1
|
Ferda J, Hromádka M, Baxa J. Imaging of the myocardium using 18 F-FDG-PET/MRI. Eur J Radiol 2016; 85:1900-1908. [DOI: 10.1016/j.ejrad.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
2
|
Southworth R. Hexokinase-mitochondrial interaction in cardiac tissue: implications for cardiac glucose uptake, the 18FDG lumped constant and cardiac protection. J Bioenerg Biomembr 2009; 41:187-93. [PMID: 19415474 DOI: 10.1007/s10863-009-9207-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hexokinases are fundamental regulators of cardiac glucose uptake; by phosphorylating free intracellular glucose, they maintain the concentration gradient driving myocardial extraction of glucose from the bloodstream. Hexokinases are highly regulated proteins, subject to activation by insulin, hypoxia or ischaemia, and inhibition by their enzymatic product glucose-6-phosphate. In vitro and in many non-cardiac cell types, hexokinases have been shown to bind to the mitochondria, both increasing their phosphorylative capacity, and having a putative role in the anti-apoptotic function of protein kinase B (PKB)/Akt. Whether hexokinase-mitochondrial interaction is a dynamic and responsive process in the heart has been difficult to prove, but there is growing evidence that this association does indeed increase in response to insulin stimulation or ischaemia. In this review I discuss the relevance of hexokinase-mitochondrial interaction to cardiac glycolytic control, our interpretation of (18)FDG cardiac PET scans, and its possible role in protecting the myocardium from ischaemic injury.
Collapse
Affiliation(s)
- Richard Southworth
- Division of Imaging Sciences, King's College London, The Rayne Institute, St. Thomas' Hospital, Lambeth Palace Rd, London, SE1 7EH, UK.
| |
Collapse
|
3
|
Phang JM, Donald SP, Pandhare J, Liu Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids 2008; 35:681-90. [PMID: 18401543 DOI: 10.1007/s00726-008-0063-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/05/2008] [Indexed: 01/14/2023]
Abstract
The resurgence of interest in tumor metabolism has led investigators to emphasize the metabolism of proline as a "stress substrate" and to suggest this pathway as a potential anti-tumor target. Proline oxidase, a.k.a. proline dehydrogenase (POX/PRODH), catalyzes the first step in proline degradation and uses proline to generate ATP for survival or reactive oxygen species for programmed cell death. POX/PRODH is induced by p53 under genotoxic stress and initiates apoptosis by both mitochondrial and death receptor pathways. Furthermore, POX/PRODH is induced by PPARgamma and its pharmacologic ligands, the thiazolidinediones. The anti-tumor effects of PPARgamma may be critically dependent on POX/PRODH. In addition, it is upregulated by nutrient stress through the mTOR pathway to maintain ATP levels. We propose that proline is made available as a stress substrate by the degradation of collagen in the microenvironmental extracellular matrix by matrix metalloproteinases. In a manner analogous to autophagy, this proline-dependent process for bioenergetics from collagen in extracellular matrix can be designated "ecophagy".
Collapse
Affiliation(s)
- James M Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, Building 538, Room 115, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
4
|
McFalls EO, Murad B, Liow JS, Gannon MC, Haspel HC, Lange A, Marx D, Sikora J, Ward HB. Glucose uptake and glycogen levels are increased in pig heart after repetitive ischemia. Am J Physiol Heart Circ Physiol 2002; 282:H205-11. [PMID: 11748064 DOI: 10.1152/ajpheart.2002.282.1.h205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repetitive myocardial ischemia increases glucose uptake, but the effect on glycogen is unclear. Thirteen swine instrumented with a hydraulic occluder on the circumflex (Cx) artery underwent 10-min occlusions twice per day for 4 days. After 24 h postfinal ischemia and in the fasted state, echocardiogram and positron emission tomography imaging for blood flow ([(13)N]-ammonia) and 2-[(18)F]fluoro-2-deoxy-D-glucose (FDG) uptake were obtained. Tissue was then collected for ATP, creatine phosphate (CP), glycogen, and glucose transporter-4 content, and hexokinase activity. After reperfusion, regional function and CP-to-ATP ratios in the Cx and remote regions were similar. Despite the absence of stunning, the Cx region demonstrated higher glycogen levels (33 +/- 11 vs. 24 +/- 11 micromol/g; P < 0.05), and this increase correlated well with the increase in FDG uptake (r(2) = 0.78; P < 0.01). Hexokinase activity was also increased relative to remote regions (0.62 +/- 0.29 vs. 0.37 +/- 0.19 IU/g; P < 0.05), with no difference in GLUT-4 content. In summary, 24 h after repetitive ischemia, glucose uptake and glycogen levels are increased at a time that functional and bioenergetic markers of stunning have recovered. The significant correlation between glycogen content and FDG accumulation in the postischemic region suggests that increased rates of glucose transport and/or phosphorylation are linked to increased glycogen levels in hearts subjected to repetitive bouts of ischemia.
Collapse
Affiliation(s)
- Edward O McFalls
- Cardiology Dept., 111C, Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN 55417, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Terrand J, Papageorgiou I, Rosenblatt-Velin N, Lerch R. Calcium-mediated activation of pyruvate dehydrogenase in severely injured postischemic myocardium. Am J Physiol Heart Circ Physiol 2001; 281:H722-30. [PMID: 11454576 DOI: 10.1152/ajpheart.2001.281.2.h722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.
Collapse
Affiliation(s)
- J Terrand
- Cardiology Center, University Hospital, CH-1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
6
|
Abstract
Fasting [(18)F]fluoro-2-deoxyglucose (FDG) uptake is increased in viable, chronically dysfunctional myocardium, but the relationship to acute episodes of ischemia remains undefined. To investigate FDG uptake in acute stunning, chronically instrumented pigs (n = 9) and sham controls (n = 8) were studied while in a fasted, closed-chest, anesthetized state. One-hour partial occlusion reduced subendocardial flow from 1.24 +/- 0.14 to 0.35 +/- 0.06 ml. min(-1). g(-1) and wall thickening from 16.8 +/- 2.1 to 3.7 +/- 0.7%. Regional function remained depressed during reperfusion (8.3 +/- 1. 4%) despite the return of flow to resting levels. Triphenyl tetrazolium chloride staining showed no irreversible injury. FDG uptake in stunned myocardium was variably increased and averaged 1. 5-fold higher than that of normal regions, with no consistent transmural variation. Subgroup analysis showed that variability in FDG uptake was related to alterations in insulin levels that varied directly with ischemic risk region.
Collapse
Affiliation(s)
- J A Fallavollita
- Department of Veterans Affairs Western New York Health Care System, Buffalo 14215, USA.
| | | | | |
Collapse
|
7
|
McFalls EO, Baldwin D, Marx D, Fashingbauer P, Ward HB. Effect of regional hyperemia on myocardial uptake of 2-deoxy-2-[(18)F]fluoro-D-glucose. Am J Physiol Endocrinol Metab 2000; 278:E96-E102. [PMID: 10644542 DOI: 10.1152/ajpendo.2000.278.1.e96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) may be used to predict glucose kinetics when the factor relating differences in transport and phosphorylation between compounds remains constant ("lumped constant"). It is not clear whether hyperemia alters that factor. In anesthetized swine, myocardial FDG uptake was estimated by positron emission tomography, during an intracoronary infusion of either adenosine, ATP, or bradykinin (40 microg x kg(-1) x min(-1), 40 microg x kg(-1) x min(-1), and 2 nmol x kg(-1) x min(-1), respectively; n = 6 for all groups). In controls during normal perfusion (n = 6), FDG uptake was 0.78 +/- 0.32 micromol x g(-1) x min(-1), whereas glucose uptake by Fick was 0.71 +/- 0.25 micromol x g(-1) x min(-1) (r = 0.73; P < 0.05). Adenosine increased blood flow from 1.29 +/- 0.43 to 4.80 +/- 2.19 ml x g(-1) x min(-1) (P < 0.05) and glucose uptake from 1.16 +/- 1.10 to 3.35 +/- 2.12 micromol x g(-1) x min(-1) (P < 0.05), whereas FDG uptake in the hyperemic region was lower than remote regions (0.46 +/- 0.29 and 0.95 +/- 0.55 micromol x g(-1) x min(-1), respectively; P < 0.05). In the ATP and bradykinin groups, blood flow increased four- and twofold, respectively, with no net change in glucose uptake. FDG uptake in the hyperemic region was also significantly lower than remote regions. For all animals, the ratio of blood flow in the hyperemic region relative to remote region was inversely proportional to the ratio of FDG uptake in the same regions (r(2)=0.73; P < 0.001). Because nitric oxide elaboration during hyperemia could potentially alter substrate preference and FDG kinetics, six additional swine were studied during maximal adenosine before and after intracoronary N(G)-monomethyl-L-arginine (1.5 mg/kg). Inhibition of nitric oxide had no effect on either regional myocardial substrate uptake or FDG accumulation. In conclusion, hyperemia decreased regional myocardial FDG uptake relative to normally perfused regions and this effect on the lumped constant was independent of nitric oxide.
Collapse
Affiliation(s)
- E O McFalls
- Division of Cardiology, Veterans Affairs Medical Center, University of Minnesota, Minneapolis, Minnesota 55417, USA.
| | | | | | | | | |
Collapse
|
8
|
Liedtke AJ, Lynch ML. Alteration of gene expression for glycolytic enzymes in aerobic and ischemic myocardium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1435-40. [PMID: 10516179 DOI: 10.1152/ajpheart.1999.277.4.h1435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this report was to describe mRNA abundance for the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase, and pyruvate dehydrogenase in ischemic and adjacent aerobic myocardium. Mechanical, metabolic, and mRNA data were acquired in a pig model of regulated coronary flow using extracorporeal perfusion. Trials of coronary hypoperfusion included sustained and intermittent exposures of acute ischemia with or without reperfusion. These were compared with a chronic 4-day model of partial coronary stenosis. In ischemic tissues, levels of mRNA, normalized by mRNA for beta-actin, were increased over control values for GAPDH (range 2.7- to 4.6-fold), pyruvate kinase (2.9-fold), and pyruvate dehydrogenase (2.1-fold). It is of interest that increases in mRNA levels over control values were also observed in adjacent aerobic heart muscle from intervention hearts, including 3.6- to 4.5-fold elevations in message for GAPDH and a 2.1-fold increase in signal for pyruvate dehydrogenase. Augmentation in mRNA abundance occurred in as short a time as 40 min of ischemia and was maintained for as long as 4 days in partial coronary stenosis. Whether the former time was of an interval sufficient to affect protein production is problematic, but the latter time was ample to influence enzyme concentration, which may in turn have regulated glycolysis in this condition.
Collapse
Affiliation(s)
- A J Liedtke
- University of Wisconsin Hospital and Clinics, Madison, Wisconsin 53792-3248, USA.
| | | |
Collapse
|
9
|
XIIth international symposium on radiopharmaceutical chemistry: Abstracts and programme. J Labelled Comp Radiopharm 1997. [DOI: 10.1002/jlcr.2580400301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Rubin PJ, Lee DS, Dávila-Román VG, Geltman EM, Schechtman KB, Bergmann SR, Gropler RJ. Superiority of C-11 acetate compared with F-18 fluorodeoxyglucose in predicting myocardial functional recovery by positron emission tomography in patients with acute myocardial infarction. Am J Cardiol 1996; 78:1230-5. [PMID: 8960580 DOI: 10.1016/s0002-9149(96)00601-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In patients with chronic coronary artery disease, preservation of myocardial oxidative metabolism measured by positron emission tomography (PET) with 11C-acetate is a more accurate predictor of subsequent myocardial functional recovery than is maintenance of glucose metabolism estimated with 18F-fluorodeoxyglucose. However, whether measurements of myocardial oxidative metabolism are more accurate than measurements of glucose metabolism in predicting functional recovery in patients with recent myocardial infarction is unknown. Myocardial oxidative metabolism was measured within 10 days of infarction in 19 patients by analysis of the rate of myocardial clearance of 11C-acetate. Metabolism of glucose was assessed by analysis of the uptake of 18F-fluorodeoxyglucose. Criteria for prediction of the recovery of function based on measurements of oxidative metabolism and glucose metabolism were compared. Threshold criteria with 11C-acetate exhibited superior positive and negative predictive values (89% and 73%, respectively) compared with the criteria of 18F-fluorodeoxyglucose (65% and 57%, respectively) (p <0.025). In addition, the magnitude of functional recovery after revascularization correlated with the severity of the metabolic abnormality present initially. In patients with recent myocardial infarction, the extent of functional recovery can be predicted accurately by measurement of regional oxidative metabolism by PET with 11C-acetate, and these measurements are superior to those of 18-fluorodeoxyglucose.
Collapse
Affiliation(s)
- P J Rubin
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Utility and Limitations of [18F]2-Deoxy-2-Fluoro-D-Glucose for the Assessment of Flux through Metabolic Pathways in Heart Muscle: A Critical Appraisal. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-1-4613-1233-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
12
|
Liedtke AJ, Renstrom B, Nellis SH, Hall JL, Stanley WC. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol 1995; 26:815-25. [PMID: 7642877 DOI: 10.1016/0735-1097(95)00223-q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES This study sought to evaluate the functional and metabolic consequences of imposing a chronic external coronary stenosis around the left anterior descending coronary artery for 4 days in an intact pig model. BACKGROUND A clinical condition termed hibernating myocardium has been described wherein as a result of chronic sustained or intermittent coronary hypoperfusion, heart muscle minimizes energy demands by decreasing mechanical function and thus avoids cell death. The use of chronic animal models to stimulate this disorder may assist in establishing causative associations among determinants to explain this phenomenon. METHODS A hydraulic cuff occluder was placed around the left anterior descending coronary artery in eight pigs. Coronary flow velocity was reduced by a mean (+/- SE) of 49 +/- 5% of prestenotic values, as estimated by a Doppler velocity probe. After 4 days the pigs were prepared with extracorporeal coronary circulation and evaluated at flow conditions dictated by the cuff occluder. Substrate utilizations were described using equilibrium labeling with [U-14C]palmitate and [5-3H]glucose. Results were compared with a combined group of 21 acute and chronic (4 day) sham animals. RESULTS Four days of partial coronary stenosis significantly decreased regional systolic shortening by 54%. Myocardial oxygen consumption was maintained at aerobic levels, and rest coronary flows were normal. Fatty acid oxidation was decreased by 43% below composite sham values, and exogenous glucose utilization was increased severalfold. Alterations in myocardial metabolism were accompanied by a decline in tissue content of adenosine triphosphate. CONCLUSIONS These data suggest that chronic coronary stenosis in the absence of macroscarring imparts an impairment in mechanical function, whereas coronary flow and myocardial oxygen consumption are preserved at rest. The increases in glycolytic flux of exogenous glucose are similar to observations on glucose uptake assessed by fluorine-18 2-deoxy-2-fluoro-D-glucose in patients with advanced coronary artery disease. We speculate that intermittent episodes of ischemia and reperfusion are the cause of this phenomenon.
Collapse
Affiliation(s)
- A J Liedtke
- Cardiology Section, University of Wisconsin Hospital and Clinics, Madison 53792-3248, USA
| | | | | | | | | |
Collapse
|
13
|
Renstrom B, Liedtke AJ. Adjustments in competitive substrate utilization in stunned myocardium during early reperfusion. Basic Res Cardiol 1995; 90:279-81. [PMID: 8534246 DOI: 10.1007/bf00797899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- B Renstrom
- Cardiology Section, University of Wisconsin Hospital and Clinics, Madison 53792-3248, USA
| | | |
Collapse
|
14
|
Yoshiyama M, Merkle H, Garwood M, From AH, Bache RJ, Ugurbil K, Zhang J. Transmural distribution of 2-deoxyglucose uptake in normal and post-ischemic canine myocardium. NMR IN BIOMEDICINE 1995; 8:9-18. [PMID: 7547185 DOI: 10.1002/nbm.1940080104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This investigation was performed to determine (i) whether 31P spatially localized 31P NMR spectroscopy could be utilized to determine the transmural distribution of 2-deoxyglucose (2DG) uptake in the in vivo canine heart and (ii) whether transmural 2DG uptake would be affected by a preceding ischemic insult. 2DG was infused and the accumulation of 2-deoxyglucose-6-phosphate (2DGP) was monitored (by means of spatially localized 31P NMR) in control hearts, in pharmacologically hyperperfused hearts, and in hearts subjected to four (5 min) occlusions of the left anterior descending coronary artery. Myocardial blood flow was measured with radioactive microspheres. In control hearts, subendocardial (ENDO) 2DGP contents were significantly higher than those in the subepicardium (EPI) being 3.8 +/- 0.3 and 2.2 +/- 0.2 mumol/g, respectively; the ENDO/EPI ratio of 2DGP was 1.70 +/- 0.21. During hyperperfusion blood flow increased approximately four-fold but 2DGP accumulation was not altered. ATP levels in post-ischemic myocardium were significantly decreased (ENDO more than EPI) and 2DGP accumulation in each layer was increased (p < 0.01 vs control); however, the ENDO/EPI ratio of 2DGP was not altered. 2DG infusion induced a marked elevation of blood insulin and norepinephrine levels. These data demonstrate that in the presence of high blood levels of 2DG and insulin: (i) 2DGP accumulation can be measured in the in vivo canine heart; (ii) in normal hearts 2DG uptake is more pronounced in the inner layers of the left ventricular wall (this transmural 2DG uptake gradient is not due to subendocardial hypoperfusion); and (iii) 2DG uptake is greater in the post-ischemic heart but the ENDO/EPI gradient of 2DG uptake is not altered indicating that the more severe ischemic insult in the subendocardium does not result in a disproportionate increase in 2DG uptake in that region of the myocardium. Although 2DG uptake patterns in this model most probably reflect those of glucose (at comparable glucose and insulin levels), quantitative extrapolations with regard to the rate of glucose uptake are not possible from the present data.
Collapse
Affiliation(s)
- M Yoshiyama
- Department of Biochemistry, University of Minnesota, Minneapolis, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Janero DR, Hreniuk D, Sharif HM. Hydroperoxide-induced oxidative stress impairs heart muscle cell carbohydrate metabolism. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:C179-88. [PMID: 8304415 DOI: 10.1152/ajpcell.1994.266.1.c179] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hydrogen peroxide (H2O2) may incite cardiac ischemia-reperfusion injury. We evaluate herein the influence of H2O2-induced oxidative stress on heart muscle hexose metabolism in cultured neonatal rat cardiomyocytes, which have a substrate preference for carbohydrate. Cardiomyocyte exposure to 50 microM-1.0 mM bolus H2O2 transiently activated the pentose phosphate cycle and thereafter inhibited cellular glucose oxidation and glycolysis. These metabolic derangements were nonperoxidative in nature (as assessed in alpha-tocopherol-loaded cells) and occurred without acute change in cardiomyocyte hexose transport or glucose/glycogen reserves. Glycolytic inhibition was supported by the rapid, specific inactivation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The degree of GAPDH inhibition correlated directly with the magnitude of the oxidative insult and was independent of both metal-catalyzed H2O2 reduction to free radicals and lipid peroxidation. Severe GAPDH inhibition was required for a rate-limiting effect on glycolytic flux. Cardiomyocyte pyruvate dehydrogenase was also inhibited by H2O2 overload, but to a lesser degree than GAPDH such that entry of hexose-derived acetyl units into the tricarboxylic acid cycle was not as restrictive as GAPDH inactivation to glycolytic ATP production. An increase in phosphofructokinase activity accompanied GAPDH inactivation, leading to the production and accumulation of glycolytic sugar phosphates at the expense of ATP equivalents. Cardiomyocyte treatment with iodoacetate or 2-deoxyglucose indicated that GAPDH inactivation/glycolytic blockade could account for approximately 50% of the maximal ATP loss following H2O2 overload. Partial restoration of GAPDH activity after a brief H2O2 "pulse" afforded some ATP recovery. These data establish that specific aspects of heart muscle hexose catabolism are H2O2-sensitive injury targets. The biochemical pathology of H2O2 overload on cardiomyocyte carbohydrate metabolism has implications for post-ischemic cardiac bioenergetics and function.
Collapse
Affiliation(s)
- D R Janero
- Research Department, Ciba-Geigy Corporation, Summit, New Jersey 07901
| | | | | |
Collapse
|
16
|
Gropler RJ, Geltman EM, Sampathkumaran K, Pérez JE, Schechtman KB, Conversano A, Sobel BE, Bergmann SR, Siegel BA. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993; 22:1587-97. [PMID: 8227825 DOI: 10.1016/0735-1097(93)90582-l] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVES This study was designed to determine in patients with advanced coronary disease whether prediction of recovery of mechanical function after coronary revascularization could be accomplished more effectively by positron emission tomography (PET) with carbon-11 (11C)-acetate than by PET with fluorine-18 (18F)-fluorodeoxyglucose. BACKGROUND Results of previous studies have demonstrated that preservation of myocardial oxidative metabolism (measured by PET with 11C-acetate) is necessary for recovery of systolic function after coronary revascularization. METHODS Myocardial oxidative metabolism was quantified before revascularization in 34 patients by the analysis of the rate of myocardial clearance of 11C-acetate. Metabolism of glucose was assessed by analysis of uptake of 18F-fluorodeoxyglucose. Receiver operating characteristic curves for predicting functional recovery were derived for the measurements of oxidative metabolism and glucose metabolism. In addition, criteria for prediction of recovery of function based on measurements of oxidative metabolism and glucose metabolism were developed and compared. RESULTS Analysis of receiver operating characteristic curves indicated that estimates of oxidative metabolism were more robust in predicting functional recovery than were estimates of glucose metabolism (p < 0.02). Moreover, threshold criteria with 11C-acetate exhibited superior positive and negative predictive values (67% and 89%, respectively) than did the criteria with 18F-fluorodeoxyglucose (52% and 81%, respectively), p < 0.01. In segments with initially severe dysfunction, estimates of oxidative metabolism tended to be more robust than estimates of glucose metabolism in predicting functional recovery. Moreover, in such segments, the threshold criteria with 11C-acetate tended to exhibit superior positive and negative predictive values (85% and 87%, respectively) than did the criteria with 18F-fluorodeoxyglucose (72% and 82%, respectively), although statistical significance was not achieved. CONCLUSIONS In patients with advanced coronary artery disease, the extent to which functional recovery can be anticipated after coronary revascularization can be delineated accurately by quantification of regional oxidative metabolism by PET with 11C-acetate.
Collapse
Affiliation(s)
- R J Gropler
- Division of Nuclear Medicine, Edward Mallinckrodt Institute of Radiology, Saint Louis, Missouri 63110
| | | | | | | | | | | | | | | | | |
Collapse
|