1
|
Chen J, Ma C, Li J, Niu X, Fan Y. Collagen-mediated cardiovascular calcification. Int J Biol Macromol 2025; 301:140225. [PMID: 39864707 DOI: 10.1016/j.ijbiomac.2025.140225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Cardiovascular calcification is a pathological process commonly observed in the elderly. Based on the location of the calcification, cardiovascular calcification can be classified into two main types: vascular calcification and valvular calcification. Collagen plays a critical role in the development of cardiovascular calcification lesions. The content and type of collagen are the result of a dynamic balance between synthesis and degradation. Unregulated processes can lead to adverse outcomes. During cardiovascular calcification, collagen not only serves as a scaffold for ectopic mineral deposition but also acts as a signal transduction pathway that mediates calcification by guiding the aggregation and nucleation of matrix vesicles and promoting the proliferation, migration and phenotypic changes of cells involved in the lesion. This review provides an overview of collagen subtypes in the cardiovascular system under physiological conditions and discusses their distribution. Additionally, we introduce pathological changes and mechanisms of collagen in blood vessels and heart valves. Then, the formation process and characteristic stages of cardiovascular calcification are described. Finally, we highlight the role of collagen in cardiovascular calcification, explore strategied for mediating calcification, and suggest potential directions for future research.
Collapse
Affiliation(s)
- Junlin Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chunyang Ma
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100007, China.
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; School of Engineering Medicine, Beihang University, Beijing 100083, China.
| |
Collapse
|
2
|
Martin EM, Chang J, González A, Genovese F. Circulating collagen type I fragments as specific biomarkers of cardiovascular outcome risk: Where are the opportunities? Matrix Biol 2025:S0945-053X(25)00025-3. [PMID: 40037418 DOI: 10.1016/j.matbio.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Collagen type I (COL1) is the most abundant protein in the human body and is a main component in the extracellular matrix. The COL1 structure vastly influences normal tissue homeostasis and changes in the matrix drive progression in multiple diseases. Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity in many Western countries; alterations in the extracellular matrix turnover processes, including COL1, are known to influence the pathophysiological processes leading to CVD outcome. Peptides reflecting COL1 formation and degradation have been established and explored for over two decades in CVD. This review aims to combine and assess the evidence for using COL1-derived circulating peptides as biomarkers in CVD. Secondly, the review identifies existing pitfalls, and evaluates future opportunities for improving the technical characteristics and performance of the biomarkers for implementation in the clinical setting.
Collapse
Affiliation(s)
- Emily M Martin
- Nordic Bioscience A/S, Herlev, Denmark; Institute of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Joan Chang
- Manchester Cell-Matrix Centre, Division of Molecular and Cellular Function, University of Manchester, Manchester, UK
| | - Arantxa González
- Centre for Applied Medical Research (CIMA) Universidad de Navarra, Department of Cardiology and Cardiac Surgery, Clínica Universidad de Navarra, Department of Pathology Anatomy and Physiology Universidad de Navarra and IdiSNA, Pamplona, Navarra (Spain); CIBERCV, Instituto de Salud Carlos III, Madrid Spain
| | | |
Collapse
|
3
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Yao J, Zhang Y, Wang Z, Chen Y, Shi X. Maintenance of Cardiac Microenvironmental Homeostasis: A Joint Battle of Multiple Cells. J Cell Physiol 2025; 240:e31496. [PMID: 39632594 DOI: 10.1002/jcp.31496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Various cells such as cardiomyocytes, fibroblasts and endothelial cells constitute integral components of cardiac tissue. The health and stability of cardiac ecosystem are ensured by the action of a certain type of cell and the intricate interactions between multiple cell types. The dysfunctional cells exert a profound impact on the development of cardiovascular diseases by involving in the pathological process. In this paper, we introduce the dynamic activity, cell surface markers as well as biological function of the various cells in the heart. Besides, we discuss the multiple signaling pathways involved in the cardiac injury including Hippo/YAP, TGF-β/Smads, PI3K/Akt, and MAPK signaling. The complexity of different cell types poses a great challenge to the disease treatment. By characterizing the roles of various cell types in cardiovascular diseases, we sought to discuss the potential strategies for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Jiayu Yao
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Youtao Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ziwen Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yuejun Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Chaher N, Lacerda S, Digilio G, Padovan S, Gao L, Lavin B, Stefania R, Velasco C, Cruz G, Prieto C, Botnar RM, Phinikaridou A. Non-invasive in vivo imaging of changes in Collagen III turnover in myocardial fibrosis. NPJ IMAGING 2024; 2:33. [PMID: 39301014 PMCID: PMC11408249 DOI: 10.1038/s44303-024-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.
Collapse
Affiliation(s)
- Nadia Chaher
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans rue Charles Sadron, 45071 Orléans, France
| | - Giuseppe Digilio
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR), Molecular Biotechnology Center, Torino, Italy
| | - Ling Gao
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Rachele Stefania
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Department of Radiology, University of Michigan, Ann Arbor, MI USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
- Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King’s College London, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London, SE17EH UK
- King’s BHF Centre of Excellence, Cardiovascular Division, London, UK
| |
Collapse
|
6
|
Di Francesco D, Marcello E, Casarella S, Copes F, Chevallier P, Carmagnola I, Mantovani D, Boccafoschi F. Characterization of a decellularized pericardium extracellular matrix hydrogel for regenerative medicine: insights on animal-to-animal variability. Front Bioeng Biotechnol 2024; 12:1452965. [PMID: 39205858 PMCID: PMC11350490 DOI: 10.3389/fbioe.2024.1452965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
In the past years, the use of hydrogels derived from decellularized extracellular matrix (dECM) for regenerative medicine purposes has significantly increased. The intrinsic bioactive and immunomodulatory properties indicate these materials as promising candidates for therapeutical applications. However, to date, limitations such as animal-to-animal variability still hinder the clinical translation. Moreover, the choice of tissue source, decellularization and solubilization protocols leads to differences in dECM-derived hydrogels. In this context, detailed characterization of chemical, physical and biological properties of the hydrogels should be performed, with attention to how these properties can be affected by animal-to-animal variability. Herein, we report a detailed characterization of a hydrogel derived from the decellularized extracellular matrix of bovine pericardium (dBP). Protein content, rheological properties, injectability, surface microstructure, in vitro stability and cytocompatibility were evaluated, with particular attention to animal-to-animal variability. The gelation process showed to be thermoresponsive and the obtained dBP hydrogels are injectable, porous, stable up to 2 weeks in aqueous media, rapidly degrading in enzymatic environment and cytocompatible, able to maintain cell viability in human mesenchymal stromal cells. Results from proteomic analysis proved that dBP hydrogels are highly rich in composition, preserving bioactive proteoglycans and glycoproteins in addition to structural proteins such as collagen. With respect to the chemical composition, animal-to-animal variability was shown, but the biological properties were not affected, which remained consistent in different batches. Taken together these results show that dBP hydrogels are excellent candidates for regenerative medicine applications.
Collapse
Affiliation(s)
- Dalila Di Francesco
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Elena Marcello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
- Polito BioMed Lab, Politecnico di Torino, Torino, Italy
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering and Regenerative Medicine, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
7
|
Bekedam FT, Smal R, Smit MC, Aman J, Vonk-Noordegraaf A, Bogaard HJ, Goumans MJ, De Man FS, Llucià-Valldeperas A. Mechanical stimulation of induced pluripotent stem derived cardiac fibroblasts. Sci Rep 2024; 14:9795. [PMID: 38684844 PMCID: PMC11058244 DOI: 10.1038/s41598-024-60102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
Cardiac fibrosis contributes to the development of heart failure, and is the response of cardiac fibroblasts (CFs) to pressure or volume overload. Limiting factors in CFs research are the poor availability of human cells and the tendency of CFs to transdifferentiate into myofibroblasts when cultured in vitro. The possibility to generate CFs from induced pluripotent stem cells (iPSC), providing a nearly unlimited cell source, opens new possibilities. However, the behaviour of iPSC-CFs under mechanical stimulation has not been studied yet. Our study aimed to assess the behaviour of iPSC-CFs under mechanical stretch and pro-fibrotic conditions. First, we confirm that iPSC-CFs are comparable to primary CFs at gene, protein and functional level. Furthermore, iPSC-derived CFs adopt a pro-fibrotic response to transforming growth factor beta (TGF-β). In addition, mechanical stretch inhibits TGF-β-induced fibroblast activation in iPSC-CFs. Thus, the responsiveness to cytokines and mechanical stimulation of iPSC-CFs demonstrates they possess key characteristics of primary CFs and may be useful for disease modelling.
Collapse
Affiliation(s)
- Fjodor T Bekedam
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Rowan Smal
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marisa C Smit
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Jurjan Aman
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
| | - Marie José Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC, Leiden, The Netherlands
| | - Frances S De Man
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| | - Aida Llucià-Valldeperas
- PHEniX Laboratory, Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Xu Q, Xiao Z, Yang Q, Yu T, Deng X, Chen N, Huang Y, Wang L, Guo J, Wang J. Hydrogel-based cardiac repair and regeneration function in the treatment of myocardial infarction. Mater Today Bio 2024; 25:100978. [PMID: 38434571 PMCID: PMC10907859 DOI: 10.1016/j.mtbio.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
A life-threatening illness that poses a serious threat to human health is myocardial infarction. It may result in a significant number of myocardial cells dying, dilated left ventricles, dysfunctional heart function, and ultimately cardiac failure. Based on the development of emerging biomaterials and the lack of clinical treatment methods and cardiac donors for myocardial infarction, hydrogels with good compatibility have been gradually applied to the treatment of myocardial infarction. Specifically, based on the three processes of pathophysiology of myocardial infarction, we summarized various types of hydrogels designed for myocardial tissue engineering in recent years, including natural hydrogels, intelligent hydrogels, growth factors, stem cells, and microRNA-loaded hydrogels. In addition, we also describe the heart patch and preparation techniques that promote the repair of MI heart function. Although most of these hydrogels are still in the preclinical research stage and lack of clinical trials, they have great potential for further application in the future. It is expected that this review will improve our knowledge of and offer fresh approaches to treating myocardial infarction.
Collapse
Affiliation(s)
- Qiaxin Xu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, 510630, China
| | - Qianzhi Yang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Tingting Yu
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Xiujiao Deng
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Nenghua Chen
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Lihong Wang
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Endocrinology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jun Guo
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
9
|
Usui Y, Hanashima A, Hashimoto K, Kimoto M, Ohira M, Mohri S. Comparative analysis of ventricular stiffness across species. Physiol Rep 2024; 12:e16013. [PMID: 38644486 PMCID: PMC11033294 DOI: 10.14814/phy2.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Investigating ventricular diastolic properties is crucial for understanding the physiological cardiac functions in organisms and unraveling the pathological mechanisms of cardiovascular disorders. Ventricular stiffness, a fundamental parameter that defines ventricular diastolic functions in chordates, is typically analyzed using the end-diastolic pressure-volume relationship (EDPVR). However, comparing ventricular stiffness accurately across chambers of varying maximum volume capacities has been a long-standing challenge. As one of the solutions to this problem, we propose calculating a relative ventricular stiffness index by applying an exponential approximation formula to the EDPVR plot data of the relationship between ventricular pressure and values of normalized ventricular volume by the ventricular weight. This article reviews the potential, utility, and limitations of using normalized EDPVR analysis in recent studies. Herein, we measured and ranked ventricular stiffness in differently sized and shaped chambers using ex vivo ventricular pressure-volume analysis data from four animals: Wistar rats, red-eared slider turtles, masu salmon, and cherry salmon. Furthermore, we have discussed the mechanical effects of intracellular and extracellular viscoelastic components, Titin (Connectin) filaments, collagens, physiological sarcomere length, and other factors that govern ventricular stiffness. Our review provides insights into the comparison of ventricular stiffness in different-sized ventricles between heterologous and homologous species, including non-model organisms.
Collapse
Grants
- JP22K15155 Japan Society for the Promotion of Science, Grant/Award Number
- JP20K21453 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04508 Japan Society for the Promotion of Science, Grant/Award Number
- JP21K19933 Japan Society for the Promotion of Science, Grant/Award Number
- JP20H04521 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H02092 Japan Society for the Promotion of Science, Grant/Award Number
- JP23H00556 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H06272 Japan Society for the Promotion of Science, Grant/Award Number
- JP17H00859 Japan Society for the Promotion of Science, Grant/Award Number
- JP25560214 Japan Society for the Promotion of Science, Grant/Award Number
- JP16K01385 Japan Society for the Promotion of Science, Grant/Award Number
- JP26282127 Japan Society for the Promotion of Science, Grant/Award Number
- The Futaba research grant program
- Research Grant from the Kawasaki Foundation in 2016 from Medical Science and Medical Welfare
- Medical Research Grant in 2010 from Takeda Science Foundation
- R03S005 Research Project Grant from Kawasaki Medical School
- R03B050 Research Project Grant from Kawasaki Medical School
- R01B054 Research Project Grant from Kawasaki Medical School
- H30B041 Research Project Grant from Kawasaki Medical School
- H30B016 Research Project Grant from Kawasaki Medical School
- H27B10 Research Project Grant from Kawasaki Medical School
- R02B039 Research Project Grant from Kawasaki Medical School
- H28B80 Research Project Grant from Kawasaki Medical School
- R05B016 Research Project Grant from Kawasaki Medical School
- Japan Society for the Promotion of Science, Grant/Award Number
Collapse
Affiliation(s)
- Yuu Usui
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Akira Hanashima
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Ken Hashimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Misaki Kimoto
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Momoko Ohira
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| | - Satoshi Mohri
- First Department of PhysiologyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
10
|
Kostin S, Richter M, Ganceva N, Sasko B, Giannakopoulos T, Ritter O, Szalay Z, Pagonas N. Atrial fibrillation in human patients is associated with increased collagen type V and TGFbeta1. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2024; 50:101327. [PMID: 38419608 PMCID: PMC10899732 DOI: 10.1016/j.ijcha.2023.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 03/02/2024]
Abstract
Background and aim Atrial fibrosis is an important factor in initiating and maintaining atrial fibrillation (AF). Collagen V belongs to fibrillar collagens. There are, however no data on collagen V in AF. The aim of this work was to study the quantity of collagen V and its relationship with the number of fibroblasts and TGF- b 1 expression in patients in sinus rhythm (SR) and in patients with atrial fibrillation (AF). Methods We used quantitative immuhistochemistry to study collagen V in right and left atrial biopsies obtained from 35 patients in SR, 35 patients with paroxysmal AF (pAF) and 27 patients with chronic, long-standing persistent AF (cAF). In addition, we have quantified the number of vimentin-positive fibroblasts and expression levels of TGF-β1. Results Compared to patients in SR, collagen V was increased 1.8- and 3.1-fold in patients with pAF and cAF, respectively. In comparison with SR patients, the number of vimentin-positive cells increased significantly 1.46- and 1.8-fold in pAF and cAF patients, respectively.Compared to SR patients, expression levels of TGF-ß1, expressed as fluorescence units per tissue area, was significantly increased by 77 % and 300 % in patients with pAF and cAF, respectively. Similar to intensity measurements, the number of TGFß1-positive cells per 1 mm2 atrial tissue increased significantly from 35.5 ± 5.5 cells in SR patients to 61.9 ± 12.4 cells in pAF and 131.5 ± 23.5 cells in cAF. In both types of measurements, there was a statistically significant difference between pAF and cAF groups. Conclusions This is the first study to show that AF is associated with increased expression levels of collagen V and TGF-ß1indicating its role in the pathogenesis of atrial fibrosis. In addition, increases in collagen V correlate with increased number of fibroblasts and TGF-β1 and are more pronounced in cAF patients than those in pAF patients.
Collapse
Affiliation(s)
- Sawa Kostin
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Natalia Ganceva
- Department of Anesthesiology and Intensive Care, Kerckoff-Clinic, Bad Nauheim, Germany
| | - Benjamin Sasko
- Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Germany
| | | | - Oliver Ritter
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Cardiology, University Hospital Brandenburg, Brandenburg an der Havel, Germany
| | - Zoltan Szalay
- Department of Cardiac Surgery, Kerckhoff-Clinic, Bad Nauheim, Germany
| | - Nikolaos Pagonas
- Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
- Department of Internal Medicine, University Hospital Ruppin-Brandenburg, Neuruppin, Germany
| |
Collapse
|
11
|
Li H, Zhu Y, Chen Z, Ma Q, Abd-Elhamid AI, Feng B, Sun B, Wu J. Biomimetic Cardiac Fibrotic Model for Antifibrotic Drug Screening. Tissue Eng Part C Methods 2023; 29:558-571. [PMID: 37658841 DOI: 10.1089/ten.tec.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Cardiac fibrosis is characterized by pathological proliferation and activation of cardiac fibroblasts to myofibroblasts. Inhibition and reverse of transdifferentiation of cardiac fibroblasts to myofibroblasts is a potential strategy for cardiac fibrosis. Despite substantial progress, more effort is needed to discover effective drugs to improve and reverse cardiac fibrosis. The main reason for the slow development of antifibrotic drugs is that the traditional polystyrene culture platform does not recapitulate the microenvironment where cells reside in tissues. In this study, we propose an in vitro cardiac fibrotic model by seeding electrospun yarn scaffolds with cardiac fibroblasts. Our results show that yarn scaffolds allow three-dimensional growth of cardiac fibroblasts, promote extracellular matrix (ECM) deposition, and induce the transdifferentiation of cardiac fibroblasts to myofibroblasts. Exogenous transforming growth factor-β1 further promotes cardiac fibroblast activation and ECM deposition, which makes it a suitable fibrotic model to predict the antifibrotic potential of drugs. By using this platform, we demonstrate that both Honokiol (HKL) and Pirfenidone (PFD) show potential in antifibrosis to some extent. HKL is more efficient in antifibrosis than PFD as revealed by biochemical composition, gene, and molecular analyses as well as histological and biomechanical analysis. The electrospun yarn scaffold provides a novel platform for constructing in vitro fibrotic models to study cardiac fibrosis and to predict the antifibrotic efficacy of novel drugs.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Yifan Zhu
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhe Chen
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Qiaolin Ma
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Ahmed I Abd-Elhamid
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery, Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Binbin Sun
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| | - Jinglei Wu
- Department of Biomedical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, P.R. China
| |
Collapse
|
12
|
Zhou H, Llanes JP, Lotfi M, Sarntinoranont M, Simmons CS, Subhash G. Label-Free Quantification of Microscopic Alignment in Engineered Tissue Scaffolds by Polarized Raman Spectroscopy. ACS Biomater Sci Eng 2023; 9:3206-3218. [PMID: 37170804 DOI: 10.1021/acsbiomaterials.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Monitoring of extracellular matrix (ECM) microstructure is essential in studying structure-associated cellular processes, improving cellular function, and for ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study the microscale alignment of the matrix in engineered tissue scaffolds (ETS) that are usually composed of a variety of biomacromolecules derived by cells. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via principal component analysis (PCA), where prominent changes associated with specific Raman bands (e.g., 1444, 1465, 1605, 1627-1660, and 1665-1689 cm-1) were detected with respect to the polarization angle. These changes were mainly caused by the aligned matrix of many compounds within the tissue relative to the laser polarization, including proteins, lipids, and carbohydrates. Hence this trained function was applied to quantify the alignment within ETS of various matrix components derived by cells. Furthermore, a simple metric called Amplitude Alignment Metric (AAM) was derived to correlate the orientation dependence of polarized Raman spectra of ETS to the degree of matrix alignment. It was found that the AAM was significantly higher in anisotropic ETS than isotropic ones. The PRS method revealed a lower p-value for distinguishing the alignment between these two types of ETS as compared to the microscopic method for detecting fluorescent-labeled protein matrices at a similar microscopic scale. These results indicate that the anisotropy of a complex matrix in engineered tissue can be assessed at the microscopic scale using a PRS-based simple metric, which is superior to the traditional microscopic method. This PRS-based method can serve as a complementary tool for the design and assessment of engineered tissues that mimic the native matrix organizational microstructures.
Collapse
Affiliation(s)
- Hui Zhou
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Janny Piñeiro Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Maedeh Lotfi
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Malisa Sarntinoranont
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ghatu Subhash
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
14
|
Hrabalova P, Bohuslavova R, Matejkova K, Papousek F, Sedmera D, Abaffy P, Kolar F, Pavlinkova G. Dysregulation of hypoxia-inducible factor 1α in the sympathetic nervous system accelerates diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:88. [PMID: 37072781 PMCID: PMC10114478 DOI: 10.1186/s12933-023-01824-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
- Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Katerina Matejkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia
- Institute of Anatomy, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia.
| |
Collapse
|
15
|
Chavez T, Gerecht S. Engineering of the microenvironment to accelerate vascular regeneration. Trends Mol Med 2023; 29:35-47. [PMID: 36371337 PMCID: PMC9742290 DOI: 10.1016/j.molmed.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Blood vessels are crucial for tissue development, functionality, and homeostasis and are typically a determinant in the progression of healing and regeneration. The tissue microenvironment provides physicochemical cues that affect cellular function, and the study of the microenvironment can be accelerated by the engineering of approaches capable of mimicking various aspects of the microenvironment. In this review, we introduce the major components of the vascular niche and focus on the roles of oxygen and the extracellular matrix (ECM). We demonstrate how vascular engineering approaches enhance our understanding of the microenvironment's impact on the vasculature towards vascular regeneration and describe the current limitations and future directions towards clinical utilization.
Collapse
Affiliation(s)
- Taylor Chavez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Whitehead KM, Hendricks HKL, Cakir SN, de Castro Brás LE. ECM roles and biomechanics in cardiac tissue decellularization. Am J Physiol Heart Circ Physiol 2022; 323:H585-H596. [PMID: 35960635 PMCID: PMC9467473 DOI: 10.1152/ajpheart.00372.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Natural biomaterials hold enormous potential for tissue regeneration. The rapid advance of several tissue-engineered biomaterials, such as natural and synthetic polymer-based scaffolds, has led to widespread application of these materials in the clinic and in research. However, biomaterials can have limited repair capacity; obstacles result from immunogenicity, difficulties in mimicking native microenvironments, and maintaining the mechanical and biochemical (i.e., biomechanical) properties of native organs/tissues. The emergence of decellularized extracellular matrix (ECM)-derived biomaterials provides an attractive solution to overcome these hurdles since decellularized ECM provides a nonimmune environment with native three-dimensional structures and bioactive components. More importantly, decellularized ECM can be generated from the tissue of interest, such as the heart, and keep its native macro- and microstructure and tissue-specific composition. These decellularized cardiac matrices/scaffolds can then be reseeded using cardiac cells, and the resulting recellularized construct is considered an ideal choice for regenerating functional organs/tissues. Nonetheless, the decellularization process must be optimized and depends on tissue type, age, and functional goal. Although most decellularization protocols significantly reduce immunogenicity and deliver a matrix that maintains the tissue macrostructure, suboptimal decellularization can change ECM composition and microstructure, which affects the biomechanical properties of the tissue and consequently changes cell-matrix interactions and organ function. Herein, we review methods of decellularization, with particular emphasis on cardiac tissue, and how they can affect the biomechanics of the tissue, which in turn determines success of reseeding and in vivo viability. Moreover, we review recent developments in decellularized ECM-derived cardiac biomaterials and discuss future perspectives.
Collapse
Affiliation(s)
- Kaitlin M Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Hanifah K L Hendricks
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
17
|
Dickerson DA. Advancing Engineered Heart Muscle Tissue Complexity with Hydrogel Composites. Adv Biol (Weinh) 2022; 7:e2200067. [PMID: 35999488 DOI: 10.1002/adbi.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/19/2022] [Indexed: 11/10/2022]
Abstract
A heart attack results in the permanent loss of heart muscle and can lead to heart disease, which kills more than 7 million people worldwide each year. To date, outside of heart transplantation, current clinical treatments cannot regenerate lost heart muscle or restore full function to the damaged heart. There is a critical need to create engineered heart tissues with structural complexity and functional capacity needed to replace damaged heart muscle. The inextricable link between structure and function suggests that hydrogel composites hold tremendous promise as a biomaterial-guided strategy to advance heart muscle tissue engineering. Such composites provide biophysical cues and functionality as a provisional extracellular matrix that hydrogels cannot on their own. This review describes the latest advances in the characterization of these biomaterial systems and using them for heart muscle tissue engineering. The review integrates results across the field to provide new insights on critical features within hydrogel composites and perspectives on the next steps to harnessing these promising biomaterials to faithfully reproduce the complex structure and function of native heart muscle.
Collapse
Affiliation(s)
- Darryl A. Dickerson
- Department of Mechanical and Materials Engineering Florida International University 10555 West Flagler St Miami FL 33174 USA
| |
Collapse
|
18
|
Yuan Z, Murakoshi N, Xu D, Tajiri K, Okabe Y, Aonuma K, Murakata Y, Li S, Song Z, Shimoda Y, Mori H, Aonuma K, Ieda M. Identification of potential dilated cardiomyopathy-related targets by meta-analysis and co-expression analysis of human RNA-sequencing datasets. Life Sci 2022; 306:120807. [PMID: 35841977 DOI: 10.1016/j.lfs.2022.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
AIMS Dilated cardiomyopathy (DCM) remains among the most refractory heart diseases because of its complicated pathogenesis, and the key molecules that cause it remain unclear. MAIN METHODS To elucidate the molecules and upstream pathways critical for DCM pathogenesis, we performed meta-analysis and co-expression analysis of RNA-sequencing (RNA-seq) datasets from publicly available databases. We analyzed three RNA-seq datasets containing comparisons of RNA expression in left ventricles between healthy controls and DCM patients. We extracted differentially expressed genes (DEGs) and clarified upstream regulators of cardiovascular disease-related DEGs by Ingenuity Pathway Analysis (IPA). Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) analysis were also used to identify the hub gene candidates strongly associated with DCM. KEY FINDINGS In total, 406 samples (184 healthy, 222 DCM) were used in this study. Overall, 391 DEGs [absolute fold change (FC) ≥ 1.5; P < 0.01], including 221 upregulated and 170 downregulated ones in DCM, were extracted. Seven common hub genes (LUM, COL1A2, CXCL10, FMOD, COL3A1, ADAMTS4, MRC1) were finally screened. IPA showed several upstream transcriptional regulators, including activating (NFKBIA, TP73, CALR, NFKB1, KLF4) and inhibiting (CEBPA, PPARGC1A) ones. We further validated increased expression of several common hub genes in the transverse aortic constriction-induced heart failure model. SIGNIFICANCE In conclusion, meta-analysis and WGCNA using RNA-seq databases of DCM patients identified seven hub genes and seven upstream transcriptional regulators.
Collapse
Affiliation(s)
- Zixun Yuan
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan.
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Yuta Okabe
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Yoshiko Murakata
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Siqi Li
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Zonghu Song
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Yuzuno Shimoda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Haruka Mori
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
19
|
Mechanism of Action of Zhi Gan Cao Decoction for Atrial Fibrillation and Myocardial Fibrosis in a Mouse Model of Atrial Fibrillation: A Network Pharmacology-Based Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4525873. [PMID: 35720023 PMCID: PMC9203184 DOI: 10.1155/2022/4525873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Atrial fibrillation (AF), a commonly seen cardiac disease without optimal curative treatment option, is usually treated by traditional Chinese medicine in China. The Zhi-Gan-Cao decoction (ZGCD) is an alternative medicine for clinical use and has definitive effects. It remains to be defined regarding the specific components and related mechanisms of ZGCD for the treatment of AF. We determined the primary constituents and major targets of the herbs in ZGCD using the TCMSP, HERB, and BATMAN-TCM databases. The UniProt databank database amended and combined the prospective names to supply objective data and records. Every target connected to AF was generated using the GeneCards databank, Drugbank database, TTD, Disgenet database, and OMIM. After identifying possible common targets between ZGCD and AF, the interface network illustration “ZGCD component-AF-target” was created using Cytoscape. We obtained 175 constituents and 839 targets for seven herbal drug categories in the ZGCD and identified 1008 targets of AF. After merging and removing repetitions, 136 collective targets between the ZGCD and AF were removed using the Cytoscape system. These renowned targets were generated from 38 suitable components from among the 157 components. GO enhancement examination and KEGG enrichment analysis by Metascape identified the close connection between the critical target genes and 20 signaling pathways. Then, we injected isoproterenol subcutaneously into the mouse and gave gavage with roasted licorice soup. Two weeks later, mouse were processed and sampled for testing. The results of HE and Masson staining showed that ZGCD effectively alleviated the degree of myocardial fibrosis. As indicated by qRT-PCR and Western blotting, ZGCD significantly reduced COL1A1, COL1A2, COL3A1, and TGF-β1 in myocardial fibrotic tissue to reduce myocardial fibrosis and treat AF by interfering with the expression of COL1A1, COL1A2, COL3A1, and TGF-β1 in myocardial tissue. ZGCD may treat AF by lowering the degree of myocardial fibrosis.
Collapse
|
20
|
Sadri G, Fischer AG, Brittian KR, Elliott E, Nystoriak MA, Uchida S, Wysoczynski M, Leask A, Jones SP, Moore JB. Collagen type XIX regulates cardiac extracellular matrix structure and ventricular function. Matrix Biol 2022; 109:49-69. [PMID: 35346795 PMCID: PMC9161575 DOI: 10.1016/j.matbio.2022.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/13/2022] [Accepted: 03/22/2022] [Indexed: 12/26/2022]
Abstract
The cardiac extracellular matrix plays essential roles in homeostasis and injury responses. Although the role of fibrillar collagens have been thoroughly documented, the functions of non-fibrillar collagen members remain underexplored. These include a distinct group of non-fibrillar collagens, termed, fibril-associated collagens with interrupted triple helices (FACITs). Recent reports of collagen type XIX (encoded by Col19a1) expression in adult heart and evidence of its enhanced expression in cardiac ischemia suggest important functions for this FACIT in cardiac ECM structure and function. Here, we examined the cellular source of collagen XIX in the adult murine heart and evaluated its involvement in ECM structure and ventricular function. Immunodetection of collagen XIX in fractionated cardiovascular cell lineages revealed fibroblasts and smooth muscle cells as the primary sources of collagen XIX in the heart. Based on echocardiographic and histologic analyses, Col19a1 null (Col19a1N/N) mice exhibited reduced systolic function, thinning of left ventricular walls, and increased cardiomyocyte cross-sectional areas-without gross changes in myocardial collagen content or basement membrane morphology. Col19a1N/N cardiac fibroblasts had augmented expression of several enzymes involved in the synthesis and stability of fibrillar collagens, including PLOD1 and LOX. Furthermore, second harmonic generation-imaged ECM derived from Col19a1N/N cardiac fibroblasts, and transmission electron micrographs of decellularized hearts from Col19a1N/N null animals, showed marked reductions in fibrillar collagen structural organization. Col19a1N/N mice also displayed enhanced phosphorylation of focal adhesion kinase (FAK), signifying de-repression of the FAK pathway-a critical mediator of cardiomyocyte hypertrophy. Collectively, we show that collagen XIX, which had a heretofore unknown role in the mammalian heart, participates in the regulation of cardiac structure and function-potentially through modulation of ECM fibrillar collagen structural organization. Further, these data suggest that this FACIT may modify ECM superstructure via acting at the level of the fibroblast to regulate their expression of collagen synthetic and stabilization enzymes.
Collapse
Affiliation(s)
- Ghazal Sadri
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Annalara G Fischer
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth R Brittian
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Erin Elliott
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Matthew A Nystoriak
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven P Jones
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
21
|
Xu J, Xing F, Luo X, Gao J, Zhang Y, Zhang G, Bai X, Huang CC. Quantitation of Collagen Type V in Tissues by High-Performance Liquid Chromatography Coupled to Mass Spectrometry. Tissue Eng Part C Methods 2022; 28:95-103. [PMID: 35172620 DOI: 10.1089/ten.tec.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A method for quantifying the bovine collagen type V (Col. V) was established based on high-performance liquid chromatography coupled to mass spectrometry by the marker peptide external standard. High-purity Col. V was extracted by the acid-enzyme hydrolysis process, and the marker peptide of Col. V was identified by LCQ mass spectrometry as GPAGPMGLTGR. A broad linear range (0.01-5.00 μg/mL) with a correlation coefficient of 0.9984 was achieved, and the limit of detection and limit of quantification were found to be 3.00 × 10-3 and 6.25 × 10-3 μg/mL, respectively. The method precision was 1.49%. The recovery rate was determined as 97.1-109.6% with a relative standard deviation less than 5%. The proposed method was successfully applied for the determination of Col. V contents in the bovine heart, lung, and cornea, which were 0.72 ± 0.01%, 0.23 ± 0.01%, and 2.89 ± 0.00%, respectively. The results show that the proposed method is more suitable for measuring the content of Col. V in tissue samples compared with the enzyme-linked immunosorbent assay. The marker peptide method has high accuracy and great reproducibility, and will lay a foundation for the extraction and application of Col. V. Impact statement The accurate quantitative method for collagen type V (Col. V) is particularly important in scientific research, disease diagnosis and treatment, and industrial production. In this article, we proposed a high-performance liquid chromatography coupled to mass spectrometry method based on the external standard marker peptide to quantify bovine Col. V. This method shows a higher accuracy and recovery rate than enzyme-linked immunosorbent assay (ELISA), indicating that it is more suitable for measuring the content of Col. V in tissue samples than ELISA. The establishment of this method has laid a solid foundation for the extraction and application of Col. V.
Collapse
Affiliation(s)
- Jun Xu
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
| | - Fangyu Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Xi Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Jianping Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Yang Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Guifeng Zhang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Xinpeng Bai
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, College of Food Science and Technology, Hainan University, Haikou, China
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
| | - Ching-Cheng Huang
- PARSD Biomedical Material Research Center (Changzhou), Changzhou, China
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, China
| |
Collapse
|
22
|
Ceauşu Z, Popa M, Socea B, Gorecki G, Costache M, Ceauşu M. Influence of the microenvironment dynamics on extracellular matrix evolution under hypoxic ischemic conditions in the myocardium. Exp Ther Med 2022; 23:199. [DOI: 10.3892/etm.2022.11122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zenaida Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Manuela Popa
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Socea
- Department of Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gabriel Gorecki
- Department of Anesthesiology, ‘Sf. Pantelimon’ Emergency Hospital, 021659 Bucharest, Romania
| | - Mariana Costache
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihai Ceauşu
- Pathology Department, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
23
|
Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci 2021; 22:ijms222212341. [PMID: 34830222 PMCID: PMC8623999 DOI: 10.3390/ijms222212341] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise training has been reported to alleviate cardiac fibrosis and ameliorate heart dysfunction after myocardial infarction (MI), but the molecular mechanism is still not fully clarified. Fibroblast growth factor 21 (FGF21) exerts a protective effect on the infarcted heart. This study investigates whether exercise training could increase FGF21 protein expression and regulate the transforming growth factor-β1 (TGF-β1)-Smad2/3-MMP2/9 signaling pathway to alleviate cardiac fibrosis following MI. Male wild type (WT) C57BL/6J mice and Fgf21 knockout (Fgf21 KO) mice were used to establish the MI model and subjected to five weeks of different types of exercise training. Both aerobic exercise training (AET) and resistance exercise training (RET) significantly alleviated cardiac dysfunction and fibrosis, up-regulated FGF21 protein expression, inhibited the activation of TGF-β1-Smad2/3-MMP2/9 signaling pathway and collagen production, and meanwhile, enhanced antioxidant capacity and reduced cell apoptosis in the infarcted heart. In contrast, knockout of Fgf21 weakened the cardioprotective effects of AET after MI. In vitro, cardiac fibroblasts (CFs) were isolated from neonatal mice hearts and treated with H2O2 (100 μM, 6 h). Recombinant human FGF21 (rhFGF21, 100 ng/mL, 15 h) and/or 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR, 1 mM, 15 h) inhibited H2O2-induced activation of the TGF-β1-Smad2/3-MMP2/9 signaling pathway, promoted CFs apoptosis and reduced collagen production. In conclusion, exercise training increases FGF21 protein expression, inactivates the TGF-β1-Smad2/3-MMP2/9 signaling pathway, alleviates cardiac fibrosis, oxidative stress, and cell apoptosis, and finally improves cardiac function in mice with MI. FGF21 plays an important role in the anti-fibrosis effect of exercise training.
Collapse
|
24
|
Cytokine-Mediated Alterations of Human Cardiac Fibroblast's Secretome. Int J Mol Sci 2021; 22:ijms222212262. [PMID: 34830141 PMCID: PMC8617966 DOI: 10.3390/ijms222212262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-β. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-β stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast’s secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-β treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.
Collapse
|
25
|
Stearoyl-CoA Desaturase (SCD) Induces Cardiac Dysfunction with Cardiac Lipid Overload and Angiotensin II AT1 Receptor Protein Up-Regulation. Int J Mol Sci 2021; 22:ijms22189883. [PMID: 34576047 PMCID: PMC8472087 DOI: 10.3390/ijms22189883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.
Collapse
|
26
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
27
|
Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front Cell Dev Biol 2021; 8:621644. [PMID: 33511134 PMCID: PMC7835513 DOI: 10.3389/fcell.2020.621644] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is an essential component of the heart that imparts fundamental cellular processes during organ development and homeostasis. Most cardiovascular diseases involve severe remodeling of the ECM, culminating in the formation of fibrotic tissue that is deleterious to organ function. Treatment schemes effective at managing fibrosis and promoting physiological ECM repair are not yet in reach. Of note, the composition of the cardiac ECM changes significantly in a short period after birth, concurrent with the loss of the regenerative capacity of the heart. This highlights the importance of understanding ECM composition and function headed for the development of more efficient therapies. In this review, we explore the impact of ECM alterations, throughout heart ontogeny and disease, on cardiac cells and debate available approaches to deeper insights on cell–ECM interactions, toward the design of new regenerative therapies.
Collapse
Affiliation(s)
- Ana Catarina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,Gladstone Institutes, San Francisco, CA, United States
| | - Cassilda Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Catarina R G Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Yokota T, McCourt J, Ma F, Ren S, Li S, Kim TH, Kurmangaliyev YZ, Nasiri R, Ahadian S, Nguyen T, Tan XHM, Zhou Y, Wu R, Rodriguez A, Cohn W, Wang Y, Whitelegge J, Ryazantsev S, Khademhosseini A, Teitell MA, Chiou PY, Birk DE, Rowat AC, Crosbie RH, Pellegrini M, Seldin M, Lusis AJ, Deb A. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell 2020; 182:545-562.e23. [PMID: 32621799 PMCID: PMC7415659 DOI: 10.1016/j.cell.2020.06.030] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/17/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022]
Abstract
Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Jackie McCourt
- Department of Integrative Biology and Physiology, University of California, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Shuxun Ren
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, CA 90095, USA
| | - Yerbol Z Kurmangaliyev
- Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Samad Ahadian
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Thang Nguyen
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Xing Haw Marvin Tan
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yonggang Zhou
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Rimao Wu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Abraham Rodriguez
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Whitaker Cohn
- Passarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Behaviour, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Julian Whitelegge
- Passarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Behaviour, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Sergey Ryazantsev
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA; Department of Chemical Engineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Pei-Yu Chiou
- California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA
| | - David E Birk
- University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, CA 90095, USA; Department of Bioengineering, School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Department of Integrative Biology and Physiology, University of California, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Marcus Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, CA 92697, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Genetics, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, CA 90095, USA; Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
30
|
Abstract
The spectrum of ischemic heart diseases, encompassing acute myocardial infarction to heart failure, represents the leading cause of death worldwide. Although extensive progress in cardiovascular diagnoses and therapy has been made, the prevalence of the disease continues to increase. Cardiac regeneration has a promising perspective for the therapy of heart failure. Recently, extracellular matrix (ECM) has been shown to play an important role in cardiac regeneration and repair after cardiac injury. There is also evidence that the ECM could be directly used as a drug to promote cardiomyocyte proliferation and cardiac regeneration. Increasing evidence supports that applying ECM biomaterials to maintain heart function recovery is an important approach to apply the concept of cardiac regenerative medicine to clinical practice in the future. Here, we will introduce the essential role of cardiac ECM in cardiac regeneration and summarize the approaches of delivering ECM biomaterials to promote cardiac repair in this review.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
31
|
Reese-Petersen AL, Olesen MS, Karsdal MA, Svendsen JH, Genovese F. Atrial fibrillation and cardiac fibrosis: A review on the potential of extracellular matrix proteins as biomarkers. Matrix Biol 2020; 91-92:188-203. [PMID: 32205152 DOI: 10.1016/j.matbio.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
The involvement of fibrosis as an underlying pathology in heart diseases is becoming increasingly clear. In recent years, fibrosis has been granted a causative role in heart diseases and is now emerging as a major contributor to Atrial Fibrillation (AF) pathogenesis. AF is the most common arrhythmia encountered in the clinic, but the substrate for AF is still being debated. Consensus in the field is a combination of cardiac tissue remodeling, inflammation and genetic predisposition. The extracellular matrix (ECM) is subject of growing investigation, since measuring circulatory biomarkers of ECM formation and degradation provides both diagnostic and prognostic information. However, fibrosis is not just fibrosis. Each specific collagen biomarker holds information on regulatory mechanisms, as well as information about which section of the ECM is being remodeled, providing a detailed description of cardiac tissue homeostasis. This review entails an overview of the implication of fibrosis in AF, the different collagens and their significance, and the potential of using biomarkers of ECM remodeling as tools for understanding AF pathogenesis and identifying patients at risk for further disease progression.
Collapse
Affiliation(s)
| | - Morten S Olesen
- Labratory of Molecular Cardiology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jesper H Svendsen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
32
|
Schwach V, Passier R. Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 2020; 7:3566-3580. [PMID: 31338495 DOI: 10.1039/c8bm01348a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) generally have an immature fetal-like phenotype when directly compared to isolated CMs from human hearts, despite significant advance in differentiation of human pluripotent stem cells (hPSCs) to multiple cardiac lineages. Therefore, hPSC-CMs may not accurately mimic all facets of healthy and diseased human adult CMs. During embryonic development, the cardiac extracellular matrix (ECM) experiences a gradual assembly of matrix proteins that transits along the maturation of CMs. Mimicking these dynamic stages may contribute to hPSC-CMs maturation in vitro. Thus, in this review, we describe the progressive build-up of the cardiac ECM during embryonic development, the ECM of the adult human heart and the application of natural and synthetic biomaterials for cardiac tissue engineering with hPSC-CMs.
Collapse
Affiliation(s)
- Verena Schwach
- Dept of Applied Stem Cell Technologies, TechMed Centre, University of Twente, The Netherlands.
| | | |
Collapse
|
33
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
34
|
Hinderer S, Schenke-Layland K. Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev 2019; 146:77-82. [PMID: 31158407 DOI: 10.1016/j.addr.2019.05.011] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/22/2019] [Accepted: 05/22/2019] [Indexed: 01/07/2023]
Abstract
Fibrotic diseases cause annually more than 800,000 deaths worldwide, whereof the majority accounts for lung and cardiac fibrosis. A pathological remodeling of the extracellular matrix either due to ageing or as a result of an injury or disease leads to fibrotic scars. In the heart, these scars cause several cardiac dysfunctions either by reducing the ejection fraction due to a stiffened myocardial matrix, or by impairing electric conductance, or they can even lead to death. Today it is known that there are several different types of cardiac scars depending on the underlying cause of fibrosis. In this review, we present an overview of what is known about cardiac fibrosis including the role of cardiac cells and extracellular matrix in this disease. We will further summarize current diagnostic tools and highlight pre-clinical or clinical therapeutic strategies to address cardiac fibrosis.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Katja Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Silcherstrasse 7/1, 72076 Tübingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, 675 Charles E. Young Drive South, MRL, 3645 Los Angeles, CA, USA.
| |
Collapse
|
35
|
Xi C, Kassab GS, Lee LC. Microstructure-based finite element model of left ventricle passive inflation. Acta Biomater 2019; 90:241-253. [PMID: 30980939 DOI: 10.1016/j.actbio.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 01/08/2023]
Abstract
Isolating the role(s) of microstructural pathological features in affecting diastolic filling is important in developing targeted treatments for heart diseases. We developed a microstructure-based constitutive model of the myocardium and implemented it in an efficient open-source finite element modeling framework to simulate passive inflation of the left ventricle (LV) in a representative 3D geometry based on experimentally measured muscle fiber architecture. The constitutive model was calibrated using previous tissue-level biaxial mechanical test data derived from the canine heart and validated with independent sets of measurements made at both the isolated constituent and organ level. Using the validated model, we investigated the load taken up by each tissue constituent and their effects on LV passive inflation. The model predicts that the LV compliance is sensitive to the collagen ultrastructure, specifically, the collagen fiber azimuthal angle with respect to the local muscle fiber direction and its waviness. The model also predicts that most of the load in the sub-epicardial and sub-endocardial regions is taken up, respectively, by the muscle fibers and collagen fiber network. This result suggests that normalizing LV passive stiffness by altering the collagen fiber network and myocyte stiffness is most effective when applied to the sub-endocardial and sub-epicardial regions, respectively. This finding may have implication for the development of new pharmaceutical treatments targeting individual cardiac tissue constituents to normalize LV filling function in heart diseases. STATEMENT OF SIGNIFICANCE: Current constitutive models describing the tissue mechanical behavior of the myocardium are largely phenomenological. While able to represent the bulk tissue mechanical behavior, these models cannot distinguish the contribution of the tissue constituents and their ultrastructure to heart function. Although microstructure-based constitutive models can be used to isolate the role of tissue ultrastructure, they have not been implemented in a computational framework that can accommodate realistic 3D organ geometry. The present study addresses these issues by developing and validating a microstructure-based computational modeling framework, which is used to investigate the role of tissue constituents and their ultrastructure in affecting heart function.
Collapse
Affiliation(s)
- Ce Xi
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | | | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
36
|
Liu Z, Xu Q, Yang Q, Cao J, Wu C, Peng H, Zhang X, Chen J, Cheng G, Wu Y, Shi R, Zhang G. Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction. Redox Biol 2019; 22:101151. [PMID: 30844643 PMCID: PMC6402381 DOI: 10.1016/j.redox.2019.101151] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is the most important mechanism contributing to cardiac remodeling after myocardial infarction (MI). VPO1 is a heme enzyme that uses hydrogen peroxide (H2O2) to produce hypochlorous acid (HOCl). Our previous study has demonstrated that VPO1 regulates myocardial ischemic reperfusion and renal fibrosis. We investigated the role of VPO1 in cardiac fibrosis after MI. The results showed that VPO1 expression was robustly upregulated in the failing human heart with ischemic cardiomyopathy and in a murine model of MI accompanied by severe cardiac fibrosis. Most importantly, knockdown of VPO1 by tail vein injection of VPO1 siRNA significantly reduced cardiac fibrosis and improved cardiac function and survival rate. In VPO1 knockdown mouse model and cardiac fibroblasts cultured with TGF-β1, VPO1 contributes to cardiac fibroblasts differentiation, migration, collagen I synthesis and proliferation. Mechanistically, the fibrotic effects following MI of VPO1 manifested partially through HOCl formation to activate Smad2/3 and ERK1/2. Thus, we conclude that VPO1 is a crucial regulator of cardiac fibrosis after MI by mediating HOCl/Smad2/3 and ERK1/2 signaling pathways, implying a promising therapeutic target in ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Zhaoya Liu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Xu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qixin Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Cao
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihui Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinyi Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Chen
- Department of Humanistic Nursing, Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Yueheng Wu
- Department of Cardiovascular Medicine, Guangdong General Hospital, Guangzhou, Guangdong China
| | - Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Cerychova R, Bohuslavova R, Papousek F, Sedmera D, Abaffy P, Benes V, Kolar F, Pavlinkova G. Adverse effects of Hif1a mutation and maternal diabetes on the offspring heart. Cardiovasc Diabetol 2018; 17:68. [PMID: 29753320 PMCID: PMC5948854 DOI: 10.1186/s12933-018-0713-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
Background Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart. Methods and results In a mouse model, we demonstrated that haploinsufficient (Hif1a+/−) offspring from a diabetic pregnancy developed left ventricle dysfunction at 12 weeks of age, as manifested by decreased fractional shortening and structural remodeling of the myocardium. Transcriptional profiling by RNA-seq revealed significant transcriptome changes in the left ventricle of diabetes-exposed Hif1a+/− offspring associated with development, metabolism, apoptosis, and blood vessel physiology. In contrast, both wild type and Hif1a+/− offspring from diabetic pregnancies showed changes in immune system processes and inflammatory responses. Immunohistochemical analyses demonstrated that the combination of haploinsufficiency of Hif1a and exposure to maternal diabetes resulted in impaired macrophage infiltration, increased levels of advanced glycation end products, and changes in vascular homeostasis in the adult offspring heart. Conclusions Together our findings provide evidence that a global reduction in Hif1a gene dosage increases predisposition of the offspring exposed to maternal diabetes to cardiac dysfunction, and also underscore Hif1a as a critical factor in the fetal programming of adult cardiovascular disease. Electronic supplementary material The online version of this article (10.1186/s12933-018-0713-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Radka Cerychova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia.,Faculty of Science, Charles University, Prague, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia
| | | | - David Sedmera
- Institute of Physiology CAS, Prague, Czechia.,Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Vladimir Benes
- EMBL Genomics Core Facility, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Center of Excellence, Prumyslova 595, 25250, Vestec, Czechia.
| |
Collapse
|
38
|
Jabati S, Fareed J, Liles J, Otto A, Hoppensteadt D, Bontekoe J, Phan T, Walborn A, Syed M. Biomarkers of Inflammation, Thrombogenesis, and Collagen Turnover in Patients With Atrial Fibrillation. Clin Appl Thromb Hemost 2018; 24:718-723. [PMID: 29558818 PMCID: PMC6707715 DOI: 10.1177/1076029618761006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The purpose of this study was to determine whether there are any differences in the levels of inflammatory, thrombotic, and collagen turnover biomarkers between individuals with atrial fibrillation (AF) and healthy volunteers. Circulating plasma levels of plasminogen activator inhibitor 1 (PAI-1), CD40-ligand (CD40-L), nucleosomes (which are indicators of cell death), C-reactive protein (CRP), procollagen III N-terminal propeptide (PIIINP), procollagen III C-terminal propeptide (PIIICP), procollagen I N-terminal propeptide, tissue plasminogen activator, and von Willebrand factor were analyzed as potential biomarkers of AF. Baseline plasma was collected from patients with AF prior to ablation surgery at Loyola University Medical Center. Individuals with AF had statistically significantly increased levels of PAI-1, CD40-L, and nucleosomes, when compared to the normal population (P < .0001). Additionally, there was a statistically significant increase in the CRP (P = .01), PIIINP (P = .04), and PIIICP (P = .0008) when compared to normal individuals. From this study, it is concluded that the prothrombotic, inflammatory, and collagen turnover biomarkers PAI-1, CD40-L, nucleosomes, CRP, PIIICP, and PIIINP are elevated in AF.
Collapse
Affiliation(s)
- Sallu Jabati
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jeffrey Liles
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Abigail Otto
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jack Bontekoe
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Trung Phan
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Amanda Walborn
- 1 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Mushabbar Syed
- 2 Department of Cardiology, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
39
|
Pinkert MA, Hortensius RA, Ogle BM, Eliceiri KW. Imaging the Cardiac Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:21-44. [PMID: 30238364 DOI: 10.1007/978-3-319-97421-7_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the global leading cause of death. One route to address this problem is using biomedical imaging to measure the molecules and structures that surround cardiac cells. This cellular microenvironment, known as the cardiac extracellular matrix, changes in composition and organization during most cardiac diseases and in response to many cardiac treatments. Measuring these changes with biomedical imaging can aid in understanding, diagnosing, and treating heart disease. This chapter supports those efforts by reviewing representative methods for imaging the cardiac extracellular matrix. It first describes the major biological targets of ECM imaging, including the primary imaging target of fibrillar collagen. Then it discusses the imaging methods, describing their current capabilities and limitations. It categorizes the imaging methods into two main categories: organ-scale noninvasive methods and cellular-scale invasive methods. Noninvasive methods can be used on patients, but only a few are clinically available, and others require further development to be used in the clinic. Invasive methods are the most established and can measure a variety of properties, but they cannot be used on live patients. Finally, the chapter concludes with a perspective on future directions and applications of biomedical imaging technologies.
Collapse
Affiliation(s)
- Michael A Pinkert
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Rebecca A Hortensius
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
40
|
Becker M, Maring JA, Oberwallner B, Kappler B, Klein O, Falk V, Stamm C. Processing of Human Cardiac Tissue Toward Extracellular Matrix Self-assembling Hydrogel for In Vitro and In Vivo Applications. J Vis Exp 2017. [PMID: 29286394 DOI: 10.3791/56419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acellular extracellular matrix preparations are useful for studying cell-matrix interactions and facilitate regenerative cell therapy applications. Several commercial extracellular matrix products are available as hydrogels or membranes, but these do not possess tissue-specific biological activity. Because perfusion decellularization is usually not possible with human heart tissue, we developed a 3-step immersion decellularization process. Human myocardial slices procured during surgery are first treated with detergent-free hyperosmolar lysis buffer, followed by incubation with the ionic detergent, sodium dodecyl sulfate, and the process is completed by exploiting the intrinsic DNase activity of fetal bovine serum. This technique results in cell-free sheets of cardiac extracellular matrix with largely preserved fibrous tissue architecture and biopolymer composition, which were shown to provide specific environmental cues to cardiac cell populations and pluripotent stem cells. Cardiac extracellular matrix sheets can then be further processed into a microparticle powder without further chemical modification, or, via short-term pepsin digestion, into a self-assembling cardiac extracellular matrix hydrogel with preserved bioactivity.
Collapse
Affiliation(s)
- Matthias Becker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
| | - Janita A Maring
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
| | | | | | - Oliver Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin-Brandenburg Center for Regenerative Therapies (BCRT)
| | - Volkmar Falk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT); German Center for Cardiovascular Research (DZHK); Deutsches Herzzentrum Berlin (DHZB); Department of Cardiovascular Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT); German Center for Cardiovascular Research (DZHK); Deutsches Herzzentrum Berlin (DHZB);
| |
Collapse
|
41
|
Gluck JM, Herren AW, Yechikov S, Kao HKJ, Khan A, Phinney BS, Chiamvimonvat N, Chan JW, Lieu DK. Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix. PLoS One 2017; 12:e0185125. [PMID: 28934329 PMCID: PMC5608342 DOI: 10.1371/journal.pone.0185125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Extracellular matrix plays a role in differentiation and phenotype development of its resident cells. Although cardiac extracellular matrix from the contractile tissues has been studied and utilized in tissue engineering, extracellular matrix properties of the pacemaking sinoatrial node are largely unknown. In this study, the biomechanical properties and biochemical composition and distribution of extracellular matrix in the sinoatrial node were investigated relative to the left ventricle. Extracellular matrix of the sinoatrial node was found to be overall stiffer than that of the left ventricle and highly heterogeneous with interstitial regions composed of predominantly fibrillar collagens and rich in elastin. The extracellular matrix protein distribution suggests that resident pacemaking cardiomyocytes are enclosed in fibrillar collagens that can withstand greater tensile strength while the surrounding elastin-rich regions may undergo deformation to reduce the mechanical strain in these cells. Moreover, basement membrane-associated adhesion proteins that are ligands for integrins were of low abundance in the sinoatrial node, which may decrease force transduction in the pacemaking cardiomyocytes. In contrast to extracellular matrix of the left ventricle, extracellular matrix of the sinoatrial node may reduce mechanical strain and force transduction in pacemaking cardiomyocytes. These findings provide the criteria for a suitable matrix scaffold for engineering biopacemakers.
Collapse
Affiliation(s)
- Jessica M. Gluck
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
| | - Anthony W. Herren
- UC Davis Genome Center, University of California Davis; Davis, CA, United States of America
| | - Sergey Yechikov
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
| | - Hillary K. J. Kao
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
- Bridges to Stem Cell Research Program, California State University Sacramento; Sacramento, CA, United States of America
| | - Ambereen Khan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
- Bridges to Stem Cell Research Program, California State University Sacramento; Sacramento, CA, United States of America
| | - Brett S. Phinney
- UC Davis Genome Center, University of California Davis; Davis, CA, United States of America
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
- Department of Veterans Affairs, Northern California Health Care System; Mather, CA, United States of America
| | - James W. Chan
- Center for Biophotonics, University of California Davis; Sacramento, CA, United States of America
- Department of Pathology and Laboratory Medicine, University of California Davis; Sacramento, CA, United States of America
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
42
|
Frangogiannis NG. The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 2017; 127:1600-1612. [PMID: 28459429 DOI: 10.1172/jci87491] [Citation(s) in RCA: 332] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cardiac extracellular matrix (ECM) not only provides mechanical support, but also transduces essential molecular signals in health and disease. Following myocardial infarction, dynamic ECM changes drive inflammation and repair. Early generation of bioactive matrix fragments activates proinflammatory signaling. The formation of a highly plastic provisional matrix facilitates leukocyte infiltration and activates infarct myofibroblasts. Deposition of matricellular proteins modulates growth factor signaling and contributes to the spatial and temporal regulation of the reparative response. Mechanical stress due to pressure and volume overload and metabolic dysfunction also induce profound changes in ECM composition that contribute to the pathogenesis of heart failure. This manuscript reviews the role of the ECM in cardiac repair and remodeling and discusses matrix-based therapies that may attenuate remodeling while promoting repair and regeneration.
Collapse
|
43
|
Relationship of long-term prognosis to MMP and TIMP polymorphisms in patients after ST elevation myocardial infarction. J Appl Genet 2017; 58:331-341. [DOI: 10.1007/s13353-016-0388-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023]
|
44
|
Tatman PD, Muhonen EG, Wickers ST, Gee AO, Kim ES, Kim DH. Self-assembling peptides for stem cell and tissue engineering. Biomater Sci 2016; 4:543-54. [PMID: 26878078 PMCID: PMC4803621 DOI: 10.1039/c5bm00550g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Regenerative medicine holds great potential to address many shortcomings in current medical therapies. An emerging avenue of regenerative medicine is the use of self-assembling peptides (SAP) in conjunction with stem cells to improve the repair of damaged tissues. The specific peptide sequence, mechanical properties, and nanotopographical cues vary widely between different SAPs, many of which have been used for the regeneration of similar tissues. To evaluate the potential of SAPs to guide stem cell fate, we extensively reviewed the literature for reports of SAPs and stem cell differentiation. To portray the most accurate summary of these studies, we deliberately discuss both the successes and pitfalls, allowing us to make conclusions that span the breadth of this exciting field. We also expand on these conclusions by relating these findings to the fields of nanotopography, mechanotransduction, and the native composition of the extracellular matrix in specific tissues to identify potential directions for future research.
Collapse
Affiliation(s)
- Philip D Tatman
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Ethan G Muhonen
- School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sean T. Wickers
- Department of Chemistry, University of Colorado, Denver, Colorado, USA
| | - Albert O. Gee
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Eung-Sam Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Biological Sciences, Chonnam National University, Gwangju, Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
45
|
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J Mol Cell Cardiol 2016; 93:175-85. [PMID: 26578393 PMCID: PMC4945757 DOI: 10.1016/j.yjmcc.2015.11.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways.
Collapse
Affiliation(s)
- Margaux A Horn
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | - Andrew W Trafford
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
46
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|
47
|
Nagpal V, Rai R, Place AT, Murphy SB, Verma SK, Ghosh AK, Vaughan DE. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation 2015; 133:291-301. [PMID: 26585673 DOI: 10.1161/circulationaha.115.018174] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/11/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cardiac fibrosis is the pathological consequence of stress-induced fibroblast proliferation and fibroblast-to-myofibroblast transition. MicroRNAs have been shown to play a central role in the pathogenesis of cardiac fibrosis. We identified a novel miRNA-driven mechanism that promotes cardiac fibrosis via regulation of multiple fibrogenic pathways. METHODS AND RESULTS Using a combination of in vitro and in vivo studies, we identified that miR-125b is a novel regulator of cardiac fibrosis, proliferation, and activation of cardiac fibroblasts. We demonstrate that miR-125b is induced in both fibrotic human heart and murine models of cardiac fibrosis. In addition, our results indicate that miR-125b is necessary and sufficient for the induction of fibroblast-to-myofibroblast transition by functionally targeting apelin, a critical repressor of fibrogenesis. Furthermore, we observed that miR-125b inhibits p53 to induce fibroblast proliferation. Most importantly, in vivo silencing of miR-125b by systemic delivery of locked nucleic acid rescued angiotensin II-induced perivascular and interstitial fibrosis. Finally, the RNA-sequencing analysis established that miR-125b altered the gene expression profiles of the key fibrosis-related genes and is a core component of fibrogenesis in the heart. CONCLUSIONS In conclusion, miR-125b is critical for induction of cardiac fibrosis and acts as a potent repressor of multiple anti-fibrotic mechanisms. Inhibition of miR-125b may represent a novel therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases.
Collapse
Affiliation(s)
- Varun Nagpal
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Rahul Rai
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Aaron T Place
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Sheila B Murphy
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Suresh K Verma
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Asish K Ghosh
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL
| | - Douglas E Vaughan
- From Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL.
| |
Collapse
|
48
|
|
49
|
|
50
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|