1
|
Tomioka D, Jung SA, Pich A, Matsusaki M. Fabrication of oxygen-releasing dextran microgels by droplet-based microfluidic method. RSC Adv 2024; 14:26544-26555. [PMID: 39175690 PMCID: PMC11339778 DOI: 10.1039/d4ra04356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
In the tissue engineering field, the supply of oxygen to three-dimensional (3D) tissues is an important aspect to avoid necrosis due to hypoxia. Although oxygen-releasing bulk materials containing calcium peroxide (CaO2, CP) have attracted much attention, micrometer-sized oxygen-releasing soft materials would be advantageous because of their highly controllable structures, which can be applied for cell scaffolds, injectable materials, and bioink components in 3D bioprinting. In this study, oxygen-releasing microgels were fabricated via a droplet-based microfluidic system. Homogeneous, monodisperse and stable oxygen-releasing microgels were obtained by photo-crosslinking of droplets composed of biocompatible dextran modified with methacrylate groups and CP nanoparticles as an oxygen source. We also used our microfluidic system for the in situ amorphous calcium carbonate (CaCO3, ACC) formation on the surface of CP nanoparticles to achieve the controlled release of oxygen from the microgel. Oxygen release from an ACC-CP microgel in a neutral cell culture medium was suppressed because incorporation of CP in the ACC suppressed the reaction with water. Strikingly, stimuli to dissolve ACC such as a weak acidic conditions triggered the oxygen release from microgels loaded with ACC-CP, as the dissolution of CaCO3 allows CP to react. Taken together, applications of this new class of biomaterials for tissue engineering are greatly anticipated. In addition, the developed microfluidic system can be used for a variety of oxygen-releasing microgels by changing the substrates of the hydrogel network.
Collapse
Affiliation(s)
- Daisuke Tomioka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| | - Shannon Anna Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita Osaka 565-0871 Japan
| |
Collapse
|
2
|
Tabish TA, Xu J, Campbell CK, Abbas M, Myers WK, Didwal P, Carugo D, Xie F, Crabtree MJ, Stride E, Lygate CA. pH-sensitive release of nitric oxide gas using peptide-graphene co-assembled hybrid nanosheets. Nitric Oxide 2024; 147:42-50. [PMID: 38631610 DOI: 10.1016/j.niox.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 μM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, OX3 7BN, United Kingdom.
| | - Jiamin Xu
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Christopher K Campbell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, United Arab Emirates
| | - William K Myers
- Centre for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, United Kingdom
| | - Pravin Didwal
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, United Kingdom
| | - Dario Carugo
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), The Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, OX3 7BN, United Kingdom; Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering (IBME), Department of Engineering Science, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, OX3 7BN, United Kingdom
| |
Collapse
|
3
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Bustin A, Witschey WRT, van Heeswijk RB, Cochet H, Stuber M. Magnetic resonance myocardial T1ρ mapping : Technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson 2023; 25:34. [PMID: 37331930 DOI: 10.1186/s12968-023-00940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The potential of cardiac magnetic resonance to improve cardiovascular care and patient management is considerable. Myocardial T1-rho (T1ρ) mapping, in particular, has emerged as a promising biomarker for quantifying myocardial injuries without exogenous contrast agents. Its potential as a contrast-agent-free ("needle-free") and cost-effective diagnostic marker promises high impact both in terms of clinical outcomes and patient comfort. However, myocardial T1ρ mapping is still at a nascent stage of development and the evidence supporting its diagnostic performance and clinical effectiveness is scant, though likely to change with technological improvements. The present review aims at providing a primer on the essentials of myocardial T1ρ mapping, and to describe the current range of clinical applications of the technique to detect and quantify myocardial injuries. We also delineate the important limitations and challenges for clinical deployment, including the urgent need for standardization, the evaluation of bias, and the critical importance of clinical testing. We conclude by outlining technical developments to be expected in the future. If needle-free myocardial T1ρ mapping is shown to improve patient diagnosis and prognosis, and can be effectively integrated in cardiovascular practice, it will fulfill its potential as an essential component of a cardiac magnetic resonance examination.
Collapse
Affiliation(s)
- Aurelien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
5
|
Wilson AD, Richards MA, Curtis MK, Gunadasa-Rohling M, Monterisi S, Loonat AA, Miller JJ, Ball V, Lewis A, Tyler DJ, Moshnikova A, Andreev OA, Reshetnyak YK, Carr C, Swietach P. Acidic environments trigger intracellular H+-sensing FAK proteins to re-balance sarcolemmal acid-base transporters and auto-regulate cardiomyocyte pH. Cardiovasc Res 2022; 118:2946-2959. [PMID: 34897412 PMCID: PMC9648823 DOI: 10.1093/cvr/cvab364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS In cardiomyocytes, acute disturbances to intracellular pH (pHi) are promptly corrected by a system of finely tuned sarcolemmal acid-base transporters. However, these fluxes become thermodynamically re-balanced in acidic environments, which inadvertently causes their set-point pHi to fall outside the physiological range. It is unclear whether an adaptive mechanism exists to correct this thermodynamic challenge, and return pHi to normal. METHODS AND RESULTS Following left ventricle cryo-damage, a diffuse pattern of low extracellular pH (pHe) was detected by acid-sensing pHLIP. Despite this, pHi measured in the beating heart (13C NMR) was normal. Myocytes had adapted to their acidic environment by reducing Cl-/HCO3- exchange (CBE)-dependent acid-loading and increasing Na+/H+ exchange (NHE1)-dependent acid-extrusion, as measured by fluorescence (cSNARF1). The outcome of this adaptation on pHi is revealed as a cytoplasmic alkalinization when cells are superfused at physiological pHe. Conversely, mice given oral bicarbonate (to improve systemic buffering) had reduced myocardial NHE1 expression, consistent with a needs-dependent expression of pHi-regulatory transporters. The response to sustained acidity could be replicated in vitro using neonatal ventricular myocytes incubated at low pHe for 48 h. The adaptive increase in NHE1 and decrease in CBE activities was linked to Slc9a1 (NHE1) up-regulation and Slc4a2 (AE2) down-regulation. This response was triggered by intracellular H+ ions because it persisted in the absence of CO2/HCO3- and became ablated when acidic incubation media had lower chloride, a solution manoeuvre that reduces the extent of pHi-decrease. Pharmacological inhibition of FAK-family non-receptor kinases, previously characterized as pH-sensors, ablated this pHi autoregulation. In support of a pHi-sensing role, FAK protein Pyk2 (auto)phosphorylation was reduced within minutes of exposure to acidity, ahead of adaptive changes to pHi control. CONCLUSIONS Cardiomyocytes fine-tune the expression of pHi-regulators so that pHi is at least 7.0. This autoregulatory feedback mechanism defines physiological pHi and protects it during pHe vulnerabilities.
Collapse
Affiliation(s)
- Abigail D Wilson
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mark A Richards
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - M Kate Curtis
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Stefania Monterisi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Andrew Lewis
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Level 0, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Anna Moshnikova
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Oleg A Andreev
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA
| | - Carolyn Carr
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
6
|
Inkjet-printed flexible non-enzymatic lactate sensor with high sensitivity and low interference using a stacked NiOx/NiOx-Nafion nanocomposite electrode with clinical blood test verification. Talanta 2022; 249:123598. [DOI: 10.1016/j.talanta.2022.123598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
7
|
Gruszczyk AV, Casey AM, James AM, Prag HA, Burger N, Bates GR, Hall AR, Allen FM, Krieg T, Saeb-Parsy K, Murphy MP. Mitochondrial metabolism and bioenergetic function in an anoxic isolated adult mouse cardiomyocyte model of in vivo cardiac ischemia-reperfusion injury. Redox Biol 2022; 54:102368. [PMID: 35749842 PMCID: PMC9234472 DOI: 10.1016/j.redox.2022.102368] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Cell models of cardiac ischemia-reperfusion (IR) injury are essential to facilitate understanding, but current monolayer cell models poorly replicate the in vivo IR injury that occurs within a three-dimensional tissue. Here we show that this is for two reasons: the residual oxygen present in many cellular hypoxia models sustains mitochondrial oxidative phosphorylation; and the loss of lactate from cells into the incubation medium during ischemia enables cells to sustain glycolysis. To overcome these limitations, we incubated isolated adult mouse cardiomyocytes anoxically while inhibiting lactate efflux. These interventions recapitulated key markers of in vivo ischemia, notably the accumulation of succinate and the loss of adenine nucleotides. Upon reoxygenation after anoxia the succinate that had accumulated during anoxia was rapidly oxidized in association with extensive mitochondrial superoxide/hydrogen peroxide production and cell injury, mimicking reperfusion injury. This cell model will enable key aspects of cardiac IR injury to be assessed in vitro.
Collapse
Affiliation(s)
- Anja V Gruszczyk
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Alva M Casey
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew M James
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nils Burger
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Georgina R Bates
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew R Hall
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Fay M Allen
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, CB2 2QQ, UK; NIHR Biomedical Research Centre and NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Biomedical Campus, University of Cambridge, Cambridge, CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
8
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
9
|
Fischesser DM, Bo B, Benton RP, Su H, Jahanpanah N, Haworth KJ. Controlling Reperfusion Injury With Controlled Reperfusion: Historical Perspectives and New Paradigms. J Cardiovasc Pharmacol Ther 2021; 26:504-523. [PMID: 34534022 DOI: 10.1177/10742484211046674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac reperfusion injury is a well-established outcome following treatment of acute myocardial infarction and other types of ischemic heart conditions. Numerous cardioprotection protocols and therapies have been pursued with success in pre-clinical models. Unfortunately, there has been lack of successful large-scale clinical translation, perhaps in part due to the multiple pathways that reperfusion can contribute to cell death. The search continues for new cardioprotection protocols based on what has been learned from past results. One class of cardioprotection protocols that remain under active investigation is that of controlled reperfusion. This class consists of those approaches that modify, in a controlled manner, the content of the reperfusate or the mechanical properties of the reperfusate (e.g., pressure and flow). This review article first provides a basic overview of the primary pathways to cell death that have the potential to be addressed by various forms of controlled reperfusion, including no-reflow phenomenon, ion imbalances (particularly calcium overload), and oxidative stress. Descriptions of various controlled reperfusion approaches are described, along with summaries of both mechanistic and outcome-oriented studies at the pre-clinical and clinical phases. This review will constrain itself to approaches that modify endogenously-occurring blood components. These approaches include ischemic postconditioning, gentle reperfusion, controlled hypoxic reperfusion, controlled hyperoxic reperfusion, controlled acidotic reperfusion, and controlled ionic reperfusion. This review concludes with a discussion of the limitations of past approaches and how they point to potential directions of investigation for the future.
Collapse
Affiliation(s)
- Demetria M Fischesser
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Bin Bo
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Rachel P Benton
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Haili Su
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Newsha Jahanpanah
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| | - Kevin J Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, 2514University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ 2021; 28:1149-1158. [PMID: 33473180 PMCID: PMC8027425 DOI: 10.1038/s41418-020-00729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Philip Eaton
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| |
Collapse
|
11
|
Bøgh N, Hansen ESS, Mariager CØ, Bertelsen LB, Ringgaard S, Laustsen C. Cardiac pH-Imaging With Hyperpolarized MRI. Front Cardiovasc Med 2020; 7:603674. [PMID: 33244471 PMCID: PMC7683793 DOI: 10.3389/fcvm.2020.603674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Regardless of the importance of acid-base disturbances in cardiac disease, there are currently no methods for clinical detection of pH in the heart. Several magnetic resonance imaging techniques hold translational promise and may enable in-vivo mapping of pH. We provide a brief overview of these emerging techniques. A particular focus is on the promising advance of magnetic resonance spectroscopy and imaging with hyperpolarized 13C-subtrates as biomarkers of myocardial pH. Hyperpolarization allows quantification of key metabolic substrates and their metabolites. Hereby, pH-sensitive reactions can be probed to provide a measure of acid-base alterations. To date, the most used substrates are [1-13C]pyruvate and 13C-labeled bicarbonate; however, others have been suggested. In cardiovascular medicine, hyperpolarized magnetic resonance spectroscopy has been used to probe acid-base disturbances following pharmacological stress, ischemia and heart failure in animals. In addition to pH-estimation, the technique can quantify fluxes such as the pivotal conversion of pyruvate to lactate via lactate dehydrogenase. This capability, a good safety profile and the fact that the technique is employable in clinical scanners have led to recent translation in early clinical trials. Thus, magnetic resonance spectroscopy and imaging may provide clinical pH-imaging in the near future.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lotte Bonde Bertelsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steffen Ringgaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Milliken AS, Kulkarni CA, Brookes PS. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury. Redox Biol 2020; 37:101733. [PMID: 33007502 PMCID: PMC7527751 DOI: 10.1016/j.redox.2020.101733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 02/02/2023] Open
Abstract
Generation of mitochondrial reactive oxygen species (ROS) is an important process in triggering cellular necrosis and tissue infarction during ischemia-reperfusion (IR) injury. Ischemia results in accumulation of the metabolite succinate. Rapid oxidation of this succinate by mitochondrial complex II (Cx-II) during reperfusion reduces the co-enzyme Q (Co-Q) pool, thereby driving electrons backward into complex-I (Cx-I), a process known as reverse electron transport (RET), which is thought to be a major source of ROS. During ischemia, enhanced glycolysis results in an acidic cellular pH at the onset of reperfusion. While the process of RsET within Cx-I is known to be enhanced by a high mitochondrial trans-membrane ΔpH, the impact of pH itself on the integrated process of Cx-II to Cx-I RET has not been fully studied. Using isolated mouse heart and liver mitochondria under conditions which mimic the onset of reperfusion (i.e., high [ADP]), we show that mitochondrial respiration (state 2 and state 3) as well as isolated Cx-II activity are impaired at acidic pH, whereas the overall generation of ROS by Cx-II to Cx-I RET was insensitive to pH. Together these data indicate that the acceleration of Cx-I RET ROS by ΔpH appears to be cancelled out by the impact of pH on the source of electrons, i.e. Cx-II. Implications for the role of Cx-II to Cx-I RET derived ROS in IR injury are discussed. ROS from complex I (Cx-I) reverse electron transport (RET) is enhanced at acidic pH. Mitochondrial complex II (Cx-II) activity is inhibited at acidic pH. These effects cancel out, yielding no net pH response of Cx-II to Cx-I RET ROS.
Collapse
Affiliation(s)
- Alexander S Milliken
- Department of Pharmacology and Physiology, University of Rochester Medical Center, USA
| | - Chaitanya A Kulkarni
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA
| | - Paul S Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, USA.
| |
Collapse
|
13
|
Ferraro E, Pozhidaeva L, Pitcher DS, Mansfield C, Koh JHB, Williamson C, Aslanidi O, Gorelik J, Ng FS. Prolonged ursodeoxycholic acid administration reduces acute ischaemia-induced arrhythmias in adult rat hearts. Sci Rep 2020; 10:15284. [PMID: 32943714 PMCID: PMC7499428 DOI: 10.1038/s41598-020-72016-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial ischaemia and reperfusion (I-R) are major causes of ventricular arrhythmias in patients with a history of coronary artery disease. Ursodeoxycholic acid (UDCA) has previously been shown to be antiarrhythmic in fetal hearts. This study was performed to investigate if UDCA protects against ischaemia-induced and reperfusion-induced arrhythmias in the adult myocardium, and compares the effect of acute (perfusion only) versus prolonged (2 weeks pre-treatment plus perfusion) UDCA administration. Langendorff-perfused adult Sprague-Dawley rat hearts were subjected to acute regional ischaemia by ligation of the left anterior descending artery (10 min), followed by reperfusion (2 min), and arrhythmia incidence quantified. Prolonged UDCA administration reduced the incidence of acute ischaemia-induced arrhythmias (p = 0.028), with a reduction in number of ventricular ectopic beats during the ischaemic phase compared with acute treatment (10 ± 3 vs 58 ± 15, p = 0.036). No antiarrhythmic effect was observed in the acute UDCA administration group. Neither acute nor prolonged UDCA treatment altered the incidence of reperfusion arrhythmias. The antiarrhythmic effect of UDCA may be partially mediated by an increase in cardiac wavelength, due to the attenuation of conduction velocity slowing (p = 0.03), and the preservation of Connexin43 phosphorylation during acute ischaemia (p = 0.0027). The potential antiarrhythmic effects of prolonged UDCA administration merit further investigation.
Collapse
Affiliation(s)
- Elisa Ferraro
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lidia Pozhidaeva
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - David S Pitcher
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Jia Han Benjamin Koh
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | | | - Oleg Aslanidi
- School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
14
|
Khodade VS, Pharoah BM, Paolocci N, Toscano JP. Alkylamine-Substituted Perthiocarbamates: Dual Precursors to Hydropersulfide and Carbonyl Sulfide with Cardioprotective Actions. J Am Chem Soc 2020; 142:4309-4316. [DOI: 10.1021/jacs.9b12180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vinayak S. Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Blaze M. Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - John P. Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Mitochondrial fission protein 1 up-regulation ameliorates senescence-related endothelial dysfunction of human endothelial progenitor cells. Angiogenesis 2019; 22:569-582. [DOI: 10.1007/s10456-019-09680-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
|
16
|
Shteinikov VY, Potapieva NN, Gmiro VE, Tikhonov DB. Hydrophobic Amines and Their Guanidine Analogues Modulate Activation and Desensitization of ASIC3. Int J Mol Sci 2019; 20:ijms20071713. [PMID: 30959896 PMCID: PMC6480424 DOI: 10.3390/ijms20071713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) is an important member of the acid-sensing ion channels family, which is widely expressed in the peripheral nervous system and contributes to pain sensation. ASICs are targeted by various drugs and toxins. However, mechanisms and structural determinants of ligands' action on ASIC3 are not completely understood. In the present work we studied ASIC3 modulation by a series of "hydrophobic monoamines" and their guanidine analogs, which were previously characterized to affect other ASIC channels via multiple mechanisms. Electrophysiological analysis of action via whole-cell patch clamp method was performed using rat ASIC3 expressed in Chinese hamster ovary (CHO) cells. We found that the compounds studied inhibited ASIC3 activation by inducing acidic shift of proton sensitivity and slowed channel desensitization, which was accompanied by a decrease of the equilibrium desensitization level. The total effect of the drugs on the sustained ASIC3-mediated currents was the sum of these opposite effects. It is demonstrated that drugs' action on activation and desensitization differed in their structural requirements, kinetics of action, and concentration and state dependencies. Taken together, these findings suggest that effects on activation and desensitization are independent and are likely mediated by drugs binding to distinct sites in ASIC3.
Collapse
Affiliation(s)
- Vasilii Y Shteinikov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia.
| | - Natalia N Potapieva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia.
| | - Valery E Gmiro
- Institute of Experimental Medicine, RAMS, St. Petersburg 197376, Russia.
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St. Petersburg 194223, Russia.
| |
Collapse
|
17
|
Yang L, Zhao L, Cui L, Huang Y, Ye J, Zhang Q, Jiang X, Zhang D, Huang Y. Decreased α-tubulin acetylation induced by an acidic environment impairs autophagosome formation and leads to rat cardiomyocyte injury. J Mol Cell Cardiol 2019; 127:143-153. [DOI: 10.1016/j.yjmcc.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 11/26/2022]
|
18
|
Peters CH, Ghovanloo MR, Gershome C, Ruben PC. pH Modulation of Voltage-Gated Sodium Channels. Handb Exp Pharmacol 2018; 246:147-160. [PMID: 29460150 DOI: 10.1007/164_2018_99] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Changes in blood and tissue pH accompany physiological and pathophysiological conditions including exercise, cardiac ischemia, ischemic stroke, and cocaine ingestion. These conditions are known to trigger the symptoms of electrical diseases in patients carrying sodium channel mutations. Protons cause a diverse set of changes to sodium channel gating, which generally lead to decreases in the amplitude of the transient sodium current and increases in the fraction of non-inactivating channels that pass persistent currents. These effects are shared with disease-causing mutants in neuronal, skeletal muscle, and cardiac tissue and may be compounded in mutants that impart greater proton sensitivity to sodium channels, suggesting a role of protons in triggering acute symptoms of electrical disease.In this chapter, we review the mechanisms of proton block of the sodium channel pore and a suggested mode of action by which protons alter channel gating. We discuss the available data on isoform specificity of proton effects and tissue level effects. Finally, we review the role that protons play in disease and our own recent studies on proton-sensitizing mutants in cardiac and skeletal muscle sodium channels.
Collapse
Affiliation(s)
- Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mohammad-Reza Ghovanloo
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cynthia Gershome
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
19
|
Sirish P, Ledford HA, Timofeyev V, Thai PN, Ren L, Kim HJ, Park S, Lee JH, Dai G, Moshref M, Sihn CR, Chen WC, Timofeyeva MV, Jian Z, Shimkunas R, Izu LT, Chiamvimonvat N, Chen-Izu Y, Yamoah EN, Zhang XD. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6. Circ Arrhythm Electrophysiol 2017; 10:CIRCEP.117.005267. [PMID: 29025768 DOI: 10.1161/circep.117.005267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Intracellular pH (pHi) is critical to cardiac excitation and contraction; uncompensated changes in pHi impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pHi regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl-/HCO3- exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pHi, but also cardiac excitability. METHODS AND RESULTS To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout (Slc26a6-/- ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca2+ transient and sarcoplasmic reticulum Ca2+ load, together with decreased sarcomere shortening in Slc26a6-/- cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pHi is elevated in Slc26a6-/- cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl-/HCO3- exchange activities of Slc26a6. Moreover, Slc26a6-/- mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. CONCLUSIONS Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl-/HCO3- transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pHi, excitability, and contractility. pHi is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6-/- mice.
Collapse
Affiliation(s)
- Padmini Sirish
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hannah A Ledford
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Valeriy Timofeyev
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Phung N Thai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Lu Ren
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Hyo Jeong Kim
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Seojin Park
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Jeong Han Lee
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Gu Dai
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maryam Moshref
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Choong-Ryoul Sihn
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Wei Chun Chen
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Maria Valeryevna Timofeyeva
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Zhong Jian
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Rafael Shimkunas
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Leighton T Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Nipavan Chiamvimonvat
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ye Chen-Izu
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Ebenezer N Yamoah
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.)
| | - Xiao-Dong Zhang
- From the Division of Cardiovascular Medicine, Department of Internal Medicine (P.S., H.A.L., V.T., P.N.T., L.R., S.P., G.D., M.M., C.-R.S., W.C.C., M.V.T., N.C., Y.C.-I., X.-D.Z.), Center for Neuroscience (H.J.K.), Department of Pharmacology (Z.J., R.S., L.T.I., N.C., Y.C.-I.) and Department of Biomedical Engineering (R.S., Y.C.-I.), University of California, Davis; Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno (J.H.L., E.N.Y.); and Department of Veterans Affairs, Northern California Health Care System, Mather (M.V.T., N.C., X.-D.Z.).
| |
Collapse
|
20
|
Peters CH, Yu A, Zhu W, Silva JR, Ruben PC. Depolarization of the conductance-voltage relationship in the NaV1.5 mutant, E1784K, is due to altered fast inactivation. PLoS One 2017; 12:e0184605. [PMID: 28898267 PMCID: PMC5595308 DOI: 10.1371/journal.pone.0184605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed long QT syndrome/Brugada syndrome mutant in the cardiac voltage-gated sodium channel NaV1.5. E1784K shifts the midpoint of the channel conductance-voltage relationship to more depolarized membrane potentials and accelerates the rate of channel fast inactivation. The depolarizing shift in the midpoint of the conductance curve in E1784K is exacerbated by low extracellular pH. We tested whether the E1784K mutant shifts the channel conductance curve to more depolarized membrane potentials by affecting the channel voltage-sensors. We measured ionic currents and gating currents at pH 7.4 and pH 6.0 in Xenopus laevis oocytes. Contrary to our expectation, the movement of gating charges is shifted to more hyperpolarized membrane potentials by E1784K. Voltage-clamp fluorimetry experiments show that this gating charge shift is due to the movement of the DIVS4 voltage-sensor being shifted to more hyperpolarized membrane potentials. Using a model and experiments on fast inactivation-deficient channels, we show that changes to the rate and voltage-dependence of fast inactivation are sufficient to shift the conductance curve in E1784K. Our results localize the effects of E1784K to DIVS4, and provide novel insight into the role of the DIV-VSD in regulating the voltage-dependencies of activation and fast inactivation.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alec Yu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Peter C. Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
21
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Linda Nguyen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas Whiting
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Joseph Weygand
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Niki Zacharias Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Amy B Heimberger
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
22
|
Kardiale „gap junctions“. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-016-0106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol 2017; 13:494-500. [PMID: 28263965 PMCID: PMC5516644 DOI: 10.1038/nchembio.2307] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
The metabolite 2-hydroxyglutarate (2HG) can be produced as either a D(R)- or L(S)- enantiomer, each of which inhibits alpha-ketoglutarate (αKG)-dependent enzymes involved in diverse biologic processes. Oncogenic mutations in isocitrate dehydrogenase produce D-2HG, which causes a pathologic blockade in cell differentiation. On the other hand, oxygen limitation leads to accumulation of L-2HG, which can facilitate physiologic adaptation to hypoxic stress in both normal and malignant cells. Here we demonstrate that purified lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) catalyze stereospecific production of L-2HG via ‘promiscuous’ reduction of the alternative substrate αKG. Acidic pH enhances production of L-2HG by promoting a protonated form of αKG that binds to a key residue in the substrate-binding pocket of LDHA. Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia. These findings offer insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.
Collapse
|
24
|
Raso A, Dirkx E. Cardiac regenerative medicine: At the crossroad of microRNA function and biotechnology. Noncoding RNA Res 2017; 2:27-37. [PMID: 30159418 PMCID: PMC6096413 DOI: 10.1016/j.ncrna.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
There is an urgent need to develop new therapeutic strategies to stimulate cardiac repair after damage, such as myocardial infarction. Already for more than a century scientist are intrigued by studying the regenerative capacity of the heart. While moving away from the old classification of the heart as a post-mitotic organ, and being inspired by the stem cell research in other scientific fields, mainly three different strategies arose in order to develop regenerative medicine, namely; the use of cardiac stem cells, reprogramming of fibroblasts into cardiomyocytes or direct stimulation of endogenous cardiomyocyte proliferation. MicroRNAs, known to play a role in orchestrating cell fate processes such as proliferation, differentiation and reprogramming, gained a lot of attention in this context the latest years. Indeed, several research groups have independently demonstrated that microRNA-based therapy shows promising results to induce heart tissue regeneration and improve cardiac pump function after myocardial injury. Nowadays, a whole new biotechnology field has been unveiled to investigate the possibilities for efficient, safe and specific delivery of microRNAs towards the heart.
Collapse
Affiliation(s)
| | - Ellen Dirkx
- Department of Cardiology, CARIM School for Cardiovascular Disease, Maastricht University, 6229ER Maastricht, The Netherlands
| |
Collapse
|
25
|
Wang S, Ding WG, Bai JY, Toyoda F, Wei MJ, Matsuura H. Regulation of human cardiac Kv1.5 channels by extracellular acidification. Pflugers Arch 2016; 468:1885-1894. [PMID: 27796577 DOI: 10.1007/s00424-016-1890-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Human Kv1.5 channels (hKv1.5) conduct the ultra-rapid delayed rectifier potassium current (I Kur), which plays an important role in action potential repolarization of atrial myocytes. The present study was undertaken to examine the effects of acidic pH on hKv1.5 wild-type (WT) and its pore mutant channels heterologously expressed in Chinese hamster ovary (CHO) cells using site-directed mutagenesis combined with whole-cell patch-clamp technique. Both extracellular and intracellular acidifications equally and reversely reduced the amplitude of hKv1.5 currents. The extracellular acidification significantly shifted the voltage dependence of current activation to more depolarized potentials and accelerated deactivation kinetics of the current. The ancillary β subunits Kvβ1.3 and Kvβ1.2, known to modify the pharmacological sensitivities of hKv1.5, enhanced the extracellular proton-induced inhibitory effect on hKv1.5 current. In addition, several mutants (T462C, T479A, T480A, and I508A) exhibited significantly higher sensitivity to acidic pH-induced inhibition compared with WT channel, whereas the inhibitory effect of acidic pH was markedly reduced in H463G mutant. These observations indicate that (1) extracellular acidification modifies hKv1.5 gating and activity, (2) β subunits and several residues (T462, T479, T480, and I508) play critical roles in determining the sensitivity of the channel to acidic exposure, and (3) H463 may be a critical sensor for the channel inhibition by extracellular protons.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Jia-Yu Bai
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
26
|
Zhao L, Cui L, Jiang X, Zhang J, Zhu M, Jia J, Zhang Q, Zhang J, Zhang D, Huang Y. Extracellular pH regulates autophagy via the AMPK-ULK1 pathway in rat cardiomyocytes. FEBS Lett 2016; 590:3202-12. [PMID: 27531309 DOI: 10.1002/1873-3468.12359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/20/2022]
Abstract
Various pathological conditions contribute to pH fluctuations and affect the functions of vital organs such as the heart. In this study, we show that in rat cardiomyocytes, acidic extracellular pH (pHe) inhibits autophagy, whereas alkaline pHe stimulates it. We also find that adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Unc-51-like kinase 1 (ULK1) are very sensitive to pHe changes. Furthermore, by interfering with AMPK, mTOR or ULK1 activity, we demonstrate that the AMPK-ULK1 pathway, but not the mTOR pathway, plays a crucial role on pHe-regulated autophagy and cardiomyocyte viability. These data provide a potential therapeutic strategy against cardiomyocyte injury triggered by pH fluctuations.
Collapse
Affiliation(s)
- Liping Zhao
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Cui
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xupin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junhui Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Minghua Zhu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiaping Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dongxia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Yuesheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
27
|
Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, Wang D, Lefer DJ, Xian M. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. J Am Chem Soc 2016; 138:6336-9. [DOI: 10.1021/jacs.6b01373] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jianming Kang
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Chelsea L. Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Chung-Min Park
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department
of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, South Korea
| | - Chun-tao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 511436, China
| | - Armando Pacheco
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Difei Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Ming Xian
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
28
|
Peters CH, Abdelsayed M, Ruben PC. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:77-88. [DOI: 10.1016/j.pbiomolbio.2015.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/27/2015] [Accepted: 12/15/2015] [Indexed: 01/16/2023]
|
29
|
Zuliani C, Ng FS, Alenda A, Eftekhar A, Peters NS, Toumazou C. An array of individually addressable micro-needles for mapping pH distributions. Analyst 2016; 141:4659-4666. [DOI: 10.1039/c6an00639f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the preparation of an array of individually addressable pH sensitive microneedles which demonstrated suitable for measuring pH distribution during heart ischemia and reperfusion cycles.
Collapse
Affiliation(s)
- Claudio Zuliani
- Centre for Bioinspired Technology
- Electrical and Electronic Engineering Department
- Imperial College London
- South Kensington
- UK
| | - Fu Siong Ng
- National Heart & Lung Institute
- Imperial College London
- London
- UK
| | - Andrea Alenda
- Centre for Bioinspired Technology
- Electrical and Electronic Engineering Department
- Imperial College London
- South Kensington
- UK
| | - Amir Eftekhar
- Centre for Bioinspired Technology
- Electrical and Electronic Engineering Department
- Imperial College London
- South Kensington
- UK
| | | | - Christofer Toumazou
- Centre for Bioinspired Technology
- Electrical and Electronic Engineering Department
- Imperial College London
- South Kensington
- UK
| |
Collapse
|
30
|
Bell JR, Erickson JR, Delbridge LM. Ca(2+) /calmodulin dependent kinase II: a critical mediator in determining reperfusion outcomes in the heart? Clin Exp Pharmacol Physiol 2015; 41:940-6. [PMID: 25283076 DOI: 10.1111/1440-1681.12301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/31/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
Ischaemic heart disease is a major cause of death and disability in the Western world, and a substantial health burden. Cardiomyocyte Ca(2+) overload is known to significantly contribute to contractile dysfunction and myocyte death in ischaemia and reperfusion, and significant advancements have been made in identifying the downstream mediators and cellular origins of this Ca(2+) mismanagement. Ca(2+) /calmodulin-dependent kinase II (CaMKII) is recognized as an important mediator linking pathological changes in subcellular environments to modifications in cardiomyocyte Ca(2+) handling. Activated in response to fluctuations in cellular Ca(2+) and to various post-translational modifications, CaMKII targets numerous Ca(2+) channels/transporters involved in Ca(2+) handling and contractile function regulation. CaMKII is activated early in reperfusion, where it exacerbates Ca(2+) leak from the sarcoplasmic reticulum and promotes the onset of ventricular arrhythmias. Inhibiting CaMKII can increase functional recovery in reperfusion and reduce apoptotic/necrotic death, at least partly through indirect and direct influences on mitochondrial Ca(2+) levels and function. Yet, CaMKII can also have beneficial actions in ischaemia and reperfusion, in part by providing inotropic support for the stunned myocardium and contributing as an intermediate to cardioprotective preconditioning signalling cascades. There is considerable potential in targeting CaMKII as a part of a surgical reperfusion strategy, though further mechanistic understanding of the relationship between CaMKII activation status and the extent of ischaemia/reperfusion injury are required to fully establish an optimal pharmacological approach.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Melbourne, Vic., Australia
| | | | | |
Collapse
|
31
|
AIBA TAKESHI, NODA TAKASHI, HIDAKA ICHIRO, INAGAKI MASASHI, KATARE RAJESHG, ANDO MOTONORI, SUNAGAWA KENJI, SATO TAKAYUKI, SUGIMACHI MASARU. Acetylcholine Suppresses Ventricular Arrhythmias and Improves Conduction and Connexin-43 Properties During Myocardial Ischemia in Isolated Rabbit Hearts. J Cardiovasc Electrophysiol 2015; 26:678-85. [DOI: 10.1111/jce.12663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/14/2022]
Affiliation(s)
- TAKESHI AIBA
- Division of Arrhythmia and Electrophysiology; Department of Cardiovascular Medicine
| | - TAKASHI NODA
- Division of Arrhythmia and Electrophysiology; Department of Cardiovascular Medicine
| | - ICHIRO HIDAKA
- Department of Cardiovascular Dynamics; Research Institute; National Cerebral and Cardiovascular Center Suita; Japan
| | - MASASHI INAGAKI
- Department of Cardiovascular Dynamics; Research Institute; National Cerebral and Cardiovascular Center Suita; Japan
| | - RAJESH G. KATARE
- Department of Cardiovascular Control; Kochi Medical School; Nankoku Japan
| | - MOTONORI ANDO
- Department of Cardiovascular Control; Kochi Medical School; Nankoku Japan
| | - KENJI SUNAGAWA
- Department of Cardiovascular Medicine; Kyushu University Graduate School of Medical Sciences; Fukuoka Japan
| | - TAKAYUKI SATO
- Department of Cardiovascular Control; Kochi Medical School; Nankoku Japan
| | - MASARU SUGIMACHI
- Department of Cardiovascular Dynamics; Research Institute; National Cerebral and Cardiovascular Center Suita; Japan
| |
Collapse
|
32
|
Vedovato N, Gadsby DC. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps. ACTA ACUST UNITED AC 2014; 143:449-64. [PMID: 24688018 PMCID: PMC3971657 DOI: 10.1085/jgp.201311148] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Na+/K+ pump is a hybrid transporter that can also import protons at physiological K+ and Na+ concentrations. A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified.
Collapse
Affiliation(s)
- Natascia Vedovato
- The Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
33
|
|
34
|
Fantinelli JC, Orlowski A, Aiello EA, Mosca SM. The electrogenic cardiac sodium bicarbonate co-transporter (NBCe1) contributes to the reperfusion injury. Cardiovasc Pathol 2014; 23:224-30. [PMID: 24721237 DOI: 10.1016/j.carpath.2014.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Although the participation of the electrogenic sodium/bicarbonate cotransporter (NBCe1) in the recovery from an intracellular acid load is recognized, its role in ischemia-reperfusion is still unclear. METHODS AND RESULTS Our objective was to assess the role of NBCe1 in reperfusion injury. We use selective functional antibodies against extracellular loop 3 (a-L3) and loop 4 (a-L4) of NBCe1. a-L3 inhibits and a-L4 stimulates NBCe1 activity. Isolated rat hearts were submitted to 40 min of coronary occlusion and 1 h of reperfusion. a-L3, a-L4 or S0859--selective Na(+)-HCO3(-) co-transport inhibitor--were administered during the initial 10 min of reperfusion. The infarct size (IS) was measured by triphenyltetrazolium chloride staining technique. Postischemic systolic and diastolic functions were also assessed. a-L3 and S0859 treatments decreased significantly (P < .05) the IS (16 ± 3% for a-L3 vs. 32 ± 5% in hearts treated with control nonimmune serum and 19 ± 3% for S0859 vs. 39 ± 2% in untreated hearts). Myocardial function during reperfusion improved after a-L3 treatment, but it was not modified by S0859. The infusion of a-L4 did not modify neither the IS nor myocardial function. CONCLUSIONS The NBCe1 hyperactivity during reperfusion leads to Na(+) and Ca(2+) loading, conducing to Ca(2+) overload and myocardial damage. Consistently, we have shown herein that the selective NBCe1 blockade with a-L3 exerted cardioprotection. This beneficial action strongly suggests that NBCe1 could be a potential target for the treatment of coronary disease.
Collapse
Affiliation(s)
- Juliana C Fantinelli
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandro Orlowski
- Fellowship of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ernesto A Aiello
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Susana M Mosca
- Established Investigator of CONICET, Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
35
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Chung HJ, Sulkin MS, Kim JS, Goudeseune C, Chao HY, Song JW, Yang SY, Hsu YY, Ghaffari R, Efimov IR, Rogers JA. Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia. Adv Healthc Mater 2014; 3:59-68. [PMID: 23868871 DOI: 10.1002/adhm.201300124] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 12/31/2022]
Abstract
Stable pH is an established biomarker of health, relevant to all tissues of the body, including the heart. Clinical monitoring of pH in a practical manner, with high spatiotemporal resolution, is particularly difficult in organs such as the heart due to its soft mechanics, curvilinear geometry, heterogeneous surfaces, and continuous, complex rhythmic motion. The results presented here illustrate that advanced strategies in materials assembly and electrochemical growth can yield interconnected arrays of miniaturized IrOx pH sensors encapsulated in thin, low-modulus elastomers to yield conformal monitoring systems capable of noninvasive measurements on the surface of the beating heart. A thirty channel custom data acquisition system enables spatiotemporal pH mapping with a single potentiostat. In vitro testing reveals super-Nernstian sensitivity with excellent uniformity (69.9 ± 2.2 mV/pH), linear response to temperature (-1.6 mV °C(-1) ), and minimal influence of extracellular ions (<3.5 mV). Device examples include sensor arrays on balloon catheters and on skin-like stretchable membranes. Real-time measurement of pH on the surfaces of explanted rabbit hearts and a donated human heart during protocols of ischemia-reperfusion illustrate some of the capabilities. Envisioned applications range from devices for biological research, to surgical tools and long-term implants.
Collapse
Affiliation(s)
- Hyun-Joong Chung
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tang S, Cao Y, Goddard SC, He W. Synthesis of 3-(tert
-Butoxycarbonylmethyl)-N
-vinyl-2-caprolactam and Homologous Copolymerization Toward Biocompatible Carboxylated Poly(N
-vinyl-2-caprolactam) Responsive to pH and Temperature. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Yu Cao
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Samuel C. Goddard
- Department of Mechanical, Aerospace and Biomedical Engineering; University of Tennessee; Knoxville Tennessee 37996
| | - Wei He
- Department of Materials Science and Engineering; University of Tennessee; Knoxville Tennessee 37996
- Department of Mechanical, Aerospace and Biomedical Engineering; University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|
38
|
Cytosolic calcium regulation in rat afferent vagal neurons during anoxia. Cell Calcium 2013; 54:416-27. [PMID: 24189167 DOI: 10.1016/j.ceca.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/30/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
Sensory neurons are able to detect tissue ischaemia and both transmit information to the brainstem as well as release local vasoactive mediators. Their ability to sense tissue ischaemia is assumed to be primarily mediated through proton sensing ion channels, lack of oxygen however may also affect sensory neuron function. In this study we investigated the effects of anoxia on isolated capsaicin sensitive neurons from rat nodose ganglion. Acute anoxia triggered a reversible increase in [Ca2+]i that was mainly due to Ca2+-efflux from FCCP sensitive stores and from caffeine and CPA sensitive ER stores. Prolonged anoxia resulted in complete depletion of ER Ca2+-stores. Mitochondria were partially depolarised by acute anoxia but mitochondrial Ca2+-uptake/buffering during voltage-gated Ca2+-influx was unaffected. The process of Ca2+-release from mitochondria and cytosolic Ca2+-clearance following Ca2+ influx was however significantly slowed. Anoxia was also found to inhibit SERCA activity and, to a lesser extent, PMCA activity. Hence, anoxia has multiple influences on [Ca2+]i homeostasis in vagal afferent neurons, including depression of ATP-driven Ca2+-pumps, modulation of the kinetics of mitochondrial Ca2+ buffering/release and Ca2+-release from, and depletion of, internal Ca2+-stores. These effects are likely to influence sensory neuronal function during ischaemia.
Collapse
|
39
|
King JH, Huang CLH, Fraser JA. Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Front Physiol 2013; 4:154. [PMID: 23825462 PMCID: PMC3695374 DOI: 10.3389/fphys.2013.00154] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/10/2013] [Indexed: 12/19/2022] Open
Abstract
Slowed myocardial conduction velocity (θ) is associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. θ is determined by the ion channel and physical properties of cardiac myocytes and by their interconnections. Thus, θ is closely related to the maximum rate of action potential (AP) depolarization [(dV/dt)max], as determined by the fast Na+ current (INa); the axial resistance (ra) to local circuit current flow between cells; their membrane capacitances (cm); and to the geometrical relationship between successive myocytes within cardiac tissue. These determinants are altered by a wide range of pathophysiological conditions. Firstly, INa is reduced by the impaired Na+ channel function that arises clinically during heart failure, ischemia, tachycardia, and following treatment with class I antiarrhythmic drugs. Such reductions also arise as a consequence of mutations in SCN5A such as those occurring in Lenègre disease, Brugada syndrome (BrS), sick sinus syndrome, and atrial fibrillation (AF). Secondly, ra, may be increased due to gap junction decoupling following ischemia, ventricular hypertrophy, and heart failure, or as a result of mutations in CJA5 found in idiopathic AF and atrial standstill. Finally, either ra or cm could potentially be altered by fibrotic change through the resultant decoupling of myocyte–myocyte connections and coupling of myocytes with fibroblasts. Such changes are observed in myocardial infarction and cardiomyopathy or following mutations in MHC403 and SCN5A resulting in hypertrophic cardiomyopathy (HCM) or Lenègre disease, respectively. This review defines and quantifies the determinants of θ and summarizes experimental evidence that links changes in these determinants with reduced myocardial θ and arrhythmogenesis. It thereby identifies the diverse pathophysiological conditions in which abnormal θ may contribute to arrhythmia.
Collapse
Affiliation(s)
- James H King
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | | | | |
Collapse
|
40
|
Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. PLoS One 2013; 8:e60323. [PMID: 23577101 PMCID: PMC3618345 DOI: 10.1371/journal.pone.0060323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
The myocardial ischemic border zone is associated with the initiation and sustenance of arrhythmias. The profile of ionic concentrations across the border zone play a significant role in determining cellular electrophysiology and conductivity, yet their spatial-temporal evolution and regulation are not well understood. To investigate the changes in ion concentrations that regulate cellular electrophysiology, a mathematical model of ion movement in the intra and extracellular space in the presence of ionic, potential and material property heterogeneities was developed. The model simulates the spatial and temporal evolution of concentrations of potassium, sodium, chloride, calcium, hydrogen and bicarbonate ions and carbon dioxide across an ischemic border zone. Ischemia was simulated by sodium-potassium pump inhibition, potassium channel activation and respiratory and metabolic acidosis. The model predicted significant disparities in the width of the border zone for each ionic species, with intracellular sodium and extracellular potassium having discordant gradients, facilitating multiple gradients in cellular properties across the border zone. Extracellular potassium was found to have the largest border zone and this was attributed to the voltage dependence of the potassium channels. The model also predicted the efflux of [Formula: see text] from the ischemic region due to electrogenic drift and diffusion within the intra and extracellular space, respectively, which contributed to [Formula: see text] depletion in the ischemic region.
Collapse
|
41
|
Boedtkjer E, Aalkjaer C. Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res 2012; 49:479-96. [PMID: 22907294 DOI: 10.1159/000341235] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022] Open
Abstract
Net acid extrusion from vascular smooth muscle (VSMCs) and endothelial cells (ECs) in the wall of resistance arteries is mediated by the Na(+),HCO(3)(-) cotransporter NBCn1 (SLC4A7) and the Na(+)/H(+) exchanger NHE1 (SLC9A1) and is essential for intracellular pH (pH(i)) control. Experimental evidence suggests that the pH(i) of VSMCs and ECs modulates both vasocontractile and vasodilatory functions in resistance arteries with implications for blood pressure regulation. The connection between disturbed pH(i) and altered cardiovascular function has been substantiated by a genome-wide association study showing a link between NBCn1 and human hypertension. On this basis, we here review the current evidence regarding (a) molecular mechanisms involved in pH(i) control in VSMCs and ECs of resistance arteries at rest and during contractions, (b) implications of disturbed pH(i) for resistance artery function, and (c) involvement of disturbed pH(i) in the pathogenesis of vascular disease. The current evidence clearly implies that pH(i) of VSMCs and ECs modulates vascular function and suggests that disturbed pH(i) either consequent to disturbed regulation or due to metabolic challenges needs to be taken into consideration as a mechanistic component of artery dysfunction and disturbed blood pressure regulation.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine and Water and Salt Research Center, Aarhus University, Aarhus, Denmark.
| | | |
Collapse
|
42
|
Li J, Goossens S, van Hengel J, Gao E, Cheng L, Tyberghein K, Shang X, De Rycke R, van Roy F, Radice GL. Loss of αT-catenin alters the hybrid adhering junctions in the heart and leads to dilated cardiomyopathy and ventricular arrhythmia following acute ischemia. J Cell Sci 2012; 125:1058-67. [PMID: 22421363 DOI: 10.1242/jcs.098640] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is generally accepted that the intercalated disc (ICD) required for mechano-electrical coupling in the heart consists of three distinct junctional complexes: adherens junctions, desmosomes and gap junctions. However, recent morphological and molecular data indicate a mixing of adherens junctional and desmosomal components, resulting in a 'hybrid adhering junction' or 'area composita'. The α-catenin family member αT-catenin, part of the N-cadherin-catenin adhesion complex in the heart, is the only α-catenin that interacts with the desmosomal protein plakophilin-2 (PKP2). Thus, it has been postulated that αT-catenin might serve as a molecular integrator of the two adhesion complexes in the area composita. To investigate the role of αT-catenin in the heart, gene targeting technology was used to delete the Ctnna3 gene, encoding αT-catenin, in the mouse. The αT-catenin-null mice are viable and fertile; however, the animals exhibit progressive cardiomyopathy. Adherens junctional and desmosomal proteins were unaffected by loss of αT-catenin, with the exception of the desmosomal protein PKP2. Immunogold labeling at the ICD demonstrated in the αT-catenin-null heart a preferential reduction of PKP2 at the area composita compared with the desmosome. Furthermore, gap junction protein Cx43 was reduced at the ICD, including its colocalization with N-cadherin. Gap junction remodeling in αT-catenin-knockout hearts was associated with an increased incidence of ventricular arrhythmias after acute ischemia. This novel animal model demonstrates for the first time how perturbation in αT-catenin can affect both PKP2 and Cx43 and thereby highlights the importance of understanding the crosstalk between the junctional proteins of the ICD and its implications for arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Jifen Li
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Saegusa N, Moorhouse E, Vaughan-Jones RD, Spitzer KW. Influence of pH on Ca²⁺ current and its control of electrical and Ca²⁺ signaling in ventricular myocytes. ACTA ACUST UNITED AC 2012; 138:537-59. [PMID: 22042988 PMCID: PMC3206307 DOI: 10.1085/jgp.201110658] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Modulation of L-type Ca(2+) current (I(Ca,L)) by H(+) ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of I(Ca,L) was investigated (whole cell voltage clamp) while measuring intracellular Ca(2+) (Ca(2+)(i)) or pH(i) (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pH(o) 6.5 and pH(i) 6.7) had opposite effects on I(Ca,L) gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pH(o), this decreased I(Ca,L), whereas at low pH(i), it increased I(Ca,L) at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca(2+)(i) was buffered with BAPTA, the stimulatory effect of low pH(i) was even more marked, with essentially no inhibition. We conclude that extracellular H(+) ions inhibit whereas intracellular H(+) ions can stimulate I(Ca,L). Low pH(i) and pH(o) effects on I(Ca,L) were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H(+) ion screening of fixed negative charge at the sarcolemma, with additional channel block by H(+)(o) and Ca(2+)(i). Action potential duration (APD) was also strongly H(+) sensitive, being shortened by low pH(o), but lengthened by low pH(i), caused mainly by H(+)-induced changes in late Ca(2+) entry through the L-type Ca(2+) channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca(2+) signaling. We conclude that the pH(i)-versus-pH(o) control of I(Ca,L) will exert a major influence on electrical and Ca(2+)-dependent signaling during acid-base disturbances in the heart.
Collapse
Affiliation(s)
- Noriko Saegusa
- Department of Physiology, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
44
|
Bell JR, Mellor KM, Wollermann AC, Delbridge LM. Cardiac ischaemic stress: cardiomyocyte Ca²⁺, sex and sex steroids. Clin Exp Pharmacol Physiol 2012; 38:717-23. [PMID: 21722161 DOI: 10.1111/j.1440-1681.2011.05567.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Important sex differences exist in ischaemic heart disease. Oestrogen has been conventionally regarded as providing a cardioprotective benefit and testosterone frequently perceived to exert a deleterious effect. However, there is accumulating evidence that argues against this simple dichotomy, suggesting that the influence of oestrogen and testosterone conferring benefit or detriment may be context specific. 2. Cardiomyocyte calcium (Ca(2+)) loading is recognized to be a major factor in acute ischaemia-reperfusion pathology, promoting cell death, contractile dysfunction and arrhythmogenic activity. Ca(2+)/calmodulin-dependent kinase II (CaMKII) is a mediator of many of the cardiomyocyte Ca(2+)-related pathologies in ischaemia-reperfusion. Cardiomyocyte Ca(2+)-handling processes have been shown to be modulated by the actions of oestrogen and testosterone. A role for these sex steroids in influencing CaMKII activation is argued. 3. Although many experimental studies of oestrogen manipulation can identify a cardioprotective role for this sex steroid, there are also numerous reports that fail to demonstrate sex differences in postischaemic recovery. Experimental studies report that testosterone can be protective in ischaemia-reperfusion in males and females in some settings. 4. Further studies of sex steroid influence in the ischaemic heart will allow the development of therapeutic interventions that are specifically targeted for male and female hearts.
Collapse
Affiliation(s)
- James R Bell
- Cardiac Phenomics, Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
45
|
Sohn K, Sachse FB, Moreno AP, Ershler PR, Wende AR, Abel ED, Punske BB. The maximal downstroke of epicardial potentials as an index of electrical activity in mouse hearts. IEEE Trans Biomed Eng 2011; 58:3175-83. [PMID: 21859611 DOI: 10.1109/tbme.2011.2164075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The maximal upstroke of transmembrane voltage (dV(m)/dt(max)) has been used as an indirect measure of sodium current I(Na) upon activation in cardiac myocytes. However, sodium influx generates not only the upstroke of V(m), but also the downstroke of the extracellular potentials V(e) including epicardial surface potentials V(es). The purpose of this study was to evaluate the magnitude of the maximal downstroke of V(es) (|dV(es)/dt (min)|) as a global index of electrical activation, based on the relationship of dV(m)/dt(max) to I(Na). To fulfill this purpose, we examined |dV(es)/dt(min)| experimentally using isolated perfused mouse hearts and computationally using a 3-D cardiac tissue bidomain model. In experimental studies, a custom-made cylindrical "cage" array with 64 electrodes was slipped over mouse hearts to measure V(es) during hyperkalemia, ischemia, and hypoxia, which are conditions that decrease I(Na). Values of |dV(es)/dt(min)| from each electrode were normalized (|dV(es)/dt (min)|(n)) and averaged (|dV(es)/dt(min)|(na)). Results showed that |dV(es)/dt(min)|(na) decreased during hyperkalemia by 28, 59, and 79% at 8, 10, and 12 mM [K(+)](o), respectively. |dV(es)/dt(min)| also decreased by 54 and 84% 20 min after the onset of ischemia and hypoxia, respectively. In computational studies, |dV(es)/dt(min)| was compared to dV(m)/dt(max) at different levels of the maximum sodium conductance G(Na), extracellular potassium ion concentration [K(+)](o), and intracellular sodium ion concentration [Na(+)](i), which all influence levels of I(Na). Changes in |dV(es)/dt(min)|(n) were similar to dV(m)/dt (max) during alterations of G(Na), [K(+)](o), and [Na(+)](i). Our results demonstrate that |dV(es)/dt(min)|(na) is a robust global index of electrical activation for use in mouse hearts and, similar to dV(m)/dt(max), can be used to probe electrophysiological alterations reliably. The index can be readily measured and evaluated, which makes it attractive for characterization of, for instance, genetically modified mouse hearts and drug effects on cardiac tissue.
Collapse
Affiliation(s)
- Kwanghyun Sohn
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Bioengineering Department, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
O'Leary ME, Hancox JC. Role of voltage-gated sodium, potassium and calcium channels in the development of cocaine-associated cardiac arrhythmias. Br J Clin Pharmacol 2011; 69:427-42. [PMID: 20573078 DOI: 10.1111/j.1365-2125.2010.03629.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cocaine is a highly active stimulant that alters dopamine metabolism in the central nervous system resulting in a feeling of euphoria that with time can lead to addictive behaviours. Cocaine has numerous deleterious effects in humans including seizures, vasoconstriction, ischaemia, increased heart rate and blood pressure, cardiac arrhythmias and sudden death. The cardiotoxic effects of cocaine are indirectly mediated by an increase in sympathomimetic stimulation to the heart and coronary vasculature and by a direct effect on the ion channels responsible for maintaining the electrical excitability of the heart. The direct and indirect effects of cocaine work in tandem to disrupt the co-ordinated electrical activity of the heart and have been associated with life-threatening cardiac arrhythmias. This review focuses on the direct effects of cocaine on cardiac ion channels, with particular focus on sodium, potassium and calcium channels, and on the contributions of these channels to cocaine-induced arrhythmias. Companion articles in this edition of the journal examine the epidemiology of cocaine use (Wood & Dargan) and the treatment of cocaine-associated arrhythmias (Hoffmann).
Collapse
Affiliation(s)
- Michael E O'Leary
- Department of Pathology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
47
|
Chao CC, Mihic A, Tsushima RG, Gaisano HY. SNARE protein regulation of cardiac potassium channels and atrial natriuretic factor secretion. J Mol Cell Cardiol 2011; 50:401-7. [DOI: 10.1016/j.yjmcc.2010.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 01/28/2023]
|
48
|
Prestia KA, Sosunov EA, Anyukhovsky EP, Dolmatova E, Kelly CW, Brink PR, Robinson RB, Rosen MR, Duffy HS. Increased Cell-Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice. Front Physiol 2011; 2:1. [PMID: 21423411 PMCID: PMC3059611 DOI: 10.3389/fphys.2011.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 01/04/2011] [Indexed: 11/13/2022] Open
Abstract
Increasing connexin43 (Cx43) gap junctional conductance as a means to improve cardiac conduction has been proposed as a novel antiarrhythmic modality. Yet, transmission of molecules via gap junctions may be associated with increased infarct size. To determine whether maintaining open gap junction channels impacts on infarct size and induction of ventricular tachycardia (VT) following coronary occlusion, we expressed the pH- and voltage-independent connexin isoform connexin32 (Cx32) in ventricle and confirmed Cx32 expression. Wild-type (WT) mice injected with adenovirus-Cx32 (Cx32inj) were examined following coronary occlusion to determine infarct size and inducibility of VT. There was an increased infarct size in Cx32inj hearts as compared to WT (WT 22.9 ± 4%; Cx32inj 44.3 ± 5%; p < 0.05). Programmed electrical stimulation showed no difference in VT inducibility in WT and Cx32inj mice (VT was reproducibly inducible in 55% of shams and 50% of Cx32inj mice (p > 0.05). Following coronary occlusion, improving cell–cell communication increased infarct size, and conferred no antiarrhythmic benefit.
Collapse
Affiliation(s)
- Kevin A Prestia
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fosgerau K, Ristagno G, Jayatissa M, Axelsen M, Gotfredsen JW, Weber UJ, Køber L, Torp-Pedersen C, Videbaek C. Increased susceptibility to cardiovascular effects of dihydrocapcaicin in resuscitated rats. Cardiovascular effects of dihydrocapsaicin. BMC Cardiovasc Disord 2010; 10:39. [PMID: 20807439 PMCID: PMC2939536 DOI: 10.1186/1471-2261-10-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 08/31/2010] [Indexed: 11/15/2022] Open
Abstract
Background Survivors of a cardiac arrest often have persistent cardiovascular derangements following cardiopulmonary resuscitation including decreased cardiac output, arrhythmias and morphological myocardial damage. These cardiovascular derangements may lead to an increased susceptibility towards the external and internal environment of the cardiovascular system as compared to the healthy situation. Methods Here we tested the hypothesis that the cardiovascular system in healthy rats and rats resuscitated from a cardiac arrest may be differentially affected by a transient receptor potential vanilloid type 1 agonist, by continuous intravenous infusion of dihydrocapsaicin (DHC). Results Compared to baseline, infusion of DHC caused an initial increase in mean arterial blood pressure in both healthy and resuscitated rats of 25% and 10%, respectively. Also, we observed an initial response of tachycardia in both healthy and resuscitated rats of 30% and 20%, respectively. Then, at high levels of DHC infusion (> 2.0 mg/kg/hr) we observed two single episodes of transient bradycardia and hypotension in 33% of the healthy rats, which was consistent with a TRPV1 agonist induced Bezold-Jarisch reflex. In contrast, in resuscitated rats we observed multiple episodes of bradycardia/hypotension in 100% of the rats and at a dose of DHC of 0.65 mg/kg/hr. Notably, this DHC effect could be completely blocked in the resuscitated rats by pre-treatment with atropine, a muscarinic acetylcholine antagonist. Conclusions Our results indicate that the susceptibility of the rats towards TRPV1 agonist induced Bezold-Jarisch reflex is increased in those resuscitated from cardiac arrest compared to the healthy situation.
Collapse
Affiliation(s)
- Keld Fosgerau
- Neurokey AS, Diplomvej 372, DK-2800 Lyngby, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Demaurex N, El Chemaly A. Physiological roles of voltage-gated proton channels in leukocytes. J Physiol 2010; 588:4659-65. [PMID: 20693294 DOI: 10.1113/jphysiol.2010.194225] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels are designed to extrude large quantities of cytosolic acid in response to depolarising voltages. The discovery of the Hvcn1 gene and the generation of mice lacking the channel molecule have confirmed several postulated functions of proton channels in leukocytes. In neutrophils and macrophages, proton channels are required for high-level production of superoxide anions by the phagocytic NADPH oxidase, a bactericidal enzyme essential for host defence against infections. In B lymphocytes, proton channels are required for low-level production of superoxide that boosts the production of antibodies. Proton channels sustain the activity of immune cells in several ways. By extruding excess cytosolic acid, proton channels prevent deleterious acidification of the cytosol and at the same time deliver protons required for chemical conversion of the superoxide secreted by membrane oxidases. By moving positive charges across membranes, proton channels limit the depolarisation of the plasma membrane, promoting the electrogenic activity of NADPH oxidases and the entry of calcium ions into cells. Acid extrusion by proton channels is not restricted to leukocytes but also mediates the intracellular alkalinisation required for the activation of spermatozoids. Proton channels are therefore multitalented channels that control male fertility as well as our innate and adaptive immunity.
Collapse
Affiliation(s)
- Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|