1
|
An YA, Hwang JY, Lee JS, Kim YC. Cornus officinalis Methanol Extract Upregulates Melanogenesis in Melan-a Cells. Toxicol Res 2015; 31:165-72. [PMID: 26191383 PMCID: PMC4505347 DOI: 10.5487/tr.2015.31.2.165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
Cornus officinalis is widely distributed in Korea, and its fruit has been used to make as herbal drug for traditional medicine in Korea, Japan, and China because of its tonic, analgesic, and diuretic properties. However, the effects of C. officinalis methanol extract (COME) on melanogenesis remain poorly understood. We evaluated the melanogenic capability of COME in melan-a cells, which are immortalized mouse melanocytes. COME increased melanin synthesis in a dose-dependent manner. Treatment with 12.5 μg/mL of COME significantly increased melanin content by 36.1% (p < 0.001) to a level even higher than that (31.6%) of 3-isobutyl-1-methyl-xanthine, a well-known pigmentation agent. COME also upregulated tyrosinase activity and its messenger RNA and protein expression. In addition, COME upregulated the expression of tyrosinase-related proteins 1 and 2 and microphthalmia-associated transcription factor-M messenger RNA expression. These results imply that COME may be appropriate for development as a natural product to treat hair graying.
Collapse
Affiliation(s)
- Yun Ah An
- Major in Public Health, Faculty of Food & Health Sciences, Keimyung University, Daegu, Korea
| | - Ji Yeon Hwang
- Major in Public Health, Faculty of Food & Health Sciences, Keimyung University, Daegu, Korea
| | - Jae Soon Lee
- Department of Beauty Design, Gyongbuk Science College, Gyongbuk, Korea
| | - Young Chul Kim
- Major in Public Health, Faculty of Food & Health Sciences, Keimyung University, Daegu, Korea
| |
Collapse
|
2
|
El-Armouche A, Jaeckel E, Boheler KR, Boknik P, Hertle B, Neumann J, Eschenhagen T. Ouabain treatment is associated with upregulation of phosphatase inhibitor-1 and Na+/Ca2+-exchanger and β-adrenergic sensitization in rat hearts. Biochem Biophys Res Commun 2004; 318:219-26. [PMID: 15110776 DOI: 10.1016/j.bbrc.2004.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Indexed: 11/29/2022]
Abstract
Cardiac glycosides are widely used in the treatment of congestive heart failure. While the mechanism of the positive inotropic effect after acute application of cardiac glycosides is explained by blockade of the Na+/K+-pump, little is known about consequences of a prolonged therapy. Here male Wistar rats were treated for 4 days with continuous infusions of ouabain (6.5 mg/kg/day) or 0.9% NaCl (control) via osmotic minipumps. Electrically driven (1 Hz, 35 degrees C) papillary muscles from ouabain-treated rats exhibited shorter relaxation time (-15%) and a twofold increase in the sensitivity for the positive inotropic effect of isoprenaline. The density and affinity of beta1- and beta2-adrenoceptors as well as mRNA and protein levels of stimulatory (G(s)alpha) and inhibitory (G(i)alpha-2, G(i)alpha-3) G-proteins were unaffected by ouabain. Similarly, SR-Ca2+-ATPase 2A, phospholamban, ryanodine-receptor expression as well as the oxalate-stimulated 45Ca-uptake of membrane vesicles remained unchanged. However, mRNA abundance of the protein phosphatase inhibitor-1 (I-1) and the Na+/Ca2+-exchanger (NCX) were increased by 52% and 26%, respectively. I-1 plays an amplifier role in cardiac signaling. Downregulation of I-1 in human heart failure is associated with desensitization of the beta-adrenergic signaling pathway. The present data suggest that the ouabain-induced increase in I-1 expression might be at least partly responsible for the increased isoprenaline sensitivity and increased expression of NCX for the accelerated relaxation after chronic ouabain in this model.
Collapse
Affiliation(s)
- Ali El-Armouche
- Institute of Experimental and Clinical Pharmacology, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Campbell KB, Chandra M, Kirkpatrick RD, Slinker BK, Hunter WC. Interpreting cardiac muscle force-length dynamics using a novel functional model. Am J Physiol Heart Circ Physiol 2004; 286:H1535-45. [PMID: 15020307 DOI: 10.1152/ajpheart.01029.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To describe the dynamics of constantly activated cardiac muscle, we propose that length affects force via both recruitment and distortion of myosin cross bridges. This hypothesis was quantitatively tested for descriptive and explanative validity. Skinned cardiac muscle fibers from animals expressing primarily alpha-myosin heavy chain (MHC) (mouse, rat) or beta-MHC (rabbit, ferret) were activated with solutions from pCa 6.1 to 4.3. Activated fibers were subjected to small-amplitude length perturbations [deltaL(t)] rich in frequency content between 0.1 and 40 Hz. In descriptive validation tests, the model was fit to the ensuing force response [deltaF(t)] in the time domain. In fits to 118 records, the model successfully accounted for most of the measured variation in deltaF(t) (R(2) range, 0.997-0.736; median, 0.981). When some residual variations in deltaF(t) were not accounted for by the model (as at low activation), there was very little coherence (<0.5) between these residual force variations and the applied deltaL(t) input function, indicating that something other than deltaL(t) was causing the measured variation in deltaF(t). With one exception, model parameters were estimated with standard errors on the order of 1% or less. Thus parameters of the recruitment component of the model could be uniquely separated from parameters of the distortion component of the model and parameters estimated from any given fiber could be considered unique to that fiber. In explanative validation tests, we found that recruitment and distortion parameters were positively correlated with independent assessments of the physiological entity they were assumed to represent. The recruitment distortion model was judged to be valid from both descriptive and explanative perspectives and is, therefore, a useful construct for describing and explaining dynamic force-length relationships in constantly activated cardiac muscle.
Collapse
Affiliation(s)
- Kenneth B Campbell
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, WA 99163, USA.
| | | | | | | | | |
Collapse
|
4
|
Okafor CC, Saunders L, Li X, Ito T, Dixon M, Stepenek A, Hajjar RJ, Wood JR, Doye AA, Gwathmey JK. Myofibrillar responsiveness to cAMP, PKA, and caffeine in an animal model of heart failure. Biochem Biophys Res Commun 2003; 300:592-9. [PMID: 12504124 DOI: 10.1016/s0006-291x(02)02885-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated whether an alteration of myofilament calcium responsiveness and contractile activation may in part contribute to heart failure. A control group of Broad Breasted White turkey poults was given regular feed without additive, whereas the experimental group was given the control ration with 700 ppm of furazolidone at 1 week of age for 3 weeks (DCM). At 4 weeks of age, left ventricular trabeculae carneae were isolated from hearts and calcium-force relationships studied. No differences in calcium-activation between fibers from control or failing hearts were noted under standard experimental conditions. Also failing hearts demonstrated no significant shift in the population of troponin T isoforms but we did observe a significant 4-fold decrease in TnT content in failing hearts compared to non-failing hearts. Addition of caffeine, however, resulted in a greater leftward shift on the calcium axis in fibers from failing hearts. At pCa 6, caffeine increased force by 26+/-2.1% in control fibers and 44.5+/-8.7% in myopathic fibers. Cyclic AMP resulted in a greater rightward shift on the calcium axis in failing myocardium. In control muscles, the frequency of minimum stiffness (f(min)) was higher than in muscles from failing hearts. cAMP and caffeine both shifted f(min) to higher frequencies in control fibers whereas in fibers from failing hearts both caused a greater shift. These results lead us to conclude that heart failure exerts differential effects on cAMP and caffeine responsiveness. Our data suggest that changes at the level of the thin myofilaments may alter myofilament calcium responsiveness and contribute to the contractile dysfunction seen in heart failure.
Collapse
Affiliation(s)
- Chukwuka C Okafor
- Boston University Medical Center, 715 Albany Street, Boston, MA 02118-22526, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Turnbull L, Hoh JFY, Ludowyke RI, Rossmanith GH. Troponin I phosphorylation enhances crossbridge kinetics during beta-adrenergic stimulation in rat cardiac tissue. J Physiol 2002; 542:911-20. [PMID: 12154188 PMCID: PMC2290461 DOI: 10.1113/jphysiol.2002.022707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inotropic agents that increase the intracellular levels of cAMP have been shown to increase crossbridge turnover kinetics in intact rat ventricular muscle, as measured by the parameter f(min) (the frequency at which dynamic stiffness is minimum). These agents are also known to increase the level of phosphorylation of two candidate myofibrillar proteins: myosin binding protein C (MyBPC) and Troponin I (TnI), but have no effect on myosin light chain 2 phosphorylation (MyLC2). The aim of this study was to investigate whether the phosphorylation of TnI and/or MyBPC was responsible for the increase in crossbridge cycling kinetics (as captured by f(min)) seen with the elevation of cAMP within cardiac tissue. Using barium-activated intact rat papillary muscle, we investigated the actions of isobutylmethylxanthine (IBMX), an inhibitor of cAMP-dependent phosphatase, which simulates the action of beta-adrenergic agents, and the chemical phosphatase 2,3-butanedione monoxime (BDM), which has been shown to dephosphorylate a number of contractile proteins. The presence of 0.6 mM IBMX approximately doubled the f(min) value of intact rat papillary muscle. This action was unaffected by the addition of BDM. In the presence of IBMX and BDM, the level of phosphorylation of MyBPC was unchanged, that of MyLC2 was reduced to 60 % of control, yet that of TnI was markedly increased (to 30 % above control levels). We conclude that TnI phosphorylation, mediated by cAMP-dependent protein kinase A, is the molecular basis for the enhanced crossbridge cycling seen during beta-adrenergic stimulation of the heart.
Collapse
Affiliation(s)
- Lynne Turnbull
- Biomedical Systems Research Group, Division of Information and Communication Sciences, Macquarie University, NSW 2109, Australia.
| | | | | | | |
Collapse
|
7
|
Rossmanith GH, Tjokorda OB. Relationships between isometric and isotonic mechanical parameters and cross-bridge kinetics. Clin Exp Pharmacol Physiol 1998; 25:522-35. [PMID: 9673423 DOI: 10.1111/j.1440-1681.1998.tb02246.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Isometric and isotonic measures have been widely used both to characterize muscular contraction in striated muscle and to compare the mechanical properties of striated muscle types for a wide variety of species. The interrelationship of these measures and their interpretation, in terms of underlying cross-bridge mechanisms, requires clarification. 2. We demonstrate that a strain-dependent three-state model can simulate these isometric and isotonic mechanics and offer a unified explanation for these mechanics in terms of cross-bridge kinetics. 3. Our exploration reveals the partial view each individual measure of mechanics provides and emphasizes the complementary insights the various isometric and isotonic measures give of the underlying cross-bridge kinetics.
Collapse
Affiliation(s)
- G H Rossmanith
- Biomedical Systems Research Group, School of Mathematics, Physics, Computing and Electronics, Macquarie University, Sydney, New South Wales, Australia.
| | | |
Collapse
|
8
|
Rossmanith GH, Hoh JF, Turnbull L, Ludowyke RI. Mechanism of action of endothelin in rat cardiac muscle: cross-bridge kinetics and myosin light chain phosphorylation. J Physiol 1997; 505 ( Pt 1):217-27. [PMID: 9409484 PMCID: PMC1160106 DOI: 10.1111/j.1469-7793.1997.217bc.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The molecular mechanism of inotropic action of endothelin was investigated in rat ventricular muscle by studying its effects on characteristics of isometric twitch, barium-induced steady contracture and the level of incorporation of 32Pi into myosin light chain 2. 2. Exposure of rat papillary muscle to endothelin caused an increase in isometric twitch force but did not alter the twitch-time parameters. 3. Endothelin did not significantly change the maximum contracture tension but did cause an increase in contracture tension at submaximal levels of activation, without changes in the tension-to-stiffness ratio and kinetics of attached cross-bridges. Kinetics of attached cross-bridges were deduced during steady contracture from complex-stiffness values, and in particular from the frequency at which muscle stiffness assumes a minimum value, fmin. Endothelin did not alter fmin. 4. Endothelin caused an increase in the level of incorporation of 32Pi into myosin light chain 2 without a concurrent change in the level of incorporation of 32Pi into troponin I. 5. We conclude that the inotropic action of endothelin is not due to an increase in the kinetics of attached cross-bridges, nor due to a change in the force per unit cross-bridge, but may result from an increased divalent cation sensitivity caused by elevated myosin light chain 2 phosphorylation, resembling post-tetanic potentiation in fast skeletal muscle fibres.
Collapse
Affiliation(s)
- G H Rossmanith
- Biomedical Systems Research Group, School of Mathematics, Physics, Computing and Electronics, Macquarie University-Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
9
|
Abstract
Endocardial and coronary vascular endothelial cells release substances that modify the contraction of cardiac myocytes. The major and possibly the sole up-regulating substance is endothelin. Several down-regulating substances are secreted, but none has yet been specifically identified. The relative amounts of up- and down-regulating substances are related to tissue oxygen tension. As pO2 rises, the concentration of up- and down-regulating substances, respectively, increases and decreases. Endothelin increases isometric force and decreases actomyosin ATPase activity thus increasing the economy of conversion of chemical to hydrodynamic energy. Beta-adrenergic agonists increase ATPase activity through an endothelial cell-dependent mechanism, leading to decreased economy. Therefore, two endothelial cell-dependent systems exist for regulating contractile efficiency: One involving endothelin appears to optimize the contraction for efficiency; the other, the beta-adrenergic-mediated system, optimizes for power.
Collapse
Affiliation(s)
- S Winegrad
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6085, USA
| |
Collapse
|
10
|
Komukai K, Kurihara S. Mechanisms of the inotropic effects of UD-CG 212 Cl, an active metabolite of pimobendan, on ferret papillary muscles. J Cardiovasc Pharmacol 1996; 27:673-9. [PMID: 8859937 DOI: 10.1097/00005344-199605000-00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the effects of an active metabolite of pimobendan, UD-CG 212 Cl, on Ca(2+) transients and tension using the aequorin method. When extracellular [Ca(2+)] ([Ca2+]o) in the Tyrode's solution was 2 mM, UD-CG 212 C1 (10(-7)-10(-4)M) increased the peak of Ca(2+) transients, accompanying a slight increase in peak tension. When [Ca(2+)]o was decreased to 0.5 mM, the twitch-potentiating effect of UD-CG 212 C1 was more remarkable, but the increase in the Ca(2+) transients at low concentrations of UD-CG 212 C1 (10(-7)-10(-6)M) was not significant as it was at 2 mM [Ca2+]o. The effects of UD-CG 212 Cl on the time courses of Ca(2+) transients and tension were evaluated at 0.5 mM [Ca2+]o. UD-CG 212 Cl shortened the decay time of Ca(2+) transients and the time to peak tension. However, the relaxation time was not significantly altered. UD-CG 212 C1 (10(-6)M) did not significantly change the relation between [Ca(2+)]i and tension in tetanic contraction. Therefore, the twitch-potentiating effect of UD-CG 212 Cl might not be due to an increase in the Ca(2+) sensitivity of the contractile elements. The slight increase in cyclic AMP due to the inhibition of phosphodiesterase type III by UD-CG 212 Cl could explain the twitch-potentiating effect and the faster time courses of Ca(2+) transients and tension.
Collapse
Affiliation(s)
- K Komukai
- Department of Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
11
|
Hongo K, Tanaka E, Kurihara S. Mechanism of the effects of acetylcholine on the contractile properties and Ca2+ transients in ferret ventricular muscles. J Physiol 1993; 461:185-99. [PMID: 8394424 PMCID: PMC1175252 DOI: 10.1113/jphysiol.1993.sp019508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. We investigated the mechanism of signal transduction during the effect of muscarinic receptor stimulation on Ca2+ transients, tension, Ca2+ sensitivity and the cross-bridge cycling rate (CCR). 2. Membrane-permeable derivatives of cyclic GMP (8-bromo-cyclic GMP and dibutyryl cyclic GMP) did not cause any significant changes in the peaks of Ca2+ transients and tension and the time courses of either signal modulated by isoprenaline (Iso) (0.1 microM). 3. Nitroprusside (0.1-1 mM) likewise did not change the peaks or the time courses of Ca2+ transients and tension in the Iso-treated preparations. 4. In papillary muscles excised from ferrets treated with pertussis toxin (islet-activating protein, IAP), which is known to abolish the function of GTP-binding proteins (Gi, Go and Gt), similar changes in Ca2+ transients and tension produced by treatment with Iso (0.1 microM) were noted as in non-IAP-treated preparations. However, no effects of acetylcholine (ACh; 1 microM) on either signal were observed. 5. The relation between [Ca2+]i and tension measured during the steady state of tetanic contraction was shifted to the right by Iso (0.1 microM), and cyclic GMP derivatives (1 mM) did not change the altered relation. In the IAP-treated preparations, ACh (1 microM) did not influence the relation altered by Iso (0.1 microM). 6. Cyclic GMP derivatives (1 mM) did not alter the Iso (0.1 microM)-increased CCR measured by perturbation analysis. ACh (1 microM) did not restore the Iso-increased CCR in the IAP-treated preparations. 7. These results suggest that signal transduction in muscarinic receptor stimulation is primarily mediated by inhibition of adenylate cyclase via IAP-sensitive GTP-binding proteins, and that cyclic GMP does not play an important role in the effect of muscarinic receptor stimulation on Ca2+ transients, tension, Ca2+ sensitivity or CCR.
Collapse
Affiliation(s)
- K Hongo
- Department of Physiology, Jikei University School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|