1
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Zimmermann MA, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. J Gen Physiol 2024; 156:e202413604. [PMID: 39373654 PMCID: PMC11461142 DOI: 10.1085/jgp.202413604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal that MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development and prompting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility in the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting that MyBP-H may be functionally silent. However, our results suggest an active role. In vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake." These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Marcus A. Zimmermann
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
2
|
McNamara JW, Song T, Alam P, Binek A, Singh RR, Nieman ML, Koch SE, Ivey MJ, Lynch TL, Rubinstein J, Jin JP, Lorenz JN, Van Eyk JE, Kanisicak O, Sadayappan S. Fast skeletal myosin binding protein-C expression exacerbates dysfunction in heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591979. [PMID: 38746225 PMCID: PMC11092637 DOI: 10.1101/2024.04.30.591979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.
Collapse
|
3
|
Beiter T, Zügel M, Hudemann J, Schild M, Fragasso A, Burgstahler C, Krüger K, Mooren FC, Steinacker JM, Nieß AM. The Acute, Short-, and Long-Term Effects of Endurance Exercise on Skeletal Muscle Transcriptome Profiles. Int J Mol Sci 2024; 25:2881. [PMID: 38474128 DOI: 10.3390/ijms25052881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.
Collapse
Affiliation(s)
- Thomas Beiter
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Martina Zügel
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Jens Hudemann
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Marius Schild
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Annunziata Fragasso
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Christof Burgstahler
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Gießen, 35394 Gießen, Germany
| | - Frank C Mooren
- Department of Medicine, Faculty of Health, University of Witten/Herdecke, 58455 Witten, Germany
| | - Jürgen M Steinacker
- Department of Sport and Rehabilitation Medicine, University of Ulm, 89075 Ulm, Germany
| | - Andreas M Nieß
- Department of Sports Medicine, Medical Clinic, Eberhard-Karls-University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Song T, McNamara JW, Baby A, Ma W, Landim-Vieira M, Natesan S, Pinto JR, Lorenz JN, Irving TC, Sadayappan S. Unlocking the Role of sMyBP-C: A Key Player in Skeletal Muscle Development and Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563591. [PMID: 38076858 PMCID: PMC10705270 DOI: 10.1101/2023.10.23.563591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Skeletal muscle is the largest organ in the body, responsible for gross movement and metabolic regulation. Recently, variants in the MYBPC1 gene have been implicated in a variety of developmental muscle diseases, such as distal arthrogryposis. How MYBPC1 variants cause disease is not well understood. Here, through a collection of novel gene-edited mouse models, we define a critical role for slow myosin binding protein-C (sMyBP-C), encoded by MYBPC1, across muscle development, growth, and maintenance during prenatal, perinatal, postnatal and adult stages. Specifically, Mybpc1 knockout mice exhibited early postnatal lethality and impaired skeletal muscle formation and structure, skeletal deformity, and respiratory failure. Moreover, a conditional knockout of Mybpc1 in perinatal, postnatal and adult stages demonstrates impaired postnatal muscle growth and function secondary to disrupted actomyosin interaction and sarcomere structural integrity. These findings confirm the essential role of sMyBP-C in skeletal muscle and reveal specific functions in both prenatal embryonic musculoskeletal development and postnatal muscle growth and function.
Collapse
Affiliation(s)
- Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - James W. McNamara
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - John N. Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
6
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
7
|
Geist Hauserman J, Stavusis J, Joca HC, Robinett JC, Hanft L, Vandermeulen J, Zhao R, Stains JP, Konstantopoulos K, McDonald KS, Ward C, Kontrogianni-Konstantopoulos A. Sarcomeric deficits underlie MYBPC1-associated myopathy with myogenic tremor. JCI Insight 2021; 6:e147612. [PMID: 34437302 PMCID: PMC8525646 DOI: 10.1172/jci.insight.147612] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a subfamily of cytoskeletal proteins encoded by MYBPC1 that is expressed in skeletal muscles where it contributes to myosin thick filament stabilization and actomyosin cross-bridge regulation. Recently, our group described the causal association of dominant missense pathogenic variants in MYBPC1 with an early-onset myopathy characterized by generalized muscle weakness, hypotonia, dysmorphia, skeletal deformities, and myogenic tremor, occurring in the absence of neuropathy. To mechanistically interrogate the etiologies of this MYBPC1-associated myopathy in vivo, we generated a knock-in mouse model carrying the E248K pathogenic variant. Using a battery of phenotypic, behavioral, and physiological measurements spanning neonatal to young adult life, we found that heterozygous E248K mice faithfully recapitulated the onset and progression of generalized myopathy, tremor occurrence, and skeletal deformities seen in human carriers. Moreover, using a combination of biochemical, ultrastructural, and contractile assessments at the level of the tissue, cell, and myofilaments, we show that the loss-of-function phenotype observed in mutant muscles is primarily driven by disordered and misaligned sarcomeres containing fragmented and out-of-register internal membranes that result in reduced force production and tremor initiation. Collectively, our findings provide mechanistic insights underscoring the E248K-disease pathogenesis and offer a relevant preclinical model for therapeutic discovery.
Collapse
Affiliation(s)
- Janelle Geist Hauserman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Humberto C. Joca
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joel C. Robinett
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Laurin Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Jack Vandermeulen
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph P. Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine Columbia, Missouri, USA
| | - Christopher Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Song T, McNamara JW, Ma W, Landim-Vieira M, Lee KH, Martin LA, Heiny JA, Lorenz JN, Craig R, Pinto JR, Irving T, Sadayappan S. Fast skeletal myosin-binding protein-C regulates fast skeletal muscle contraction. Proc Natl Acad Sci U S A 2021; 118:e2003596118. [PMID: 33888578 PMCID: PMC8092462 DOI: 10.1073/pnas.2003596118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fast skeletal myosin-binding protein-C (fMyBP-C) is one of three MyBP-C paralogs and is predominantly expressed in fast skeletal muscle. Mutations in the gene that encodes fMyBP-C, MYBPC2, are associated with distal arthrogryposis, while loss of fMyBP-C protein is associated with diseased muscle. However, the functional and structural roles of fMyBP-C in skeletal muscle remain unclear. To address this gap, we generated a homozygous fMyBP-C knockout mouse (C2-/-) and characterized it both in vivo and in vitro compared to wild-type mice. Ablation of fMyBP-C was benign in terms of muscle weight, fiber type, cross-sectional area, and sarcomere ultrastructure. However, grip strength and plantar flexor muscle strength were significantly decreased in C2-/- mice. Peak isometric tetanic force and isotonic speed of contraction were significantly reduced in isolated extensor digitorum longus (EDL) from C2-/- mice. Small-angle X-ray diffraction of C2-/- EDL muscle showed significantly increased equatorial intensity ratio during contraction, indicating a greater shift of myosin heads toward actin, while MLL4 layer line intensity was decreased at rest, indicating less ordered myosin heads. Interfilament lattice spacing increased significantly in C2-/- EDL muscle. Consistent with these findings, we observed a significant reduction of steady-state isometric force during Ca2+-activation, decreased myofilament calcium sensitivity, and sinusoidal stiffness in skinned EDL muscle fibers from C2-/- mice. Finally, C2-/- muscles displayed disruption of inflammatory and regenerative pathways, along with increased muscle damage upon mechanical overload. Together, our data suggest that fMyBP-C is essential for maximal speed and force of contraction, sarcomere integrity, and calcium sensitivity in fast-twitch muscle.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - Weikang Ma
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Lisa A Martin
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306
| | - Thomas Irving
- Biophysics Collaborative Access Team, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, OH 45267;
| |
Collapse
|
9
|
Puhl SL, Weeks KL, Güran A, Ranieri A, Boknik P, Kirchhefer U, Müller FU, Avkiran M. Role of type 2A phosphatase regulatory subunit B56α in regulating cardiac responses to β-adrenergic stimulation in vivo. Cardiovasc Res 2020; 115:519-529. [PMID: 30203051 PMCID: PMC6383118 DOI: 10.1093/cvr/cvy230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/26/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS B56α is a protein phosphatase 2A (PP2A) regulatory subunit that is highly expressed in the heart. We previously reported that cardiomyocyte B56α localizes to myofilaments under resting conditions and translocates to the cytosol in response to acute β-adrenergic receptor (β-AR) stimulation. Given the importance of reversible protein phosphorylation in modulating cardiac function during sympathetic stimulation, we hypothesized that loss of B56α in mice with targeted disruption of the gene encoding B56α (Ppp2r5a) would impact on cardiac responses to β-AR stimulation in vivo. METHODS AND RESULTS Cardiac phenotype of mice heterozygous (HET) or homozygous (HOM) for the disrupted Ppp2r5a allele and wild type (WT) littermates was characterized under basal conditions and following acute β-AR stimulation with dobutamine (DOB; 0.75 mg/kg i.p.) or sustained β-AR stimulation by 2-week infusion of isoproterenol (ISO; 30 mg/kg/day s.c.). Left ventricular (LV) wall thicknesses, chamber dimensions and function were assessed by echocardiography, and heart tissue collected for gravimetric, histological, and biochemical analyses. Western blot analysis revealed partial and complete loss of B56α protein in hearts from HET and HOM mice, respectively, and no changes in the expression of other PP2A regulatory, catalytic or scaffolding subunits. PP2A catalytic activity was reduced in hearts of both HET and HOM mice. There were no differences in the basal cardiac phenotype between genotypes. Acute DOB stimulation induced the expected inotropic response in WT and HET mice, which was attenuated in HOM mice. In contrast, DOB-induced increases in heart rate were unaffected by B56α deficiency. In WT mice, ISO infusion increased LV wall thicknesses, cardiomyocyte area and ventricular mass, without LV dilation, systolic dysfunction, collagen deposition or foetal gene expression. The hypertrophic response to ISO was blunted in mice deficient for B56α. CONCLUSION These findings identify B56α as a potential regulator of cardiac structure and function during β-AR stimulation.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Pettenkoferstrasse 9b, D-80336 Munich, Germany
| | - Kate L Weeks
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK.,Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Alican Güran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Antonella Ranieri
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, Domagkstrasse 12, D-48149 Münster, Germany
| | - Metin Avkiran
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, St Thomas' Hospital, Westminster Bridge Road, London, UK
| |
Collapse
|
10
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
11
|
Shashi V, Geist J, Lee Y, Yoo Y, Shin U, Schoch K, Sullivan J, Stong N, Smith E, Jasien J, Kranz P, Lee Y, Shin YB, Wright NT, Choi M, Kontrogianni-Konstantopoulos A. Heterozygous variants in MYBPC1 are associated with an expanded neuromuscular phenotype beyond arthrogryposis. Hum Mutat 2019; 40:1115-1126. [PMID: 31264822 PMCID: PMC6688907 DOI: 10.1002/humu.23760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/22/2023]
Abstract
Encoding the slow skeletal muscle isoform of myosin binding protein-C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M-motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M-motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M-motif to myosin, which likely impairs the formation of actomyosin cross-bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early-onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.
Collapse
Affiliation(s)
- Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, North Carolina
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Youngha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yongjin Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Unbeom Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, North Carolina
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke Health, Durham, North Carolina
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, New York
| | - Edward Smith
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, North Carolina
| | - Joan Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, North Carolina
| | - Peter Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, North Carolina
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University College of Medicine, Pusan, Republic of Korea
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
12
|
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat Biomed Eng 2018; 2:955-967. [PMID: 31015724 PMCID: PMC6482859 DOI: 10.1038/s41551-018-0280-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
The integration of in vitro cardiac tissue models, human induced pluripotent stem cells (hiPSCs) and genome-editing tools allows for the enhanced interrogation of physiological phenotypes and the recapitulation of disease pathologies. Here, in a cardiac tissue model consisting of filamentous 3D matrices populated with cardiomyocytes (CMs) derived from healthy wild-type hiPSCs (WT hiPSC-CMs) or from isogenic hiPSCs deficient in the sarcomere protein cardiac myosin binding protein C (MYBPC3−/− hiPSC-CMs), we show that the WT microtissues adapted to the mechanical environment with increased contraction force commensurate to matrix stiffness, whereas the MYBPC3−/− microtissues exhibited impaired force-development kinetics regardless of matrix stiffness and deficient contraction force only when grown on matrices with high fiber stiffness. Under mechanical overload, the MYBPC3−/− microtissues had a higher degree of calcium transient abnormalities, and exhibited an accelerated decay of calcium dynamics as well as calcium desensitization, which accelerated when contracting against stiffer fibers. Our findings suggest that MYBPC3 deficiency and the presence of environmental stresses synergistically lead to contractile deficits in the cardiac tissues.
Collapse
|
13
|
Geist J, Ward CW, Kontrogianni-Konstantopoulos A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties. FASEB J 2018; 32:fj201800624R. [PMID: 29874125 PMCID: PMC6219831 DOI: 10.1096/fj.201800624r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a family of accessory proteins in skeletal muscles that bind both myosin and actin filaments. Herein, we examined the role of sMyBP-C in adult skeletal muscles using in vivo gene transfer and clustered regularly interspaced short palindromic repeats technology to knock down all known sMyBP-C variants. Our findings, confirmed in two different skeletal muscles, demonstrated efficient knockdown (KD) of sMyBP-C (>70%) resulting in notably decreased levels of thick, but not thin, filament proteins ranging from ∼50% for slow and fast myosin to ∼20% for myomesin. Consistent with this, A bands were selectively distorted, and sarcomere length was significantly reduced. Contrary to earlier in vitro studies showing that addition of recombinant sMyBP-C slows down the formation of actomyosin crossbridges, our work demonstrates that KD of sMyBP-C in intact myofibers results in decreased contraction and relaxation kinetics under no-load conditions. Similarly, KD muscles develop markedly reduced twitch and tetanic force and contraction velocity. Taken together, our results show that sMyBP-C is essential for the regular organization and maintenance of myosin filaments into A bands and that its structural role precedes its ability to regulate actomyosin crossbridges.-Geist, J., Ward, C. W., Kontrogianni-Konstantopoulos, A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties.
Collapse
Affiliation(s)
- Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher W. Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
14
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
15
|
Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B, Dos Remedios CG, Martin U, Zweigerdt R, Kraft T, Brenner B. Differences in Contractile Function of Myofibrils within Human Embryonic Stem Cell-Derived Cardiomyocytes vs. Adult Ventricular Myofibrils Are Related to Distinct Sarcomeric Protein Isoforms. Front Physiol 2018; 8:1111. [PMID: 29403388 PMCID: PMC5780405 DOI: 10.3389/fphys.2017.01111] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Characterizing the contractile function of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is key for advancing their utility for cellular disease models, promoting cell based heart repair, or developing novel pharmacological interventions targeting cardiac diseases. The aim of the present study was to understand whether steady-state and kinetic force parameters of β-myosin heavy chain (βMyHC) isoform-expressing myofibrils within human embryonic stem cell-derived cardiomyocytes (hESC-CMs) differentiated in vitro resemble those of human ventricular myofibrils (hvMFs) isolated from adult donor hearts. Contractile parameters were determined using the same micromechanical method and experimental conditions for both types of myofibrils. We identified isoforms and phosphorylation of main sarcomeric proteins involved in the modulation of force generation of both, chemically demembranated hESC-CMs (d-hESC-CMs) and hvMFs. Our results indicate that at saturating Ca2+ concentration, both human-derived contractile systems developed forces with similar rate constants (0.66 and 0.68 s−1), reaching maximum isometric force that was significantly smaller for d-hESC-CMs (42 kPa) than for hvMFs (94 kPa). At submaximal Ca2+-activation, where intact cardiomyocytes normally operate, contractile parameters of d-hESC-CMs and hvMFs exhibited differences. Ca2+ sensitivity of force was higher for d-hESC-CMs (pCa50 = 6.04) than for hvMFs (pCa50 = 5.80). At half-maximum activation, the rate constant for force redevelopment was significantly faster for d-hESC-CMs (0.51 s−1) than for hvMFs (0.28 s−1). During myofibril relaxation, kinetics of the slow force decay phase were significantly faster for d-hESC-CMs (0.26 s−1) than for hvMFs (0.21 s−1), while kinetics of the fast force decay were similar and ~20x faster. Protein analysis revealed that hESC-CMs had essentially no cardiac troponin-I, and partially non-ventricular isoforms of some other sarcomeric proteins, explaining the functional discrepancies. The sarcomeric protein isoform pattern of hESC-CMs had features of human cardiomyocytes at an early developmental stage. The study indicates that morphological and ultrastructural maturation of βMyHC isoform-expressing hESC-CMs is not necessarily accompanied by ventricular-like expression of all sarcomeric proteins. Our data suggest that hPSC-CMs could provide useful tools for investigating inherited cardiac diseases affecting contractile function during early developmental stages.
Collapse
Affiliation(s)
- Bogdan Iorga
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Kristin Schwanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Natalie Weber
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Meike Wendland
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Stephan Greten
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Ulrich Martin
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Leibniz Research Laboratories for Biotechnology and Artificial Organs, REBIRTH-Center for Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Bernhard Brenner
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
17
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Li M, Andersson-Lendahl M, Sejersen T, Arner A. Knockdown of fast skeletal myosin-binding protein C in zebrafish results in a severe skeletal myopathy. ACTA ACUST UNITED AC 2016; 147:309-22. [PMID: 27022191 PMCID: PMC4810067 DOI: 10.1085/jgp.201511452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/26/2016] [Indexed: 12/30/2022]
Abstract
MyBPC: A muscle protein for all seasons. Myosin-binding protein C (MyBPC) in the muscle sarcomere interacts with several contractile and structural proteins. Mutations in the cardiac isoform (MyBPC-3) in humans, or animal knockout, are associated with cardiomyopathy. Function of the fast skeletal isoform (MyBPC-2) in living muscles is less understood. This question was addressed using zebrafish models, combining gene expression data with functional analysis of contractility and small-angle x-ray diffraction measurements of filament structure. Fast skeletal MyBPC-2B, the major isoform, was knocked down by >50% using morpholino antisense nucleotides. These morphants exhibited a skeletal myopathy with elevated apoptosis and up-regulation of factors associated with muscle protein degradation. Morphant muscles had shorter sarcomeres with a broader length distribution, shorter actin filaments, and a wider interfilament spacing compared with controls, suggesting that fast skeletal MyBPC has a role in sarcomere assembly. Active force was reduced more than expected from the decrease in muscle size, suggesting that MyBPC-2 is required for optimal force generation at the cross-bridge level. The maximal shortening velocity was significantly increased in the MyBPC-2 morphants, but when related to the sarcomere length, the difference was smaller, reflecting that the decrease in MyBPC-2B content and the resulting myopathy were accompanied by only a minor influence on filament shortening kinetics. In the controls, equatorial patterns from small-angle x-ray scattering revealed that comparatively few cross-bridges are attached (as evaluated by the intensity ratio of the 11 and 10 equatorial reflections) during active contraction. X-ray scattering data from relaxed and contracting morphants were not significantly different from those in controls. However, the increase in the 11:10 intensity ratio in rigor was lower compared with that in controls, possibly reflecting effects of MyBPC on the cross-bridge interactions. In conclusion, lack of MyBPC-2 results in a severe skeletal myopathy with structural changes and muscle weakness.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Monika Andersson-Lendahl
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas Sejersen
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Department of Cell and Molecular Biology, and Department of Women's and Children's Health, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Monteiro da Rocha A, Guerrero-Serna G, Helms A, Luzod C, Mironov S, Russell M, Jalife J, Day SM, Smith GD, Herron TJ. Deficient cMyBP-C protein expression during cardiomyocyte differentiation underlies human hypertrophic cardiomyopathy cellular phenotypes in disease specific human ES cell derived cardiomyocytes. J Mol Cell Cardiol 2016; 99:197-206. [PMID: 27620334 PMCID: PMC5609478 DOI: 10.1016/j.yjmcc.2016.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
AIMS Mutations of cardiac sarcomere genes have been identified to cause HCM, but the molecular mechanisms that lead to cardiomyocyte hypertrophy and risk for sudden death are uncertain. The aim of this study was to examine HCM disease mechanisms at play during cardiac differentiation of human HCM specific pluripotent stem cells. METHODS AND RESULTS We generated a human embryonic stem cell (hESC) line carrying a naturally occurring mutation of MYPBC3 (c.2905 +1 G >A) to study HCM pathogenesis during cardiac differentiation. HCM-specific hESC-derived cardiomyocytes (hESC-CMs) displayed hallmark aspects of HCM including sarcomere disarray, hypertrophy and impaired calcium impulse propagation. HCM hESC-CMs presented a transient haploinsufficiency of cMyBP-C during cardiomyocyte differentiation, but by day 30 post-differentiation cMyBP-C levels were similar to control hESC-CMs. Gene transfer of full-length MYBPC3 during differentiation prevented hypertrophy, sarcomere disarray and improved calcium impulse propagation in HCM hESC-CMs. CONCLUSION(S) These findings point to the critical role of MYBPC3 during sarcomere assembly in cardiac myocyte differentiation and suggest developmental influences of MYBPC3 truncating mutations on the mature hypertrophic phenotype.
Collapse
Affiliation(s)
- Andre Monteiro da Rocha
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Adam Helms
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Carly Luzod
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sergey Mironov
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Mark Russell
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, United States
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sharlene M Day
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States
| | - Gary D Smith
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Todd J Herron
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Geist J, Kontrogianni-Konstantopoulos A. MYBPC1, an Emerging Myopathic Gene: What We Know and What We Need to Learn. Front Physiol 2016; 7:410. [PMID: 27683561 PMCID: PMC5021714 DOI: 10.3389/fphys.2016.00410] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 11/22/2022] Open
Abstract
Myosin Binding Protein-C (MyBP-C) comprises a family of accessory proteins that includes the cardiac, slow skeletal, and fast skeletal isoforms. The three isoforms share structural and sequence homology, and localize at the C-zone of the sarcomeric A-band where they interact with thick and thin filaments to regulate the cycling of actomyosin crossbridges. The cardiac isoform, encoded by MYBPC3, has been extensively studied over the last several decades due to its high mutational rate in congenital hypertrophic and dilated cardiomyopathy. It is only recently, however, that the MYBPC1 gene encoding the slow skeletal isoform (sMyBP-C) has gained attention. Accordingly, during the last 5 years it has been shown that MYBPC1 undergoes extensive exon shuffling resulting in the generation of multiple slow variants, which are co-expressed in different combinations and amounts in both slow and fast skeletal muscles. The sMyBP-C variants are subjected to PKA- and PKC-mediated phosphorylation in constitutive and alternatively spliced sites. More importantly, missense, and nonsense mutations in MYBPC1 have been directly linked with the development of severe and lethal forms of distal arthrogryposis myopathy and muscle tremors. Currently, there is no mammalian animal model of sMyBP-C, but new technologies including CRISPR/Cas9 and xenografting of human biopsies into immunodeficient mice could provide unique ways to study the regulation and roles of sMyBP-C in health and disease.
Collapse
Affiliation(s)
- Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD, USA
| | | |
Collapse
|
21
|
Elhamine F, Iorga B, Krüger M, Hunger M, Eckhardt J, Sreeram N, Bennink G, Brockmeier K, Pfitzer G, Stehle R. Postnatal Development of Right Ventricular Myofibrillar Biomechanics in Relation to the Sarcomeric Protein Phenotype in Pediatric Patients with Conotruncal Heart Defects. J Am Heart Assoc 2016; 5:JAHA.116.003699. [PMID: 27353610 PMCID: PMC4937289 DOI: 10.1161/jaha.116.003699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The postnatal development of myofibrillar mechanics, a major determinant of heart function, is unknown in pediatric patients with tetralogy of Fallot and related structural heart defects. We therefore determined the mechanical properties of myofibrils isolated from right ventricular tissue samples from such patients in relation to the developmental changes of the isoforms expression pattern of key sarcomere proteins involved in the contractile process. Methods and Results Tissue samples from the infundibulum obtained during surgery from 25 patients (age range 15 days to 11 years, median 7 months) were split into half for mechanical investigations and expression analysis of titin, myosin heavy and light chain 1, troponin‐T, and troponin‐I. Of these proteins, fetal isoforms of only myosin light chain 1 (ALC‐1) and troponin‐I (ssTnI) were highly expressed in neonates, amounting to, respectively, 40% and 80%, while the other proteins had switched to the adult isoforms before or around birth. ALC‐1 and ssTnI expression subsequently declined monoexponentially with a halftime of 4.3 and 5.8 months, respectively. Coincident with the expression of ssTnI, Ca2+ sensitivity of contraction was high in neonates and subsequently declined in parallel with the decline in ssTnI expression. Passive tension positively correlated with Ca2+ sensitivity but not with titin expression. Contraction kinetics, maximal Ca2+‐activated force, and the fast phase of the biphasic relaxation positively correlated with the expression of ALC‐1. Conclusions The developmental changes in myofibrillar biomechanics can be ascribed to fetal‐to‐adult isoform transition of key sarcomeric proteins, which evolves regardless of the specific congenital cardiac malformations in our pediatric patients.
Collapse
Affiliation(s)
- Fatiha Elhamine
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Bogdan Iorga
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany Department of Physical Chemistry, University of Bucharest, Romania
| | - Martina Krüger
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Mona Hunger
- Clinics for Anesthesiology and Surgical Intensive Care, University of Cologne, Köln, Germany
| | - Jan Eckhardt
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | | | | | | | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Köln, Germany
| |
Collapse
|
22
|
Ackermann MA, Ward CW, Gurnett C, Kontrogianni-Konstantopoulos A. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles. Sci Rep 2015; 5:13235. [PMID: 26287277 PMCID: PMC4642557 DOI: 10.1038/srep13235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/05/2015] [Indexed: 11/09/2022] Open
Abstract
Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.
Collapse
Affiliation(s)
- Maegen A Ackermann
- University of Maryland, School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, MD, USA
| | | | - Christina Gurnett
- Washington University, School of Medicine, Department of Neurology, St. Louis, MO, USA
| | | |
Collapse
|
23
|
Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc Natl Acad Sci U S A 2015; 112:9046-51. [PMID: 26153423 DOI: 10.1073/pnas.1511004112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia.
Collapse
|
24
|
Chagnot C, Vénien A, Peyrin F, Jamme F, Réfrégiers M, Desvaux M, Astruc T. Deep UV excited muscle cell autofluorescence varies with the fibre type. Analyst 2015; 140:4189-96. [PMID: 25912941 DOI: 10.1039/c5an00172b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The rat skeletal muscle consists of four pure types of muscle cells called type I, type IIA, type IIX and type IIB, and their hybrids in different proportions. They differ in their contraction speeds and metabolic pathways. The intracellular composition is adapted to the fibre function and therefore to fibre types. Given that small differences in composition are likely to alter the optical properties of the cells, we studied the impact of the cell type on the fluorescence response following excitation in the deep UV region. Rat soleus and extensor digitorum longus (EDL) muscle fibres, previously identified based on their cell types by immunohistofluorescence analysis, were analyzed by synchrotron fluorescence microspectroscopy on stain-free serial muscle cross-sections. Muscle fibres excited at 275 nm showed differences in the fluorescence emission intensity among fibre types at 302, 325, 346 and 410 nm. The 410/325 ratio decreased significantly with contractile and metabolic features in EDL muscle, in the order of I > IIA > IIX > IIB fibres (p < 0.01). Compared to type I fibres, the 346/302 ratio of IIA fibres decreased significantly in both EDL and soleus muscles (p < 0.01). This study highlights the usefulness of autofluorescence spectral signals to characterize histological cross-sections of muscle fibres with no staining chemicals.
Collapse
Affiliation(s)
- Caroline Chagnot
- INRA, UR370 Qualité des Produits Animaux, F-63122 Saint-Genès-Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Yin Z, Ren J, Guo W. Sarcomeric protein isoform transitions in cardiac muscle: a journey to heart failure. Biochim Biophys Acta Mol Basis Dis 2014; 1852:47-52. [PMID: 25446994 DOI: 10.1016/j.bbadis.2014.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023]
Abstract
Sarcomeric protein isoforms are mainly governed by alternative promoter-driven expression, distinct gene expression, gene mutation and alternative mRNA splicing. The transitions of sarcomeric proteins have been implicated to play a role in the onset and development of human heart failure. In this mini-review, we summarized isoform transitions of several most widely examined sarcomeric proteins including myosin, actin, troponin, tropomyosin, titin and myosin binding protein-C, and the consequence of these abnormal isoform transitions. Even though the isoform transitions of sarcomeric proteins have been described in individual sarcomeric protein reviews, no concise summary of these results has been presented previously. This review is intended to fill this gap and discuss possible future perspectives.
Collapse
Affiliation(s)
- Zhiyong Yin
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA
| | - Wei Guo
- Animal Science, College of Agriculture and Natural Resources, University of WY, Laramie WY82071, USA; Center for Cardiovascular Research and Alternative Medicine, College of Health Science, University of WY, Laramie WY82071, USA.
| |
Collapse
|
26
|
Lin B, Govindan S, Lee K, Zhao P, Han R, Runte KE, Craig R, Palmer BM, Sadayappan S. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function. PLoS One 2013; 8:e69671. [PMID: 23936073 PMCID: PMC3729691 DOI: 10.1371/journal.pone.0069671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C) expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C((t/t))). Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C((t/t)) mice. Slow and fast skeletal muscles in cMyBP-C((t/t)) mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C((t/t)) hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i) MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii) cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii) skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Microscopy, Electron
- Muscle Contraction
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Myocardium/metabolism
- Promoter Regions, Genetic/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Sarcomeres/metabolism
- Sarcomeres/physiology
- Sarcomeres/ultrastructure
Collapse
Affiliation(s)
- Brian Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Suresh Govindan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Kyounghwan Lee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Piming Zhao
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Renzhi Han
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| | - K. Elisabeth Runte
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Roger Craig
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
27
|
Ha K, Buchan JG, Alvarado DM, McCall K, Vydyanath A, Luther PK, Goldsmith MI, Dobbs MB, Gurnett CA. MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis. Hum Mol Genet 2013; 22:4967-77. [PMID: 23873045 DOI: 10.1093/hmg/ddt344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.
Collapse
|
28
|
Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L. Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. EMBO Mol Med 2013; 5:1128-45. [PMID: 23716398 PMCID: PMC3721478 DOI: 10.1002/emmm.201202168] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 11/26/2022] Open
Abstract
Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5–6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM.
Collapse
Affiliation(s)
- Christina Gedicke-Hornung
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ackermann MA, Patel PD, Valenti J, Takagi Y, Homsher E, Sellers JR, Kontrogianni-Konstantopoulos A. Loss of actomyosin regulation in distal arthrogryposis myopathy due to mutant myosin binding protein-C slow. FASEB J 2013; 27:3217-28. [PMID: 23657818 DOI: 10.1096/fj.13-228882] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myosin binding protein C (MyBP-C) is expressed in striated muscles, where it plays key roles in the modulation of actomyosin cross-bridges. Slow MyBP-C (sMyBP-C) consists of multiple variants sharing common domains but also containing unique segments within the NH2 and COOH termini. Two missense mutations in the NH2 terminus (W236R) and COOH terminus (Y856H) of sMyBP-C have been causally linked to the development of distal arthrogryposis-1 (DA-1), a severe skeletal muscle disorder. Using a combination of in vitro binding and motility assays, we show that the COOH terminus mediates binding of sMyBP-C to thick filaments, while the NH2 terminus modulates the formation of actomyosin cross-bridges in a variant-specific manner. Consistent with this, a recombinant NH2-terminal peptide that excludes residues 34-59 reduces the sliding velocity of actin filaments past myosin heads from 9.0 ± 1.3 to 5.7 ± 1.0 μm/s at 0.1 μM, while a recombinant peptide that excludes residues 21-59 fails to do so. Notably, the actomyosin regulatory properties of sMyBP-C are completely abolished by the presence of the DA-1 mutations. In summary, our studies are the first to show that the NH2 and COOH termini of sMyBP-C have distinct functions, which are regulated by differential splicing, and are compromized by the presence of missense point mutations linked to muscle disease.
Collapse
Affiliation(s)
- Maegen A Ackermann
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gajendrarao P, Krishnamoorthy N, Kassem HS, Moharem-Elgamal S, Cecchi F, Olivotto I, Yacoub MH. Molecular modeling of disease causing mutations in domain C1 of cMyBP-C. PLoS One 2013; 8:e59206. [PMID: 23527136 PMCID: PMC3602012 DOI: 10.1371/journal.pone.0059206] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/12/2013] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a multi-domain (C0-C10) protein that regulates heart muscle contraction through interaction with myosin, actin and other sarcomeric proteins. Several mutations of this protein cause familial hypertrophic cardiomyopathy (HCM). Domain C1 of cMyBP-C plays a central role in protein interactions with actin and myosin. Here, we studied structure-function relationship of three disease causing mutations, Arg177His, Ala216Thr and Glu258Lys of the domain C1 using computational biology techniques with its available X-ray crystal structure. The results suggest that each mutation could affect structural properties of the domain C1, and hence it's structural integrity through modifying intra-molecular arrangements in a distinct mode. The mutations also change surface charge distributions, which could impact the binding of C1 with other sarcomeric proteins thereby affecting contractile function. These structural consequences of the C1 mutants could be valuable to understand the molecular mechanisms for the disease.
Collapse
Affiliation(s)
| | | | - Heba Sh Kassem
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- Pathology Department and Clinical Genomics Centre, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Sarah Moharem-Elgamal
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- National Heart Institute, Giza, Egypt
| | - Franco Cecchi
- Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Referral Center for Myocardial Diseases, Careggi University Hospital, Florence, Italy
| | - Magdi H. Yacoub
- Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
- BA-HCM National Programme at Aswan Heart Centre, Egypt
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
31
|
Abdul-Hussein S, van der Ven PFM, Tajsharghi H. Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells. BMC Musculoskelet Disord 2012; 13:262. [PMID: 23273262 PMCID: PMC3549291 DOI: 10.1186/1471-2474-13-262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/21/2012] [Indexed: 01/10/2023] Open
Abstract
Background The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins. Methods We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development. Results Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development. Conclusions In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents.
Collapse
Affiliation(s)
- Saba Abdul-Hussein
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, SE, 413 45, Sweden
| | | | | |
Collapse
|
32
|
Verardo LL, Nascimento CS, Silva FF, Gasparino E, Martins MF, Toriyama E, Faria VR, Botelho ME, Costa KA, Lopes PS, Guimarães SEF. Identification and validation of differentially expressed genes from pig skeletal muscle. J Anim Breed Genet 2012; 130:372-81. [PMID: 24074174 DOI: 10.1111/jbg.12006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/26/2012] [Indexed: 01/20/2023]
Abstract
Pig is an important animal for meat production; this is generally associated with characteristics determined prenatally during myogenesis. Expressed sequence tags (EST) can provide direct information on the transcriptome and indirect information on the relation between the genome and phenotype, giving information about differentially expressed genes (DEG). In this work, the identification and annotation of DEG from EST libraries of three pig breeds (Duroc, Large White and Local Breed Piau) were performed followed by real-time PCR analyses during pre- and postnatal stages (21, 40, 70 and 90 days of pregnancy and 107, 121 and 171 days postnatal) from commercial breed animals for analysis of genes expression levels. Therefore, 34 genes differentially expressed were identified, of which 21 grouped in a network related with muscle development. From this, the expression profile of 13 genes was measured, to confirm their relationship with myogenesis like ANKRD2, MYBPC1, NEB and MYL2. These genes showed a prenatal high expression in this study. Besides, novels candidates for muscle development (TP53 and DCTN1) were listed. These findings can contribute to better explaining gene function mechanism and are helpful in uncovering the pathways that mediate pre- and postnatal skeletal muscle development in vertebrates.
Collapse
Affiliation(s)
- L L Verardo
- Department of Animal Science, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Inamori Y, Higuchi I, Inoue T, Sakiyama Y, Hashiguchi A, Higashi K, Shiraishi T, Okubo R, Arimura K, Mitsuyama Y, Takashima H. Inclusion body myositis coexisting with hypertrophic cardiomyopathy: an autopsy study. Neuromuscul Disord 2012; 22:747-54. [PMID: 22560514 DOI: 10.1016/j.nmd.2012.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 11/26/2022]
Abstract
Inclusion body myositis is an inflammatory myopathy characterized pathologically by rimmed vacuoles and the accumulation of amyloid-related proteins. Autopsy studies in these patients, including histochemical examinations of multiple skeletal muscles, have not yet been published. In this paper, we describe the autopsy findings of a patient with inclusion body myositis and hypertrophic cardiomyopathy. A 69-year-old man, who was a human T lymphotropic virus type 1 carrier, exhibited slowly progressive muscle weakness and atrophy, predominantly affecting the scapular, quadriceps femoris, and forearm flexor muscles. His disease course was more rapidly progressive than that typically observed; the patient died suddenly of arrhythmia 5 years after diagnosis. Autopsy findings revealed that multiple muscles, including the respiratory muscles, were involved. Longitudinal studies revealed an increased frequency of rimmed vacuoles and p62/sequestosome 1- and/or TAR DNA-binding protein 43-positive deposits in autopsied muscles, although the amount of inflammatory infiltrate appeared to be decreased. We speculated that muscle degeneration may be more closely involved in disease progression compared with autoimmunity. Genetic analysis revealed a myosin binding protein C3 mutation, which is reportedly responsible for familial hypertrophic cardiomyopathy. This mutation and human T lymphotropic virus type 1 infection may have affected the skeletal muscles of this patient.
Collapse
Affiliation(s)
- Yukie Inamori
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pfuhl M, Gautel M. Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil 2012; 33:83-94. [PMID: 22527637 DOI: 10.1007/s10974-012-9291-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/24/2012] [Indexed: 02/04/2023]
Abstract
The thick filament protein myosin-binding protein-C shows a highly modular architecture, with the C-terminal region responsible for tethering to the myosin and titin backbone of the thick filament. The N-terminal region shows the most significant differences between cardiac and skeletal muscle isogenes: an entire Ig-domain (C0) is added, together with highly regulated phosphorylation sites between Ig domains C1 and C2. These structural and functional differences at the N-terminus reflect important functions in cardiac muscle regulation in health and disease. Alternative interactions of this part of MyBP-C with the head-tail (S1-S2) junction of myosin or to actin filaments have been proposed, but with conflicting experimental evidence. The regulation of myosin or actin interaction by phosphorylation of the cardiac MyBP-C N-terminus may play an additional role in length-dependent contraction regulation. We discuss here the evidence for these proposed interactions, considering the required properties of MyBP-C, the way in which they may be regulated in muscle contraction and the way they might be related to heart disease. We also attempt to shed some light on experimental pitfalls and future strategies.
Collapse
Affiliation(s)
- Mark Pfuhl
- Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, King's College London BHF Centre of Research Excellence, London, UK.
| | | |
Collapse
|
35
|
Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L. Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil 2011; 33:5-15. [PMID: 22076249 DOI: 10.1007/s10974-011-9273-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/30/2011] [Indexed: 11/27/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by asymmetric septal hypertrophy and is often caused by mutations in MYBPC3 gene encoding cardiac myosin-binding protein C. In contrast to humans, who are already affected at the heterozygous state, mouse models develop the phenotype mainly at the homozygous state. Evidence from cell culture work suggested that altered proteasome function contributes to the pathogenesis of HCM. Here we tested in two heterozygous Mybpc3-targeted mouse models whether adrenergic stress unmasks a specific cardiac phenotype and proteasome dysfunction. The first model carries a human Mybpc3 mutation (Het-KI), the second is a heterozygous Mybpc3 knock-out (Het-KO). Both models were compared to wild-type (WT) mice. Mice were treated with a combination of isoprenaline and phenylephrine (ISO/PE) or NaCl for 1 week. Whereas ISO/PE induced left ventricular hypertrophy (LVH) with increased posterior wall thickness to a similar extent in all groups, it increased septum thickness only in Het-KI and Het-KO. ISO/PE did not affect the proteasomal chymotrypsin-like activity or β5-subunit protein level in Het-KO or wild-type mice (WT). In contrast, both parameters were markedly lower in Het-KI and negatively correlated with the degree of LVH in Het-KI only. In conclusion, adrenergic stress revealed septal hypertrophy in both heterozygous mouse models of HCM, but proteasome dysfunction only in Het-KI mice, which carry a mutant allele and closely mimic human HCM. This supports the hypothesis that proteasome impairment contributes to the pathophysiology of HCM.
Collapse
Affiliation(s)
- Saskia Schlossarek
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| | - Carlo Reggiani
- Venetian Institute of Molecular Medicine, Department of Biomedical Sciences, University of Padova, Consiglio Nazionale delle Ricerche Institute of Neurosciences, and Department of Human Anatomy and Physiology, University of Padova, Padova, Italy
| |
Collapse
|
37
|
|
38
|
Luther PK, Vydyanath A. Myosin binding protein-C: an essential protein in skeletal and cardiac muscle. J Muscle Res Cell Motil 2011; 31:303-5. [PMID: 21229295 DOI: 10.1007/s10974-010-9235-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 12/28/2022]
Affiliation(s)
- Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | | |
Collapse
|
39
|
Gautel M. The sarcomeric cytoskeleton: who picks up the strain? Curr Opin Cell Biol 2010; 23:39-46. [PMID: 21190822 DOI: 10.1016/j.ceb.2010.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 01/01/2023]
Abstract
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Cardiovascular Division and Randall Division for Cell and Molecular Biophysics, London SE1 1UL, United Kingdom.
| |
Collapse
|
40
|
Rybakova IN, Greaser ML, Moss RL. Myosin binding protein C interaction with actin: characterization and mapping of the binding site. J Biol Chem 2010; 286:2008-16. [PMID: 21071444 DOI: 10.1074/jbc.m110.170605] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin binding protein C (MyBPC) is a multidomain protein associated with the thick filaments of striated muscle. Although both structural and regulatory roles have been proposed for MyBPC, its interactions with other sarcomeric proteins remain obscure. The current study was designed to examine the actin-binding properties of MyBPC and to define MyBPC domain regions involved in actin interaction. Here, we have expressed full-length mouse cardiac MyBPC (cMyBPC) in a baculovirus system and shown that purified cMyBPC binds actin filaments with an affinity of 4.3 ± 1.1 μM and a 1:1 molar ratio with regard to an actin protomer. The actin binding by cMyBPC is independent of protein phosphorylation status and is not significantly affected by the presence of tropomyosin and troponin on the actin filament. In addition, cMyBPC-actin interaction is not modulated by calmodulin. To determine the region of cMyBPC that is responsible for its interaction with actin, we have expressed and characterized five recombinant proteins encoding fragments of the cMyBPC sequence. Recombinant N-terminal fragments such as C0-C1, C0-C4, and C0-C5 cosediment with actin in a linear, nonsaturable manner. At the same time, MyBPC fragments lacking either the C0-C1 or C0-C4 region bind F-actin with essentially the same properties as full-length protein. Together, our results indicate that cMyBPC interacts with actin via a single, moderate affinity site localized to the C-terminal region of the protein. In contrast, certain basic regions of the N-terminal domains of MyBPC may act as small polycations and therefore bind actin via nonspecific electrostatic interactions.
Collapse
Affiliation(s)
- Inna N Rybakova
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
41
|
Linnemann A, van der Ven PFM, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Fürst DO. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 2010; 89:681-92. [PMID: 20554076 DOI: 10.1016/j.ejcb.2010.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/28/2022] Open
Abstract
Here we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites. Newly developed myopodin-specific antibodies reveal expression at the earliest stages of in vitro differentiation of human skeletal muscle cells preceding the expression of sarcomeric alpha-actinin. Myopodin colocalizes with filamin and alpha-actinin during all stages of muscle development. By contrast, colocalization with its previously identified binding partner zyxin is restricted to early developmental stages. Genetic and cellular analyses of skeletal muscle provided direct evidence for an alternative transcriptional start site in exon three, corroborating the expression of a myopodin variant lacking the PDZ domain encoded by exons 1 and 2 in skeletal muscle. We conclude that myopodin is a multiadapter protein of the sarcomeric Z-disc that links nascent myofibrils to the sarcolemma via zyxin, and might play a role in early assembly and stabilization of the Z-disc. Mutations in FLNC, ACTN2 and several other genes encoding Z-disc-related proteins cause myopathy and cardiomyopathy. Its localization and its association with the myopathy-associated proteins filamin C and alpha-actinin make myopodin an interesting candidate for a muscle disease gene.
Collapse
Affiliation(s)
- Anja Linnemann
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Myosin binding protein-C slow: an intricate subfamily of proteins. J Biomed Biotechnol 2010; 2010:652065. [PMID: 20396395 PMCID: PMC2852610 DOI: 10.1155/2010/652065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/01/2010] [Indexed: 01/03/2023] Open
Abstract
Myosin binding protein C (MyBP-C) consists of a family of thick filament associated proteins. Three isoforms of MyBP-C exist in striated muscles: cardiac, slow skeletal, and fast skeletal. To date, most studies have focused on the cardiac form, due to its direct involvement in the development of hypertrophic cardiomyopathy. Here we focus on the slow skeletal form, discuss past and current literature, and present evidence to support that: (i) MyBP-C slow comprises a subfamily of four proteins, resulting from complex alternative shuffling of the single MyBP-C slow gene, (ii) the four MyBP-C slow isoforms are expressed in variable amounts in different skeletal muscles, (iii) at least one MyBP-C slow isoform is preferentially found at the periphery of M-bands and (iv) the MyBP-C slow subfamily may play important roles in the assembly and stabilization of sarcomeric M- and A-bands and regulate the contractile properties of the actomyosin filaments.
Collapse
|
43
|
Gurnett CA, Desruisseau DM, McCall K, Choi R, Meyer ZI, Talerico M, Miller SE, Ju JS, Pestronk A, Connolly AM, Druley TE, Weihl CC, Dobbs MB. Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet 2010; 19:1165-73. [PMID: 20045868 DOI: 10.1093/hmg/ddp587] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Distal arthrogryposis type I (DA1) is a disorder characterized by congenital contractures of the hands and feet for which few genes have been identified. Here we describe a five-generation family with DA1 segregating as an autosomal dominant disorder with complete penetrance. Genome-wide linkage analysis using Affymetrix GeneChip Mapping 10K data from 12 affected members of this family revealed a multipoint LOD(max) of 3.27 on chromosome 12q. Sequencing of the slow-twitch skeletal muscle myosin binding protein C1 (MYBPC1), located within the linkage interval, revealed a missense mutation (c.706T>C) that segregated with disease in this family and causes a W236R amino acid substitution. A second MYBPC1 missense mutation was identified (c.2566T>C)(Y856H) in another family with DA1, accounting for an MYBPC1 mutation frequency of 13% (two of 15). Skeletal muscle biopsies from affected patients showed type I (slow-twitch) fibers were smaller than type II fibers. Expression of a green fluorescent protein (GFP)-tagged MYBPC1 construct containing WT and DA1 mutations in mouse skeletal muscle revealed robust sarcomeric localization. In contrast, a more diffuse localization was seen when non-fused GFP and MYBPC1 proteins containing corresponding MYBPC3 amino acid substitutions (R326Q, E334K) that cause hypertrophic cardiomyopathy were expressed. These findings reveal that the MYBPC1 is a novel gene responsible for DA1, though the mechanism of disease may differ from how some cardiac MYBPC3 mutations cause hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Christina A Gurnett
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jacquet S, Yin X, Sicard P, Clark J, Kanaganayagam GS, Mayr M, Marber MS. Identification of cardiac myosin-binding protein C as a candidate biomarker of myocardial infarction by proteomics analysis. Mol Cell Proteomics 2009; 8:2687-99. [PMID: 19721077 DOI: 10.1074/mcp.m900176-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute myocardial infarction (AMI) is a common cause of death for which effective treatments are available provided that diagnosis is rapid. The current diagnostic gold standards are circulating cardiac troponins I and T. However, their slow release delays diagnosis, and their persistence limits their utility in the identification of reinfarction. The aim was to identify candidate biomarkers of AMI. Isolated mouse hearts were perfused with oxygenated protein-free buffer, and coronary effluent was collected after ischemia or during matched normoxic perfusion. Effluents were analyzed using proteomics approaches based on one- or two-dimensional initial separation. Of the 459 proteins identified after ischemia with one-dimensional separation, 320 were not detected in the control coronary effluent. Among these were all classic existing biomarkers of AMI. We also identified the cardiac isoform of myosin-binding protein C in its full-length form and as a 40-kDa degradation product. This protein was not detected in the other murine organs examined, increased markedly with even trivial myocardial infarction, and could be detected in the plasma after myocardial infarction in vivo, a profile compatible with a biomarker of AMI. Two-dimensional fluorescence DIGE of ischemic and control coronary effluents identified more than 200 asymmetric spots verified by swapping dyes. Once again existing biomarkers of injury were confirmed as well as posttranslational modifications of antioxidant proteins such as peroxiredoxins. Perfusing hearts with protein-free buffers provides a platform of graded ischemic injury that allows detailed analysis of protein release and identification of candidate cardiac biomarkers like myosin-binding protein C.
Collapse
Affiliation(s)
- Sebastien Jacquet
- King's College London British Heart Foundation Centre, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Ackermann MA, Hu LYR, Bowman AL, Bloch RJ, Kontrogianni-Konstantopoulos A. Obscurin interacts with a novel isoform of MyBP-C slow at the periphery of the sarcomeric M-band and regulates thick filament assembly. Mol Biol Cell 2009; 20:2963-78. [PMID: 19403693 DOI: 10.1091/mbc.e08-12-1251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Obscurin is a multidomain protein composed of adhesion and signaling domains that plays key roles in the organization of contractile and membrane structures in striated muscles. Overexpression of the second immunoglobulin domain of obscurin (Ig2) in developing myotubes inhibits the assembly of A- and M-bands, but not Z-disks or I-bands. This effect is mediated by the direct interaction of the Ig2 domain of obscurin with a novel isoform of myosin binding protein-C slow (MyBP-C slow), corresponding to variant-1. Variant-1 contains all the structural motifs present in the known forms of MyBP-C slow, but it has a unique COOH terminus. Quantitative reverse transcription-polymerase chain reaction indicated that MyBP-C slow variant-1 is expressed in skeletal muscles both during development and at maturity. Immunolabeling of skeletal myofibers with antibodies to the unique COOH terminus of variant-1 demonstrated that, unlike other forms of MyBP-C slow that reside in the C-zones of A-bands, variant-1 preferentially concentrates around M-bands, where it codistributes with obscurin. Overexpression of the Ig2 domain of obscurin or reduction of expression of obscurin inhibited the integration of variant-1 into forming M-bands in skeletal myotubes. Collectively, our experiments identify a new ligand of obscurin at the M-band, MyBP-C slow variant-1 and suggest that their interaction contributes to the assembly of M- and A-bands.
Collapse
Affiliation(s)
- Maegen A Ackermann
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
46
|
Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin–proteasome system in cardiac dysfunction. Biochim Biophys Acta Mol Basis Dis 2008; 1782:749-63. [DOI: 10.1016/j.bbadis.2008.06.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/12/2008] [Accepted: 06/18/2008] [Indexed: 12/31/2022]
|
47
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kusaka M, Ikeda D, Funabara D, Hartshorne DJ, Watabe S. The occurrence of tissue-specific twitchin isoforms in the mussel Mytilus galloprovincialis. FISHERIES SCIENCE : FS 2008; 74:677-686. [PMID: 19777122 PMCID: PMC2748407 DOI: 10.1111/j.1444-2906.2008.01574.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The catch state in Mytilus anterior byssus retractor muscle is regulated by phosphorylation and dephosphorylation of twitchin, a member of the titin/connectin superfamily, and involves two serine residues, Ser-1075 (D1) and Ser-4316 (D2). This study was undertaken to examine whether isoforms of twitchin were expressed in various muscles of the mussel Mytilus galloprovincialis by reverse transcription-polymerase chain reaction. Mussel tissues, including both catch and non-catch muscles, contained various twitchin isoforms that all contained the D2 site and the kinase domain. However, sequence alterations were detected around the D1 site, notably a potential deletion of the D1 site. All isoforms from catch muscles contained both the D1 and D2 sites, whereas those from non-catch muscles also expressed the D2 site, but some of them lacked the D1 site. This suggests that the D1 site of twitchin is essential to the mechanism of catch. Genomic DNA analysis revealed that twitchin isoforms are produced by alternative splicing.
Collapse
Affiliation(s)
- Miho Kusaka
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657
| | - Daisuke Ikeda
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657
| | - Daisuke Funabara
- Laboratory of Muscle Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | | | - Shugo Watabe
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657
| |
Collapse
|
49
|
Doran P, O'Connell K, Gannon J, Kavanagh M, Ohlendieck K. Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 2008; 8:364-77. [PMID: 18050275 DOI: 10.1002/pmic.200700475] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sarcopenia is the drastic loss of skeletal muscle mass and strength during ageing. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a DIGE analysis of young adult versus old rat skeletal muscle. Proteomic profiling revealed that out of 2493 separated 2-D spots, 69 proteins exhibited a drastically changed expression. Age-dependent alterations in protein abundance indicated dramatic changes in metabolism, contractile activity, myofibrillar remodelling and stress response. In contrast to decreased levels of pyruvate kinase (PK), enolase and phosphofructokinase, the mitochondrial ATP synthase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and adenylate kinase (AK) were increased in senescent fibres. Higher expression levels of myoglobin and fatty acid binding-protein indicated a shift to more aerobic-oxidative metabolism in a slower-twitching aged fibre population. The drastic increase in alphaB-crystallin and myotilin demonstrated substantial filament remodelling during ageing. An immunoblotting survey of selected muscle proteins confirmed the pathobiochemical transition process in aged muscle metabolism. The proteomic analysis of aged muscle has identified a large cohort of new biomarkers of sarcopenia including opposite changes in PK and AK, which might be useful for the design of improved diagnostic procedures and/or therapeutic strategies to counteract ageing-induced muscle degeneration.
Collapse
Affiliation(s)
- Philip Doran
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
50
|
Kensler RW, Harris SP. The structure of isolated cardiac Myosin thick filaments from cardiac Myosin binding protein-C knockout mice. Biophys J 2008; 94:1707-18. [PMID: 17993479 PMCID: PMC2242758 DOI: 10.1529/biophysj.107.115899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022] Open
Abstract
Mutations in the thick filament associated protein cardiac myosin binding protein-C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C is thought to play both a structural and a regulatory role in the contraction of cardiac muscle, detailed information about the role of this protein in stability of the thick filament and maintenance of the ordered helical arrangement of the myosin cross-bridges is limited. To address these questions, the structure of myosin thick filaments isolated from the hearts of wild-type mice containing cMyBP-C (cMyBP-C(+/+)) were compared to those of cMyBP-C knockout mice lacking this protein (cMyBp-C(-/-)). The filaments from the knockout mice hearts lacking cMyBP-C are stable and similar in length and appearance to filaments from the wild-type mice hearts containing cMyBP-C. Both wild-type and many of the cMyBP-C(-/-) filaments display a distinct 43 nm periodicity. Fourier transforms of electron microscope images typically show helical layer lines to the sixth layer line, confirming the well-ordered arrangement of the cross-bridges in both sets of filaments. However, the "forbidden" meridional reflections, thought to derive from a perturbation from helical symmetry in the wild-type filament, are weaker or absent in the transforms of the cMyBP-C(-/-) myocardial thick filaments. In addition, the cross-bridge array in the absence of cMyBP-C appears more easily disordered.
Collapse
|