1
|
Lin J(C, Hwang S(W, Luo H, Mohamud Y. Double-Edged Sword: Exploring the Mitochondria-Complement Bidirectional Connection in Cellular Response and Disease. BIOLOGY 2024; 13:431. [PMID: 38927311 PMCID: PMC11200454 DOI: 10.3390/biology13060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Jingfei (Carly) Lin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo (Wendy) Hwang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
2
|
Kubota A, Frangogiannis NG. Macrophages in myocardial infarction. Am J Physiol Cell Physiol 2022; 323:C1304-C1324. [PMID: 36094436 PMCID: PMC9576166 DOI: 10.1152/ajpcell.00230.2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
The heart contains a population of resident macrophages that markedly expands following injury through recruitment of monocytes and through proliferation of macrophages. In myocardial infarction, macrophages have been implicated in both injurious and reparative responses. In coronary atherosclerotic lesions, macrophages have been implicated in disease progression and in the pathogenesis of plaque rupture. Following myocardial infarction, resident macrophages contribute to initiation and regulation of the inflammatory response. Phagocytosis and efferocytosis are major functions of macrophages during the inflammatory phase of infarct healing, and mediate phenotypic changes, leading to acquisition of an anti-inflammatory macrophage phenotype. Infarct macrophages respond to changes in the cytokine content and extracellular matrix composition of their environment and secrete fibrogenic and angiogenic mediators, playing a central role in repair of the infarcted heart. Macrophages may also play a role in scar maturation and may contribute to chronic adverse remodeling of noninfarcted segments. Single cell studies have revealed a remarkable heterogeneity of macrophage populations in infarcted hearts; however, the relations between transcriptomic profiles and functional properties remain poorly defined. This review manuscript discusses the fate, mechanisms of expansion and activation, and role of macrophages in the infarcted heart. Considering their critical role in injury, repair, and remodeling, macrophages are important, but challenging, targets for therapeutic interventions in myocardial infarction.
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, The Wilf Family Cardiovascular Research Institute, Bronx, New York
| |
Collapse
|
3
|
Guo S, Mao X, Li X, Ouyang H, Gao Y, Ming L. Serum Complement C1q Activity Is Associated With Obstructive Coronary Artery Disease. Front Cardiovasc Med 2021; 8:618173. [PMID: 33996933 PMCID: PMC8116493 DOI: 10.3389/fcvm.2021.618173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Complement C1q plays a dual role in the atherosclerosis. Previous studies showed inconsistent results about the association of serum C1q levels and coronary artery disease (CAD). Here, we explored the associations of serum C1q activity with CAD, coronary stenosis severity, cardiovascular biomarkers, and 1-year restenosis after coronary artery revascularization. Methods: We enrolled 956 CAD patients and 677 controls to evaluate the associations of serum complement C1q activity to the presence and severity of obstructive CAD and non-obstructive CAD. Serum C1q activity and the concentrations of laboratory markers were measured in all subjects. All the data were analyzed using SPSS22.0 software. Results: Serum C1q activity in Obstructive CAD and Non-Obstructive CAD groups was significantly higher than the control group (195.52 ± 48.31 kU/L and 195.42 ± 51.25 kU/L vs. 183.44 ± 31.75 kU/L, P < 0.05). Greater C1q activity was significantly correlated with higher total cholesterol (TC) and triglyceride (TG) levels. C1q activity was associated with an increased Odds Ratio (OR) of CAD (OR = 1.322, 95% CI 1.168–1.496, P < 0.05) and 1-year restenosis after revascularization (the highest OR = 3.544, 95% CI 1.089–12.702, P < 0.05). Complement C1q activity was not correlated with Gensini score in the Obstructive CAD group after adjustment for confounders. C1q activity has low value in predicting the incidence of CAD. Conclusion: Serum complement C1q activity is associated with obstructive CAD.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohua Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huan Ouyang
- Department of Clinical Laboratory, ShenQiu People's Hospital, ShenQiu, Henan, China
| | - Yuhua Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Wang DD, Hou XH, Li HQ, Xu W, Ma YH, Dong Q, Yu JT, Tan L. Association of Serum Complement C1q Concentration with Severity of Neurological Impairment and Infarct size in Patients with Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2020; 29:105363. [PMID: 33069087 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation occurs after acute ischemic stroke (AIS), and complement C1q is involved in inflammation. However, studies about the association of complement C1q with AIS are still rare. The aim of our study is to investigate the relationship between serum C1q concentration and the clinical severity of AIS. METHODS A total of 1294 patients were enrolled in our study, including 647 patients with AIS and 647 non-stroke controls. The infarction volume of AIS was assessed by the diameter of maximum transverse section (DMTS) based on diffusion-weighted imaging (DWI) of brain magnetic resonance imaging. Neurological impairment was assessed by the National Institute of Health Stroke Scale (NIHSS). The association of serum C1q levels with DMTS or NIHSS was investigated by Pearson's or Spearman's correlation analysis. RESULTS Serum C1q levels of patients with AIS were significantly higher than those of individuals without AIS. Serum levels of C1q were associated with DMTS (r=0.511, p<0.001) and NIHSS (r=0.433, p<0.001) among patients with AIS. CONCLUSION Serum C1q concentration was positively associated with DMTS and NIHSS of patients with AIS.
Collapse
Affiliation(s)
- Dong-Dong Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China; Department of Neurology, Weifang Traditional Chinese Hospital, Weifang Medical University, China.
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China.
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China.
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China.
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China.
| |
Collapse
|
5
|
Gralinski MR, Driscoll EM, Friedrichs GS, DeNardis MR, Lucchesi BR. Reduction of Myocardial Necrosis after Glycosaminoglycan Administration: Effects of a Single Intravenous Administration of Heparin or N-Acetylheparin 2 Hours before Regional Ischemia and Reperfusion. J Cardiovasc Pharmacol Ther 2020; 1:219-228. [PMID: 10684420 DOI: 10.1177/107424849600100305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BackgroundWe determined if a single administration of heparin or nonanticoagulant N-acetylheparin could reduce myocardial injury resulting from a 90-minute occlusion of the left circumflex coronary artery (LCX) and 6 hours of reperfusion in the anesthetized canine.Methods and ResultsHeparin (2 mg/kg), N-acetylheparin (2 mg/kg), or vehicle, 0.9% sodium chloride (control), was administered intravenously to separate groups of animals 2 hours before LCX occlusion. To ensure parity of LCX ischemia, only animals with ischemic zone regional blood flow < 0.16 mL/min/g tissue were included in the final analysis. Hemodynamics did not differ among the three study groups. Infarct size as a percentage of the left ventricular area at risk was obtained for each group. Myocardial infarct size was 43.0 ± 3.9% in the vehicle, 28.8 ± 5.8% in the heparin ( P < .05 vs vehicle) and 24.7 ± 4.6% ( P < .05 vs vehicle) in the N-acetylheparin-treated animals.ConclusionPretreatment with heparin or its nonanticoagulant derivative, N-acetylheparin, provides significant protection to the regionally ischemic and reperfused canine myocardium independent of either plasma glycosaminoglycan concentration or alterations in the coagulation system.
Collapse
Affiliation(s)
- MR Gralinski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
6
|
Abstract
Complement plays important roles in both ischemia-reperfusion injury (IRI) and antibody-mediated rejection (AMR) of solid organ allografts. One approach to possibly improve outcomes after transplantation is the use of C1 inhibitor (C1-INH), which blocks the first step in both the classical and lectin pathways of complement activation and also inhibits the contact, coagulation, and kinin systems. C1-INH can also directly block leukocyte-endothelial cell adhesion. C1-INH contrasts with eculizumab and other distal inhibitors, which do not affect C4b or C3b deposition or noncomplement pathways. Authors of reports on trials in kidney transplant recipients have suggested that C1-INH treatment may reduce IRI and delayed graft function, based on decreased requirements for dialysis in the first month after transplantation. This effect was particularly marked with grafts with Kidney Disease Profile Index ≥ 85. Other clinical studies and models suggest that C1-INH may decrease sensitization and donor-specific antibody production and might improve outcomes in AMR, including in patients who are refractory to other modalities. However, the studies have been small and often only single-center. This article reviews clinical data and ongoing trials with C1-INH in transplant recipients, compares the results with those of other complement inhibitors, and summarizes potentially productive directions for future research.
Collapse
|
7
|
Spatiotemporal Dynamics of Immune Cells in Early Left Ventricular Remodeling After Acute Myocardial Infarction in Mice. J Cardiovasc Pharmacol 2019; 75:112-122. [PMID: 31764396 DOI: 10.1097/fjc.0000000000000777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myocardial infarction remains a leading cause of morbidity and death. Insufficient delivery of oxygen to the myocardium sets into play a complicated process of repair that involves the temporal recruitment of different immune cells so as to remove debris and necrotic cells expeditiously and to form effective scar tissue. Clearly defined and overlapping phases have been identified in the process, which transitions from an overall proinflammatory to anti-inflammatory phenotype with time. Variations in the strength of the phases as well as in the co-ordination among them have profound consequences. Too strong of an inflammatory phase can result in left ventricular wall thinning and eventual rupture, whereas too strong of an anti-inflammatory phase can lead to cardiac stiffening, arrhythmias, or ventricular aneurisms. In both cases, heart failure is an intermediate consequence with death being the likely outcome. Here, we summarize the role of key immune cells in the repair process of the heart after left ventricular myocardial infarction, along with the associated cytokines and chemokines. A better understanding of the immune response ought to lead hopefully to improved therapies that exploit the natural repair process for mending the infarcted heart.
Collapse
|
8
|
Panagiotou A, Trendelenburg M, Osthoff M. The Lectin Pathway of Complement in Myocardial Ischemia/Reperfusion Injury-Review of Its Significance and the Potential Impact of Therapeutic Interference by C1 Esterase Inhibitor. Front Immunol 2018; 9:1151. [PMID: 29910807 PMCID: PMC5992395 DOI: 10.3389/fimmu.2018.01151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality in modern medicine. Early reperfusion accomplished by primary percutaneous coronary intervention is pivotal for reducing myocardial damage in ST elevation AMI. However, restoration of coronary blood flow may paradoxically trigger cardiomyocyte death secondary to a reperfusion-induced inflammatory process, which may account for a significant proportion of the final infarct size. Unfortunately, recent human trials targeting myocardial ischemia/reperfusion (I/R) injury have yielded disappointing results. In experimental models of myocardial I/R injury, the complement system, and in particular the lectin pathway, have been identified as major contributors. In line with this, C1 esterase inhibitor (C1INH), the natural inhibitor of the lectin pathway, was shown to significantly ameliorate myocardial I/R injury. However, the hypothesis of a considerable augmentation of myocardial I/R injury by activation of the lectin pathway has not yet been confirmed in humans, which questions the efficacy of a therapeutic strategy solely aimed at the inhibition of the lectin pathway after human AMI. Thus, as C1INH is a multiple-action inhibitor targeting several pathways and mediators simultaneously in addition to the lectin pathway, such as the contact and coagulation system and tissue leukocyte infiltration, this may be considered as being advantageous over exclusive inhibition of the lectin pathway. In this review, we summarize current concepts and evidence addressing the role of the lectin pathway as a potent mediator/modulator of myocardial I/R injury in animal models and in patients. In addition, we focus on the evidence and the potential advantages of using the natural inhibitor of the lectin pathway, C1INH, as a future therapeutic approach in AMI given its ability to interfere with several plasmatic cascades. Ameliorating myocardial I/R injury by targeting the complement system and other plasmatic cascades remains a valid option for future therapeutic interventions.
Collapse
Affiliation(s)
- Anneza Panagiotou
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Meri S. Self-nonself discrimination by the complement system. FEBS Lett 2016; 590:2418-34. [PMID: 27393384 DOI: 10.1002/1873-3468.12284] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The alternative pathway (AP) of complement can recognize nonself structures by only two molecules, C3b and factor H. The AP deposits C3b covalently on nonself structures via an amplification system. The actual discrimination is performed by factor H, which has binding sites for polyanions (sialic acids, glycosaminoglycans, phospholipids). This robust recognition of 'self' protects our own intact viable cells and tissues, while activating structures are recognized by default. Foreign targets are opsonized for phagocytosis or killed. Mutations in factor H predispose to severe diseases. In hemolytic uremic syndrome, they promote complement attack against blood cells and vascular endothelial cells and lead, for example, to kidney and brain damage. Even pathogens can exploit factor H. In fact, the ability to bind factor H discriminates most pathogenic microbes from nonpathogenic ones.
Collapse
Affiliation(s)
- Seppo Meri
- Immunobiology, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Finland.,Humanitas University, Milan, Italy
| |
Collapse
|
10
|
van Zuylen VL, den Haan MC, Geutskens SB, Roelofs H, Fibbe WE, Schalij MJ, Atsma DE. Post-myocardial infarct inflammation and the potential role of cell therapy. Cardiovasc Drugs Ther 2015; 29:59-73. [PMID: 25583678 DOI: 10.1007/s10557-014-6568-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myocardial infarction triggers reparative inflammatory processes programmed to repair damaged tissue. However, often additional injury to the myocardium occurs through the course of this inflammatory process, which ultimately can lead to heart failure. The potential beneficial effects of cell therapy in treating cardiac ischemic disease, the number one cause of death worldwide, are being studied extensively, both in clinical trials using adult stem cells as well as in fundamental research on cardiac stem cells and regenerative biology. This review summarizes the current knowledge on molecular and cellular processes implicated in post-infarction inflammation and discusses the potential beneficial role cell therapy might play in this process. Due to its immunomodulatory properties, the mesenchymal stromal cell is a candidate to reverse the disease progression of the infarcted heart towards heart failure, and therefore is emphasized in this review.
Collapse
Affiliation(s)
- Vanessa-leigh van Zuylen
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300, RC, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Altara R, Manca M, Sabra R, Eid AA, Booz GW, Zouein FA. Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Fail Rev 2015; 21:25-47. [PMID: 26498937 DOI: 10.1007/s10741-015-9513-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite dramatic improvements in short-term mortality rates following myocardial infarction (MI), long-term survival for MI patients who progress to heart failure remains poor. MI occurs when the left ventricle (LV) is deprived of oxygen for a sufficient period of time to induce irreversible necrosis of the myocardium. The LV response to MI involves significant tissue, cellular, and molecular level modifications, as well as substantial hemodynamic changes that feedback negatively to amplify the response. Inflammation to remove necrotic myocytes and fibroblast activation to form a scar are key wound healing responses that are highly variable across individuals. Few biomarkers of early remodeling stages are currently clinically adopted. The discovery of underlying pathophysiological mechanisms and associated novel biomarkers has the potential of improving prognostic capability and therapeutic monitoring. Combining these biomarkers with other prominent ones could constitute a powerful diagnostic and prognostic tool that directly reflects the pathophysiological remodeling of the LV. Understanding temporal remodeling at the tissue, cellular, and molecular level and its link to a well-defined set of biomarkers at early stages post-MI is a prerequisite for improving personalized care and devising more successful therapeutic interventions. Here we summarize the integral mechanisms that occur during early cardiac remodeling in the post-MI setting and highlight the most prominent biomarkers for assessing disease progression.
Collapse
Affiliation(s)
- Raffaele Altara
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Marco Manca
- DG-DI, Medical Applications, CERN, Geneva, Switzerland
| | - Ramzi Sabra
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. .,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
12
|
De Hoog VC, Timmers L, Van Duijvenvoorde A, De Jager SCA, Van Middelaar BJ, Smeets MB, Woodruff TM, Doevendans PA, Pasterkamp G, Hack CE, De Kleijn DPV. Leucocyte expression of complement C5a receptors exacerbates infarct size after myocardial reperfusion injury. Cardiovasc Res 2014; 103:521-9. [PMID: 24935433 DOI: 10.1093/cvr/cvu153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Early reperfusion is mandatory for the treatment of acute myocardial infarction. This process, however, also induces additional loss of viable myocardium, called ischaemia-reperfusion (IR) injury. Complement activation plays an important role in IR injury, partly through binding of C5a to its major receptor (C5aR). We investigated the role of C5aR on infarct size and cardiac function in a model for myocardial IR injury. METHODS AND RESULTS BALB/c (WT) mice and C5aR(-/-) mice underwent coronary occlusion for 30 min, followed by reperfusion. Infarct size, determined 24 h after IR, was reduced in C5aR(-/-) mice compared with WT mice (28.5 ± 2.1 vs. 35.7 ± 2.5%, P = 0.017). Bone marrow (BM) chimaera experiments showed that this effect was due to the absence of C5aR on circulating leucocytes, since a similar reduction in infarct size was observed in WT mice with C5aR-deficient BM cells (25.3 ± 2.2 vs. 34.6 ± 2.8%, P < 0.05), but not in C5aR(-/-) mice with WT BM cells. Reduced infarct size was associated with fewer neutrophils, T cells, and macrophages in the infarcted area 24 h after IR in C5aR(-/-) mice, and also with lower levels of Caspase-3/7 indicating less inflammation and apoptosis. Echocardiography 4 weeks after IR showed an improved ejection fraction in C5aR(-/-) mice (25.8 ± 5.5 vs. 19.2 ± 5.4%, P < 0.001). CONCLUSION The absence of C5aR on circulating leucocytes reduces infarct size, is associated with reduced leucocyte infiltration and with less apoptosis in the infarcted myocardium, and improves cardiac function in a mouse model of myocardial IR injury. Selective blocking of C5aR might be a promising strategy to prevent myocardial IR injury.
Collapse
Affiliation(s)
- Vince C De Hoog
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Leo Timmers
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Amerik Van Duijvenvoorde
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Saskia C A De Jager
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Ben J Van Middelaar
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Mirjam B Smeets
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Pieter A Doevendans
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands
| | - C Erik Hack
- Laboratory for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Dominique P V De Kleijn
- Laboratory of Experimental Cardiology, Department of Cardiology UMC Utrecht, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, Utrecht 3584 CX, The Netherlands Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands Surgery NUS and Cardiovascular Research Institute, NUHS, Singapore
| |
Collapse
|
13
|
Saidi RF, Rajeshkumar B, Shariftabrizi A, Dresser K, Walter O. Human C1 inhibitor attenuates liver ischemia-reperfusion injury and promotes liver regeneration. J Surg Res 2013; 187:660-6. [PMID: 24433870 DOI: 10.1016/j.jss.2013.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/20/2023]
Abstract
Liver ischemia-reperfusion injury (IRI) is a well-known cause of morbidity and mortality after liver transplantation (LT). Activation of the complement system contributes to the pathogenesis of IRI. Effective treatment strategies aimed at reducing hepatic IRI and accelerating liver regeneration could offer major benefits in LT. Herein, we investigated the effect of C1-esterase inhibitor (human) [C1-INH] on IRI and liver regeneration. Mice were subjected to 60-min partial IRI, with or without 70% partial hepatectomy, or CCl4-induced acute liver failure. Before liver injury, the animals were pretreated with intravenous C1-INH or normal saline. Liver IRI was evaluated using serum levels of alanine aminotransferase, serum interleukin-6, and histopathology. Liver samples were stained for specific markers of regeneration (5-bromo-2'-deoxyuridine [BrdU] staining and proliferating cell nuclear antigen [PCNA]). Histology, serum interleukin-6, and alanine aminotransferase release revealed that C1-INH treatment attenuated liver injury compared with controls. Improved animal survival and increased number of BrdU- and PCNA-positive cells were observed in C1-INH-treated animals which underwent IRI + partial hepatectomy or CCl4 injection compared with control group. These data indicate that complement plays a key role in IRI and liver regeneration. C1-INH represents a potential therapeutic strategy to reduce IRI and promote regeneration in LT.
Collapse
Affiliation(s)
- Reza F Saidi
- Division of Organ Transplantation, Department of Surgery, Alpert Medical School of Brown University, Providence, Rhode Island.
| | - Barur Rajeshkumar
- Division of Organ Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ahmad Shariftabrizi
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Dresser
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Otto Walter
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
14
|
Akhtar N, Taher A, Rahman R, Chowdhury AK. Serum complements and heart fatty acid binding protein in Bangladeshi patients with acute myocardial infarction. HEART ASIA 2012; 4:125-8. [PMID: 27326047 PMCID: PMC4832623 DOI: 10.1136/heartasia-2012-010164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 11/04/2022]
Abstract
The complement system is activated following acute myocardial infarction (AMI). Heart fatty acid binding protein (H-FABP) is a sensitive early biomarker of myocardial necrosis that can be used to confirm or exclude a diagnosis of AMI and to monitor recurrent infarction. This study was designed to detect changes in C3, C4 and H-FABP after AMI. Forty patients with AMI and a control group of 40 apparently healthy people were included. Selections were based on inclusion and exclusion criteria. The baseline characteristics were not significantly different between the groups. Patients' blood samples were collected within 12 h of admission. Significant increases in C3 (AMI group 1.4260+0.04, healthy group 1.26040+0.04; p<0.05), C4 (AMI group 0.29305±0.013, healthy group 0.20860±0.012; p<0.05) and H-FABP (AMI group 12.3±1.69, healthy group 0.16±0.057; p<0.001) were seen in patients with AMI. The correlation between serum C3 and body mass index (BMI, r=0.33; p<0.05), serum C4 and BMI(r=0.313; p<0.05), serum C3 and total cholesterol high density lipoprotein (HDL, r=0.32; p<0.05), serum C4 and HbA1C (r=0.335; p<0.05) and serum C3 and troponin I (r= 0.325p<0.05) was found to be significant. But the correlation between serum C3 and waist:hip ratio (p=0.56), serum C4 and waist:hip ratio (p=0.83), serum C4 and total cholesterol HDL (p=0.993), serum C3 and HbA1C (p=0.440), serum C3 and random blood sugar (p=0.563), serum C4 and random blood sugar (p=0.828) and serum C4 and troponin I (p=0.373) was not significant. The significant complement activation detected in the plasma of patients with AMI indicated that complement plays a part in the pathogenesis of myocardial infarction. A significant increase of H-FABP improves the diagnosis of AMI.
Collapse
Affiliation(s)
- Nayareen Akhtar
- Department of Immunology, Bangladesh Institute of Research in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| | - Abu Taher
- Department of Immunology, Bangladesh Institute of Research in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| | - Rezwanur Rahman
- Department of Nephrology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Ashesh Kumar Chowdhury
- Department of Immunology, Bangladesh Institute of Research in Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka, Bangladesh
| |
Collapse
|
15
|
Hermans KC, Daskalopoulos EP, Blankesteijn WM. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. FIBROGENESIS & TISSUE REPAIR 2012; 5:16. [PMID: 22967504 PMCID: PMC3472244 DOI: 10.1186/1755-1536-5-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/20/2012] [Indexed: 01/12/2023]
Abstract
Following myocardial infarction, wound healing takes place in the infarct area where the non-viable cardiac tissue is replaced by a scar. Inadequate wound healing or insufficient maintenance of the extracellular matrix in the scar can lead to excessive dilatation of the ventricles, one of the hallmarks of congestive heart failure. Therefore, it is important to better understand the wound-healing process in the heart and to develop new therapeutic agents that target the infarct area in order to maintain an adequate cardiac function. One of these potential novel therapeutic targets is Wnt signaling. Wnt signaling plays an important role in embryonic myocardial development but in the adult heart the pathway is thought to be silent. However, there is increasing evidence that components of the Wnt pathway are re-expressed during cardiac repair, implying a regulatory role. Recently, several studies have been published where the effect of interventions in Wnt signaling on infarct healing has been studied. In this review, we will summarize the results of these studies and discuss the effects of these interventions on the different cell types that are involved in the wound healing process.
Collapse
Affiliation(s)
- Kevin Cm Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, PO Box 616 6200MD, Maastricht, The Netherlands.
| | | | | |
Collapse
|
16
|
Stahl GL, Shernan SK, Smith PK, Levy JH. Complement activation and cardiac surgery: a novel target for improving outcomes. Anesth Analg 2012; 115:759-71. [PMID: 22798530 DOI: 10.1213/ane.0b013e3182652b7d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Complement activation and the resulting inflammatory response is an important potential mechanism for multisystem organ injury in cardiac surgery. Novel therapeutic strategies using complement inhibitors may hold promise for improving outcomes for cardiac surgical patients by attenuating complement activation or its biologically active effector molecules. Recent clinical trials evaluating complement inhibitors have provided important data to further delineate the impact of complement activation and its inhibition on clinical outcomes. In this review we examine the role of complement activation and its inhibition as a therapeutic approach in cardiac surgery.
Collapse
Affiliation(s)
- Gregory L Stahl
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | |
Collapse
|
17
|
van der Pals J, Koul S, Andersson P, Götberg M, Ubachs JFA, Kanski M, Arheden H, Olivecrona GK, Larsson B, Erlinge D. Treatment with the C5a receptor antagonist ADC-1004 reduces myocardial infarction in a porcine ischemia-reperfusion model. BMC Cardiovasc Disord 2010; 10:45. [PMID: 20875134 PMCID: PMC2955599 DOI: 10.1186/1471-2261-10-45] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/27/2010] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. METHODS In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. RESULTS ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. CONCLUSIONS ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.
Collapse
|
18
|
Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci 2010; 87:391-400. [PMID: 20670633 PMCID: PMC2946433 DOI: 10.1016/j.lfs.2010.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/06/2023]
Abstract
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models.
Collapse
Affiliation(s)
- Claude Jourdan-LeSaux
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Jianhua Zhang
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| |
Collapse
|
19
|
Jenkins CP, Cardona DM, Bowers JN, Oliai BR, Allan RW, Normann SJ. The Utility of C4d, C9, and Troponin T Immunohistochemistry in Acute Myocardial Infarction. Arch Pathol Lab Med 2010; 134:256-63. [DOI: 10.5858/134.2.256] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Context.—Full activation and involvement of the complement pathway follows acute myocardial infarction. Complement fragment C4d is a stable, covalently bound marker of complement activation. Troponin T is specific for cardiomyocytes.
Objectives.—To determine the specificity of C4d, C9, and troponin T immunoreactivity in necrotic myocytes and to establish whether they can be used to delineate acute myocardial infarction.
Design.—Twenty-six autopsy cases with a total of 54 myocardium areas of infarction were reviewed retrospectively. Immunohistochemistry for C4d, C9, and troponin T was used on paraffin sections of formalin-fixed tissue. Controls consisted of 5 cases without evidence of infarction, and histologically normal myocardium functioned as an internal control.
Results.—C4d and C9 antibodies reacted strongly and diffusely with necrotic myocytes in all samples of infarctions for up to 2 days (19 of 19; 100%). Adjacent histologically normal myocytes were nonreactive, resulting in a clear delineation between damaged and viable myocardium. Reactivity declined with increased duration and was absent in scars. Troponin T showed loss of staining in preinflammatory lesions (8 of 13; 62%); however, nonspecific patchy loss of staining was present in negative controls and in viable myocardium. Immunostains provided new diagnoses in 2 cases, including evidence of reinfarction and a newly diagnosed acute myocardial infarction.
Conclusions.—C4d and C9 have comparable reactivity and specificity for necrotic myocytes. C4d and C9 staining of necrotic myocytes is apparent before the influx of inflammatory cells, demonstrating utility in early myocardial infarction. Patchy loss of Troponin T in some cases of histologically normal myocardium limited its usefulness as a sole marker of infarction.
Collapse
Affiliation(s)
- Crystal P. Jenkins
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| | - Diana M. Cardona
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| | - Jennifer N. Bowers
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| | - Bahram R. Oliai
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| | - Robert W. Allan
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| | - Sigurd J. Normann
- From the Department of Pathology and Laboratory Medicine, University of Florida, Gainesville (Drs Jenkins, Cardona, Bowers, Allan, and Normann); and the ProPath Laboratory, Dallas, Texas (Dr Oliai)
| |
Collapse
|
20
|
Mazo M, Pelacho B, Prósper F. Stem cell therapy for chronic myocardial infarction. J Cardiovasc Transl Res 2010; 3:79-88. [PMID: 20560022 DOI: 10.1007/s12265-009-9159-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
Although recent advances for the treatment of myocardial infarction have dramatically increased the rate of survival after the ischemic event, this has also led to a rise in the number of chronic patients, making the finding of a suitable therapy a compulsory subject for modern medicine. Over the last decade, stem cells have been a promise for the cure of several diseases not only due to their plasticity but also to their capacity to act in a paracrine manner and influence the affected tissue, prompting the launching of several clinical trials. In spite of the knowledge already acquired, stem cell application to chronically infarcted hearts has been much less approached than its acute counterpart. Through this review, we will focus in stem cell therapy in animal models of chronic myocardial infarction: cell types employed, functional results, mechanisms analyzed, and questions raised.
Collapse
Affiliation(s)
- Manuel Mazo
- Hematology and Cell Therapy, Clinica Universidad de Navarra, and Division of Cancer, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | |
Collapse
|
21
|
Busche MN, Pavlov V, Takahashi K, Stahl GL. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am J Physiol Heart Circ Physiol 2009; 297:H1853-9. [PMID: 19749170 DOI: 10.1152/ajpheart.00049.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complement activation has been shown to play an important role in the inflammation and tissue injury following myocardial ischemia and reperfusion (MI/R). Several recent studies from our laboratory demonstrated the importance of mannose-binding lectin (MBL) as the initiation pathway for complement activation and the resulting pathological effects following MI/R. However, other studies from the past suggest an important role of the classical pathway and perhaps natural antibodies. In the present study, we used newly generated genetically modified mice that lack secreted IgM (sIgM), MBL-A, and MBL-C (sIgM/MBL null) in a plasma reconstitution mouse model of MI/R. Following 30 min of ischemia and 4 h of reperfusion, left ventricular ejection fractions were significantly higher in sIgM/MBL null mice reconstituted with MBL null or sIgM/MBL null plasma compared with reconstitution with wild-type (WT) plasma or WT mice reconstituted with WT plasma following MI/R. Serum troponin I concentration, myocardial polymorphonuclear leukocyte infiltration, and C3 deposition were dependent on the combined presence of sIgM and MBL. These results demonstrate that MI/R-induced complement activation, inflammation, and subsequent tissue injury require both IgM and MBL. Thus MBL-dependent activation of the lectin pathway may not be completely antibody independent in I/R models.
Collapse
Affiliation(s)
- Marc N Busche
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
22
|
Solheim S, Grøgaard HK, Hoffmann P, Arnesen H, Seljeflot I. Inflammatory responses after percutaneous coronary intervention in patients with acute myocardial infarction or stable angina pectoris. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 68:555-62. [DOI: 10.1080/00365510701884584] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Improved Survival of Murine Island Skin Flaps by Prevention of Reperfusion Injury. Plast Reconstr Surg 2009; 123:1431-1439. [DOI: 10.1097/prs.0b013e3181a071e8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Macrophage roles following myocardial infarction. Int J Cardiol 2008; 130:147-58. [PMID: 18656272 DOI: 10.1016/j.ijcard.2008.04.059] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/13/2008] [Accepted: 04/04/2008] [Indexed: 12/11/2022]
Abstract
Following myocardial infarction (MI), circulating blood monocytes respond to chemotactic factors, migrate into the infarcted myocardium, and differentiate into macrophages. At the injury site, macrophages remove necrotic cardiac myocytes and apoptotic neutrophils; secrete cytokines, chemokines, and growth factors; and modulate phases of the angiogenic response. As such, the macrophage is a primary responder cell type that is involved in the regulation of post-MI wound healing at multiple levels. This review summarizes what is currently known about macrophage functions post-MI and borrows literature from other injury and inflammatory models to speculate on additional roles. Basic science and clinical avenues that remain to be explored are also discussed.
Collapse
|
25
|
Abstract
Myocardial infarction is the most common cause of cardiac injury and results in acute loss of a large number of myocardial cells. Because the heart has negligible regenerative capacity, cardiomyocyte death triggers a reparative response that ultimately results in formation of a scar and is associated with dilative remodeling of the ventricle. Cardiac injury activates innate immune mechanisms initiating an inflammatory reaction. Toll-like receptor-mediated pathways, the complement cascade and reactive oxygen generation induce nuclear factor (NF)-kappaB activation and upregulate chemokine and cytokine synthesis in the infarcted heart. Chemokines stimulate the chemotactic recruitment of inflammatory leukocytes into the infarct, while cytokines promote adhesive interactions between leukocytes and endothelial cells, resulting in transmigration of inflammatory cells into the site of injury. Monocyte subsets play distinct roles in phagocytosis of dead cardiomyocytes and in granulation tissue formation through the release of growth factors. Clearance of dead cells and matrix debris may be essential for resolution of inflammation and transition into the reparative phase. Transforming growth factor (TGF)-beta plays a crucial role in cardiac repair by suppressing inflammation while promoting myofibroblast phenotypic modulation and extracellular matrix deposition. Myofibroblast proliferation and angiogenesis result in formation of highly vascularized granulation tissue. As the healing infarct matures, fibroblasts become apoptotic and a collagen-based matrix is formed, while many infarct neovessels acquire a muscular coat and uncoated vessels regress. Timely resolution of the inflammatory infiltrate and spatial containment of the inflammatory and reparative response into the infarcted area are essential for optimal infarct healing. Targeting inflammatory pathways following infarction may reduce cardiomyocyte injury and attenuate adverse remodeling. In addition, understanding the role of the immune system in cardiac repair is necessary in order to design optimal strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Section of Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza BCM620, Houston, TX 77030, United States.
| |
Collapse
|
26
|
Fattouch K, Bianco G, Speziale G, Sampognaro R, Lavalle C, Guccione F, Dioguardi P, Ruvolo G. Beneficial effects of C1 esterase inhibitor in ST-elevation myocardial infarction in patients who underwent surgical reperfusion: a randomised double-blind study. Eur J Cardiothorac Surg 2007; 32:326-32. [PMID: 17576071 DOI: 10.1016/j.ejcts.2007.04.038] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/10/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The inflammatory cascade has been hypothesized to be an important mechanism of post-ischaemic myocardial reperfusion injury and several studies demonstrated that C1 esterase inhibitor (C1-INH) is effective in post-ischaemia myocardial protection. Therefore, we aimed to investigate prospectively in a randomised double-blind study the cardioprotective effects of C1-INH in ST segment elevation myocardial infarction (STEMI) in patients who underwent emergent reperfusion with coronary artery bypass grafting (CABG). METHODS In this study, we enrolled 80 patients affected with STEMI who underwent emergent CABG. Patients were assigned in two groups (C1-INH group: receive 1000 UI of C1-INH; and placebo group: receive a saline solution). The effects of C1-INH on complement inhibition, myocardial cell injury extension and clinical outcome were studied. Haemodynamic data and myocardial function were monitored. C1-INH, C3a, C4a complement activation fragments and cardiac troponin I (cTnI) serum levels were measured before, during and after surgery. RESULTS Patient characteristics were not different between the two groups. The overall in-hospital mortality rate was 6.2%. No statistical significant difference was observed between the two groups with regard to early mortality (p=0.36). Statistical significant difference between the two groups was showed for cardiopulmonary bypass support (p=0.04), administration of high dose of inotropes drugs (p=0.001), time of intubation (p=0.03), intensive care unit (ICU) stay (p=0.04) and in-hospital stay (p=0.03). A significant improvement in mean arterial pressure (p=0.03), cardiac index (p=0.02) and stroke volume (p=0.03) was showed in C1-INH group versus placebo group. The serum cTnI levels were significantly low in the C1-INH group versus placebo group after reperfusion, during the observation period. Plasma levels of C3a and C4a complement fragments were reduced significantly in C1-INH group. No drugs-related adverse effects were observed. CONCLUSIONS The inhibition of the classic complement pathway by C1-INH appears to be an effective mean of preserving ischaemic myocardium from reperfusion injury as demonstrated by low serum cTnI levels in C1-INH group. Therefore, the use of C1-INH during CABG as a rescue therapy in STEMI patients is probably an effective treatment to inhibit complement activity and to improve cardiac function and haemodynamic performance without impacting early mortality. Large randomised study should be performed to support our results.
Collapse
Affiliation(s)
- Khalil Fattouch
- Unit of Cardiac Surgery, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
KUKIELKA GILBERTL, YOUKER KEITHA, HAWKINS HALK, PERRARD JERRYL, MICHAEL LLOYDH, BALLANTYNE CHRISTIEM, SMITH CWAYNE, ENTMAN MARKL. Regulation of ICAM-1 and IL-6 in Myocardial Ischemia: Effect of Reperfusion a. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1994.tb36732.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Abstract
Myocardial infarction triggers an inflammatory cascade that results in healing and replacement of the damaged tissue with scar. Cardiomyocyte necrosis triggers innate immune mechanisms eliciting Toll-like receptor- mediated responses, activating the complement cascade and generating reactive oxygen species. Subsequent activation of NF-kappaB is a critical element in the regulation of cytokine, chemokine, and adhesion molecule expression in the ischemic myocardium. Chemokine induction mediates leukocyte recruitment in the myocardium. Pleiotropic proinflammatory cytokines, such as TNF-alpha, IL-1, and IL-6, are also upregulated in the infarct and exert a wide range of effects on a variety of cell types. Timely repression of proinflammatory gene synthesis is crucial for optimal healing; IL-10 and TGF-beta-mediated pathways may be important for suppression of chemokine and cytokine expression and for resolution of the leukocytic infiltrate. In addition, TGF-beta may be critically involved in inducing myofibroblast differentiation and activation, promoting extracellular matrix protein deposition in the infarcted area. The composition of the extracellular matrix plays an important role in regulating cell behavior. Both structural and matricellular proteins modulate cell signaling through interactions with specific surface receptors. The molecular and cellular changes associated with infarct healing directly influence ventricular remodeling and affect prognosis in patients with myocardial infarction.
Collapse
|
29
|
Fu J, Lin G, Zeng B, Wu Z, Wu Y, Chu H, Qin G, Liang G, Li J, Gan X, Yu X, Li C, Liu D. Anti-ischemia/reperfusion of C1 inhibitor in myocardial cell injury via regulation of local myocardial C3 activity. Biochem Biophys Res Commun 2006; 350:162-8. [PMID: 16996480 DOI: 10.1016/j.bbrc.2006.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
C3 is common to all pathways of complement activation augmenting ischemia/reperfusion (I/R)-induced myocardial injury and cardiac dysfunction. Complement inhibition with the complement regulatory protein, C1 inhibitor (C1INH), obviously exerts cardioprotective effects. Here, we examine whether C1INH regulates C3 activity in the ischemic myocardial tissue. C1INH markedly suppressed C3 mRNA expression and protein synthesis in both a model of I/R-induced rat acute myocardial infarction (AMI) and the cultured rat H9c2 heart myocytes. At least, this regulation was at the transcriptional level in response to oxygen tension. In vitro, C3 deposition on, and binding to, the surface of rat myocardial cells were significantly blocked by C1INH treatment. C1INH could inhibit classical complement-mediated cell lysis via suppressing the biological activity of C3. Therefore, C1INH, in addition to inhibition of the systemic complement activation, prevents myocardial cell injury via a direct inhibitory role in the local myocardial C3 activity.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Cardiology, Renmin Hospital, Wuhan University School of Medicine, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mack WJ, Sughrue ME, Ducruet AF, Mocco J, Sosunov SA, Hassid BG, Silverberg JZ, Ten VS, Pinsky DJ, Connolly ES. Temporal pattern of C1q deposition after transient focal cerebral ischemia. J Neurosci Res 2006; 83:883-9. [PMID: 16447284 DOI: 10.1002/jnr.20775] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies have focused on elucidating the contribution of individual complement proteins to post-ischemic cellular injury. As the timing of complement activation and deposition after cerebral ischemia is not well understood, our study investigates the temporal pattern of C1q accumulation after experimental murine stroke. Brains were harvested from mice subjected to transient focal cerebral ischemia at 3, 6, 12, and 24 hr post reperfusion. Western blotting and light microscopy were employed to determine the temporal course of C1q protein accumulation and correlate this sequence with infarct evolution observed with TTC staining. Confocal microscopy was utilized to further characterize the cellular localization and characteristics of C1q deposition. Western Blot analysis showed that C1q protein begins to accumulate in the ischemic hemisphere between 3 and 6 hr post-ischemia. Light microscopy confirmed these findings, showing concurrent C1q protein staining of neurons. Confocal microscopy demonstrated co-localization of C1q protein with neuronal cell bodies as well as necrotic cellular debris. These experiments demonstrate the accumulation of C1q protein on neurons during the period of greatest infarct evolution. This data provides information regarding the optimal time window during which a potentially neuroprotective anti-C1q strategy is most likely to achieve therapeutic success.
Collapse
Affiliation(s)
- William J Mack
- Department of Neurological Surgery, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heijnen BHM, Straatsburg IH, Padilla ND, Van Mierlo GJ, Hack CE, Van Gulik TM. Inhibition of classical complement activation attenuates liver ischaemia and reperfusion injury in a rat model. Clin Exp Immunol 2006; 143:15-23. [PMID: 16367929 PMCID: PMC1809558 DOI: 10.1111/j.1365-2249.2005.02958.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Activation of the complement system contributes to the pathogenesis of ischaemia/reperfusion (I/R) injury. We evaluated inhibition of the classical pathway of complement using C1-inhibitor (C1-inh) in a model of 70% partial liver I/R injury in male Wistar rats (n = 35). C1-inh was administered at 100, 200 or 400 IU/kg bodyweight, 5 min before 60 min ischaemia (pre-I) or 5 min before 24 h reperfusion (end-I). One hundred IU/kg bodyweight significantly reduced the increase of plasma levels of activated C4 as compared to albumin-treated control rats and attenuated the increase of alanine aminotransferase (ALT). These effects were not better with higher doses of C1-inh. Administration of C1-inh pre-I resulted in lower ALT levels and higher bile secretion after 24 h of reperfusion than administration at end-I. Immunohistochemical assessment indicated that activated C3, the membrane attack complex C5b9 and C-reactive protein (CRP) colocalized in hepatocytes within midzonal areas, suggesting CRP is a mediator of I/R-induced, classical complement activation in rats. Pre-ischaemic administration of C1-inh is an effective pharmacological intervention to protect against liver I/R injury.
Collapse
Affiliation(s)
- B H M Heijnen
- Department of Surgery, Surgical Laboratory, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Walsh MC, Bourcier T, Takahashi K, Shi L, Busche MN, Rother RP, Solomon SD, Ezekowitz RAB, Stahl GL. Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2005; 175:541-6. [PMID: 15972690 DOI: 10.4049/jimmunol.175.1.541] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mannose-binding lectin (MBL), a circulating pattern recognition molecule, recognizes a wide range of infectious agents with resultant initiation of the complement cascade in an Ab-independent manner. MBL recognizes infectious non-self and altered self in the guise of apoptotic and necrotic cells. In this study, we demonstrate that mice lacking MBL, and hence are devoid of MBL-dependent lectin pathway activation but have fully active alternative and classical complement pathways, are protected from cardiac reperfusion injury with resultant preservation of cardiac function. Significantly, mice that lack a major component of the classical complement pathway initiation complex (C1q) but have an intact MBL complement pathway, are not protected from injury. These results suggest that the MBL-dependent pathway of complement activation is a key regulator of myocardial reperfusion ischemic injury. MBL is an example of a pattern recognition molecule that plays a dual role in modifying inflammatory responses to sterile and infectious injury.
Collapse
Affiliation(s)
- Mary C Walsh
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol 2005; 116:11-7. [PMID: 15925827 DOI: 10.1016/j.clim.2005.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 11/15/2022]
Abstract
Recent studies support the presence of an inflammatory response during the treatment of diabetic ketoacidosis (DKA). The objectives of this study were to monitor the complement activation products C3a, C4a, Bb, and C5b-9 prior to, during, and after correction of DKA. All patients had increased levels of C3a at 6-8 h and 24 h (P<0.05). C4a was increased in only one patient. Bb showed an upward trend at 6-8 h, and was significantly elevated at 24 h (P<0.05); sC5b-9 was elevated in all patients prior to treatment or in the first 6-8 h of treatment. Results indicate that the alternative pathway may be the primary pathway of activation. These results extend the observation that both DKA and its treatment produce varying degrees of immunologic stress during the time when acute complications are most likely to occur.
Collapse
Affiliation(s)
- Rita S Jerath
- Section of Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
34
|
Hong TT, White AJ, Lucchesi BR. Dermatan disulfate (Intimatan) prevents complement-mediated myocardial injury in the human-plasma-perfused rabbit heart. Int Immunopharmacol 2005; 5:381-91. [PMID: 15652767 DOI: 10.1016/j.intimp.2004.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/29/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Intimatan (dermatan 4,6-O-disulfate), a heparin cofactor II agonist, is a highly sulfated negatively charged semisynthetic polysaccharide. The present study examined the hypothesis that Intimatan reduces complement-mediated myocardial injury. The rabbit isolated heart was perfused with 4% normal human plasma (NHP) as a source of complement in the absence or presence of Intimatan (5 microM). Heat-inactivated human plasma (HIHP) was used as a negative control. Previous studies demonstrated that contact of rabbit tissue with human plasma results in activation of the alternative pathway of the human complement system, leading to irreversible myocardial injury. In the presence of NHP, left ventricular end-diastolic pressure (LVEDP) was increased significantly to 61.8+/-11.7 mm Hg compared to a value of 17.2+/-6.1 mm Hg in hearts perfused in the presence of HIHP. Left ventricular developed pressure (LVDP) was reduced significantly upon exposure to NHP, 19.3+/-10.2 (NHP) vs. 54.0+/-8.0 mm Hg (HIHP). Functional impairment in the presence of NHP was accompanied by a significant release of cardiac troponin I (cTnI; 131.8+/-20.3 ng/ml) as compared to hearts exposed to HIHP (0.8+/-0.8). Intimatan treatment improved cardiac function and maintained viability of cardiac myocytes (LVEDP 14.6+/-5.6, LVDP 58.0+/-8.1 mm Hg and cTnI 6.7+/-5.2 ng/ml). Immunohistochemical staining demonstrated that Intimatan pretreatment prevented deposition of the human membrane attack complex (MAC) in hearts exposed to NHP. The results indicate that Intimatan, a glycosaminoglycan (GAG), can reduce tissue injury and preserve organ function that otherwise would be compromised during activation of the human complement cascade.
Collapse
Affiliation(s)
- Ting-Ting Hong
- Department of Pharmacology, University of Michigan Medical School, 1301C Medical Science Research Building III, Ann Arbor, MI 48109-0632 USA
| | | | | |
Collapse
|
35
|
Austen WG, Zhang M, Chan R, Friend D, Hechtman HB, Carroll MC, Moore FD. Murine hindlimb reperfusion injury can be initiated by a self-reactive monoclonal IgM. Surgery 2004; 136:401-6. [PMID: 15300207 DOI: 10.1016/j.surg.2004.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Murine hindlimb reperfusion injury (I/R), is initiated by activation of the classical pathway of complement. Complement receptor-2 knockout mice (Cr2-/-) are protected from I/R injury due to defective B-1 cells with a resulting deficient natural immunoglobulin M (IgM) repertoire. Cr2-/- and wild type (WT) mice were studied to isolate the antibody or antibodies responsible for initiation of I/R. METHODS IgM-secreting B-1 cell clones were produced with hybridoma technology from WT cells. Of 21 clones tested in murine I/R models, only 1 clone, CM22, was found to restore injury in protected mice. Cr2-/- mice reconstituted with IgM from individual clones, WT serum, or saline were subjected to 2 hours hindlimb ischemia and 3 hours reperfusion and compared with WT. RESULTS Muscle injury in Cr2-/- mice reconstituted with CM22 was similar to injury in WT mice reconstituted with saline and Cr2-/- mice reconstituted with WT serum. This injury was 137% greater (P < .05) than in both Cr2-/- mice reconstituted with saline and those reconstituted with a different IgM clone, CM31. IgM and C3 deposition was found only on injured muscle of WT mice or Cr2-/- mice reconstituted with CM22 or WT serum. CONCLUSION A single clone of self-reactive IgM, CM22, can initiate complement-dependent I/R injury.
Collapse
Affiliation(s)
- William G Austen
- Department of Surgery, Harvard Medical School, the Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Toomayan GA, Chen LE, Jiang HX, Qi WN, Seaber AV, Frank MM, Urbaniak JR. C1-esterase inhibitor and a novel peptide inhibitor improve contractile function in reperfused skeletal muscle. Microsurgery 2004; 23:561-7. [PMID: 14705072 DOI: 10.1002/micr.10210] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To determine the role of inhibition of complement activation in the contractile function of skeletal muscle ischemia-reperfusion (I/R) injury, the rat extensor digitorum longus (EDL) muscles underwent 3 h ischemia and received human C1-esterase inhibitor (C1-INH, 100 IU/kg), a synthetic C1q A chain peptide with a similar inhibitory effect on activated C1 (peptide, 5 mg/kg), or human serum albumin control. Results showed a significant overall increase in tetanic contractile forces of the reperfused EDL in both C1-INH and peptide groups compared to controls. Maximum improvement occurred with peptide treatment at 120-Hz stimulation, with an increase in force from 38 +/- 4% of normal in controls to 52 +/- 4% in peptide-treated rats. There were no significant differences between C1-INH and peptide groups. Plasma C3 and C4 activities were significantly increased in both treated groups, suggesting inhibition of complement activation. Our results suggest that complement activation is involved in I/R injury, and inhibition of complement activation may therefore represent a potential therapeutic approach to reducing or preventing I/R injury.
Collapse
Affiliation(s)
- Glen A Toomayan
- Orthopaedic Microsurgery Laboratories, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Myocardial I-R injury contributes to adverse cardiovascular outcomes after cardiac surgery. The pathogenesis of I-R injury is complex and involves the activation, coordination, and amplification of several systemic and local proinflammatory pathways (Fig. 4). Treatment and prevention of perioperative morbidity associated with myocardial I-R will ultimately require a multifocal approach. Combining preoperative risk stratification (co-morbidity and surgical complexity), minimizing initiating factors predisposing to SIRS, limiting ischemia duration, and administering appropriate immunotherapy directed toward systemic and local proinflammatory mediators of I-R injury, should all be considered. In addition, the role of the genetic-environmental interactions in the pathogenesis of cardiovascular disease is also being examined. Thus, in the near future, preoperative screening for polymorphisms of certain inflammatory and coagulation genes should inevitably help reduce morbidity by permitting the identification of high-risk cardiac surgical patients and introducing the opportunity for gene therapy or pharmacogenetic intervention [42,64].
Collapse
Affiliation(s)
- Stanton K Shernan
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Austen WG, Kobzik L, Carroll MC, Hechtman HB, Moore FD. The role of complement and natural antibody in intestinal ischemia-reperfusion injury. Int J Immunopathol Pharmacol 2003; 16:1-8. [PMID: 12578725 DOI: 10.1177/039463200301600101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Activation of the complement cascade is central to many types of injury. Ischemia-reperfusion is an important example of such an event. Using intestinal ischemia-reperfusion as a model, we have further elucidated the importance and mechanism of this activation. Of novel importance is the evidence that natural antibody is a trigger for these events via recognition of self-antigen. In this article, we review the role of natural antibody and complement in intestinal ischemia-reperfusion injury. It is hoped that this study will ultimately lead to better understanding of these important modulators and their role in this type of injury.
Collapse
Affiliation(s)
- W G Austen
- Department of Surgery and Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
39
|
Monsinjon T, Richard V, Fontaine M. Complement and its implications in cardiac ischemia/reperfusion: strategies to inhibit complement. Fundam Clin Pharmacol 2001; 15:293-306. [PMID: 11903498 DOI: 10.1046/j.1472-8206.2001.00040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although reperfusion of the ischemic myocardium is an absolute necessity to salvage tissue from eventual death, it is also associated with pathologic changes that represent either an acceleration of processes initiated during ischemia or new pathophysiological changes that were initiated after reperfusion. This so-called "reperfusion injury" is accompanied by a marked inflammatory reaction, which contributes to tissue injury. In addition to the well known role of oxygen free radicals and white blood cells, activation of the complement system probably represents one of the major contributors of the inflammatory reaction upon reperfusion. The complement may be activated through three different pathways: the classical, the alternative, and the lectin pathway. During reperfusion, complement may be activated by exposure to intracellular components such as mitochondrial membranes or intermediate filaments. Two elements of the activated complement contribute directly or indirectly to damages: anaphylatoxins (C3a and C5a) and the membrane attack complex (MAC). C5a, the most potent chemotactic anaphylatoxin, may attract neutrophils to the site of inflammation, leading to superoxide production, while MAC is deposited over endothelial cells and smooth vessel cells, leading to cell injury. Experimental evidence suggests that tissue salvage may be achieved by inhibition of the complement pathway. As the complement is composed of a cascade of proteins, it provides numerous sites for pharmacological interventions during acute myocardial infarction. Although various strategies aimed at modulating the complement system have been tested, the ideal approach probably consists of maintaining the activity of C3 (a central protein of the complement cascade) and inhibiting the later events implicated in ischemia/reperfusion and also in targeting inhibition in a tissue-specific manner.
Collapse
|
40
|
The Role of the Complement Cascade in Ischemia/Reperfusion Injury: Implications for Neuroprotection. Mol Med 2001. [DOI: 10.1007/bf03402183] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
41
|
Lipton BP, Delcarpio JB, McDonough KH. Effects of endotoxin on neutrophil-mediated ischemia/reperfusion injury in the rat heart in vivo. Exp Biol Med (Maywood) 2001; 226:320-7. [PMID: 11368424 DOI: 10.1177/153537020122600409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have previously shown that a nonlethal dose of lipopolysaccharide (LPS) decreases L-selectin expression of neutrophils (PMNs), thereby preventing PMN-mediated reperfusion injury in the isolated heart. In the present study we determined whether or not that dose of LPS would protect hearts during in vivo ischemia and reperfusion by preventing PMN-induced reperfusion injury. Rats receiving saline vehicle showed marked myocardial injury (necrotic area/area at risk = 82%+/-2%) and significant depression in left ventricular function as assessed in the isolated isovolumic heart preparation at constant flow rates of 5, 10, 15, and 20 ml/min. The administration of LPS (100 microg/kg body wt) 7 hr prior to ischemia resulted in a reduction in myocardial damage (necrotic area/area at risk = 42%+/-3%) and preservation of function. Myocardial function was similar to that of sham ischemic saline- and LPS-treated rats. Moreover, PMN infiltration as determined by histology was quantitatively more severe in hearts of saline-treated rats than in hearts of LPS-treated rats. Isolated hearts from vehicle- and LPS-treated animals undergoing sham ischemia in vivo recovered to the same extent after in vitro ischemia/reperfusion, suggesting that LPS did not induce protection by altering intrinsic properties of the heart. Our results indicate that LPS-induced protection of the heart from in vivo PMN-mediated ischemia/reperfusion injury may be due to decreased L-selectin expression of PMNs in LPS-treated animals.
Collapse
Affiliation(s)
- B P Lipton
- Department of Physiology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
42
|
Hecke F, Hoehn T, Strauss E, Obladen M, Sonntag J. In-vitro activation of complement system by lactic acidosis in newborn and adults. Mediators Inflamm 2001; 10:27-31. [PMID: 11324901 PMCID: PMC1781687 DOI: 10.1080/09629350123788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Complement activation occurs secondary to a variety of external stimuli. Lactic acidosis has been previously shown to activate the complement factors C3a and C5a. In the present investigation we examined the differential effect of lactic acidosis on anaphylatoxin levels in cord and adult blood. Furthermore we aimed to determine if the entire complement cascade could be activated by lactic acidosis. METHODS Cord and adult blood samples (n = 20 each) were collected and incubated for one hour in either untreated condition or with the addition of lactate in two concentrations (5.5 mmol/l vs. 22 mmol/l). Following incubation, levels of C3a, C5a and sC5b-9, and blood gas parameters were determined. RESULTS Anaphylatoxin (C3a and C5a) and sC5b-9 levels increased with the addition of lactate in a dose-dependent manner in cord and adult blood (C3a: 1 h, 5.5 mmo/l, 22 mmol/l: 418/498/622 microg/l in cord blood; 1010/1056/1381 microg/l in adult blood, p<0,05; similar results were found for C5a and sC5b-9). CONCLUSION Lactic acidosis leads to an activation of the entire complement system in neonates and in adults. This activation is dose-dependent and more pronounced in adults as compared to neonates.
Collapse
Affiliation(s)
- F Hecke
- Department of Neonatology, Charité Virchow Hospital, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
43
|
Klima U, Kutschka I, Warnecke G, Kim P, Strüber M, Kirschfink M, Haverich A. Improved right ventricular function after intracoronary administration of a C1 esterase inhibitor in a right heart transplantation model. Eur J Cardiothorac Surg 2000; 18:321-7. [PMID: 10973542 DOI: 10.1016/s1010-7940(00)00531-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Myocardial injury from ischemia can be augmented after reperfusion due to proinflammatory events including complement activation, leukocyte adhesion, and release of various chemical mediators. It has been shown that intracoronary administration of a C1 esterase inhibitor (C1 INH) significantly reduces myocardial necrosis in an experimental model of ischemia. Our study addresses the question whether the most susceptible region of the heart for ischemic injury, the right ventricle (RV), can benefit from the protective effects of C1 esterase inhibition after transplantation. METHODS To precisely control RV volume in vivo an isovolumic model was used in which the RV volume was regulated using an intracavity high compliance balloon inserted into donor hearts of domestic pigs (34+/-4 kg). After 4 h of ischemia, donor hearts were transplanted into recipient pigs (44+/-4 kg). Treatment groups, each with six animals, consisted of C1 INH treatment or control. After opening the cross clamp, the C1 INH group animals received 20 IU/kg body weight of C1 INH intracoronary over a 5 min period. The control animals received no drug therapy. The hearts were reperfused for 60 min, and thereafter the RV balloon volume was increased in 10 ml increments until RV failure occurred. These measurements were repeated after 120 min of reperfusion. RESULTS There was no significant difference in maximal RV developed pressure between the two groups (after 1 h, 35.7+/-5.9 vs. 40.6+/-12.7 mm Hg; after 2 h, 41.5+/-10.7 vs. 46.3+/-15.2 mm Hg; for C1 INH and control animals, respectively). However, the RV could be loaded with a significantly higher volume after both 1 h (60.0+/-20.0 ml (C1 INH) vs. 46.7+/-13.7 ml (control) balloon volume, P<0.05), and 2 h of reperfusion (70.0+/-8.9 ml vs. 60.0+/-6.3 ml; C1 INH and control animals, respectively; P<0.05). CONCLUSIONS Intracoronary administration of a C1 INH significantly improves right ventricular function in an experimental transplant model. Thus, inhibition of the classic complement cascade may be a promising therapeutic approach for effective protection of myocardium from reperfusion injury after transplantation.
Collapse
Affiliation(s)
- U Klima
- Department of Thoracic and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Straatsburg IH, Boermeester MA, Wolbink GJ, van Gulik TM, Gouma DJ, Frederiks WM, Hack CE. Complement activation induced by ischemia-reperfusion in humans: a study in patients undergoing partial hepatectomy. J Hepatol 2000; 32:783-91. [PMID: 10845665 DOI: 10.1016/s0168-8278(00)80247-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIM Activation of the complement system is induced by ischemia-reperfusion (I/R) in animal models. Whether I/R also induces complement activation in humans is not known. Here, we investigated complement activation in patients undergoing major liver resection. METHODS In 11 of 17 patients, the hepatoduodenal ligament was clamped, making the liver transiently ischemic (HEMI+; mean ischemia time, 42 +/- 18 min); 6 patients were operated without clamping (HEMI-). Activation at plasma level (circulating activation products) was studied in blood samples collected prior to surgery and 5, 24 and 48 h thereafter. Parameters analyzed were C4b/c and C3b/c, C4d and C3d, C3a, as well as complexes between complement and C-reactive protein (CRP), which reflect CRP-induced complement activation. Activation at tissue level (C3 and C4 fixation) was studied in liver biopsies obtained before and after resection. RESULTS In plasma, post-operative levels of C4b/c and C3b/c were not different from baseline levels in both groups. Mean plasma levels of C4b/c and C3b/c were significantly decreased at 24 h post-surgery in the HEMI+ group (p=0.02 and p=0.07). At the same time, levels of C4d-CRP and C3d-CRP were significantly increased (p<0.01 for both parameters). At tissue level, activated complement fragments were observed intracellularly in some pericentral hepatocytes. In I/R livers, large numbers of hepatocytes were positively stained for all complement activation products. CONCLUSIONS Our data show that in situ complement activation via the classical route occurred during liver resection and that ischemia and/or reperfusion may have contributed to activation. Levels of complement activation products in the circulation were low, showing that transient ischemia had no severe influence on systemic complement activation, suggesting a locally contained response.
Collapse
Affiliation(s)
- I H Straatsburg
- Department of Cell Biology & Histology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
45
|
Farmer DG, Amersi F, Kupiec-Weglinski J, Busuttil RW. Current status of ischemia and reperfusion injury in the liver. Transplant Rev (Orlando) 2000. [DOI: 10.1053/tr.2000.4651] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Abstract
Reperfusion injury refers to cellular death or dysfunction caused by restoration of blood flow to previously alchemic tissue. This should be differentiated from the normal reparative processes that follow an ischemic insult. Four types of reperfusion injury have been described in the literature: (1) lethal reperfusion injury, (2) nonlethal reperfusion injury, (myocardial stunning), (3) reperfusion arrhythmias, and (4) vascular injury (including the "no-reflow" phenomenon). There is continued debate whether reperfusion itself is capable of killing viable myocytes, which otherwise would have survived the ischemic insult. However, there is firm evidence for the existence of myocardial stunning following various ischemic syndromes, including reperfusion therapy for acute myocardial infarction, unstable angina pectoris, vasospastic angina, effort-induced ischemia, coronary artery bypass surgery, and cardiac transplantation. Reperfusion arrhythmia is more common after short ischemic episodes than after long ischemic periods. Thus, while reperfusion arrhythmias in the setting of acute myocardial infarction are relatively rare, reperfusion arrhythmias may be an important cause of sudden death. The "no-reflow" phenomenon has been described following reperfusion in patients with acute myocardial infarction. Three major components have been proposed as mediators of reperfusion injury: (1) oxygen free radicals, (2) the complement system, and (3) neutrophils. Numerous experimental studies have shown short-term benefit by blocking various stages of the postischemic inflammatory response. Oxygen free radicals scavengers, complement inhibition, leukocyte depletion, and the use of antibodies against various adhesion molecules have shown a reduction of infarct size in many ischemic/reperfusion experimental models. However, many of these agents failed to show a benefit in the clinical setting. Moreover, the long-term benefit of such intervention is still unknown.
Collapse
|
47
|
Abstract
Reperfusion injury refers to cellular death or dysfunction caused by restoration of blood flow to previously ischemic tissue. This should be differentiated from the normal reparative processes that follow an ischemic insult. Four types of reperfusion injury have been described in the literature: (1) lethal reperfusion injury, (2) nonlethal reperfusion injury (myocardial stunning), (3) reperfusion arrhythmias, and (4) vascular injury (including the "no-reflow" phenomenon). There is continued debate whether reperfusion itself is capable of killing viable myocytes, which otherwise would have survived the ischemic insult. However, there is firm evidence for the existence of myocardial stunning following various ischemic syndromes, including reperfusion therapy for acute myocardial infarction, unstable angina pectoris, vasospastic angina, effort-induced ischemia, coronary artery bypass surgery, and cardiac transplantation. Reperfusion arrhythmia is more common after short ischemic episodes than after long ischemic periods. Thus, while reperfusion arrhythmias in the setting of acute myocardial infarction are relatively rare, reperfusion arrhythmias may be an important cause of sudden death. The "no-reflow" phenomenon has been described following reperfusion in patients with acute myocardial infarction. Three major components have been proposed as mediators of reperfusion injury: (1) oxygen free radicals, (2) the complement system, and (3) neutrophils. Numerous experimental studies have shown short-term benefit by blocking various stages of the postischemic inflammatory response. Oxygen free radicals scavangers, complement inhibition, leukocyte depletion, and the use of antibodies against various adhesion molecules have shown a reduction of infarct size in many ischemic/reperfusion experimental models. However, many of these agents failed to show a benefit in the clinical setting. Moreover, the long-term benefit of such intervention is still unknown.
Collapse
Affiliation(s)
- Y Birnbaum
- Heart Institute, Good Samaritan Hospital, and the University of Southern California, Los Angeles, California
| | | | | |
Collapse
|
48
|
Kirklin JK, McGiffin DC. Control of the inflammatory response in extended myocardial preservation of the donor heart. Ann Thorac Surg 1999; 68:1978-82. [PMID: 10585115 DOI: 10.1016/s0003-4975(99)01016-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The damaging effects of inflammation after prolonged myocardial ischemia are typically manifest during the period of reperfusion. The imbalance between free radical generation and availability of natural free radical scavengers during postischemic reperfusion set the stage for free radical injury. Calcium overload may convert reversible ischemic damage to fatal myocyte contracture. Complement activation and neutrophil activation, adhesion, and diapedesis are central components of the damaging inflammatory response. Cytokines such as tumor necrosis factor and IL1 simulate IL8 synthesis which is also a potent chemoattractant for neutrophils. The endothelial contribution to ischemic-reperfusion injury results from an imbalance between the production of naturally occurring vasodilators, such as prostacycline and nitric oxide, and vasoconstrictor products, such as endothelin, thromboxane A2, and angiotensin 2. Knowledge of these basic mechanisms has stimulated the formulation of preservation solutions and strategies to ameliorate the inflammatory response during reperfusion.
Collapse
Affiliation(s)
- J K Kirklin
- Department of Surgery, University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
49
|
Trial J, Baughn RE, Wygant JN, McIntyre BW, Birdsall HH, Youker KA, Evans A, Entman ML, Rossen RD. Fibronectin fragments modulate monocyte VLA-5 expression and monocyte migration. J Clin Invest 1999; 104:419-30. [PMID: 10449434 PMCID: PMC408518 DOI: 10.1172/jci4824] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/1998] [Accepted: 07/08/1999] [Indexed: 11/17/2022] Open
Abstract
To identify the mechanisms that cause monocyte localization in infarcted myocardium, we studied the impact of ischemia-reperfusion injury on the surface expression and function of the monocyte fibronectin (FN) receptor VLA-5 (alpha(5)beta(1) integrin, CD49e/CD29). Myocardial infarction was associated with the release of FN fragments into cardiac extracellular fluids. Incubating monocytes with postreperfusion cardiac lymph that contained these FN fragments selectively reduced expression of VLA-5, an effect suppressed by specific immunoadsorption of the fragments. Treating monocytes with purified, 120-kDa cell-binding FN fragments (FN120) likewise decreased VLA-5 expression, and did so by inducing a serine proteinase-dependent proteolysis of this beta(1) integrin. We postulated that changes in VLA-5 expression, which were induced by interactions with cell-binding FN fragments, may alter monocyte migration into tissue FN, a prominent component of the cardiac extracellular matrix. Support for this hypothesis came from experiments showing that FN120 treatment significantly reduced both spontaneous and MCP-1-induced monocyte migration on an FN-impregnated collagen matrix. In vivo, it is likely that contact with cell-binding FN fragments also modulates VLA-5/FN adhesive interactions, and this causes monocytes to accumulate at sites where the fragment concentration is sufficient to ensure proteolytic degradation of VLA-5.
Collapse
Affiliation(s)
- J Trial
- Immunology Research Laboratory and the Research Center for AIDS and HIV-Related Infections, Houston Veterans Affairs Medical Center, Department of Medicine, Baylor College of Medicine, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stangl V, Rödiger O, Frank TM, Böhm M, Stangl K, Baumann G, Felix SB. Influence of polymorphonuclear leukocytes and plasma on coronary vasomotion after ischemia. Ann Thorac Surg 1999; 68:442-6. [PMID: 10475410 DOI: 10.1016/s0003-4975(99)00550-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of plasma and neutrophils in endothelial dysfunction following myocardial ischemia was investigated. METHODS Isolated rabbit hearts were perfused at constant pressure with a modified Krebs-Henseleit solution. After a 30-minute global ischemia the hearts were perfused at the onset of reperfusion for 10 minutes with either NaCl (group I, n = 6), autologous plasma alone (group II, n = 5), autologous polymorphonuclear leukocytes alone (PMN, group III, n = 6), or PMN and plasma in combination (group IV, n = 5). Before and after ischemia the effects of intracoronary endothelial dependent and independent vasodilation by acetylcholine (1 x 10(-7)mol/L) and glycerol trinitrate (1 x 10(-6) mol/L) were investigated. RESULTS A similar increase in coronary flow was induced in groups I, II, and III by acetylcholine and glycerol trinitrate before and after ischemia. In contrast, in group IV the endothelial dependent vasodilation was significantly depressed (p < 0.05). In groups II and IV a moderate but significant reduction in the recovery of the left ventricular pressure was observed after ischemia and reperfusion. CONCLUSIONS These results suggest that after myocardial ischemia, plasma is required for neutrophil-mediated endothelial dysfunction.
Collapse
Affiliation(s)
- V Stangl
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|