1
|
Salameh S, Guerrelli D, Miller JA, Desai M, Moise N, Yerebakan C, Bruce A, Sinha P, d'Udekem Y, Weinberg SH, Posnack NG. Connecting transcriptomics with computational modeling to reveal developmental adaptations in pediatric human atrial tissue. Am J Physiol Heart Circ Physiol 2024; 327:H1413-H1430. [PMID: 39453433 DOI: 10.1152/ajpheart.00474.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Nearly 1% of babies are born with congenital heart disease-many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we collected right atrial tissue samples from pediatric patients (n = 117) undergoing heart surgery. Patients were stratified into five age groups. We measured age-dependent adaptations in cardiac gene expression and used computational modeling to simulate action potential and calcium transients. Enrichment of differentially expressed genes revealed age-dependent changes in several key biological processes (e.g., cell cycle, structural organization), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited age-dependent trends, with changes in calcium handling (INCX) and repolarization (IK1) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We observed a shift in repolarization reserve, with lower IKr expression in younger patients, a finding potentially tied to an increased amplitude of IKs that could be triggered by elevated sympathetic activation in pediatric patients. Collectively, this study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology, shedding light on molecular mechanisms underlying cardiac maturation and function throughout development.NEW & NOTEWORTHY To date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we demonstrate age-dependent adaptations in the gene expression profile of >100 atrial tissue samples collected from congenital heart disease patients. We coupled transcriptomics datasets with computational modeling to simulate action potentials and calcium transients for different pediatric age groups.
Collapse
Affiliation(s)
- Shatha Salameh
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
| | - Devon Guerrelli
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia, United States
| | - Jacob A Miller
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Manan Desai
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Nicolae Moise
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Can Yerebakan
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Alisa Bruce
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Pranava Sinha
- Division of Pediatric Cardiac Surgery, The University of Minnesota, Minneapolis, Minnesota, United States
| | - Yves d'Udekem
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Division of Cardiovascular Surgery, Children's National Hospital, Washington, District of Columbia, United States
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus Ohio, United States
| | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, United States
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, United States
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia, United States
- Department of Pediatrics, The George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
2
|
Ragusa R, Caselli C. Focus on cardiac troponin complex: From gene expression to cardiomyopathy. Genes Dis 2024; 11:101263. [PMID: 39211905 PMCID: PMC11357864 DOI: 10.1016/j.gendis.2024.101263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 09/04/2024] Open
Abstract
The cardiac troponin complex (cTn) is a regulatory component of sarcomere. cTn consists of three subunits: cardiac troponin C (cTnC), which confers Ca2+ sensitivity to muscle; cTnI, which inhibits the interaction of cross-bridge of myosin with thin filament during diastole; and cTnT, which has multiple roles in sarcomere, such as promoting the link between the cTnI-cTnC complex and tropomyosin within the thin filament and influencing Ca2+ sensitivity of cTn and force development during contraction. Conditions that interfere with interactions within cTn and/or other thin filament proteins can be key factors in the regulation of cardiac contraction. These conditions include alterations in myofilament Ca2+ sensitivity, direct changes in cTn function, and triggering downstream events that lead to adverse cardiac remodeling and impairment of heart function. This review describes gene expression and post-translational modifications of cTn as well as the conditions that can adversely affect the delicate balance among the components of cTn, thereby promoting contractile dysfunction.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, via Moruzzi 1, Pisa 56124, Italy
- Fondazione Toscana Gabriele Monasterio, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
3
|
Farley A, Gao Y, Sun Y, Zohrabian S, Pu WT, Lin Z. Activation of VGLL4 Suppresses Cardiomyocyte Maturational Hypertrophic Growth. Cells 2024; 13:1342. [PMID: 39195232 DOI: 10.3390/cells13161342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Aaron Farley
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Sylvia Zohrabian
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| |
Collapse
|
4
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse cardiac events of hypercholesterolemia are enhanced by sitagliptin in sprague dawley rats. Nutr Metab (Lond) 2024; 21:54. [PMID: 39080769 PMCID: PMC11290187 DOI: 10.1186/s12986-024-00817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. Therefore, studies on the combined effects of Cho and Met were carried out using male Sprague Dawley rats. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. We hypothesized that feeding a dietary combination of Cho and Met would result in adverse cardiac effects and would be attenuated upon administration of sitagliptin. METHODS Adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with an aqueous preparation of sitagliptin (100 mg/kg/d) or vehicle (water) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. RESULTS Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. CONCLUSIONS Adverse cardiac outcomes in HChol were enhanced by the administration of sitagliptin, and such effects were alleviated by Met. Our findings could be significant for understanding or revisiting the risk-benefit evaluation of sitagliptin in type 2 diabetics, and especially those who are known to consume atherogenic diets.
Collapse
Affiliation(s)
- Henry A Palfrey
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Avinash Kumar
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rashmi Pathak
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Kirsten P Stone
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Thomas W Gettys
- Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Subramanyam N Murthy
- Environmental Toxicology Department, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
5
|
Jiang JH, Tian J, Pan B. Noteworthy phenomena in pediatric inherited cardiomyopathy. World J Pediatr 2024; 20:635-637. [PMID: 38896415 DOI: 10.1007/s12519-024-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Affiliation(s)
- Jin-Hang Jiang
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China
- Key Laboratory of Children's Important Organ Development and Diseases, Chongqing Municipal Health Commission, Chongqing, China
| | - Bo Pan
- Department of Pediatric Cardiology, National Clinical Key Cardiovascular Specialty, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yuzhong Distirct, Chongqing, 400014, China.
- Key Laboratory of Children's Important Organ Development and Diseases, Chongqing Municipal Health Commission, Chongqing, China.
| |
Collapse
|
6
|
Bakoš M, Dilber D, Jazbec A, Svaguša T, Potkonjak AM, Braovac D, Đurić Ž, Radeljak A, Lončar Vrančić A, Vraneš H, Galić S, Novak M, Prkacin I. Urine high-sensitive troponin I in children cannot offer an applicable alternative to serum. Front Cardiovasc Med 2024; 11:1391434. [PMID: 38836067 PMCID: PMC11149416 DOI: 10.3389/fcvm.2024.1391434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction In children, congenital heart defects represent the primary cause of increased serum troponin I. The elimination process of cardiac troponin I from the bloodstream and the factors influencing this process remain unknown. The objective of this study was to explore the role of troponin I as an indicator of cardiac damage in children both in serum and urine, a concept previously investigated in adults. Methods Our prospective study involved 70 children under 24 months of age. The first group underwent ventricular septal defect repair, while the second group involved children who had undergone partial cavopulmonary anastomosis. For these groups, urine and serum troponin I were assessed on four occasions. The third group, consisting of healthy children, underwent a single measurement of urine troponin I. Results Serum troponin I values exhibited an expected elevation in the early postoperative period, followed by a return to lower levels. Significantly higher concentrations of serum troponin I were observed in the first group of children (p < 0.05). A positive correlation was found between troponin I in the first three measurements and cardiopulmonary bypass and aortic cross-clamping time. There was no discernible increase in urine troponin I directly related to myocardial damage; troponin I couldn't be detected in most urine samples. Discussion The inability to detect troponin I in urine remains unexplained. Potential explanatory factors may include the isoelectric point of troponin I, elevated urinary concentrations of salts and urea, variations in urine acidity (different pH levels), and a relatively low protein concentration in urine.
Collapse
Affiliation(s)
- Matija Bakoš
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Daniel Dilber
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anamarija Jazbec
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department for Forest Inventory, Management Planning and Remote Sensing, University of Zagreb Faculty of Forestry and Wood Technology, Zagreb, Croatia
| | - Tomo Svaguša
- Department of Cardiology, Dubrava University Hospital, Zagreb, Croatia
| | - Ana-Meyra Potkonjak
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Centre, Zagreb, Croatia
| | - Duje Braovac
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Andrea Radeljak
- Department of Medical Biochemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Ana Lončar Vrančić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Hrvoje Vraneš
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Slobodan Galić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milivoj Novak
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ingrid Prkacin
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Internal Medicine, Merkur Clinical Hospital Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Salameh S, Guerrelli D, Miller JA, Desai M, Moise N, Yerebakan C, Bruce A, Sinha P, d'Udekem Y, Weinberg SH, Posnack NG. Connecting Transcriptomics with Computational Modeling to Reveal Developmental Adaptations in the Human Pediatric Myocardium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.589826. [PMID: 38712262 PMCID: PMC11071413 DOI: 10.1101/2024.04.19.589826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background Nearly 1% or 1.3 million babies are born with congenital heart disease (CHD) globally each year - many of whom will require palliative or corrective heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate cardiovascular drug therapies, and inform clinical care decisions related to surgical repair, myocardial preservation, or postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is largely limited to animal models. Methods Right atrial tissue samples were collected from n=117 neonatal, infant, and pediatric patients undergoing correct surgery due to (acyanotic) CHD. Patients were stratified into five age groups: neonate (0-30 days), infant (31-364 days), toddler to preschool (1-5 years), school age (6-11 years), and adolescent to young adults (12-32 years). We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Results Enrichment of differentially expressed genes (DEG) was explored, revealing age-dependent changes in several key biological processes (cell cycle, cell division, mitosis), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited both linear trends and sudden shifts across developmental stages, with changes in calcium handling ( I NCX ) and repolarization ( I K1 ) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We also note a shift in repolarization reserve, with lower I Kr expression in younger patients, a finding likely tied to the increased amplitude of I Ks triggered by elevated sympathetic activation in pediatric patients. Conclusion This study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology among patients with CHD, shedding light on molecular mechanisms underlying cardiac development and function across different developmental stages.
Collapse
|
8
|
Donkervoort S, van de Locht M, Ronchi D, Reunert J, McLean CA, Zaki M, Orbach R, de Winter JM, Conijn S, Hoomoedt D, Neto OLA, Magri F, Viaene AN, Foley AR, Gorokhova S, Bolduc V, Hu Y, Acquaye N, Napoli L, Park JH, Immadisetty K, Miles LB, Essawi M, McModie S, Ferreira LF, Zanotti S, Neuhaus SB, Medne L, ElBagoury N, Johnson KR, Zhang Y, Laing NG, Davis MR, Bryson-Richardson RJ, Hwee DT, Hartman JJ, Malik FI, Kekenes-Huskey PM, Comi GP, Sharaf-Eldin W, Marquardt T, Ravenscroft G, Bönnemann CG, Ottenheijm CAC. Pathogenic TNNI1 variants disrupt sarcomere contractility resulting in hypo- and hypercontractile muscle disease. Sci Transl Med 2024; 16:eadg2841. [PMID: 38569017 DOI: 10.1126/scitranslmed.adg2841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.
Collapse
Affiliation(s)
- Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martijn van de Locht
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
| | - Janine Reunert
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, Victoria, 3168, Australia
| | - Maha Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Stefan Conijn
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Daan Hoomoedt
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| | - Osorio Lopes Abath Neto
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Magri
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, 20122, Italy
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana Gorokhova
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Medical Genetics, Timone Children's Hospital, APHM, Marseille, 13005, France
- INSERM, U1251-MMG, Aix-Marseille Université, Marseille, 13009, France
| | - Véronique Bolduc
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Acquaye
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Napoli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Julien H Park
- Department of General Pediatrics, University Hospital Münster, Münster, 48149 Germany
| | - Kalyan Immadisetty
- Department of Cell and Molecular Physiology, Loyola University, Chicago, IL 60153, USA
| | - Lee B Miles
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Mona Essawi
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Salar McModie
- Department of Neurology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | - Leonardo F Ferreira
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simona Zanotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Livija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nagham ElBagoury
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong Zhang
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nigel G Laing
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Mark R Davis
- Neurogenetics Unit, Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | | | - Darren T Hwee
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - James J Hartman
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | | | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, 20135, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, 20122, Italy
| | - Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Thorsten Marquardt
- Department of General Pediatrics, University of Münster, Münster, 48149, Germany
| | - Gianina Ravenscroft
- Centre for Medical Research University of Western Australia, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, 1081 HV Netherlands
| |
Collapse
|
9
|
Vineetha VP, Tejaswi HN, Sooraj NS, Das S, Pillai D. Implications of deltamethrin on hematology, cardiac pathology, and gene expression in Nile tilapia (Oreochromis niloticus) and its possible amelioration with Shatavari (Asparagus racemosus). Vet Res Commun 2024; 48:811-826. [PMID: 37930611 DOI: 10.1007/s11259-023-10251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Deltamethrin (DM) is one of the extensively used pyrethroids for controlling ectoparasites. Unfortunately, DM is highly toxic to fish as it primarily targets the sodium channels of the plasma membrane thereby affecting their cardiac and nervous systems. The present study investigated the protective efficacy of Shatavari (Asparagus racemosus) against DM-induced cardiotoxicity in Nile tilapia (Oreochromis niloticus). The fish were segregated into nine groups having 36 fish/group maintained in triplicates exposed to DM (1 µg/L) and fed with a diet containing three different concentrations (10 g, 20 g, and 30 g/kg feed) of aqueous extract of A. racemosus (ARE) for 21 days. DM caused significant alterations in the blood and serum parameters, and expression of cardiac and apoptotic genes compared to the control group. The ARE cotreatment significantly reduced the increase in serum transaminases, creatine kinase, and lactate dehydrogenase levels induced by DM. ARE facilitated the regain of electrolyte (sodium, potassium, chloride) homeostasis and antioxidants such as catalase, superoxide dismutase, glutathione peroxidase, and glutathione in DM-exposed fish. The cardiac histology exhibited loose separation of the cardiomyocytes and myofibrillar loss in the DM group which was ameliorated in the DM-ARE cotreatment group. Significant modulations were observed in the expression of cardiac-specific genes (gata4, myh6, tnT, cox1) and apoptosis signaling genes and proteins (HSP70, bax, bcl-2, caspase3), in the cotreatment group compared to the DM-exposed group. The current study suggests that ARE possesses potential cardioprotective properties that are effective in mitigating the toxic effects induced by DM via ameliorating oxidative stress, electrolyte imbalance, and apoptosis in tilapia.
Collapse
Affiliation(s)
- Vadavanath Prabhakaran Vineetha
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Hemla Naik Tejaswi
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Nediyirippil Suresh Sooraj
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Sweta Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682 506, India.
| |
Collapse
|
10
|
Palfrey HA, Kumar A, Pathak R, Stone KP, Gettys TW, Murthy SN. Adverse Cardiac Events of Hypercholesterolemia Are Enhanced by Sitagliptin Administration in Sprague Dawley Rats. RESEARCH SQUARE 2024:rs.3.rs-4075353. [PMID: 38562676 PMCID: PMC10984018 DOI: 10.21203/rs.3.rs-4075353/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Cardiovascular disease (CVD) affects millions worldwide and is the leading cause of death among non-communicable diseases. Western diets typically comprise of meat and dairy products, both of which are rich in cholesterol (Cho) and methionine (Met), two well-known compounds with atherogenic capabilities. Despite their individual effects, literature on a dietary combination of the two in the context of CVD are limited. An additional interest was to investigate the cardioprotective potential of sitagliptin, an anti-type 2 diabetic drug. Thus, we hypothesized that atherogenic feeding would result in adverse cardiac effects and would attenuate upon sitagliptin administration. Methods Six-week-old adult male Sprague-Dawley rats were fed either a control (Con), high Met (1.5%), high Cho (2.0%), or high Met (1.5%) + high Cho (2.0%) diet for 35 days. They were orally gavaged with vehicle (water) or sitagliptin (100 mg/kg/d) from day 10 through 35. On day 36, rats were euthanized, and tissues were collected for analysis. Results Histopathological evaluation revealed a reduction in myocardial striations and increased collagen deposition in hypercholesterolemia (HChol), responses that became exacerbated upon sitagliptin administration. Cardiac pro-inflammatory and pro-fibrotic responses were adversely impacted in similar fashion. The addition of Met to Cho (MC) attenuated all adverse structural and biochemical responses, with or without sitagliptin. Conclusion Adverse cardiac outcomes in HChol were enhanced with sitagliptin administration and such effects were alleviated by Met. Our findings could be significant for understanding the risk-benefit of sitagliptin in type 2 diabetics who are known to consume atherogenic diets.
Collapse
Affiliation(s)
| | - Avinash Kumar
- Southern University and Agricultural and Mechanical College
| | - Rashmi Pathak
- Southern University and Agricultural and Mechanical College
| | | | | | | |
Collapse
|
11
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
12
|
Orlowska MK, Krycer JR, Reid JD, Mills RJ, Doran MR, Hudson JE. A miniaturized culture platform for control of the metabolic environment. BIOMICROFLUIDICS 2024; 18:024101. [PMID: 38434908 PMCID: PMC10908563 DOI: 10.1063/5.0169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The heart is a metabolic "omnivore" and adjusts its energy source depending on the circulating metabolites. Human cardiac organoids, a three-dimensional in vitro model of the heart wall, are a useful tool to study cardiac physiology and pathology. However, cardiac tissue naturally experiences shear stress and nutrient fluctuations via blood flow in vivo, whilst in vitro models are conventionally cultivated in a static medium. This necessitates the regular refreshing of culture media, which creates acute cellular disturbances and large metabolic fluxes. To culture human cardiac organoids in a more physiological manner, we have developed a perfused bioreactor for cultures in a 96-well plate format. The designed bioreactor is easy to fabricate using a common culture plate and a 3D printer. Its open system allows for the use of traditional molecular biology techniques, prevents flow blockage issues, and provides easy access for sampling and cell assays. We hypothesized that a perfused culture would create more stable environment improving cardiac function and maturation. We found that lactate is rapidly produced by human cardiac organoids, resulting in large fluctuations in this metabolite under static culture. Despite this, neither medium perfusion in bioreactor culture nor lactate supplementation improved cardiac function or maturation. In fact, RNA sequencing revealed little change across the transcriptome. This demonstrates that cardiac organoids are robust in response to fluctuating environmental conditions under normal physiological conditions. Together, we provide a framework for establishing an easily accessible perfusion system that can be adapted to a range of miniaturized cell culture systems.
Collapse
|
13
|
Gokhan I, Dong W, Grubman D, Mezue K, Yang D, Wang Y, Gandhi PU, Kwan JM, Hu JR. Clinical Biochemistry of Serum Troponin. Diagnostics (Basel) 2024; 14:378. [PMID: 38396417 PMCID: PMC10887818 DOI: 10.3390/diagnostics14040378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Accurate measurement and interpretation of serum levels of troponin (Tn) is a central part of the clinical workup of a patient presenting with chest pain suspicious for acute coronary syndrome (ACS). Knowledge of the molecular characteristics of the troponin complex and test characteristics of troponin measurement assays allows for a deeper understanding of causes of false positive and false negative test results in myocardial injury. In this review, we discuss the molecular structure and functions of the constituent proteins of the troponin complex (TnT, TnC, and TnI); review the different isoforms of Tn and where they are from; survey the evolution of clinical Tn assays, ranging from first-generation to high-sensitivity (hs); provide a primer on statistical interpretation of assay results based on different clinical settings; and discuss potential causes of false results. We also summarize the advances in technologies that may lead to the development of future Tn assays, including the development of point of care assays and wearable Tn sensors for real-time continuous measurement.
Collapse
Affiliation(s)
- Ilhan Gokhan
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (I.G.)
| | - Weilai Dong
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (I.G.)
| | - Daniel Grubman
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA; (I.G.)
| | - Kenechukwu Mezue
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA (J.M.K.)
| | - David Yang
- Department of Emergency Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Yanting Wang
- Division of Cardiovascular Disease and Hypertension, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Parul U. Gandhi
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA (J.M.K.)
| | - Jennifer M. Kwan
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA (J.M.K.)
| | - Jiun-Ruey Hu
- Section of Cardiovascular Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA (J.M.K.)
| |
Collapse
|
14
|
Sakamoto T, Kelly DP. Cardiac maturation. J Mol Cell Cardiol 2024; 187:38-50. [PMID: 38160640 PMCID: PMC10923079 DOI: 10.1016/j.yjmcc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The heart undergoes a dynamic maturation process following birth, in response to a wide range of stimuli, including both physiological and pathological cues. This process entails substantial re-programming of mitochondrial energy metabolism coincident with the emergence of specialized structural and contractile machinery to meet the demands of the adult heart. Many components of this program revert to a more "fetal" format during development of pathological cardiac hypertrophy and heart failure. In this review, emphasis is placed on recent progress in our understanding of the transcriptional control of cardiac maturation, encompassing the results of studies spanning from in vivo models to cardiomyocytes derived from human stem cells. The potential applications of this current state of knowledge to new translational avenues aimed at the treatment of heart failure is also addressed.
Collapse
Affiliation(s)
- Tomoya Sakamoto
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Ivanova AD, Kotova DA, Khramova YV, Morozova KI, Serebryanaya DV, Bochkova ZV, Sergeeva AD, Panova AS, Katrukha IA, Moshchenko AA, Oleinikov VA, Semyanov AV, Belousov VV, Katrukha AG, Brazhe NA, Bilan DS. Redox differences between rat neonatal and adult cardiomyocytes under hypoxia. Free Radic Biol Med 2024; 211:145-157. [PMID: 38043869 DOI: 10.1016/j.freeradbiomed.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
It is generally accepted that oxidative stress plays a key role in the development of ischemia-reperfusion injury in ischemic heart disease. However, the mechanisms how reactive oxygen species trigger cellular damage are not fully understood. Our study investigates redox state and highly reactive substances within neonatal and adult cardiomyocytes under hypoxia conditions. We have found that hypoxia induced an increase in H2O2 production in adult cardiomyocytes, while neonatal cardiomyocytes experienced a decrease in H2O2 levels. This finding correlates with our observation of the difference between the electron transport chain (ETC) properties and mitochondria amount in adult and neonatal cells. We demonstrated that in adult cardiomyocytes hypoxia caused the significant increase in the ETC loading with electrons compared to normoxia. On the contrary, in neonatal cardiomyocytes ETC loading with electrons was similar under both normoxic and hypoxic conditions that could be due to ETC non-functional state and the absence of the electrons transfer to O2 under normoxia. In addition to the variations in H2O2 production, we also noted consistent pH dynamics under hypoxic conditions. Notably, the pH levels exhibited a similar decrease in both cell types, thus, acidosis is a more universal cellular response to hypoxia. We also demonstrated that the amount of mitochondria and the levels of cardiac isoforms of troponin I, troponin T, myoglobin and GAPDH were significantly higher in adult cardiomyocytes compared to neonatal ones. Remarkably, we found out that under hypoxia, the levels of cardiac isoforms of troponin T, myoglobin, and GAPDH were elevated in adult cardiomyocytes, while their level in neonatal cells remained unchanged. Obtained data contribute to the understanding of the mechanisms of neonatal cardiomyocytes' resistance to hypoxia and the ability to maintain the metabolic homeostasis in contrast to adult ones.
Collapse
Affiliation(s)
- Alexandra D Ivanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Daria A Kotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia V Khramova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ksenia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Zhanna V Bochkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia D Sergeeva
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasiya S Panova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Ivan A Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Vladimir A Oleinikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; National Research Nuclear University Moscow Engineering Physics Institute, Moscow, 115409, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Alexey G Katrukha
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
16
|
Beisaw A, Wu CC. Cardiomyocyte maturation and its reversal during cardiac regeneration. Dev Dyn 2024; 253:8-27. [PMID: 36502296 DOI: 10.1002/dvdy.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is a leading cause of death worldwide. Due to the limited proliferative and regenerative capacity of adult cardiomyocytes, the lost myocardium is not replenished efficiently and is replaced by a fibrotic scar, which eventually leads to heart failure. Current therapies to cure or delay the progression of heart failure are limited; hence, there is a pressing need for regenerative approaches to support the failing heart. Cardiomyocytes undergo a series of transcriptional, structural, and metabolic changes after birth (collectively termed maturation), which is critical for their contractile function but limits the regenerative capacity of the heart. In regenerative organisms, cardiomyocytes revert from their terminally differentiated state into a less mature state (ie, dedifferentiation) to allow for proliferation and regeneration to occur. Importantly, stimulating adult cardiomyocyte dedifferentiation has been shown to promote morphological and functional improvement after myocardial infarction, further highlighting the importance of cardiomyocyte dedifferentiation in heart regeneration. Here, we review several hallmarks of cardiomyocyte maturation, and summarize how their reversal facilitates cardiomyocyte proliferation and heart regeneration. A detailed understanding of how cardiomyocyte dedifferentiation is regulated will provide insights into therapeutic options to promote cardiomyocyte de-maturation and proliferation, and ultimately heart regeneration in mammals.
Collapse
Affiliation(s)
- Arica Beisaw
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
| | - Chi-Chung Wu
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Wagner B, Weidner N, Hug A. Elevated high-sensitivity cardiac troponin T serum concentration in subjects with spinal cord injury. Int J Cardiol 2023; 391:131284. [PMID: 37619878 DOI: 10.1016/j.ijcard.2023.131284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/13/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The biochemical analysis of high-sensitivity cardiac troponins (hs-cTn) from peripheral blood specimens has been established as biomarker for myocardial injury. Independently of myocardial injury, increased serum hs-cTn concentrations have been described in patients with myopathies. The relevance and frequency of noncardiac hs-cTn elevations in spinal cord injury (SCI) is unknown. Our study aimed to 1) determine the frequency of increased hs-cTn concentrations of supposedly noncardiac origin above the 99th percentile (upper reference limit, URL) in an unselected SCI population and 2) compare the two protagonist analytes cTnT and cTnI with respect to these noncardiac elevations. METHODS In this monocentric, cross-sectional study, we sampled blood from n = 30 SCI subjects without cardiac symptoms to test for hs-cTnT and hs-cTnI serum concentrations. RESULTS 18/30 (60%) of SCI subjects showed increased hs-cTnT concentrations above the URL of 14 ng/l (p < 0.001). In 4 subjects (22.2%) concentrations were >50 ng/l. Moreover, 3 of these four subjects fulfilled the 6-h troponin dynamics criterion for acute myocardial injury in serial hs-cTnT testing. In contrast, no subject demonstrated increased hs-cTnI concentrations according to the URL of 40 ng/l. 6-h troponin dynamics were also unremarkable for hs-cTnI testing. CONCLUSIONS SCI subjects frequently have increased hs-cTnT concentrations without clinical and hs-cTnI evidence of myocardial injury. Clinicians must be aware of cTnT "skeletal muscle false-positives" in SCI, which applies to elevated baseline cTnT concentrations and troponin dynamics in serial measurements. In case of diagnostic uncertainty, simultaneous analysis of cTnI might be helpful.
Collapse
Affiliation(s)
- Björn Wagner
- Spinal Cord Injury Center, Heidelberg University Hospital, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Germany
| | - Andreas Hug
- Spinal Cord Injury Center, Heidelberg University Hospital, Germany.
| |
Collapse
|
18
|
Salameh S, Ogueri V, Posnack NG. Adapting to a new environment: postnatal maturation of the human cardiomyocyte. J Physiol 2023; 601:2593-2619. [PMID: 37031380 PMCID: PMC10775138 DOI: 10.1113/jp283792] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
The postnatal mammalian heart undergoes remarkable developmental changes, which are stimulated by the transition from the intrauterine to extrauterine environment. With birth, increased oxygen levels promote metabolic, structural and biophysical maturation of cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical conduction. In this Topical Review article, we highlight key studies that inform our current understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully mature adult phenotype until nearly the first decade of life. However, it is important to note that fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, including the scarcity of human tissue, small sample size and a heavy reliance on diseased tissue samples, often without age-matched healthy controls. Future developmental studies are warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform age-appropriate treatment strategies for cardiac disease.
Collapse
Affiliation(s)
- Shatha Salameh
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Vanessa Ogueri
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | - Nikki Gillum Posnack
- Department of Pharmacology & Physiology, George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University, Washington, DC, USA
| |
Collapse
|
19
|
Malihi G, Nikoui V, Elson EL. A review on qualifications and cost effectiveness of induced pluripotent stem cells (IPSCs)-induced cardiomyocytes in drug screening tests. Arch Physiol Biochem 2023; 129:131-142. [PMID: 32783745 DOI: 10.1080/13813455.2020.1802600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.
Collapse
Affiliation(s)
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elliot L Elson
- Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022; 17:2037-2049. [PMID: 35931080 PMCID: PMC9481907 DOI: 10.1016/j.stemcr.2022.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have wide potential application in basic research, drug discovery, and regenerative medicine, but functional maturation remains challenging. Here, we present a method whereby maturation of hiPSC-CMs can be accelerated by simultaneous application of physiological Ca2+ and frequency-ramped electrical pacing in culture. This combination produces positive force-frequency behavior, physiological twitch kinetics, robust β-adrenergic response, improved Ca2+ handling, and cardiac troponin I expression within 25 days. This study provides insights into the role of Ca2+ in hiPSC-CM maturation and offers a scalable platform for translational and clinical research.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Lorenzo R Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Saiti S Halder
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Paul Stankey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
22
|
Omran F, Kyrou I, Osman F, Lim VG, Randeva HS, Chatha K. Cardiovascular Biomarkers: Lessons of the Past and Prospects for the Future. Int J Mol Sci 2022; 23:5680. [PMID: 35628490 PMCID: PMC9143441 DOI: 10.3390/ijms23105680] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a major healthcare burden on the population worldwide. Early detection of this disease is important in prevention and treatment to minimise morbidity and mortality. Biomarkers are a critical tool to either diagnose, screen, or provide prognostic information for pathological conditions. This review discusses the historical cardiac biomarkers used to detect these conditions, discussing their application and their limitations. Identification of new biomarkers have since replaced these and are now in use in routine clinical practice, but still do not detect all disease. Future cardiac biomarkers are showing promise in early studies, but further studies are required to show their value in improving detection of CVD above the current biomarkers. Additionally, the analytical platforms that would allow them to be adopted in healthcare are yet to be established. There is also the need to identify whether these biomarkers can be used for diagnostic, prognostic, or screening purposes, which will impact their implementation in routine clinical practice.
Collapse
Affiliation(s)
- Farah Omran
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Faizel Osman
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ven Gee Lim
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Department of Cardiology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Harpal Singh Randeva
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Clinical Sciences Research Laboratories, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; (F.O.); (I.K.); (F.O.); (V.G.L.); (H.S.R.)
- Biochemistry and Immunology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| |
Collapse
|
23
|
Halas M, Langa P, Warren CM, Goldspink PH, Wolska BM, Solaro RJ. Effects of Sarcomere Activators and Inhibitors Targeting Myosin Cross-Bridges on Ca2+-Activation of Mature and Immature Mouse Cardiac Myofilaments. Mol Pharmacol 2022; 101:286-299. [PMID: 35236770 PMCID: PMC9092471 DOI: 10.1124/molpharm.121.000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hyper-contractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM) linked commonly to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult non-transgenic controls (NTG) expressing cardiac troponin I (cTnI), and from hearts of transgenic mice (TG-ssTnI) expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7+14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7+14-day old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac TnT (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI- regulated myofilaments with a similar effect reducing sub-maximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92-myofilaments. Our data demonstrate an influence of myosin and thin filament-associated proteins on the actions of myosin-directed agents such as OM and Mava. Significance Statement The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex-vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents that is important in pre-clinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.
Collapse
Affiliation(s)
- Monika Halas
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Paulina Langa
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Chad M Warren
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Paul H Goldspink
- Physiology and Biophysics, University of Illinois at Chicago, United States
| | - Beata M Wolska
- Department of Medicine, University of Illinois at Chicago, United States
| | - R John Solaro
- Physiology and Biophysics, University of Illinois at Chicago, United States
| |
Collapse
|
24
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
25
|
Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca 2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release. Cardiovasc Toxicol 2021; 21:642-654. [PMID: 34037972 DOI: 10.1007/s12012-021-09655-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs for treating acute promyelocytic leukemia patients, but its clinical use is hampered due to cardiotoxicity. The present investigation unveils the mechanism underlying ATO-induced oxidative stress that promotes calcineurin (a ubiquitous Ca2+/calmodulin-dependent serine/threonine phosphatase expressed only during sustained Ca2+ elevation) expression, inflammatory cytokine release and apoptosis in H9c2 cardiomyoblasts, and its possible modulation with phloretin (PHL, an antioxidant polyphenol present in apple peel). ATO caused Ca2+ overload resulting in elevated expression of calcineurin and its downstream transcriptional effector NFATc causing the release of cytokines such as IL-2, IL-6, MCP-1, IFN-γ, and TNF-α in H9c2 cardiomyoblast. There was a visible increase in the nuclear fraction of NF-κB and ROS-mediated apoptotic cell death. The expression levels of cardiac-specific genes (troponin, desmin, and caveolin-3) and genes of the apoptotic signaling pathway (BCL-2, BAX, IGF1, AKT, ERK1, -2, RAF1, and JNK) in response to ATO and PHL were studied. The putative binding mode and the potential ligand-target interactions of PHL with calcineurin using docking software (Autodock and iGEMDOCKv2) showed the high binding affinity of PHL to calcineurin. PHL co-treatment significantly reduced Ca2+ influx and normalized the expression of calcineurin, NFATc, NF-κB, and other cytokines. PHL co-treatment resulted in activation of BCL-2, IGF1, AKT, RAF1, ERK1, and ERK2 and inhibition of BAX and JNK. Overall, these results revealed that PHL has a protective effect against ATO-induced apoptosis and we propose calcineurin as a druggable target for the interaction of PHL in ATO cardiotoxicity in H9c2 cells.
Collapse
|
26
|
Shiba Y. Pluripotent Stem Cells for Cardiac Regeneration - Current Status, Challenges, and Future Perspectives. Circ J 2020; 84:2129-2135. [PMID: 33087630 DOI: 10.1253/circj.cj-20-0755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of myocardium permanently impairs cardiac function because the adult mammalian heart has limited regenerative capacity. Strategies to regenerate injured heart tissue include the transplantation of multiple types of stem cells. Among them, pluripotent stem cells (PSCs) are a promising option because of their unlimited self-renewal and unequivocal cardiomyogenic ability. To date, advances in stem cell biology allow generation of relatively homogeneous human PSC-derived cardiomyocytes (CMs). In this regard, preclinical studies of PSC-CM transplantation in rodents and larger animal models have provided convincing proof-of-concept results, triggering clinical studies in multiple countries. However, a few important uncertainties are yet to be addressed, warranting further investigation before clinical implementation of this novel therapy. An overview of the potential of stem cell therapy to provide new CMs for cardiac regeneration is presented.
Collapse
Affiliation(s)
- Yuji Shiba
- Department of Regenerative Science and Medicine, Institute for Biomedical Sciences, Shinshu University
| |
Collapse
|
27
|
Zhang Y, Wang F, Wu F, Wang Y, Wang X, Gui Y, Li Q. Tnni1b-ECR183-d2, an 87 bp cardiac enhancer of zebrafish. PeerJ 2020; 8:e10289. [PMID: 33194440 PMCID: PMC7648457 DOI: 10.7717/peerj.10289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Several heart malformations are associated with mutations in the regulatory regions of cardiac genes. Troponin I type 1b (tnni1b) is important for the formation of the atrioventricular canal in zebrafish hearts; however, the regulation of tnni1b is poorly understand. We aimed to identify a small but functional enhancer that is distal to tnni1b. Methods Evolutionary Conserved Region (ECR) Browser was used to analyze the 219 kb zebrafish and human genomes covering the tnni1b gene as well as the 100 kb regions upstream and downstream of tnni1b. Putative transcription factor binding sites (TFBSs) were analyzed using JASPAR and PROMO, and the enhancer activity was identified using zebrafish embryos and the luciferase reporter assay. A correlation analysis between the enhancer and transcription factors (TFs) was performed via TF overexpression and TFBS mutation experiments and the electrophoretic mobility shift assay (EMSA). To analyze the conservation between zebrafish and human enhancers, human DNA fragments were functionally verified. Images were captured and analyzed by fluorescence microscopy or confocal microscopy. Results Combined with comparative analysis and functional validation, we identified a 183 bp ECR (termed tnni1b-ECR183) that was located approximately 84 kb upstream of tnni1b that had the heart-specific enhancer activity in zebrafish. TFBS analysis and the enhancer activity detection assay data showed that the 87 bp core region (termed tnni1b-ECR183-d2) was capable of driving specific GFP expression near the atrioventricular junction and increased luciferase expression in HEK293 and HL1 cell lines. The GFP pattern in zebrafish embryos was similar to the expression profiles of tnni1b. A correlation analysis showed that the enhancer activity of tnni1b-ECR183-d2 was increased when NKX2.5 (p = 0.0006) or JUN (p < 0.0001) was overexpressed and was decreased when the TFBSs of NKX2.5 (p < 0.0001) or JUN (p = 0.0018) were mutated. In addition, DNA-protein interactions were not observed between these TFs and tnni1b-ECR183-d2 in the EMSA experiment. The conservation analysis showed that tnni1b-ECR183-h179 (aligned from tnni1b-ECR183) drove GFP expression in the heart and skeletal muscles and increased the luciferase expression after NKX2.5 (p < 0.0001), JUN (p < 0.0001) or ETS1 (p < 0.0001) was overexpressed. Interestingly, the truncated fragment tnni1b-ECR183-h84 mainly drove GFP expression in the skeletal muscles of zebrafish and the enhancer activity decreased when NKX2.5 (p = 0.0028), ETS1 (p = 0.0001) or GATA4 (p < 0.0001) was overexpressed. Conclusions An 87 bp cardiac-specific enhancer located 84 kb upstream of tnni1b in zebrafish was positively correlated with NKX2.5 or JUN. The zebrafish and human enhancers in this study target different tissues. The GFP expression mediated by tnni1b-ECR183-d2 is a valuable tool for marking the domain around the atrioventricular junction.
Collapse
Affiliation(s)
- Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China.,Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Department of Cardiology, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect, Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
28
|
Adamcová M, Kokštein Z, Vávrová J. Clinical Utility of Cardiac Troponin I and Cardiac Troponin T Measurements. ACTA MEDICA (HRADEC KRÁLOVÉ) 2020. [DOI: 10.14712/18059694.2020.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The measurement of CK-MB remains the test of choice for confirmation or exclusion of AMI and probably will remain the test of choice for routine diagnosis in the near future. Nowadays determination of cardiac troponin T (cTnT) and cardiac troponin I (cTnI) as a method relatively expensive and time-consuming should be restricted to clinical settings that really require their high specificity.
Collapse
|
29
|
Optimizing the Use of iPSC-CMs for Cardiac Regeneration in Animal Models. Animals (Basel) 2020; 10:ani10091561. [PMID: 32887495 PMCID: PMC7552322 DOI: 10.3390/ani10091561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In 2006, the first induced pluripotent stem cells were generated by reprogramming skin cells. Induced pluripotent stem cells undergo fast cell division, can differentiate into many different cell types, can be patient-specific, and do not raise ethical issues. Thus, they offer great promise as in vitro disease models, drug toxicity testing platforms, and for autologous tissue regeneration. Heart failure is one of the major causes of death worldwide. It occurs when the heart cannot meet the body’s metabolic demands. Induced pluripotent stem cells can be differentiated into cardiac myocytes, can form patches resembling native cardiac tissue, and can engraft to the damaged heart. However, despite correct host/graft coupling, most animal studies demonstrate an arrhythmogenicity of the engrafted tissue and variable survival. This is partially because of the heterogeneity and immaturity of the cells. New evidence suggests that by modulating induced pluripotent stem cells-cardiac myocytes (iPSC-CM) metabolism by switching substrates and changing metabolic pathways, you can decrease iPSC-CM heterogeneity and arrhythmogenicity. Novel culture methods and tissue engineering along with animal models of heart failure are needed to fully unlock the potential of cardiac myocytes derived from induced pluripotent stem cells for cardiac regeneration. Abstract Heart failure (HF) is a common disease in which the heart cannot meet the metabolic demands of the body. It mostly occurs in individuals 65 years or older. Cardiac transplantation is the best option for patients with advanced HF. High numbers of patient-specific cardiac myocytes (CMs) can be generated from induced pluripotent stem cells (iPSCs) and can possibly be used to treat HF. While some studies found iPSC-CMS can couple efficiently to the damaged heart and restore cardiac contractility, almost all found iPSC-CM transplantation is arrhythmogenic, thus hampering the use of iPSC-CMs for cardiac regeneration. Studies show that iPSC-CM cultures are highly heterogeneous containing atrial-, ventricular- and nodal-like CMs. Furthermore, they have an immature phenotype, resembling more fetal than adult CMs. There is an urgent need to overcome these issues. To this end, a novel and interesting avenue to increase CM maturation consists of modulating their metabolism. Combined with careful engineering and animal models of HF, iPSC-CMs can be assessed for their potential for cardiac regeneration and a cure for HF.
Collapse
|
30
|
Pioner JM, Guan X, Klaiman JM, Racca AW, Pabon L, Muskheli V, Macadangdang J, Ferrantini C, Hoopmann MR, Moritz RL, Kim DH, Tesi C, Poggesi C, Murry CE, Childers MK, Mack DL, Regnier M. Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovasc Res 2020; 116:368-382. [PMID: 31049579 DOI: 10.1093/cvr/cvz109] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
AIMS Heart failure invariably affects patients with various forms of muscular dystrophy (MD), but the onset and molecular sequelae of altered structure and function resulting from full-length dystrophin (Dp427) deficiency in MD heart tissue are poorly understood. To better understand the role of dystrophin in cardiomyocyte development and the earliest phase of Duchenne muscular dystrophy (DMD) cardiomyopathy, we studied human cardiomyocytes differentiated from induced pluripotent stem cells (hiPSC-CMs) obtained from the urine of a DMD patient. METHODS AND RESULTS The contractile properties of patient-specific hiPSC-CMs, with no detectable dystrophin (DMD-CMs with a deletion of exon 50), were compared to CMs containing a CRISPR-Cas9 mediated deletion of a single G base at position 263 of the dystrophin gene (c.263delG-CMs) isogenic to the parental line of hiPSC-CMs from a healthy individual. We hypothesized that the absence of a dystrophin-actin linkage would adversely affect myofibril and cardiomyocyte structure and function. Cardiomyocyte maturation was driven by culturing long-term (80-100 days) on a nanopatterned surface, which resulted in hiPSC-CMs with adult-like dimensions and aligned myofibrils. CONCLUSIONS Our data demonstrate that lack of Dp427 results in reduced myofibril contractile tension, slower relaxation kinetics, and to Ca2+ handling abnormalities, similar to DMD cells, suggesting either retarded or altered maturation of cardiomyocyte structures associated with these functions. This study offers new insights into the functional consequences of Dp427 deficiency at an early stage of cardiomyocyte development in both patient-derived and CRISPR-generated models of dystrophin deficiency.
Collapse
Affiliation(s)
- J Manuel Pioner
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Xuan Guan
- Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Alice W Racca
- School of Biosciences, University of Kent, Canterbury, UK
| | - Lil Pabon
- Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Veronica Muskheli
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | | | - Cecilia Ferrantini
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | | | | | - Deok-Ho Kim
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Chiara Tesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Experimental and Clinical Medicine, Div. of Physiology, University of Florence, Florence, Italy
| | - Charles E Murry
- Bioengineering, University of Washington, Seattle, WA, USA.,Pathology, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | - Martin K Childers
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - David L Mack
- Bioengineering, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA.,Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Michael Regnier
- Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| |
Collapse
|
31
|
Pioner JM, Fornaro A, Coppini R, Ceschia N, Sacconi L, Donati MA, Favilli S, Poggesi C, Olivotto I, Ferrantini C. Advances in Stem Cell Modeling of Dystrophin-Associated Disease: Implications for the Wider World of Dilated Cardiomyopathy. Front Physiol 2020; 11:368. [PMID: 32477154 PMCID: PMC7235370 DOI: 10.3389/fphys.2020.00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
Familial dilated cardiomyopathy (DCM) is mostly caused by mutations in genes encoding cytoskeletal and sarcomeric proteins. In the pediatric population, DCM is the predominant type of primitive myocardial disease. A severe form of DCM is associated with mutations in the DMD gene encoding dystrophin, which are the cause of Duchenne Muscular Dystrophy (DMD). DMD-associated cardiomyopathy is still poorly understood and orphan of a specific therapy. In the last 5 years, a rise of interest in disease models using human induced pluripotent stem cells (hiPSCs) has led to more than 50 original studies on DCM models. In this review paper, we provide a comprehensive overview on the advances in DMD cardiomyopathy disease modeling and highlight the most remarkable findings obtained from cardiomyocytes differentiated from hiPSCs of DMD patients. We will also describe how hiPSCs based studies have contributed to the identification of specific myocardial disease mechanisms that may be relevant in the pathogenesis of DCM, representing novel potential therapeutic targets.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | | | - Raffaele Coppini
- Department of NeuroFarBa, Università degli Studi di Firenze, Florence, Italy
| | - Nicole Ceschia
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Leonardo Sacconi
- LENS, Università degli Studi di Firenze and National Institute of Optics (INO-CNR), Florence, Italy
| | | | - Silvia Favilli
- Pediatric Cardiology, Meyer Children's Hospital, Florence, Italy
| | - Corrado Poggesi
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
32
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
33
|
Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 2020; 17:341-359. [PMID: 32015528 DOI: 10.1038/s41569-019-0331-x] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Our knowledge of pluripotent stem cell (PSC) biology has advanced to the point where we now can generate most cells of the human body in the laboratory. PSC-derived cardiomyocytes can be generated routinely with high yield and purity for disease research and drug development, and these cells are now gradually entering the clinical research phase for the testing of heart regeneration therapies. However, a major hurdle for their applications is the immature state of these cardiomyocytes. In this Review, we describe the structural and functional properties of cardiomyocytes and present the current approaches to mature PSC-derived cardiomyocytes. To date, the greatest success in maturation of PSC-derived cardiomyocytes has been with transplantation into the heart in animal models and the engineering of 3D heart tissues with electromechanical conditioning. In conventional 2D cell culture, biophysical stimuli such as mechanical loading, electrical stimulation and nanotopology cues all induce substantial maturation, particularly of the contractile cytoskeleton. Metabolism has emerged as a potent means to control maturation with unexpected effects on electrical and mechanical function. Different interventions induce distinct facets of maturation, suggesting that activating multiple signalling networks might lead to increased maturation. Despite considerable progress, we are still far from being able to generate PSC-derived cardiomyocytes with adult-like phenotypes in vitro. Future progress will come from identifying the developmental drivers of maturation and leveraging them to create more mature cardiomyocytes for research and regenerative medicine.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Aidan Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA. .,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA. .,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
Giannitsis E, Mueller C, Katus HA. Skeletal myopathies as a non-cardiac cause of elevations of cardiac troponin concentrations. ACTA ACUST UNITED AC 2020; 6:189-201. [PMID: 31271552 DOI: 10.1515/dx-2019-0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Skeletal myopathies have been suggested as a non-cardiac cause of elevations of cardiac troponin (cTn), particularly cardiac troponin T (cTnT). This is of major clinical relevance and concern as cTn plays a major role in the early diagnosis of myocardial infarction (MI). While both the incidence as well as the true pathophysiology (cardiac versus non-cardiac) underlying elevations in cTn in skeletal myopathies remain largely unknown, re-expression of cTnT in regenerating adult skeletal muscle has been suggested as a possible contributor. However, unequivocal protein characterization in skeletal muscle and quantification of the relative amounts of this possible signal versus the cTn signal derived from true cardiomyocyte injury remains elusive. Alternatively, minor cross-reactivity of the cTnT (and possibly at times also cTnI) detection and capture antibodies used in current monoclonal immunoassays with the skeletal troponin T or I isoform may be considered. Both would represent "false positive" elevations from a clinical perspective and would need to be reliably differentiated from "true positive elevations" from subclinical cardiomyocyte injury not detectable by currently available imaging techniques such as echocardiography and contrast enhanced magnetic resonance imaging (MRI), which have at least a 5 times lower sensitivity for cardiomyocyte injury. This review aims to explore the currently available data, its methodological limitations and provide guidance to clinicians to avoid misinterpretation of cTn concentrations.
Collapse
Affiliation(s)
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Hugo A Katus
- Medizinische Klinik III, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Kühnisch J, Herbst C, Al-Wakeel-Marquard N, Dartsch J, Holtgrewe M, Baban A, Mearini G, Hardt J, Kolokotronis K, Gerull B, Carrier L, Beule D, Schubert S, Messroghli D, Degener F, Berger F, Klaassen S. Targeted panel sequencing in pediatric primary cardiomyopathy supports a critical role of TNNI3. Clin Genet 2019; 96:549-559. [PMID: 31568572 DOI: 10.1111/cge.13645] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/30/2022]
Abstract
The underlying genetic mechanisms and early pathological events of children with primary cardiomyopathy (CMP) are insufficiently characterized. In this study, we aimed to characterize the mutational spectrum of primary CMP in a large cohort of patients ≤18 years referred to a tertiary center. Eighty unrelated index patients with pediatric primary CMP underwent genetic testing with a panel-based next-generation sequencing approach of 89 genes. At least one pathogenic or probably pathogenic variant was identified in 30/80 (38%) index patients. In all CMP subgroups, patients carried most frequently variants of interest in sarcomere genes suggesting them as a major contributor in pediatric primary CMP. In MYH7, MYBPC3, and TNNI3, we identified 18 pathogenic/probably pathogenic variants (MYH7 n = 7, MYBPC3 n = 6, TNNI3 n = 5, including one homozygous (TNNI3 c.24+2T>A) truncating variant. Protein and transcript level analysis on heart biopsies from individuals with homozygous mutation of TNNI3 revealed that the TNNI3 protein is absent and associated with upregulation of the fetal isoform TNNI1. The present study further supports the clinical importance of sarcomeric mutation-not only in adult-but also in pediatric primary CMP. TNNI3 is the third most important disease gene in this cohort and complete loss of TNNI3 leads to severe pediatric CMP.
Collapse
Affiliation(s)
- Jirko Kühnisch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Christopher Herbst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Nadya Al-Wakeel-Marquard
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany
| | - Josephine Dartsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Manuel Holtgrewe
- Core Unit Bioinformtics, Berlin Institute of Health (BIH), Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Core Facility Bioinformatik, Berlin, Germany
| | - Anwar Baban
- Pediatric Cardiology and Cardiac Arrhythmia/Syncope Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Juliane Hardt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Biometry and Clinical Epidemiology (iBikE), Berlin, Germany.,Clinical Research Unit (CRU) - Biostatistics, Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Brenda Gerull
- Comprehensive Heart Failure Center (CHFC) and Department of Medicine I, University and University Hospital Würzburg, Würzburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Hamburg, Germany
| | - Dieter Beule
- Core Unit Bioinformtics, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center for Molecuar Medicine, Berlin, Germany
| | - Stephan Schubert
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Daniel Messroghli
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Internal Medicine - Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Franziska Degener
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Berlin, Germany
| | - Felix Berger
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Congenital Heart Disease - Pediatric Cardiology, German Heart Center Berlin, Berlin, Germany.,Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sabine Klaassen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Department of Pediatric Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Nakano SJ, Walker JS, Walker LA, Li X, Du Y, Miyamoto SD, Sucharov CC, Garcia AM, Mitchell MB, Ambardekar AV, Stauffer BL. Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1221-H1230. [PMID: 31625780 DOI: 10.1152/ajpheart.00409.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is the most common cause of heart failure (HF) in children, resulting in high mortality and need for heart transplantation. The pathophysiology underlying pediatric DCM is largely unclear; however, there is emerging evidence that molecular adaptations and response to conventional HF medications differ between children and adults. To gain insight into alterations leading to systolic dysfunction in pediatric DCM, we measured cardiomyocyte contractile properties and sarcomeric protein phosphorylation in explanted pediatric DCM myocardium (N = 8 subjects) compared with nonfailing (NF) pediatric hearts (N = 8 subjects). Force-pCa curves were generated from skinned cardiomyocytes in the presence and absence of protein kinase A. Sarcomeric protein phosphorylation was quantified with Pro-Q Diamond staining after gel electrophoresis. Pediatric DCM cardiomyocytes demonstrate increased calcium sensitivity (pCa50 =5.70 ± 0.0291), with an associated decrease in troponin (Tn)I phosphorylation compared with NF pediatric cardiomyocytes (pCa50 =5.59 ± 0.0271, P = 0.0073). Myosin binding protein C and TnT phosphorylation are also lower in pediatric DCM, whereas desmin phosphorylation is increased. Pediatric DCM cardiomyocytes generate peak tension comparable to that of NF pediatric cardiomyocytes [DCM 29.7 mN/mm2, interquartile range (IQR) 21.5-49.2 vs. NF 32.8 mN/mm2, IQR 21.5-49.2 mN/mm2; P = 0.6125]. In addition, cooperativity is decreased in pediatric DCM compared with pediatric NF (Hill coefficient: DCM 1.56, IQR 1.31-1.94 vs. NF 1.94, IQR 1.36-2.86; P = 0.0425). Alterations in sarcomeric phosphorylation and cardiomyocyte contractile properties may represent an impaired compensatory response, contributing to the detrimental DCM phenotype in children.NEW & NOTEWORTHY Our study is the first to demonstrate that cardiomyocytes from infants and young children with dilated cardiomyopathy (DCM) exhibit increased calcium sensitivity (likely mediated by decreased troponin I phosphorylation) compared with nonfailing pediatric cardiomyocytes. Compared with published values in adult cardiomyocytes, pediatric cardiomyocytes have notably decreased cooperativity, with a further reduction in the setting of DCM. Distinct adaptations in cardiomyocyte contractile properties may contribute to a differential response to pharmacological therapies in the pediatric DCM population.
Collapse
Affiliation(s)
- Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - John S Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Xiaotao Li
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Max B Mitchell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
37
|
Cai W, Zhang J, de Lange WJ, Gregorich ZR, Karp H, Farrell ET, Mitchell SD, Tucholski T, Lin Z, Biermann M, McIlwain SJ, Ralphe JC, Kamp TJ, Ge Y. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2019; 125:936-953. [PMID: 31573406 DOI: 10.1161/circresaha.119.315305] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes. OBJECTIVE We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation. METHODS AND RESULTS Utilizing hPSC-cardiomyocytes from early- and late-stage 2-dimensional monolayer culture and 3-dimensional engineered cardiac tissue, we demonstrated the high reproducibility and reliability of a top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expression and associated post-translational modifications. This method allowed for the detection of known maturation-associated contractile protein alterations and, for the first time, identified contractile protein post-translational modifications as promising new markers of hPSC-cardiomyocytes maturation. Most notably, decreased phosphorylation of α-tropomyosin was found to be associated with hPSC-cardiomyocyte maturation. By employing a bottom-up global proteomics strategy, we identified candidate maturation-associated markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis. In particular, upregulation of myomesin 1 and transmembrane 65 was associated with hPSC-cardiomyocyte maturation and validated in cardiac development, making these promising markers for assessing maturity of hPSC-cardiomyocytes. We have further validated α-actinin isoforms, phospholamban, dystrophin, αB-crystallin, and calsequestrin 2 as novel maturation-associated markers, in the developing mouse cardiac ventricles. CONCLUSIONS We established an unbiased proteomics method that can provide accurate and specific assessment of the maturity of hPSC-cardiomyocytes and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering the molecular pathways involved in cardiac development and disease using hPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Wenxuan Cai
- From the Molecular and Cellular Pharmacology Training Program (W.C., S.D.M., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison
| | - Jianhua Zhang
- Department of Medicine (J.Z., Z.R.G., M.B., T.J.K.), University of Wisconsin-Madison
| | - Willem J de Lange
- Department of Pediatrics (W.J.d.L., E.T.F., J.C.R.), University of Wisconsin-Madison
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Medicine (J.Z., Z.R.G., M.B., T.J.K.), University of Wisconsin-Madison
| | - Hannah Karp
- Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison
| | - Emily T Farrell
- Department of Pediatrics (W.J.d.L., E.T.F., J.C.R.), University of Wisconsin-Madison
| | - Stanford D Mitchell
- From the Molecular and Cellular Pharmacology Training Program (W.C., S.D.M., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison
| | - Trisha Tucholski
- From the Molecular and Cellular Pharmacology Training Program (W.C., S.D.M., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Chemistry (T.T., Y.G.), University of Wisconsin-Madison.,Department of Biostatistics and Medical Informatics (T.T., S.J.M.), University of Wisconsin-Madison
| | - Ziqing Lin
- Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison.,Human Proteomics Program (Z.L., Y.G.), University of Wisconsin-Madison
| | - Mitch Biermann
- Department of Medicine (J.Z., Z.R.G., M.B., T.J.K.), University of Wisconsin-Madison
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics (T.T., S.J.M.), University of Wisconsin-Madison.,UW Carbone Cancer Center (S.J.M.), University of Wisconsin-Madison
| | - J Carter Ralphe
- Department of Pediatrics (W.J.d.L., E.T.F., J.C.R.), University of Wisconsin-Madison
| | - Timothy J Kamp
- From the Molecular and Cellular Pharmacology Training Program (W.C., S.D.M., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Medicine (J.Z., Z.R.G., M.B., T.J.K.), University of Wisconsin-Madison
| | - Ying Ge
- From the Molecular and Cellular Pharmacology Training Program (W.C., S.D.M., T.J.K., Y.G.), University of Wisconsin-Madison.,Department of Cell and Regenerative Biology (W.C., Z.R.G., H.K., S.D.M., Z.L., T.J.K., Y.G.), University of Wisconsin-Madison.,Human Proteomics Program (Z.L., Y.G.), University of Wisconsin-Madison.,Department of Chemistry (T.T., Y.G.), University of Wisconsin-Madison
| |
Collapse
|
38
|
Velayutham N, Agnew EJ, Yutzey KE. Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatr Cardiol 2019; 40:1345-1358. [PMID: 31346664 PMCID: PMC6786953 DOI: 10.1007/s00246-019-02163-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
The neonatal capacity for cardiac regeneration in mice is well studied and has been used to develop many potential strategies for adult cardiac regenerative repair following injury. However, translating these findings from rodents to designing regenerative therapeutics for adult human heart disease remains elusive. Large mammals including pigs, dogs, and sheep are widely used as animal models of humans in preclinical trials of new cardiac drugs and devices. However, very little is known about the fundamental cardiac cell biology and the timing of postnatal cardiac events that influence cardiomyocyte proliferation in these animals. There is emerging evidence that external physiological and environmental cues could be the key to understanding cardiomyocyte proliferative behavior. In this review, we survey available literature on postnatal development in various large mammal models to offer a perspective on the physiological and cellular characteristics that could be regulating cardiomyocyte proliferation. Similarities and differences between developmental milestones, cardiomyocyte maturational events, as well as environmental cues regulating cardiac development, are discussed for various large mammals, with a focus on postnatal cardiac regenerative potential and translatability to the human heart.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Emma J Agnew
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, The Heart Institute, Cincinnati Children's Hospital Medical Center, ML7020, 240 Albert Sabin Way, Cincinnati, OH, 45229, USA.
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Kumar N, Dougherty JA, Manring HR, Elmadbouh I, Mergaye M, Czirok A, Greta Isai D, Belevych AE, Yu L, Janssen PML, Fadda P, Gyorke S, Ackermann MA, Angelos MG, Khan M. Assessment of temporal functional changes and miRNA profiling of human iPSC-derived cardiomyocytes. Sci Rep 2019; 9:13188. [PMID: 31515494 PMCID: PMC6742647 DOI: 10.1038/s41598-019-49653-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Heather R Manring
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ibrahim Elmadbouh
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dona Greta Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lianbo Yu
- Center for Biostatistics, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paolo Fadda
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark G Angelos
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
40
|
Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, Landi S, Barbuti A, Ferrarese Lupi F, Boarino L, Sartiani L, Tesi C, Mack DL, Regnier M, Cerbai E, Parmeggiani C, Poggesi C, Ferrantini C, Coppini R. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. Int J Mol Sci 2019; 20:ijms20153799. [PMID: 31382622 PMCID: PMC6695920 DOI: 10.3390/ijms20153799] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are the most promising human source with preserved genetic background of healthy individuals or patients. This study aimed to establish a systematic procedure for exploring development of hiPSC-CM functional output to predict genetic cardiomyopathy outcomes and identify molecular targets for therapy. Biomimetic substrates with microtopography and physiological stiffness can overcome the immaturity of hiPSC-CM function. We have developed a custom-made apparatus for simultaneous optical measurements of hiPSC-CM action potential and calcium transients to correlate these parameters at specific time points (day 60, 75 and 90 post differentiation) and under inotropic interventions. In later-stages, single hiPSC-CMs revealed prolonged action potential duration, increased calcium transient amplitude and shorter duration that closely resembled those of human adult cardiomyocytes from fresh ventricular tissue of patients. Thus, the major contribution of sarcoplasmic reticulum and positive inotropic response to β-adrenergic stimulation are time-dependent events underlying excitation contraction coupling (ECC) maturation of hiPSC-CM; biomimetic substrates can promote calcium-handling regulation towards adult-like kinetics. Simultaneous optical recordings of long-term cultured hiPSC-CMs on biomimetic substrates favor high-throughput electrophysiological analysis aimed at testing (mechanistic hypothesis on) disease progression and pharmacological interventions in patient-derived hiPSC-CMs.
Collapse
Affiliation(s)
- Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy.
| | - Lorenzo Santini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Palandri
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- National Institute of Optics, CNR-INO, 50125 Florence, Italy
| | - Flavia Lupi
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Marianna Langione
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Silvia Querceto
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Bruno Grandinetti
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | | | - Patrizia Benzoni
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Sara Landi
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, Università degli studi di Milano, 20137 Milan, Italy
| | | | - Luca Boarino
- Istituto Nazionale di Ricerca Metrologica INRiM, 10129 Turin, Italy
| | - Laura Sartiani
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98108, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98108, USA
| | - Elisabetta Cerbai
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, 50134 Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, Division of Physiology, Università degli studi di Firenze, 50134 Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), 50019 Florence, Italy
| | - Raffaele Coppini
- Department NeuroFarBa, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
41
|
Ji GG, Shu JT, Zhang M, Ju XJ, Shan YJ, Liu YF, Tu YJ. Transcriptional regulatory region and DNA methylation analysis of TNNI1 gene promoters in Gaoyou duck skeletal muscle ( Anas platyrhynchos domestica). Br Poult Sci 2019; 60:202-208. [PMID: 30968708 DOI: 10.1080/00071668.2019.1602250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The slow skeletal muscle troponin I (TNNI1) gene has been found to be specifically expressed in slow muscle fibres and plays an important role in muscle development. The aim of this study was to determine the active control area of duck TNNI1 and identify the potential cis-regulatory elements in the promoter. 2. In this study, the TNNI1 promoter was first cloned by genome walking and the sequences were analysed using bioinformatics software. Firefly luciferase reporter gene vectors, driven by a series of constructs with progressive deletions, were used to identify the core transcriptional regulatory region of the duck TNNI1 gene. The methylation status of the CpG island in the TNNI1 promoter was detected in skeletal muscle on embryonic days 21 and 27, by bisulphite sequencing PCR (BSP). 3. The results showed two CpG islands presented in the promoter region, with one of the CpG islands located in the core transcriptional regulatory region (-2078/-885 bp). The total methylation levels of the 14 CpG sites were not altered between breast and leg muscles on embryonic days 21 and 27. However, four CpG sites (loci of positions 4, 11, 13, and 14) showed dramatically different methylation levels between breast and leg muscles at embryonic days 21 and 27. Analysis showed that multiple CpG sites had a significant correlation between the methylation levels of the CpG sites and mRNA expressions in skeletal muscle. Multiple transcription factor binding sites including Sp1, c-Myc, Oct-1 and NF-kB motifs were identified and might be responsible for transcriptional regulation of the TNNI1 gene. 4. These findings contribute to further understanding of the fundamental mechanism for transcriptional regulation of the TNNI1 gene in ducks.
Collapse
Affiliation(s)
- G-G Ji
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - J-T Shu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - M Zhang
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - X-J Ju
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-J Shan
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-F Liu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-J Tu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| |
Collapse
|
42
|
Antolic A, Li M, Richards EM, Curtis CW, Wood CE, Keller-Wood M. Mechanisms of in utero cortisol effects on the newborn heart revealed by transcriptomic modeling. Am J Physiol Regul Integr Comp Physiol 2019; 316:R323-R337. [PMID: 30624972 PMCID: PMC6483213 DOI: 10.1152/ajpregu.00322.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
Abstract
We have identified effects of elevated maternal cortisol (induced by maternal infusion 1 mg·kg-1·day-1) on fetal cardiac maturation and function using an ovine model. Whereas short-term exposure (115-130-day gestation) increased myocyte proliferation and Purkinje fiber apoptosis, infusions until birth caused bradycardia with increased incidence of arrhythmias at birth and increased perinatal death, despite normal fetal cortisol concentrations from 130 days to birth. Statistical modeling of the transcriptomic changes in hearts at 130 and 140 days suggested that maternal cortisol excess disrupts cardiac metabolism. In the current study, we modeled pathways in the left ventricle (LV) and interventricular septum (IVS) of newborn lambs after maternal cortisol infusion from 115 days to birth. In both LV and IVS the transcriptomic model indicated over-representation of cell cycle genes and suggested disruption of cell cycle progression. Pathways in the LV involved in cardiac architecture, including SMAD and bone morphogenetic protein ( BMP) were altered, and collagen deposition was increased. Pathways in IVS related to metabolism, calcium signaling, and the actin cytoskeleton were altered. Comparison of the effects of maternal cortisol excess to the effects of normal maturation from day 140 to birth revealed that only 20% of the genes changed in the LV were consistent with normal maturation, indicating that chronic elevation of maternal cortisol alters normal maturation of the fetal myocardium. These effects of maternal cortisol on the cardiac transcriptome, which may be secondary to metabolic effects, are consistent with cardiac remodeling and likely contribute to the adverse impact of maternal stress on perinatal cardiac function.
Collapse
Affiliation(s)
- Andrew Antolic
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| | - Mengchen Li
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Elaine M Richards
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Celia W Curtis
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida , Gainesville, Florida
| |
Collapse
|
43
|
Lin Z, Wei L, Cai W, Zhu Y, Tucholski T, Mitchell SD, Guo W, Ford SP, Diffee GM, Ge Y. Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol Cell Proteomics 2019; 18:594-605. [PMID: 30591534 PMCID: PMC6398208 DOI: 10.1074/mcp.tir118.001086] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.
Collapse
Affiliation(s)
- Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ¶Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Yanlong Zhu
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Wei Guo
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Stephen P Ford
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Gary M Diffee
- §§Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705;
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
44
|
Are These Cardiomyocytes? Protocol Development Reveals Impact of Sample Preparation on the Accuracy of Identifying Cardiomyocytes by Flow Cytometry. Stem Cell Reports 2019; 12:395-410. [PMID: 30686762 PMCID: PMC6373208 DOI: 10.1016/j.stemcr.2018.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/20/2022] Open
Abstract
Several protocols now support efficient differentiation of human pluripotent stem cells to cardiomyocytes (hPSC-CMs) but these still indicate line-to-line variability. As the number of studies implementing this technology expands, accurate assessment of cell identity is paramount to well-defined studies that can be replicated among laboratories. While flow cytometry is apt for routine assessment, a standardized protocol for assessing cardiomyocyte identity has not yet been established. Therefore, the current study leveraged targeted mass spectrometry to confirm the presence of troponin proteins in day 25 hPSC-CMs and systematically evaluated multiple anti-troponin antibodies and sample preparation protocols for their suitability in assessing cardiomyocyte identity. Results demonstrate challenges to interpreting data generated by published methods and inform the development of a robust protocol for routine assessment of hPSC-CMs. The data, workflow for antibody evaluation, and standardized protocol described here should benefit investigators new to this field and those with expertise in hPSC-CM differentiation. TNNI3 and TNNT2 proteins are present in day 25 hPSC-CMs Commonly used reagents can lead to non-specific binding of anti-troponin antibodies A fit-for-purpose workflow describes how to develop a flow cytometry protocol A robust protocol for routine quality control testing was validated for hPSC-CMs
Collapse
|
45
|
Joseph S, Kumar S, Ahamed M Z, Lakshmi S. Cardiac Troponin-T as a Marker of Myocardial Dysfunction in Term Neonates with Perinatal Asphyxia. Indian J Pediatr 2018; 85:877-884. [PMID: 29654572 DOI: 10.1007/s12098-018-2667-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To describe the diagnostic test properties of Cardiac Troponin-T (cTnT) in predicting myocardial dysfunction in asphyxiated term neonates by taking echocardiography as the gold standard and to establish the optimum cut-off values of cTnT for myocardial dysfunction, shock, severe hypoxic ischemic encephalopathy (HIE) and mortality by receiver operator characteristic (ROC) curve analysis. METHODS This was a prospective study based on diagnostic test evaluation. The study included 120 term asphyxiated neonates in a tertiary care neonatal intensive care unit (NICU) in Southern India from June 2011 through June 2015. All the neonates were clinically evaluated. Venous blood was taken at 4 h of life for cTnT estimation. Echocardiography was done within 24 h of birth. RESULTS The mean cTnT level of asphyxiated term neonates was 0.207±0.289 ng/ml (mean ± SD). Asphyxiated neonates with myocardial dysfunction had higher cTnT levels (0.277±0.231) as compared to those without myocardial dysfunction (0.061±0.036, p = 0.0001). Using ROC curve, the cut-off cTnT values for myocardial dysfunction was 0.1145 ng/ml with sensitivity 92.4% and specificity 94.1%. Cardiac Troponin-T levels were significantly higher among asphyxiated neonates with shock (0.378±0.348, p = 0.0001) and the levels also correlated positively with increasing grades of HIE. The cut-off cTnT value for mortality was 0.2505 ng/ml with sensitivity 83.9% and specificity 96.6%. CONCLUSIONS In asphyxiated term neonates, early cTnT elevation is a marker for predicting myocardial dysfunction and elevated cTnT levels had high sensitivity and specificity. There was significant relation with increasing cTnT values and increasing grades of HIE.
Collapse
Affiliation(s)
- Susy Joseph
- Department of Pediatrics, SATH, Govt. Medical College, Thiruvananthapuram, Kerala, 695011, India.
| | - Sobha Kumar
- Department of Pediatrics, SATH, Govt. Medical College, Thiruvananthapuram, Kerala, 695011, India
| | - Zulfikar Ahamed M
- Department of Pediatric Cardiology, SATH, Govt. Medical College, Thiruvananthapuram, Kerala, India
| | - S Lakshmi
- Department of Pediatric Cardiology, SATH, Govt. Medical College, Thiruvananthapuram, Kerala, India
| |
Collapse
|
46
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
47
|
Shu J, Ji G, Zhang M, Tu Y, Shan Y, Liu Y, Ju X, Zhang D. Molecular Cloning, Characterization, and Temporal Expression Profile of Troponin I Type 1 (TNNI1) Gene in Skeletal Muscle During Early Development of Gaoyou Duck (Anas Platyrhynchos Domestica). Anim Biotechnol 2018; 30:118-128. [DOI: 10.1080/10495398.2018.1444620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Di Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| |
Collapse
|
48
|
Neves AL, Henriques-Coelho T, Leite-Moreira A, Areias JC. Cardiac injury biomarkers in paediatric age: Are we there yet? Heart Fail Rev 2018; 21:771-781. [PMID: 27255332 DOI: 10.1007/s10741-016-9567-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this article is to evaluate the clinical utility of cardiac injury biomarkers in paediatric age. In December 2015, a literature search was performed (PubMed access to MEDLINE citations; http://www.ncbi.nlm.nih.gov/PubMed/ ). The search strategy included the following medical subject headings and text terms for the key words: "cardiac injury biomarkers", "creatine kinase-MB", "myoglobin", "troponin", "children", "neonate/s", "newborn/s", "infant/s" and echocardiography. In the paediatric population, troponins show a good correlation with the extent of myocardial damage following cardiac surgery and cardiotoxic medication and can be used as predictors of subsequent cardiac recovery and mortality. Elevation of cardiac injury biomarkers may also have diagnostic value in cases when cardiac contusion or pericarditis is suspected. Cardiac injury biomarkers are very sensitive markers for the detection of myocardial injury and have been studied in healthy newborns, after tocolysis, intrauterine growth restriction, respiratory distress and asphyxia. The proportion of newborns with elevated troponin was higher than that in ill infants, children, and adolescents and in healthy adults, suggesting that myocardial injury, although clinically occult, is common in this young age group. Results suggest that significant elevation of cord troponin is an excellent early predictor of severity of hypoxic-ischaemic encephalopathy and mortality in term infants. Cardiac biomarkers may also benefit centres without on-site echocardiography with evidence showing good correlation with echo-derived markers of myocardial function. Further studies are needed to better clarify the role of cardiac biomarkers in paediatric age and their correlation with echocardiographic parameters.
Collapse
Affiliation(s)
- Ana L Neves
- Department of Paediatric Cardiology, São João Hospital, Porto, Portugal. .,Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal. .,Department of Paediatrics, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tiago Henriques-Coelho
- Department of Paediatrics, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Paediatric Surgery, São João Hospital, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Cardiothoracic Surgery, São João Hospital, Porto, Portugal
| | - José C Areias
- Department of Paediatric Cardiology, São João Hospital, Porto, Portugal.,Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Paediatrics, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
49
|
Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res 2017; 113:1708-1718. [PMID: 29016754 PMCID: PMC5852618 DOI: 10.1093/cvr/cvx183] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/05/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Elucidation of the physiologically distinct subunits of troponin in 1973 greatly facilitated our understanding of cardiac contraction. Although troponins are expressed in both skeletal and cardiac muscle, there are isoforms of troponin I/T expressed selectively in the heart. By exploiting cardiac-restricted epitopes within these proteins, one of the most successful diagnostic tests to date has been developed: cardiac troponin (cTn) assays. For the past decade, cTn has been regarded as the gold-standard marker for acute myocardial necrosis: the pathological hallmark of acute myocardial infarction (AMI). Whilst cTn is the cornerstone for ruling-out AMI in patients presenting with a suspected acute coronary syndrome (ACS), elevated cTn is frequently observed in those without clinical signs indicative of AMI, often reflecting myocardial injury of 'unknown origin'. cTn is commonly elevated in acute non-ACS conditions, as well as in chronic diseases. It is unclear why these elevations occur; yet they cannot be ignored as cTn levels in chronically unwell patients are directly correlated to prognosis. Paradoxically, improvements in assay sensitivity have meant more differential diagnoses have to be considered due to decreased specificity, since cTn is now more easily detected in these non-ACS conditions. It is important to be aware cTn is highly specific for myocardial injury, which could be attributable to a myriad of underlying causes, emphasizing the notion that cTn is an organ-specific, not disease-specific biomarker. Furthermore, the ability to detect increased cTn using high-sensitivity assays following extreme exercise is disconcerting. It has been suggested troponin release can occur without cardiomyocyte necrosis, contradicting conventional dogma, emphasizing a need to understand the mechanisms of such release. This review discusses basic troponin biology, the physiology behind its detection in serum, its use in the diagnosis of AMI, and some key concepts and experimental evidence as to why cTn can be elevated in chronic diseases.
Collapse
Affiliation(s)
- Kyung Chan Park
- 1 BHF Centre of Research Excellence, The Rayne Institute, Cardiovascular Division, King’s College London, London, UK
- 2 Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David C Gaze
- 3 Clinical Blood Sciences and Cardiology, St George’s University Hospitals NHS Trust and St George’s University of London, London, UK
- 4 Department of Biomedical Science, University of Westminster, London, UK
| | - Paul O Collinson
- 3 Clinical Blood Sciences and Cardiology, St George’s University Hospitals NHS Trust and St George’s University of London, London, UK
| | - Michael S Marber
- 1 BHF Centre of Research Excellence, The Rayne Institute, Cardiovascular Division, King’s College London, London, UK
| |
Collapse
|
50
|
Mogensen SL, Rasmussen MK, Oksbjerg N, Young JF, Larsen JR. In vitro differentiation of progenitor cells isolated from juvenile pig hearts - expression of relevant gene and protein markers. SCAND CARDIOVASC J 2017; 52:34-42. [PMID: 29179587 DOI: 10.1080/14017431.2017.1409432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Heart failure is a significant cause of mortality worldwide, and most current therapies treat only its symptoms. The results of cardiac stem cell research suggest a promising treatment option for heart failure, but there is currently an unmet demand for better research models. We have therefore, for the first time, isolated, expanded and differentiated progenitor cells obtained from juvenile pig hearts to use as a platform for cardiac stem cell research. DESIGN Progenitor cells were isolated from the left ventricles of porcine hearts using collagenase enzymatic digestion and Percoll®-gradient centrifugation. Cells were proliferated in Matrigel®-coated wells. Cell differentiation was initiated by applying 5-azacytidine and subsequently controlled by modifying the serum concentration. Western blotting and qPCR were used to determine protein and gene expression, respectively. RESULTS Cardiac-specific genes, from the following proteins: troponin I-3, and myosin-heavy-chain 7 were stably expressed during proliferation and differentiation. Connexin-43 was upregulated and Actinin alfa 2 was downregulated during differentiation. The immature-cardiomyocyte marker GATA binding protein 4 was stably expressed but with a decrease in expression at day 4 of differentiation. Smooth muscle actin decreased in expression and Von Willebrand factor were stably expressed during differentiation. Smooth muscle protein expression was documented but no expression of cardiac-specific proteins after differentiation was found. CONCLUSION The isolated progenitor cells had key cardiac-lineage gene expression characteristics but they did not express cardiac-specific proteins. Smooth muscle protein was expressed confirming commitment to the smooth muscle lineage.
Collapse
Affiliation(s)
| | | | - Niels Oksbjerg
- b Department of Food Science , Aarhus University , Tjele , Denmark
| | | | | |
Collapse
|