1
|
Gallo G, Savoia C. Hypertension and Heart Failure: From Pathophysiology to Treatment. Int J Mol Sci 2024; 25:6661. [PMID: 38928371 PMCID: PMC11203528 DOI: 10.3390/ijms25126661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension represents one of the primary and most common risk factors leading to the development of heart failure (HF) across the entire spectrum of left ventricular ejection fraction. A large body of evidence has demonstrated that adequate blood pressure (BP) control can reduce cardiovascular events, including the development of HF. Although the pathophysiological and epidemiological role of hypertension in the development of HF is well and largely known, some critical issues still deserve to be clarified, including BP targets, particularly in HF patients. Indeed, the management of hypertension in HF relies on the extrapolation of findings from high-risk hypertensive patients in the general population and not from specifically designed studies in HF populations. In patients with hypertension and HF with reduced ejection fraction (HFrEF), it is recommended to combine drugs with documented outcome benefits and BP-lowering effects. In patients with HF with preserved EF (HFpEF), a therapeutic strategy with all major antihypertensive drug classes is recommended. Besides commonly used antihypertensive drugs, different evidence suggests that other drugs recommended in HF for the beneficial effect on cardiovascular outcomes exert advantageous blood pressure-lowering actions. In this regard, type 2 sodium glucose transporter inhibitors (SGLT2i) have been shown to induce BP-lowering actions that favorably affect cardiac afterload, ventricular arterial coupling, cardiac efficiency, and cardiac reverse remodeling. More recently, it has been demonstrated that finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces new-onset HF and improves other HF outcomes in patients with chronic kidney disease and type 2 diabetes, irrespective of a history of HF. Other proposed agents, such as endothelin receptor antagonists, have provided contrasting results in the management of hypertension and HF. A novel, promising strategy could be represented by small interfering RNA, whose actions are under investigation in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy;
| |
Collapse
|
2
|
Nakagawa P, Nair AR, Agbor LN, Gomez J, Wu J, Zhang SY, Lu KT, Morgan DA, Rahmouni K, Grobe JL, Sigmund CD. Increased Susceptibility of Mice Lacking Renin-b to Angiotensin II-Induced Organ Damage. HYPERTENSION (DALLAS, TEX. : 1979) 2020; 76:468-477. [PMID: 32507043 DOI: 10.1161/hypertensionaha.120.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several cardiac and renal diseases are attributed to a dysregulation of the renin-angiotensin system. Renin, the rate-limiting enzyme of the renin-angiotensin system, has 2 isoforms. The classical renin isoform (renin-a) encoding preprorenin is mainly confined to the juxtaglomerular cells and released into the circulation upon stimulation. Alternatively, renin-b is predicted to remain intracellular and is expressed in the brain, heart, and adrenal gland. In the brain, ablation of renin-b (Ren-bNull mice) results in increased brain renin-angiotensin system activity. However, the consequences of renin-b ablation in tissues outside the brain remain unknown. Therefore, we hypothesized that renin-b protects from hypertensive cardiac and renal end-organ damage in mice. Ren-bNull mice exhibited normal blood pressure at baseline. Thus, we induced hypertension by using a slow pressor dose of Ang II (angiotensin II). Ang II increased blood pressure in both wild type and Ren-bNull to the same degree. Although the blood pressure between Ren-bNull and wild-type mice was elevated equally, 4-week infusion of Ang II resulted in exacerbated cardiac remodeling in Ren-bNull mice compared with wild type. Ren-bNull mice also exhibited a modest increase in renal glomerular matrix deposition, elevated plasma aldosterone, and a modestly enhanced dipsogenic response to Ang II. Interestingly, ablation of renin-b strongly suppressed plasma renin, but renal cortical renin mRNA was preserved. Altogether, these data indicate that renin-b might play a protective role in the heart, and thus renin-b could be a potential target to treat hypertensive heart disease.
Collapse
Affiliation(s)
- Pablo Nakagawa
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Javier Gomez
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Jing Wu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Shao Yang Zhang
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Ko-Ting Lu
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille. Carver College of Medicine, University of Iowa (A.R.N., L.A., S.Y.Z., D.A.M., K.R.)
| | - Justin L Grobe
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| | - Curt D Sigmund
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee (P.N., J.G., J.W., K.-T.L., J.L.G., C.D.S.)
| |
Collapse
|
3
|
Saavedra JM, Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell Mol Neurobiol 2018; 38:85-108. [PMID: 28884431 PMCID: PMC6668356 DOI: 10.1007/s10571-017-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.
Collapse
Affiliation(s)
- J M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, Bldg. D, Room 287, Washington, DC, 20007, USA.
| | - I Armando
- The George Washington University School of Medicine and Health Sciences, Ross Hall Suite 738 2300 Eye Street, Washington, DC, USA
| |
Collapse
|
4
|
Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol 2014; 389:71-83. [PMID: 24530924 PMCID: PMC4040308 DOI: 10.1016/j.mce.2014.02.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
Estrogens play an important role in the regulation of normal physiology, aging and many disease states. Although the nuclear estrogen receptors have classically been described to function as ligand-activated transcription factors mediating genomic effects in hormonally regulated tissues, more recent studies reveal that estrogens also mediate rapid signaling events traditionally associated with G protein-coupled receptors. The G protein-coupled estrogen receptor GPER (formerly GPR30) has now become recognized as a major mediator of estrogen's rapid cellular effects throughout the body. With the discovery of selective synthetic ligands for GPER, both agonists and antagonists, as well as the use of GPER knockout mice, significant advances have been made in our understanding of GPER function at the cellular, tissue and organismal levels. In many instances, the protective/beneficial effects of estrogen are mimicked by selective GPER agonism and are absent or reduced in GPER knockout mice, suggesting an essential or at least parallel role for GPER in the actions of estrogen. In this review, we will discuss recent advances and our current understanding of the role of GPER and the activity of clinically used drugs, such as SERMs and SERDs, in physiology and disease. We will also highlight novel opportunities for clinical development towards GPER-targeted therapeutics, for molecular imaging, as well as for theranostic approaches and personalized medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Cell Biology and Physiology, UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| |
Collapse
|
5
|
Chang HW, Huang CY, Yang SY, Wu VC, Chu TS, Chen YM, Hsieh BS, Wu KD. Role of D2 dopamine receptor in adrenal cortical cell proliferation and aldosterone-producing adenoma tumorigenesis. J Mol Endocrinol 2014; 52:87-96. [PMID: 24293642 DOI: 10.1530/jme-13-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the two characteristic types of primary aldosteronism. Dysregulation of adrenal cortical cell proliferation contributes to both diseases. We previously demonstrated that APA expressed less dopamine D2 receptor than the respective non-tumor tissue and might contribute to the overproduction of aldosterone. As activation of D2 receptor inhibits the proliferation of various cells, downregulation of D2 receptor in APA may play a role in the tumorigenesis of APA. In this study, we demonstrate that D2 receptor plays a role in angiotensin II (AII)-stimulated adrenal cortical cell proliferation. The D2 receptor agonist, bromocriptine, inhibited AII-stimulated cell proliferation in primary cultures of the normal human adrenal cortex and APA through attenuating AII-induced phosphorylation of PK-stimulated cyclin D1 protein expression and cell proliferation. D2 receptor also inhibited AII-induced ERK1/2 phosphorylation. Our results demonstrate that, in addition to inhibiting aldosterone synthesis/production, D2 receptor exerts an anti-proliferative effect in adrenal cortical and APA cells by attenuating PKCμ and ERK phosphorylation. The lower level of expression of D2 receptor in APA may augment cell proliferation and plays a crucial role in the tumorigenesis of APA. Our novel finding suggests a new therapeutic target for primary aldosteronism.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Nephrology Division, Department of Internal Medicine, Room 1419, National Taiwan University Hospital, Clinical Research Building, 7 Chung-Sun South Road, Taipei 100, Taiwan Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ramírez-Expósito MJ, Martínez-Martos JM. Hypertension, RAS, and gender: what is the role of aminopeptidases? Heart Fail Rev 2008; 13:355-65. [PMID: 18214672 DOI: 10.1007/s10741-008-9082-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/08/2008] [Indexed: 12/22/2022]
Abstract
Hypertension is the major risk factor for coronary heart disease, stroke, and renal disease. Also, it is probably the most important risk factor for peripheral vascular disease and vascular dementia. Although hypertension occurs in both men and women, gender differences have been observed. However, whether sex hormones are responsible for the observed gender-associated differences in arterial blood pressure, and which is their mechanism of action, remains unclear. Local and circulating renin-angiotensin systems (RAS) are examples of systems that may be involved in the pathogenesis of hypertension. Classically, angiotensin II (Ang II) has been considered as the effector peptide of the RAS, but Ang II is not the only active peptide. Several of its degradation products, including angiotensin III (Ang III) and angiotensin IV (Ang IV) also possess biological functions. These peptides are formed via the activity of several aminopeptidases. This review will briefly summarize what is known about gender differences in RAS-regulating aminopeptidase activities, their relationship with sex hormones, and their potential role in controlling blood pressure acting through local and circulating RAS.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Department of Health Sciences/Physiology, Faculty of Experimental and Health Sciences, University of Jaén, Jaen, Spain.
| | | |
Collapse
|
7
|
Macova M, Armando I, Zhou J, Baiardi G, Tyurmin D, Larrayoz-Roldan IM, Saavedra JM. Estrogen reduces aldosterone, upregulates adrenal angiotensin II AT2 receptors and normalizes adrenomedullary Fra-2 in ovariectomized rats. Neuroendocrinology 2008; 88:276-86. [PMID: 18679017 PMCID: PMC2677380 DOI: 10.1159/000150977] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/10/2008] [Indexed: 12/30/2022]
Abstract
We studied the effect of ovariectomy and estrogen replacement on expression of adrenal angiotensin II AT1 and AT2 receptors, aldosterone content, catecholamine synthesis, and the transcription factor Fos-related antigen 2 (Fra-2). Ovariectomy increased AT1 receptor expression in the adrenal zona glomerulosa and medulla, and decreased adrenomedullary catecholamine content and Fra-2 expression when compared to intact female rats. In the zona glomerulosa, estrogen replacement normalized AT1 receptor expression, decreased AT1B receptor mRNA, and increased AT2 receptor expression and mRNA. Estrogen treatment decreased adrenal aldosterone content. In the adrenal medulla, the effects of estrogen replacement were: normalized AT1 receptor expression, increased AT2 receptor expression, AT2 receptor mRNA, and tyrosine hydroxylase mRNA, and normalized Fra-2 expression and catecholamine content. We demonstrate that the constitutive adrenal expression of AT1 receptors, catecholamine synthesis and Fra-2 expression are partially under the control of reproductive hormones. Our results suggest that estrogen treatment decreases aldosterone production through AT1 receptor downregulation and AT2 receptor upregulation. AT2 receptor upregulation and modulation of Fra-2 expression may participate in the estrogen-dependent normalization of adrenomedullary catecholamine synthesis in ovariectomized rats. The AT2 receptor upregulation and the decrease in AT1 receptor function and in the production of the fluid-retentive, pro-inflammatory hormone aldosterone partially explain the protective effects of estrogen therapy.
Collapse
Affiliation(s)
- Miroslava Macova
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Md, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Di Pasquale P, Cannizzaro S, Scalzo S, Parrinello G, Fasullo S, Giambanco F, Fatta A, Paterna S. Effects of canrenoate plus angiotensin-converting enzyme inhibitors versus angiotensin-converting enzyme inhibitors alone on systolic and diastolic function in patients with acute anterior myocardial infarction. Am Heart J 2005; 150:919. [PMID: 16290961 DOI: 10.1016/j.ahj.2005.03.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Accepted: 03/27/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aldosterone (ALDO) exerts profibrotic effects, acting via the mineralocorticoid receptors in cardiovascular tissues. Aldosterone antagonism in combination with angiotensin-converting enzyme inhibition may better protect against the untoward effects of ALDO than angiotensin-converting enzyme inhibition alone. METHODS In a double-blind randomized study, the tolerability and efficacy of canrenoate (25 mg/d) plus captopril versus captopril alone were evaluated in 510 patients with an acute anterior myocardial infarction (MI), a serum creatinine concentration < 2.0 mg/dL, and a serum potassium level < 5.0 mmol/L. Three hundred forty-one patients received captopril and 25-mg canrenoate (group A). Group B (346 patients) received captopril and placebo. At baseline and at 10, 90, and 180 days after admission, Doppler echocardiography was performed. RESULTS Clinical and demographic aspects were similar in both groups. In addition, baseline cardiac enzyme levels, left ventricular function, and incidence of surgical interventions and angioplasty were comparable. Overall, creatinine, blood urea, and serum potassium levels did not show significant differences between groups. However, in 18 patients in group A, increases in serum potassium levels to > 5.5 mEq/L and creatinine levels to > 2.0 mg/L after 10 days of treatment were observed. At 180 days, the mitral E-wave-A-wave ratio was higher (P = .0001) and left ventricular end-systolic volume was smaller (P = .0001) in patients treated with canrenoate than in those receiving placebo. No further side effects were observed during the study period. CONCLUSIONS Our data suggest that the combination of captopril plus canrenoate is well tolerated after an acute MI and has beneficial effect on systolic and diastolic parameters and may decrease post-MI remodeling.
Collapse
|
9
|
Abstract
The RAAS is a powerful regulator of vascular tone and intravascular volume and of tissue architecture and a variety of other functions. The recent appreciation of the immunoregulatory role of angiotensin II and its possible involvement in the genesis of atherosclerosis and in plaque rupture all speak to the wide-ranging physiologic and pathophysiologic activities of the peptide. So do its actions in fat cell differentiation and in neuromodulation. The system exists in the circulation, and RAASs, whole or partial, exist in many tissues. These systems are regulated at many levels ranging from the synthesis of renin to the dimerization of angiotensin receptors. Regulation occurs in multiple tissues and, as a result, tissue concentrations of angiotensin II and the concentration of other RAS components and their active metabolites can vary independently of the circulating system in these tissues. An RAS seems also to function within certain cells. Therapeutic interventions involving ACEIs and ARBs seem likely to provide benefit at least in part through the interruption of local systems. It is to be expected that with enhanced understanding of the biology of the multiple RASs, new suggestions for therapeutic interventions will be forthcoming.
Collapse
Affiliation(s)
- Richard N Re
- Research Division, Ochsner Clinic Foundation, 1514 Jefferson Highway, New Orleans, LA 70121, USA.
| |
Collapse
|
10
|
García MJ, Martínez-Martos JM, Mayas MD, Carrera MP, Ramírez-Expósito MJ. Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of male mice. Life Sci 2003; 73:525-38. [PMID: 12770609 DOI: 10.1016/s0024-3205(03)00294-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Local renin-angiotensin systems (RAS) have been postulated in brain, pituitary and adrenal glands. These local RAS have been implicated, respectively, in the central regulation of the cardiovascular system and body water balance, the secretion of pituitary hormones and the secretion of aldosterone by adrenal glands. By other hand, it is known that the hypothalamus-pituitary-adrenal (HPA) axis is involved in blood pressure regulation, and is affected by sex hormones. The aim of the present work is to analyze the influence of testosterone on RAS-regulating aminopeptidase A, B and M activities and vasopressin-degrading activity in the HPA axis, measuring these activities in their soluble and membrane-bound forms in the hypothalamus, pituitary and adrenal glands of orchidectomized males and orchidectomized males treated subcutaneously with several doses of testosterone. The present data suggest that in male mice, testosterone influences the RAS- and vasopressin-degrading activities at all levels of the HPA axis.
Collapse
Affiliation(s)
- María Jesús García
- Unit of Physiology, Department of Health Sciences, Faculty of Experimental and Health Sciences, University of Jaén, Paraje Las Lagunillas s/n, E-23071 Jaén, Spain
| | | | | | | | | |
Collapse
|
11
|
Marttila M, Hautala N, Paradis P, Toth M, Vuolteenaho O, Nemer M, Ruskoaho H. GATA4 mediates activation of the B-type natriuretic peptide gene expression in response to hemodynamic stress. Endocrinology 2001; 142:4693-700. [PMID: 11606434 DOI: 10.1210/endo.142.11.8468] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify the mechanisms that couple hemodynamic stress to alterations in cardiac gene expression, DNA constructs containing the rat B-type natriuretic peptide (BNP) promoter were injected into the myocardium of rats, which underwent bilateral nephrectomy or were sham-operated. Ventricular BNP mRNA levels were induced about 4-fold; and the BNP reporter construct containing the proximal 2200 bp, 5-fold, in response to 1-d nephrectomy. Deletion of sequences between bp -2200 and -114 did not affect basal or inducible activity of the BNP promoter. An activator protein-1-like site and two tandem GATA elements are located within this 114-bp sequence. Both deletion and mutation of the AP-1-like motif decreased basal activity but did not abolish the response to nephrectomy. In contrast, mutation or deletion of -90 bp GATA-sites abrogated the response to hemodynamic stress. The importance of these GATA elements to BNP promoter activation was further confirmed by the corresponding 38-bp oligonucleotide conferring hemodynamic stress responsiveness to a minimal BNP promoter. In gel mobility shift assays, nephrectomy increased left ventricular BNP GATA4 binding activity significantly. In conclusion, GATA elements are necessary and sufficient to confer transcriptional activation of BNP gene in response to hemodynamic stress.
Collapse
Affiliation(s)
- M Marttila
- Department of Pharmacology and Toxicology, Biocenter Oulu, University of Oulu, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
12
|
Di Pasquale P, Alessi V, Barberi O, Scandurra A, Bucca V, Maringhini G, Scalzo S, Paterna S. The combination ace-inhibitors plus canreonate in patients with anterior myocardial infarction: safety and tolerability study. Int J Cardiol 2001; 77:119-27; discussion 128-9. [PMID: 11182173 DOI: 10.1016/s0167-5273(00)00425-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is recent evidence that aldosterone (ALDO) exerts pro-fibrotic effects, acting via the mineral-corticoid receptors in cardiovascular tissues and partial aldosterone escape during ACE-inhibition treatment occurs. METHODS A double blind randomised study was performed to evaluate the feasibility, and tolerability of the administration of the 25 mg/day of canreonate plus captopril versus captopril alone in patients with anterior AMI unsuitable for thrombolysis and/or not receiving thrombolytic treatment, and unreperfused after thrombolysis. Fifty five patients hospitalised for anterior AMI,with a serum creatinine concentration <2.0 mg/dl and a serum K concentration <5.0 mmol per liter were randomised in 2 groups: Group A included 27 patients who received captopril and 25 mg i.v. of canreonate (1 mg/h for the 1st 72 h and then orally 25 mg/day. Group B (28 patients) received captopril and placebo. Ten days after admission they underwent echocardiography to determine end systolic volume (ESV), ejection fraction (EF), End diastolic diameter EDD, E/A ratio, E deceleration time (dec. time) and isovolumetric relaxation time (IVRT), E and A peak velocities. RESULTS All patients did not show patency of the infarct related artery (7-10 days after AMI) and the 2 groups were similar in regard to age, sex, diabetes, smoking habits, hypertension, CK enzymatic peak, adjuvant therapy, EF, ESV, and incidence of CABG/PTCA. One patient only showed increase of serum K>5.5 mmol/dl and creatinine >2.0 mg per liter after 10 days of treatment (group A). The mitral E/A ratio was higher in group A than group B (0.85+/-0.18 and 0.75+/-0.14) respectively, P=0.024. Creatinine, blood urea and serum K did not show significant differences between groups. No side effects were observed during the study period. The incidence of vessel diseases was similar in both groups. CONCLUSIONS Our data suggest that the combination of captopril plus canreonate in feasible in early treatment of AMI patients.
Collapse
Affiliation(s)
- P Di Pasquale
- Division of Cardiology, Paolo Borsellino, G.F. Ingrassia Hospital, Palermo, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bonnet JM, Boivin R, Bernard N, Sassard J. Extrarenal renin-angiotensin systems are unable to maintain blood pressure in sheep. Clin Exp Pharmacol Physiol 2000; 27:684-9. [PMID: 10972533 DOI: 10.1046/j.1440-1681.2000.03320.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present study was designed to assess the participation of extrarenal tissue renin-angiotensin systems (RAS) in pressure homeostasis in sheep. 2. The effect of the administration of an angiotensin II type 1 receptor antagonist (losartan; 30 mg/kg, i.v.) on mean arterial blood pressure (MABP) was investigated in eight intact (controls) and 10 binephrectomized sheep haemodialysed every 2 days for 10 days. 3. In control sheep, losartan decreased blood pressure and this decrease was significantly more marked after furosemide-induced water and salt depletion. After nephrectomy and throughout the anephric period, losartan lost its hypotensive effect, while the plasma renin concentration fell to undetectable levels. Baseline MABP became significantly lower than at the beginning of the anephric period after 7 days. The inability to maintain blood pressure after several volume-depleting haemodialysis sessions proved that an efficient system for blood pressure regulation was lacking after nephrectomy. 4. Renin gene expression measured by reverse transcription-polymerase chain reaction was found in liver, adrenal and arterial wall tissue. Neither nephrectomy nor sodium depletion enhanced this tissue renin gene expression. 5. In conclusion, the present work allows us to exclude an active role of extrarenal RAS in the maintenance of blood pressure. In addition, haemodialysis technology in nephrectomized sheep can be used as a good model for the study of extrarenal control of blood pressure.
Collapse
Affiliation(s)
- J M Bonnet
- Département de Physiologie et Pharmacodynamie, Ecole Nationale Vétérinaire de Lyon, Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
14
|
Clausmeyer S, Reinecke A, Farrenkopf R, Unger T, Peters J. Tissue-specific expression of a rat renin transcript lacking the coding sequence for the prefragment and its stimulation by myocardial infarction. Endocrinology 2000; 141:2963-70. [PMID: 10919285 DOI: 10.1210/endo.141.8.7623] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An alternative transcript of the rat renin gene was recently characterized in the adrenal gland, in addition to the known messenger RNA (mRNA) coding for preprorenin. In the alternative transcript, exon 1 is replaced by exon 1A, a domain originating in intron 1. The reading frame of this mRNA, termed exon 1A-renin transcript, codes for a truncated prorenin that presumably remains intracellular, in contrast to preprorenin, which is targeted to the secretory pathway by its prefragment. We here demonstrate the tissue-specific regulation of expression of both transcripts by RT and PCR. In many tissues both transcripts are present, for example in the adrenal gland, spleen, liver, and hypothalamus. In some organs, however, only one of the renin mRNAs is found. In the kidney only the full-length mRNA coding for preprorenin is detected. In the heart exclusively the exon 1A-mRNA is expressed, but not the preprorenin transcript. After myocardial infarction, which is known to activate the intracardiac renin-angiotensin system, expression of exon 1A-renin mRNA in the left ventricle was stimulated about 4-fold, compared with that in sham-operated animals, whereas no mRNA corresponding to preprorenin was detectable. These findings may have implications for the current concepts of local extrarenal renin-angiotensin systems, as they provide the molecular basis for a possible intracellular function of renin and exclude a role for locally produced secretory renin in the heart.
Collapse
Affiliation(s)
- S Clausmeyer
- Department of Pharmacology, University of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
15
|
Abstract
Historically, physiological modulation of the activity of the renin-angiotensin system (RAS) was thought to be mediated only by changes in renin secretion. Hence, altered dietary sodium (Na) intake, changes in renal perfusion pressure, and/or renal adrenoreceptor activity would lead to changes in renin release and plasma angiotensin II (Ang II) concentration, which in turn contribute to regulation of blood pressure and sodium balance. Later, it became apparent that angiotensinogen availability and Ang-converting enzyme activity are also rate-limiting factors that influence the activity of RAS. Finally, over the past few years, evidence has accumulated that indicates the number of Ang II receptors and their subtypes are of great importance in regulating the activity and function of RAS. Cloning of the Ang II receptor genes, development of specific receptor-antagonist ligands, and establishment of genetically mutated animal models have led to greater understanding of the role of Ang II receptors in the regulation of RAS function and activity. This review focuses on the functions and regulation of Ang II receptors in vascular tissues and in the adrenal gland. The authors suggest that identification of control elements for Ang II receptor expression, which are tissue-specific, may provide a basis for future therapeutic manipulation of Ang II receptors in cardiovascular disease states.
Collapse
Affiliation(s)
- D H Wang
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, 48824-1313, USA.
| | | |
Collapse
|
16
|
Abstract
The object of this review is to describe the role of the renin-angiotensin system in control of aldosterone secretion. The review focuses on the roles of the circulating renin-angiotensin (RAS) system, the activity of which is determined predominantly by control of renin secretion from the kidney and on the role of the intra-adrenal RAS. Angiotensin can bind to two types of G protein coupled receptors, the AT1 and AT2 receptors. Both receptors are found on cells from the zona glomerulosa, the site of aldosterone synthesis. Angiotensin II acting via the AT1 receptor stimulates the synthesis of aldosterone at early and late steps in the pathway. Its effect on aldosterone is influenced by a number of other factors such as plasma potassium levels, sodium status, other peptides such as ANP and adrenomedullin and proadrenomedullin N-terminal peptide. All components of the RAS are found in the adrenal gland. The activity of this intra-adrenal RAS is unmasked and amplified in nephrectomised animals. Aldosterone controls sodium transport across epithelial cells, but recently novel effects on the heart have been described.
Collapse
Affiliation(s)
- E R Lumbers
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
17
|
Hubert C, Gasc JM, Berger S, Schütz G, Corvol P. Effects of mineralocorticoid receptor gene disruption on the components of the renin-angiotensin system in 8-day-old mice. Mol Endocrinol 1999; 13:297-306. [PMID: 9973259 DOI: 10.1210/mend.13.2.0241] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Targeted disruption of mineralocorticoid receptor (MR) gene results in pseudohypoaldosteronism type I with failure to thrive, severe dehydration, hyperkalemia, hyponatremia, and high plasma levels of renin, angiotensin II, and aldosterone. In this study, mRNA expression of the different components of the renin-angiotensin system (RAS) were evaluated in liver, lung, heart, kidney and adrenal gland to assess their response to a state of extreme sodium depletion. Angiotensinogen, renin, angiotensin-I converting enzyme, and angiotensin II receptor (AT1 and AT2) mRNA expressions were determined by Northern blot and RT-PCR analysis. Furthermore, in situ hybridization and immunohistochemistry allowed us to identify the cell types involved in the variation of the RAS component expression. In the heterozygous mice (MR+/-), compared with wild-type mice (MR+/+), there was no significant variation of any mRNA of the RAS components. In MR knockout mice (MR-/-), compared with wild-type mice, there were significant increases in the expression level of several RAS components. In the liver, angiotensinogen and AT1 receptor mRNA expressions were moderately stimulated. In the kidney, renin mRNA was increased up to 10-fold and in situ hybridization showed a marked recruitment of renin-producing cells; however, the levels of angiotensin-I converting enzyme mRNA and AT1 mRNA were not changed. Interestingly, in adrenal gland, renin expression was also strongly up-regulated in a thickened zona glomerulosa, whereas AT1 mRNA expression remained unchanged. Altogether, these results demonstrate that in the MR knockout mice model, RAS component expressions are differentially altered, renin being the most stimulated component. Angiotensinogen and AT1 in the liver are also increased, but the other elements of the RAS are not affected.
Collapse
Affiliation(s)
- C Hubert
- INSERM U36-Laboratoire de Médecine Expérimentale, Collège de France, Paris.
| | | | | | | | | |
Collapse
|
18
|
McEwan PE, Vinson GP, Kenyon CJ. Control of adrenal cell proliferation by AT1 receptors in response to angiotensin II and low-sodium diet. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:E303-9. [PMID: 9950790 DOI: 10.1152/ajpendo.1999.276.2.e303] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of angiotensin II (ANG II), the angiotensin type 1 (AT1) receptor antagonist losartan, and low-sodium diet on rat adrenal cell proliferation were studied in vivo with immunocytochemistry. Both ANG II and low-sodium diet increased proliferation of endothelial cells of the zona glomerulosa. Losartan prevented ANG II-induced hyperplasia of glomerulosa cells but not the effects of a low-sodium diet. Glomerulosa cells after ANG II + losartan treatment appeared hypertrophied compared with those of controls. Proliferative effects of ANG II and low-sodium diet in the reticularis were blocked by losartan. No changes were seen in the fasciculata. Proliferation in the medulla was increased with losartan, was decreased by ANG II, but was unaffected by low-sodium diet. In conclusion, 1) cell hypertrophy and proliferation of glomerulosa cells are mediated by AT1 receptor-dependent and -independent processes, 2) proliferation of reticularis cells is controlled by AT1 receptors, and 3) reciprocal control of chromaffin cell proliferation by ANG II may involve indirect AT1-dependent processes.
Collapse
Affiliation(s)
- P E McEwan
- Department of Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | | | | |
Collapse
|
19
|
Peters J, Obermüller N, Woyth A, Peters B, Maser-Gluth C, Kränzlin B, Gretz N. Losartan and angiotensin II inhibit aldosterone production in anephric rats via different actions on the intraadrenal renin-angiotensin system. Endocrinology 1999; 140:675-82. [PMID: 9927293 DOI: 10.1210/endo.140.2.6489] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (ANG II) is a major stimulator of aldosterone biosynthesis. When investigating the relative contribution of circulating and locally produced ANG II, we were therefore surprised to find that ANG II, given chronically s.c. (200 ng/kg x min), markedly inhibits a nephrectomy (NX)-induced rise of aldosterone concentrations (from 10 +/- 2 to 465 +/- 90 ng/100 ml in vehicle infused, and from 9 +/- 2 to 177 +/- 35 in ANG II infused rats 55 h after NX and hemodialysis). We further observed, by in situ hybridization, that bilateral NX increases the number of adrenocortical cells expressing renin and that this rise was prevented by ANG II. Moreover, the rise of aldosterone levels was also inhibited by the AT1-receptor antagonist, losartan (10 microg/kg x min, chronically i.p. from 8 +/- 2 to 199 +/- 26 ng/100 ml), despite the absence of circulating renin and a reduction of ANG I to less than 10%. These data demonstrate that aldosterone production, after NX, is regulated by an intraadrenal renin-angiotensin system and that this system is physiologically suppressed by circulating angiotensin. Because the effects of losartan or ANG II on aldosterone production involved a latency period of at least 30 h after NX and were associated with a modulation or recruitment of renin-producing cells, we suggest that the intraadrenal renin-angiotensin system operates via regulation of cell differentiation on a long-term scale, rather than or additionally to its short-term effects on aldosterone synthase activity.
Collapse
Affiliation(s)
- J Peters
- Department of Pharmacology, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Gigante B, Piras O, De Paolis P, Porcellini A, Natale A, Volpe M. Role of the angiotensin II AT2-subtype receptors in the blood pressure-lowering effect of losartan in salt-restricted rats. J Hypertens 1998; 16:2039-43. [PMID: 9886894 DOI: 10.1097/00004872-199816121-00027] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the potential role of the angiotensin II (Ang II) AT2 receptors (AT2) in the control of blood pressure (BP) in the rat and the effects of AT2 receptors on BP during AT1 receptor (AT1) antagonism. METHODS The study was performed in 52 Sprague-Dawley rats, which were preliminarily salt-restricted (SR) to enhance circulating and tissue renin-angiotensin system activity. To explore whether AT2 plays a role in BP regulation, the BP effects of the selective AT2 and AT1 receptor antagonists PD123319 (PD) (50 microg/kg/min) and losartan (Los) (10 mg/kg/day), were studied. Seven rats were used as a control group. To define whether AT2 plays a role in the BP response observed during AT1 antagonism, 17 Los treated rats were divided into two groups: seven were treated with both antagonists (Los + PD) and 10 rats received Los + vehicle. The effects of both drugs were also studied in bilaterally nephrectomized rats (NX). All treatments were maintained for 1 week RESULTS Los reduced BP significantly in both intact (P < 0.001) and NX (P < 0.05) rats, while PD increased BP in intact and NX rats (both P < 0.001). In the Los + PD group BP levels were significantly higher (P < 0.001 vs Los and Los + vehicle, P = ns vs pretreatment), while vehicle infusion did not modify the BP response to Los. CONCLUSION The results show that in salt-restricted rats AT2 blockade offsets the BP-lowering effect of losartan and suggest that AT2 receptors contribute to the hypotensive effects of losartan. Thus, AT1 receptor antagonists such as losartan, which are becoming widely used in the clinical treatment of hypertension, may reduce BP not only by blockade of AT1 receptors, but also through the stimulation of AT2 receptors by the excess of angiotensin II.
Collapse
Affiliation(s)
- B Gigante
- 1a Clinica Medica Federico II University, Naples, Italy
| | | | | | | | | | | |
Collapse
|