Recherche sur les Médicaments (CIRM), Université de Liège, Belgium.
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Mohammed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Michel Frederich
- Laboratoire de Pharmacognosie, Centre Interfacultaire de Recherche sur les Médicaments (CIRM), Université de Liège, Belgium.
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
39
|
Gao J, Chen G, He H, Liu C, Xiong X, Li J, Wang J. Therapeutic Effects of Breviscapine in Cardiovascular Diseases: A Review. Front Pharmacol 2017; 8:289. [PMID: 28588491 PMCID: PMC5441392 DOI: 10.3389/fphar.2017.00289] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Breviscapine is a crude extract of several flavonoids of Erigeron breviscapus (Vant.) Hand.-Mazz., containing more than 85% of scutellarin, which has been traditionally used in China as an activating blood circulation medicine to improve cerebral blood supply. Accumulating evidence from various in vivo and in vitro studies has shown that breviscapine exerts a broad range of cardiovascular pharmacological effects, including vasodilation, protection against ischaemia/reperfusion (I/R), anti-inflammation, anticoagulation, antithrombosis, endothelial protection, myocardial protection, reduction of smooth muscle cell migration and proliferation, anticardiac remodeling, antiarrhythmia, blood lipid reduction, and improvement of erectile dysfunction. In addition, several clinical studies have reported that breviscapine could be used in conjunction with Western medicine for cardiovascular diseases (CVDs) including coronary heart disease, myocardial infarction, hypertension, atrial fibrillation, hyperlipidaemia, viral myocarditis, chronic heart failure, and pulmonary heart disease. However, the protective effects of breviscapine on CVDs based on experimental studies along with its underlying mechanisms have not been reviewed systematically. This paper reviewed the underlying pharmacological mechanisms in the cardioprotective effects of breviscapine and elucidated its clinical applications.
Collapse
Affiliation(s)
- Jialiang Gao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Guang Chen
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
- Graduate School, Beijing University of Chinese MedicineBeijing, China
| | - Haoqiang He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
- Graduate School, Beijing University of Chinese MedicineBeijing, China
| | - Chao Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
- Graduate School, Beijing University of Chinese MedicineBeijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| | - Jie Wang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
40
|
Wang L, Xiong Q, Xiao F, Duan H. 2D nanomaterials based electrochemical biosensors for cancer diagnosis. Biosens Bioelectron 2017; 89:136-151. [DOI: 10.1016/j.bios.2016.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
|
41
|
Intracoronary acetylcholine application as a possible probe inducing J waves in patients with early repolarization syndrome. J Arrhythm 2017; 33:424-429. [PMID: 29021844 PMCID: PMC5634679 DOI: 10.1016/j.joa.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/18/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022] Open
Abstract
Acetylcholine is widely used for a diagnostic provocation test of coronary spasm in patients with vasospastic angina. Acetylcholine usually induces coronary vasodilatation mediated by muscarinic receptor activation, but sometimes it evokes vasoconstriction of coronary arteries where the endothelium is damaged. Early repolarization syndrome is characterized by a J wave observed at the end of the QRS complex in a surface electrocardiogram. The J wave is attributed to the transmural voltage gradient at the early repolarization phase across the ventricular wall, which stems mainly from prominent transient outward current in the epicardium, but not in the endocardium. Transient high-dose application of acetylcholine into the epicardial coronary arteries provides a unique opportunity to augment net outward current, selectively, in the ventricular epicardium and unmask the J wave, irrespective of the cardiac ischemia based on coronary spasm. Acetylcholine augments cardiac membrane potassium conductance by enhancing acetylcholine-activated potassium current directly and by activating adenosine triphosphate-sensitive potassium current, in addition to the reduced sodium and calcium currents in the setting of severe ischemia due to vasospasm. However, the role of acetylcholine as an arrhythmogenic probe of the J wave induction in patients with suspected early repolarization syndrome warrants future prospective study.
Collapse
|
42
|
Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28143473 DOI: 10.1186/s12906–017–1598–2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Artemisia campestris L. (Asteraceae) is a medicinal herb traditionally used to treat hypertension and many other diseases. Hence, this study is aimed to analyze the essential oil of A. campestris L (AcEO) and to investigate the antiplatelet, antioxidant effects and the mechanisms of its vasorelaxant effect. METHODS The chemical composition of AcEO was elucidated using GC/MS analysis. Then, the antioxidant effect was tested on DPPH radical scavenging and on the prevention of β-carotene bleaching. The antiplatelet effect was performed on the presence of the platelet agonists: thrombin and ADP. The mechanism of action of the vasorelaxant effect was studied by using the cellular blockers specified to explore the involvement of NO/GC pathway and in the presence of calcium channels blockers and potassium channels blockers. RESULTS AcEO is predominated by the volatiles: spathulenol, ß-eudesmol and p-cymene. The maximal antioxidant effect was obtained with the dose 2 mg/ml of AcEO. The dose 1 mg/ml of AcEO showed a maximum antiplatelet effect of, respectively 49.73% ±9.54 and 48.20% ±8.49 on thrombin and ADP. The vasorelaxation seems not to be mediated via NOS/GC pathway neither via the potassium channels. However, pretreatment with calcium channels blockers attenuated this effect, suggesting that the vasorelaxation is mediated via inhibition of L-type Ca2+ channels and the activation of SERCA pumps of reticulum plasma. CONCLUSION This study confirms the antioxidant, antiplatelet and vasorelaxant effects of A.campestris L essential oil. However, the antihypertensive use of this oil should be further confirmed by the chemical fractionation and subsequent bio-guided assays.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratoire Qualité et Sécurité des Produits Alimentaires, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Fatima Belmekki
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Berrabah
- Laboratoire de Chimie du Solide Minéral et Analytique, Département de Chimie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
43
|
Dib I, Fauconnier ML, Sindic M, Belmekki F, Assaidi A, Berrabah M, Mekhfi H, Aziz M, Legssyer A, Bnouham M, Ziyyat A. Chemical composition, vasorelaxant, antioxidant and antiplatelet effects of essential oil of Artemisia campestris L. from Oriental Morocco. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:82. [PMID: 28143473 PMCID: PMC5282690 DOI: 10.1186/s12906-017-1598-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Artemisia campestris L. (Asteraceae) is a medicinal herb traditionally used to treat hypertension and many other diseases. Hence, this study is aimed to analyze the essential oil of A. campestris L (AcEO) and to investigate the antiplatelet, antioxidant effects and the mechanisms of its vasorelaxant effect. METHODS The chemical composition of AcEO was elucidated using GC/MS analysis. Then, the antioxidant effect was tested on DPPH radical scavenging and on the prevention of β-carotene bleaching. The antiplatelet effect was performed on the presence of the platelet agonists: thrombin and ADP. The mechanism of action of the vasorelaxant effect was studied by using the cellular blockers specified to explore the involvement of NO/GC pathway and in the presence of calcium channels blockers and potassium channels blockers. RESULTS AcEO is predominated by the volatiles: spathulenol, ß-eudesmol and p-cymene. The maximal antioxidant effect was obtained with the dose 2 mg/ml of AcEO. The dose 1 mg/ml of AcEO showed a maximum antiplatelet effect of, respectively 49.73% ±9.54 and 48.20% ±8.49 on thrombin and ADP. The vasorelaxation seems not to be mediated via NOS/GC pathway neither via the potassium channels. However, pretreatment with calcium channels blockers attenuated this effect, suggesting that the vasorelaxation is mediated via inhibition of L-type Ca2+ channels and the activation of SERCA pumps of reticulum plasma. CONCLUSION This study confirms the antioxidant, antiplatelet and vasorelaxant effects of A.campestris L essential oil. However, the antihypertensive use of this oil should be further confirmed by the chemical fractionation and subsequent bio-guided assays.
Collapse
Affiliation(s)
- Ikram Dib
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgium
| | - Marianne Sindic
- Laboratoire Qualité et Sécurité des Produits Alimentaires, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Fatima Belmekki
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Asmae Assaidi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Berrabah
- Laboratoire de Chimie du Solide Minéral et Analytique, Département de Chimie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Hassane Mekhfi
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohammed Aziz
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
44
|
Chen Q, Wang Y, Li ZY. Re-examination of the mechanical anisotropy of porcine thoracic aorta by uniaxial tensile tests. Biomed Eng Online 2016; 15:167. [PMID: 28155705 PMCID: PMC5259859 DOI: 10.1186/s12938-016-0279-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective Considering past studies on the orthotropic anisotropy of arteries in the circumferential and axial directions, this work aims to experimentally study the anisotropic behaviour of arteries by tensioning multi-directional strips of porcine thoracic aorta. Methods Histology is first analyzed by staining arterial sections of three orthotropic (axial, circumferential, and radial) planes. 168 stripped samples from 21 aortas are categorized into three loading-rate groups to investigate the influence of loading rates on the Young’s modulus and ultimate stress. Basing on the Young’s modulus and ultimate stress, the degree of anisotropy is calculated. Moreover, 24 stripped samples from 3 aortas are tested to study the relaxation anisotropy of arteries by fitting the experimental data with a five-parameter Maxwell reduced relaxation function. Results Histological analysis shows the parallel orientation of crimpled collagen and elastin fibres. The Young’s modulus and ultimate stress reach the greatest in the circumferential direction, and the smallest in the axial direction, respectively, and the values in the other directions are in-between; moreover, the two parameters monotonously increase as the samples orientate from the axial to circumferential directions. The Young’s modulus is more sensitive to the loading rate than the ultimate stress. The degree of anisotropy calculated by the Young's modulus is similar to that by the ultimate stress, and it is independent of loading rates. Stress-relaxation also exhibits anisotropy, whose variation is consistent with those of the two parameters. Conclusions Due to the stress-growth rule, fibre preferably orientates in the circumferential direction, and the preferable orientation results in great mechanical parameters, anisotropy, and small relaxation behaviour of arteries. The work extends the studies on the arterial anisotropy instead of only the circumferential and axial directions, and could be useful to comprehensively understand the anisotropy of arteries.
Collapse
Affiliation(s)
- Qiang Chen
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Yan Wang
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhi-Yong Li
- Biomechanics Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China. .,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
45
|
Arsyad A, Dobson GP. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of K v, K ATP channels and A 2a receptor crosstalk. BMC Anesthesiol 2016; 16:121. [PMID: 27914476 PMCID: PMC5135802 DOI: 10.1186/s12871-016-0286-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lidocaine is an approved local anesthetic and Class 1B antiarrhythmic with a number of ancillary properties. Our aim was to investigate lidocaine's vasoreactivity properties in intact versus denuded rat thoracic aortic rings, and the effect of inhibitors of nitric oxide (NO), prostenoids, voltage-dependent Kv and KATP channels, membrane Na+/K+ pump, and A2a and A2b receptors. METHODS Aortic rings were harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, pH 7.4, 37 °C. The rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing lidocaine concentrations was examined. Rings were tested for viability after each experiment with maximally dilating 100 μM papaverine. The drugs 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined. RESULTS All drugs tested had no significant effect on basal tension. Lidocaine relaxation in intact rings was biphasic between 1 and 10 μM (Phase 1) and 10 and 1000 μM (Phase 2). Mechanical removal of the endothelium resulted in further relaxation, and at lower concentrations ring sensitivity (% relaxation per μM lidocaine) significantly increased 3.5 times compared to intact rings. The relaxing factor(s) responsible for enhancing ring relaxation did not appear to be NO- or prostacyclin-dependent, as L-NAME and indomethacin had little or no effect on intact ring relaxation. In denuded rings, lidocaine relaxation was completely abolished by Kv channel inhibition and significantly reduced by antagonists of the MitoKATP channel, and to a lesser extent the SarcKATP channel. Curiously, A2a subtype receptor antagonism significantly inhibited lidocaine relaxation above 100 μM, but not the A2b receptor. CONCLUSIONS We show that lidocaine relaxation in rat thoracic aorta was biphasic and significantly enhanced by endothelial removal, which did not appear to be NO or prostacyclin dependent. The unknown factor(s) responsible for enhanced relaxation was significantly reduced by Kv inhibition, 5-HD inhibition, and A2a subtype inhibition indicating a potential role for crosstalk in lidocaine's vasoreactivity.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811 Queensland, Australia
- Physiology Department, Medical Faculty, Hasanuddin University, Jl. Perintis Kemerdekaan, Km. 10, 90213 Tamalanrea, Makassar Indonesia
| | - Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811 Queensland, Australia
| |
Collapse
|
46
|
Cardiovascular Effects of the Essential Oil of Croton argyrophylloides in Normotensive Rats: Role of the Autonomic Nervous System. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4106502. [PMID: 27956919 PMCID: PMC5124457 DOI: 10.1155/2016/4106502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022]
Abstract
Cardiovascular effects of the essential oil of Croton argyrophylloides Muell. Arg. (EOCA) were investigated in normotensive rats. In saline-pretreated anesthetized or conscious rats, intravenous (i.v.) injection of the EOCA induced dose-dependent hypotension. Dose-dependent tachycardia was observed only in conscious rats. In anesthetized rats, cervical bivagotomy failed to enhance EOCA-induced hypotension but unmasked significant bradycardia. In conscious rats, i.v. pretreatment with methylatropine, but not with atenolol or L-NAME, reduced both hypotensive and tachycardiac responses to EOCA. However, hexamethonium pretreatment reverted the EOCA-induced tachycardia into significant bradycardia without affecting the hypotension. In aortic ring preparations precontracted with phenylephrine, EOCA induced a concentration-dependent relaxation that was significantly reduced by vascular endothelium removal and pretreatment with atropine, indomethacin, or glibenclamide but remained unaffected by pretreatment with L-NAME or TEA. It is concluded that i.v. treatment with EOAC decreased blood pressure probably through an active vascular relaxation rather than withdrawal of sympathetic tone. Muscarinic receptor stimulation, liberation of the endothelium-derived prostacyclin, and opening KATP channels are partially involved in the aortic relaxation induced by EOCA and in turn in the mediation of EOCA-induced hypotension. EOCA-induced tachycardia in conscious rats appears to be mediated reflexly through inhibition of vagal drive to the heart.
Collapse
|
47
|
Aleksic M, Heckenkamp J, Gawenda M, Brunkwall J. Occupation-Related Vascular Disorders of the Upper Extremity. Angiology 2016; 57:107-14. [PMID: 16444465 DOI: 10.1177/000331970605700116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypothenar hammer (HH) syndrome and vibration-induced white finger (VWF) syndrome are the main occupation-related vascular diseases of the upper extremity. The clinical presentation is similar to that of Raynaud’s phenomenon. The characteristic history will lead to the appropriate diagnosis being confirmed by angiographic features in HH and by functional tests in VWF. While in HH the underlying cause, which is mostly thought to be an aneurysm of the ulnar artery, might be cured surgically, in VWF only medical treatment offers relief from the symptoms. The knowledge of these entities is necessary to suspect such disorders so that further exposure to risk factors like repetitive hypothenar trauma or work with vibrating hand-held tools can be avoided, which is of great importance for the overall prognosis of these patients.
Collapse
Affiliation(s)
- Marko Aleksic
- Division of Vascular Surgery, Department of Visceral and Vascular Surgery, University of Cologne, Germany.
| | | | | | | |
Collapse
|
48
|
Di T, Sullivan JA, Rupnow HL, Magness RR, Bird IM. Pregnancy Induces Expression of cPLA2 in Ovine Uterine Artery but Not Systemic Artery Endothelium. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Ronald R. Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories and Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M. Bird
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories and Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
49
|
Jain V, Longo M, Ali M, Saade GR, Chwalisz K, Garfield RE. Expression of Receptors for Corticotropin-Releasing Factor in the Vasculature of Pregnant Rats. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760000700303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | | | | | - Kristof Chwalisz
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas; Research Laboratories of Schering AG, Berlin, Germany
| | - Robert E. Garfield
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas; Research Laboratories of Schering AG, Berlin, Germany; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Boulevard, Route J-62, Galveston, TX 77555-1062
| |
Collapse
|
50
|
Abstract
Aortic segments from 47 New Zealand rabbits were used, of which 14 were denuded of endothelium. Balloon angioplasty was performed on the aortic segments in vitro. The inner surfaces were perfused and the perfusates then given to vessel segments with or without endothelium. The contraction evoked was then counteracted by adding either vasoactive intestinal polypeptide (VIP), substance P (SP), acetylcholine (ACh), or nitroglycerin (NTG) in increasing concentrations. Perfusates from aortic segments with or without endothelium and previously treated with angioplasty induced vasoconstriction of similar magnitude in the segments used for vasomotor investigation irrespective of whether the endothelium was intact in these or not. Endothelial dependent dilators (ACh, SP) did not counteract the contraction whereas endothelial independent dilators did (NTG, VIP). Neither the induction nor the reversal of vessel wall induced vasoconstriction after balloon angioplasty seems to depend on the presence of endothelial cells.
Collapse
|