1
|
Tokairin K, Ito M, Lee AG, Teo M, He S, Cheng MY, Steinberg GK. Genome-Wide DNA Methylation Profiling Reveals Low Methylation Variability in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01299-w. [PMID: 39356405 DOI: 10.1007/s12975-024-01299-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disorder that can lead to stroke and neurological dysfunctions. Given the largely sporadic nature and the role of gene-environment interactions in various diseases, we examined epigenetic modifications in MMD. We performed genome-wide DNA methylation using Illumina 850 K Methylation EPIC BeadChip, in two racially distinct adult female cohorts: a non-Asian cohort (13 MMD patients and 7 healthy controls) and an Asian cohort (14 MMD patients and 3 healthy controls). An additional external cohort with both sexes (females: 5 MMD patients and 5 healthy controls, males: 5 MMD patients and 5 healthy controls) was included for validation. Our findings revealed strikingly low DNA methylation variability between MMD patients and healthy controls, in both MMD female cohorts. In the non-Asian cohort, only 6 probes showed increased variability versus 647 probes that showed decreased variability. Similarly, in the Asian cohort, the MMD group also displayed a reduced methylation variability across all 2845 probes. Subsequent analysis showed that these differentially variable probes are located on genes involved in key biological processes such as methylation and transcription, DNA repair, cytoskeletal remodeling, natural killer cell signaling, cellular growth, and migration. These findings mark the first observation of low methylation variability in any disease, contrasting with the high variability observed in other disorders. This reduced methylation variability in MMD may hinder patients' adaptability to environmental shifts, such as hemodynamic stress, thereby influencing vascular homeostasis and contributing to MMD pathology. These findings offer new insights into the mechanisms of MMD and potential treatment strategies.
Collapse
Affiliation(s)
- Kikutaro Tokairin
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaki Ito
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Mario Teo
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Shihao He
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking, China
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Abhinav K, Lee AG, Pendharkar AV, Bigder M, Bet A, Rosenberg-Hasson Y, Cheng MY, Steinberg GK. Comprehensive Profiling of Secreted Factors in the Cerebrospinal Fluid of Moyamoya Disease Patients. Transl Stroke Res 2024; 15:399-408. [PMID: 36745304 PMCID: PMC10891229 DOI: 10.1007/s12975-023-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
Moyamoya disease (MMD) is characterized by progressive occlusion of the intracranial internal carotid arteries, leading to ischemic and hemorrhagic events. Significant clinical differences exist between ischemic and hemorrhagic MMD. To understand the molecular profiles in the cerebrospinal fluid (CSF) of MMD patients, we investigated 62 secreted factors in both MMD subtypes (ischemic and hemorrhagic) and examined their relationship with preoperative perfusion status, the extent of postoperative angiographic revascularization, and functional outcomes. Intraoperative CSF was collected from 32 control and 71 MMD patients (37 ischemic and 34 hemorrhagic). Multiplex Luminex assay analysis showed that 41 molecules were significantly elevated in both MMD subtypes when compared to controls, including platelet-derived growth factor-BB (PDGF-BB), plasminogen activator inhibitor 1 (PAI-1), and intercellular adhesion molecule 1 (ICAM1) (p < 0.001). Many of these secreted proteins have not been previously reported in MMD, including interleukins (IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, IL-17, IL-18, IL-22, and IL-23) and C-X-C motif chemokines (CXCL1 and CXCL9). Pathway analysis indicated that both MMD subtypes exhibited similar cellular/molecular functions and pathways, including cellular activation, migration, and inflammatory response. While neuroinflammation and dendritic cell pathways were activated in MMD patients, lipid signaling pathways involving nuclear receptors, peroxisome proliferator-activated receptor (PPAR), and liver X receptors (LXR)/retinoid X receptors (RXR) signaling were inhibited. IL-13 and IL-2 were negatively correlated with preoperative cerebral perfusion status, while 7 factors were positively correlated with the extent of postoperative revascularization. These elevated cytokines, chemokines, and growth factors in CSF may contribute to the pathogenesis of MMD and represent potential future therapeutic targets.
Collapse
Affiliation(s)
- Kumar Abhinav
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Bristol Institute of Clinical Neuroscience, Southmead Hospital, Bristol, UK
| | - Alex G Lee
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Arjun V Pendharkar
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Bigder
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony Bet
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P305, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Tu YK, Fang YC. Molecular Biomarkers Affecting Moyamoya Disease. Adv Tech Stand Neurosurg 2024; 49:1-18. [PMID: 38700677 DOI: 10.1007/978-3-031-42398-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Although the pathogenetic pathway of moyamoya disease (MMD) remains unknown, studies have indicated that variations in the RING finger protein RNF 213 is the strongest susceptible gene of MMD. In addition to the polymorphism of this gene, many circulating angiogenetic factors such as growth factors, vascular progenitor cells, inflammatory and immune mediators, angiogenesis related cytokines, as well as circulating proteins promoting intimal hyperplasia, excessive collateral formation, smooth muscle migration and atypical migration may also play critical roles in producing this disease. Identification of these circulating molecules biomarkers may be used for the early detection of this disease. In this chapter, how the hypothesized pathophysiology of these factors affect MMD and the interactive modulation between them are summarized.
Collapse
Affiliation(s)
- Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| | - Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Youn DH, Kim N, Lee A, Han SW, Kim JT, Hong EP, Jung H, Jeong MS, Cho SM, Jeon JP. Autophagy and mitophagy-related extracellular mitochondrial dysfunction of cerebrospinal fluid cells in patients with hemorrhagic moyamoya disease. Sci Rep 2023; 13:13753. [PMID: 37612316 PMCID: PMC10447448 DOI: 10.1038/s41598-023-40747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
We aimed to investigate whether mitochondrial dysfunction in extracellular cerebrospinal fluid (CSF), which is associated with autophagy and mitophagy, might be involved in neurological outcomes in adult patients with hemorrhagic moyamoya disease (MMD) whose pathogenesis related to poor outcomes is not well-known. CSF samples were collected from 43 adult MMD patients and analyzed according to outcomes at 3 months. Fluorescence-activated cell sorter analysis (FACS) and the JC-1 red/green ratio were used to assess mitochondrial cells and intact mitochondrial membrane potential (MMP). We performed quantitative real-time polymerase chain reaction and Western blotting analyses of autophagy and mitophagy-related markers, including HIF1α, ATG5, pBECN1, BECN1, BAX, BNIP3L, DAPK1, and PINK1. Finally, FACS analysis with specific fluorescence-conjugated antibodies was performed to evaluate the potential cellular origin of CSF mitochondrial cells. Twenty-seven females (62.8%) with a mean age of 47.4 ± 9.7 years were included in the study. Among 43 patients with hemorrhagic MMD, 23 (53.5%) had poor outcomes. The difference in MMP was evident between the two groups (2.4 ± 0.2 in patients with poor outcome vs. 3.5 ± 0.4 in patients with good outcome; p = 0.02). A significantly higher expression (2-ΔCt) of HIF1α, ATG5, DAPK1 followed by BAX and BNIP3L mRNA and protein was also observed in poor-outcome patients compared to those with good outcomes. Higher percentage of vWF-positive mitochondria, suggesting endothelial cell origins, was observed in patients with good outcome compared with those with poor outcome (25.0 ± 1.4% in patients with good outcome vs. 17.5 ± 1.5% in those with poor outcome; p < 0.01). We observed the association between increased mitochondrial dysfunction concomitant with autophagy and mitophagy in CSF cells and neurological outcomes in adult patients with hemorrhagic MMD. Further prospective multicenter studies are needed to determine whether it has a diagnostic value for risk prediction.
Collapse
Affiliation(s)
- Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Nayoung Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Aran Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | | | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon, 24253, Korea.
| |
Collapse
|
5
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
6
|
Nhieu J, Lin YL, Wei LN. CRABP1 in Non-Canonical Activities of Retinoic Acid in Health and Diseases. Nutrients 2022; 14:nu14071528. [PMID: 35406141 PMCID: PMC9003107 DOI: 10.3390/nu14071528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022] Open
Abstract
In this review, we discuss the emerging role of Cellular Retinoic Acid Binding Protein 1 (CRABP1) as a mediator of non-canonical activities of retinoic acid (RA) and relevance to human diseases. We first discuss the role of CRABP1 in regulating MAPK activities and its implication in stem cell proliferation, cancers, adipocyte health, and neuro-immune regulation. We then discuss an additional role of CRABP1 in regulating CaMKII activities, and its implication in heart and motor neuron diseases. Through molecular and genetic studies of Crabp1 knockout (CKO) mouse and culture models, it is established that CRABP1 forms complexes with specific signaling molecules to function as RA-regulated signalsomes in a cell context-dependent manner. Gene expression data and CRABP1 gene single nucleotide polymorphisms (SNPs) of human cancer, neurodegeneration, and immune disease patients implicate the potential association of abnormality in CRABP1 with human diseases. Finally, therapeutic strategies for managing certain human diseases by targeting CRABP1 are discussed.
Collapse
Affiliation(s)
| | | | - Li-Na Wei
- Correspondence: ; Tel.: +1-612-6259-402
| |
Collapse
|
7
|
Santoro JD, Lee S, Wang AC, Ho E, Nagesh D, Khoshnood M, Tanna R, Durazo-Arvizu RA, Manning MA, Skotko BG, Steinberg GK, Rafii MS. Increased Autoimmunity in Individuals With Down Syndrome and Moyamoya Disease. Front Neurol 2021; 12:724969. [PMID: 34566869 PMCID: PMC8455812 DOI: 10.3389/fneur.2021.724969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Objective: To determine if elevated rates of autoimmune disease are present in children with both Down syndrome and moyamoya disease given the high rates of autoimmune disease reported in both conditions and unknown etiology of angiopathy in this population. Methods: A multi-center retrospective case-control study of children with Down syndrome and moyamoya syndrome, idiopathic moyamoya disease, and Down syndrome without cerebrovascular disease was performed. Outcome measures included presence of autoimmune disease, presence of autoantibodies and angiopathy severity data. Comparisons across groups was performed using the Kruskal-Wallis, χ2 and multivariate Poisson regression. Results: The prevalence of autoimmune disease were 57.7, 20.3, and 35.3% in persons with Down syndrome and moyamoya syndrome, idiopathic moyamoya disease, and Down syndrome only groups, respectively (p < 0.001). The prevalence of autoimmune disease among children with Down syndrome and moyamoya syndrome is 3.2 times (p < 0.001, 95% CI: 1.82-5.58) higher than the idiopathic moyamoya group and 1.5 times (p = 0.002, 95% CI: 1.17-1.99) higher than the Down syndrome only group when adjusting for age and sex. The most common autoimmune diseases were thyroid disorders, type I diabetes and Celiac disease. No individuals with idiopathic moyamoya disease had more than one type of autoimmune disorder while 15.4% of individuals with Down syndrome and moyamoya syndrome and 4.8% of individuals with Down syndrome only had >1 disorder (p = 0.05, 95%CI: 1.08-6.08). Interpretation: This study reports elevated rates of autoimmune disease in persons with Down syndrome and moyamoya syndrome providing a nidus for study of the role of autoimmunity in angiopathy in this population.
Collapse
Affiliation(s)
- Jonathan D. Santoro
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States,*Correspondence: Jonathan D. Santoro
| | - Sarah Lee
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Anthony C. Wang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Eugenia Ho
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Deepti Nagesh
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States,Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Mellad Khoshnood
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Runi Tanna
- Division of Neurology, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Ramon A. Durazo-Arvizu
- Biostatistics Core, Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States
| | - Melanie A. Manning
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States,Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Brian G. Skotko
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States,Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Gary K. Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Michael S. Rafii
- Department of Neurology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States,Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Di Perna G, Piatelli G, Pavanello M. Letter to the Editor Regarding: "Spontaneous Resolution of Dural and Pial Arteriovenous Fistulae Arising After Superficial Temporal Artery to Middle Cerebral Artery Bypass for Moyamoya Disease". World Neurosurg 2021; 146:436-437. [PMID: 33607756 DOI: 10.1016/j.wneu.2020.10.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Giuseppe Di Perna
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Turin, Italy; Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genova, Italy.
| | - Gianluca Piatelli
- Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Pavanello
- Division of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
9
|
Dorschel KB, Wanebo JE. Genetic and Proteomic Contributions to the Pathophysiology of Moyamoya Angiopathy and Related Vascular Diseases. Appl Clin Genet 2021; 14:145-171. [PMID: 33776470 PMCID: PMC7987310 DOI: 10.2147/tacg.s252736] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022] Open
Abstract
RATIONALE This literature review describes the pathophysiological mechanisms of the current classes of proteins, cells, genes, and signaling pathways relevant to moyamoya angiopathy (MA), along with future research directions and implementation of current knowledge in clinical practice. OBJECTIVE This article is intended for physicians diagnosing, treating, and researching MA. METHODS AND RESULTS References were identified using a PubMed/Medline systematic computerized search of the medical literature from January 1, 1957, through August 4, 2020, conducted by the authors, using the key words and various combinations of the key words "moyamoya disease," "moyamoya syndrome," "biomarker," "proteome," "genetics," "stroke," "angiogenesis," "cerebral arteriopathy," "pathophysiology," and "etiology." Relevant articles and supplemental basic science articles published in English were included. Intimal hyperplasia, medial thinning, irregular elastic lamina, and creation of moyamoya vessels are the end pathologies of many distinct molecular and genetic processes. Currently, 8 primary classes of proteins are implicated in the pathophysiology of MA: gene-mutation products, enzymes, growth factors, transcription factors, adhesion molecules, inflammatory/coagulation peptides, immune-related factors, and novel biomarker candidate proteins. We anticipate that this article will need to be updated in 5 years. CONCLUSION It is increasingly apparent that MA encompasses a variety of distinct pathophysiologic conditions. Continued research into biomarkers, genetics, and signaling pathways associated with MA will improve and refine our understanding of moyamoya's complex pathophysiology. Future efforts will benefit from multicenter studies, family-based analyses, comparative trials, and close collaboration between the clinical setting and laboratory research.
Collapse
Affiliation(s)
- Kirsten B Dorschel
- Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, USA
| |
Collapse
|
10
|
Fang YC, Wei LF, Hu CJ, Tu YK. Pathological Circulating Factors in Moyamoya Disease. Int J Mol Sci 2021; 22:ijms22041696. [PMID: 33567654 PMCID: PMC7915927 DOI: 10.3390/ijms22041696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Moyamoya disease (MMD) is a cerebrovascular disease that presents with vascular stenosis and a hazy network of collateral formations in angiography. However, the detailed pathogenic pathway remains unknown. Studies have indicated that in addition to variations in the of genetic factor RNF213, unusual circulating angiogenetic factors observed in patients with MMD may play a critical role in producing “Moyamoya vessels”. Circulating angiogenetic factors, such as growth factors, vascular progenitor cells, cytokines, inflammatory factors, and other circulating proteins, could promote intimal hyperplasia in vessels and excessive collateral formation with defect structures through endothelial hyperplasia, smooth muscle migration, and atypical neovascularization. This study summarizes the hypothesized pathophysiology of how these circulating factors affect MMD and the interactive modulation between them.
Collapse
Affiliation(s)
- Yao-Ching Fang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Ling-Fei Wei
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
| | - Chaur-Jong Hu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| | - Yong-Kwang Tu
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan; (Y.-C.F.); (L.-F.W.)
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Correspondence: (C.-J.H.); (Y.-K.T.); Tel.: +88-6222490088-561 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.); Fax: +88-6222490088-8120 (C.-J.H.); +88-6222490088-8120 (Y.-K.T.)
| |
Collapse
|
11
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
12
|
Moyamoya Disease and Spectrums of RNF213 Vasculopathy. Transl Stroke Res 2019; 11:580-589. [DOI: 10.1007/s12975-019-00743-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 10/25/2022]
|
13
|
Mikami T, Suzuki H, Komatsu K, Mikuni N. Influence of Inflammatory Disease on the Pathophysiology of Moyamoya Disease and Quasi-moyamoya Disease. Neurol Med Chir (Tokyo) 2019; 59:361-370. [PMID: 31281171 PMCID: PMC6796064 DOI: 10.2176/nmc.ra.2019-0059] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Moyamoya disease is a unique cerebrovascular disease that is characterized by progressive bilateral stenotic alteration at the terminal portion of the internal carotid arteries. These changes induce the formation of an abnormal vascular network composed of collateral pathways known as moyamoya vessels. In quasi-moyamoya disease, a similar stenotic vascular abnormality is associated with an underlying disease, which is sometimes an inflammatory disease. Recent advances in moyamoya disease research implicate genetic background and immunological mediators, and postulate an association with inflammatory disease as a cause of, or progressive factor in, quasi-moyamoya disease. Although this disease has well-defined clinical and radiological characteristics, the role of inflammation has not been rigorously explored. Herein, we focused on reviewing two main themes: (1) molecular biology of inflammation in moyamoya disease, and (2) clinical significance of inflammation in quasi-moyamoya disease. We have summarized the findings of the former theme according to the following topics: (1) inflammatory biomarkers, (2) genetic background of inflammatory response, (3) endothelial progenitor cells, and (4) noncoding ribonucleic acids. Under the latter theme, we summarized the findings according to the following topics: (1) influence of inflammatory disease, (2) vascular remodeling, and (3) mechanisms gleaned from clinical cases. This review includes articles published up to February 2019 and provides novel insights for the treatment of the moyamoya disease and quasi-moyamoya disease.
Collapse
Affiliation(s)
| | - Hime Suzuki
- Department of Neurosurgery, Sapporo Medical University
| | | | | |
Collapse
|
14
|
Sung HY, Lee JY, Park AK, Moon YJ, Jo I, Park EM, Wang KC, Phi JH, Ahn JH, Kim SK. Aberrant Promoter Hypomethylation of Sortilin 1: A Moyamoya Disease Biomarker. J Stroke 2018; 20:350-361. [PMID: 30309230 PMCID: PMC6186926 DOI: 10.5853/jos.2018.00962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of moyamoya disease (MMD) remains poorly understood, and no reliable molecular biomarkers for MMD have been identified to date. The present study aimed to identify epigenetic biomarkers for use in the diagnosis of MMD. METHODS We performed integrated analyses of gene expression profiles and DNA methylation profiles in endothelial colony forming cells (ECFCs) from three patients with MMD and two healthy individuals. Candidate gene mRNA expression and DNA methylation status were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and pyrosequencing analysis of an expanded ECFC sample set from nine patients with MMD and ten controls. We evaluated the diagnostic accuracy of the potential biomarkers identified here using receiver operating characteristic curve analyses and further measured major angiogenic factor expression levels using a tube formation assay and RT-qPCR. RESULTS Five candidate genes were selected via integrated analysis; all five were upregulated by hypomethylation of specific promoter CpG sites. After further validation in an expanded sample set, we identified a candidate biomarker gene, sortilin 1 (SORT1). DNA methylation status at a specific SORT1 promoter CpG site in ECFCs readily distinguished patients with MMD from the normal controls with high accuracy (area under the curve 0.98, sensitivity 83.33%, specificity 100%). Furthermore, SORT1 overexpression suppressed endothelial cell tube formation and modulated major angiogenic factor and matrix metalloproteinase-9 expression, implying SORT1 involvement in MMD pathogenesis. CONCLUSION s Our findings suggest that DNA methylation status at the SORT1 promoter CpG site may be a potential biomarker for MMD.
Collapse
Affiliation(s)
- Hye Youn Sung
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.,Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- Suncheon National University College of Pharmacy, Suncheon, Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Elevation of Proenkephalin 143–183 in Cerebrospinal Fluid in Moyamoya Disease. World Neurosurg 2018; 109:e446-e459. [DOI: 10.1016/j.wneu.2017.09.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 01/25/2023]
|
16
|
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, Zhao C, Xin W, Barone R, Sims KB, Moore DF, Lobel P. Proteomic Analysis of Brain and Cerebrospinal Fluid from the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Potential Biomarkers. J Proteome Res 2017; 16:3787-3804. [PMID: 28792770 DOI: 10.1021/acs.jproteome.7b00460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| | - Abla Tannous
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Istvan Sohar
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Jennifer A Wiseman
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Meiqian Qian
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Winnie Xin
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Rosemary Barone
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Katherine B Sims
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| |
Collapse
|
17
|
Kashiwazaki D, Uchino H, Kuroda S. Downregulation of Apolipoprotein-E and Apolipoprotein-J in Moyamoya Disease-A Proteome Analysis of Cerebrospinal Fluid. J Stroke Cerebrovasc Dis 2017; 26:2981-2987. [PMID: 28843803 DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Genetic factors are closely involved in the etiology of moyamoya disease (MMD). However, its postgenomic mechanisms are still unknown. This study was aimed to identify specific biomarkers in the cerebrospinal fluid (CSF) of patients with MMD, using quantitative proteome technique. METHODS This study included 10 patients with MMD and 4 controls. The CSF was collected without blood contamination during surgery. A comparative 2-dimensional gel electrophoresis study (2D-PAGE) was performed. Protein spots that showed significant differences between moyamoya patients and controls were selected for further analysis by mass spectrometry. RESULTS On 2D-PAGE, 2 proteins were significantly upregulated, and 2 other proteins were downregulated in the CSF of MMD. Further mass spectrometry analysis revealed that haptoglobin and α-1-B-glycoprotein (A1BG) were upregulated. On the other hand, apolipoprotein-E (apoE), apoE precursor, and apolipoprotein-J (apoJ) were significantly downregulated in the CSF of MMD. The observed probability-based MOWSE score was 72 for haptoglobin (P <.05), 521 for A1BG (P <.05), 62 for apoE (P <.05), 72 for apoE precursor (P <.05), and 112 for apoJ (P <.05). CONCLUSION Although the role of A1BG in the central nervous system is still unknown, the overexpressed haptoglobin may indicate the inflammation and/or angiogenesis in MMD. The downregulation of apoE and apoJ strongly suggests a critical role of lipid metabolism in the development and progression of MMD. These proteins may be novel biomarkers in shedding light on the pathogenesis of MMD, although further studies would be warranted.
Collapse
Affiliation(s)
- Daina Kashiwazaki
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan.
| | - Haruto Uchino
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama University, Toyama, Japan
| |
Collapse
|
18
|
Phi JH, Suzuki N, Moon YJ, Park AK, Wang KC, Lee JY, Choi SA, Chong S, Shirane R, Kim SK. Chemokine Ligand 5 (CCL5) Derived from Endothelial Colony-Forming Cells (ECFCs) Mediates Recruitment of Smooth Muscle Progenitor Cells (SPCs) toward Critical Vascular Locations in Moyamoya Disease. PLoS One 2017; 12:e0169714. [PMID: 28072843 PMCID: PMC5224827 DOI: 10.1371/journal.pone.0169714] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
The etiology and pathogenesis of moyamoya disease (MMD) are still obscure. Previous studies indicated that angiogenic chemokines may play an important role in the pathogenesis of the disease. Recently, it was discovered that peripheral blood-derived endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SPCs) have defective functions in MMD patients. Therefore, the interaction of ECFCs and SPCs, the precursors of two crucial cellular components of vascular walls, with some paracrine molecules is an intriguing subject. In this study, co-culture of ECFCs and SPCs from MMD patients and healthy normal subjects revealed that MMD ECFCs, not SPCs, are responsible for the defective functions of both ECFCs and SPCs. Enhanced migration of SPCs toward MMD ECFCs supported the role for some chemokines secreted by MMD ECFCs. Expression arrays of MMD and normal ECFCs suggested that several candidate cytokines differentially produced by MMD ECFCs. We selected chemokine (C-X-C motif) ligand 6 (CXCR6), interleukin-8 (IL8), chemokine (C-C motif) ligand 2 (CCL2), and CCL5 for study, based on the relatively higher expression of these ligands in MMD ECFCs and their cognate receptors in MMD SPCs. Migration assays showed that only CCL5 significantly augmented the migration activities of SPCs toward ECFCs. Treatment with siRNA for the CCL5 receptor (CCR5) abrogated the effect, confirming that CCL5 is responsible for the interaction of MMD ECFCs and SPCs. These data indicate that ECFCs, not SPCs, are the major players in MMD pathogenesis and that the chemokine CCL5 mediates the interactions. It can be hypothesized that in MMD patients, defective ECFCs direct aberrant SPC recruitment to critical vascular locations through the action of CCL5.
Collapse
Affiliation(s)
- Ji Hoon Phi
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Naoko Suzuki
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Joo Moon
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ae Kyung Park
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ah Choi
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangjoon Chong
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Reizo Shirane
- Department of Neurosurgery, Miyagi Children’s Hospital, Sendai, Japan
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Jeon JP, Kim JE. A Recent Update of Clinical and Research Topics Concerning Adult Moyamoya Disease. J Korean Neurosurg Soc 2016; 59:537-543. [PMID: 27847564 PMCID: PMC5106350 DOI: 10.3340/jkns.2016.59.6.537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/02/2016] [Accepted: 07/20/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of moyamoya disease (MMD), such as natural clinical course, surgical outcomes and research, has been obtained. This review article focuses on an giving an update for adult MMD in the Korean population. In this paper, we mainly discuss the results of our domestic investigations including meta-analysis, and related subjects from other countries.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. PLoS One 2016; 11:e0163561. [PMID: 27662211 PMCID: PMC5035048 DOI: 10.1371/journal.pone.0163561] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/11/2016] [Indexed: 01/16/2023] Open
Abstract
Background and purpose Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs. Methods iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis. Results Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD. Conclusions Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs.
Collapse
|
21
|
Bang OY, Fujimura M, Kim SK. The Pathophysiology of Moyamoya Disease: An Update. J Stroke 2016; 18:12-20. [PMID: 26846756 PMCID: PMC4747070 DOI: 10.5853/jos.2015.01760] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 11/23/2022] Open
Abstract
Moyamoya disease (MMD) is a unique cerebrovascular disease characterized by the progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. Because the etiology of MMD is unknown, its diagnosis is based on characteristic angiographic findings. Re-vascularization techniques (e.g., bypass surgery) are used to restore perfusion, and are the primary treatment for MMD. There is no specific treatment to prevent MMD progression. This review summarizes the recent advances in MMD pathophysiology, including the genetic and circulating factors related to disease development. Genetic and environmental factors may play important roles in the development of the vascular stenosis and aberrant angiogenesis in complex ways. These factors include the related changes in circulating endothelial/smooth muscle progenitor cells, cytokines related to vascular remodeling and angiogenesis, and endothelium, such as caveolin which is a plasma membrane protein. With a better understanding of MMD pathophysiology, nonsurgical approaches targeting MMD pathogenesis may be available to stop or slow the progression of this disease. The possible strategies include targeting growth factors, retinoic acid, caveolin-1, and stem cells.
Collapse
Affiliation(s)
- Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Korea
| | - Miki Fujimura
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:103985. [PMID: 26435722 PMCID: PMC4576016 DOI: 10.1155/2015/103985] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 01/10/2023]
Abstract
Cistanches Herba (CH) is thought to be a “Yang-invigorating” material in traditional Chinese medicine. We evaluated neuroprotective effects of Cistanches Herba on Alzheimer's disease (AD) patients. Moderate AD participants were divided into 3 groups: Cistanches Herba capsule (CH, n = 10), Donepezil tablet (DON, n = 8), and control group without treatment (n = 6). We assessed efficacy by MMSE and ADAS-cog, and investigated the volume changes of hippocampus by 1.5 T MRI scans. Protein, mRNA levels, and secretions of total-tau (T-tau), tumor necrosis factor-α (TNF-α), and interleukin- (IL) 1β (IL-1β) in cerebrospinal fluid (CSF) were detected by Western blot, RT-PCR, and ELISA. The scores showed statistical difference after 48 weeks of treatment compared to control group. Meanwhile, volume changes of hippocampus were slight in drug treatment groups but distinct in control group; the levels of T-tau, TNF-α, and IL-1β were decreased compared to those in control group. Cistanches Herba could improve cognitive and independent living ability of moderate AD patients, slow down volume changes of hippocampus, and reduce the levels of T-tau, TNF-α, and IL-1β. It suggested that Cistanches Herba had potential neuroprotective effects for moderate AD.
Collapse
|
23
|
Park YS. Single Nucleotide Polymorphism in Patients with Moyamoya Disease. J Korean Neurosurg Soc 2015; 57:422-7. [PMID: 26180609 PMCID: PMC4502238 DOI: 10.3340/jkns.2015.57.6.422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion.
Collapse
Affiliation(s)
- Young Seok Park
- Department of Neurosurgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
24
|
Smith ER. Moyamoya Biomarkers. J Korean Neurosurg Soc 2015; 57:415-21. [PMID: 26180608 PMCID: PMC4502237 DOI: 10.3340/jkns.2015.57.6.415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
Moyamoya disease (MMD) is an arteriopathy of the intracranial circulation predominantly affecting the branches of the internal carotid arteries. Heterogeneity in presentation, progression and response to therapy has prompted intense study to improve the diagnosis and prognosis of this disease. Recent progress in the development of moyamoya-related biomarkers has stimulated marked interest in this field. Biomarkers can be defined as biologically derived agents-such as specific molecules or unique patterns on imaging-that can identify the presence of disease or help to predict its course. This article reviews the current categories of biomarkers relevant to MMD-including proteins, cells and genes-along with potential limitations and applications for their use.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Neurological Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Lee JY, Moon YJ, Lee HO, Park AK, Choi SA, Wang KC, Han JW, Joung JG, Kang HS, Kim JE, Phi JH, Park WY, Kim SK. Deregulation of Retinaldehyde Dehydrogenase 2 Leads to Defective Angiogenic Function of Endothelial Colony-Forming Cells in Pediatric Moyamoya Disease. Arterioscler Thromb Vasc Biol 2015; 35:1670-7. [PMID: 26023078 DOI: 10.1161/atvbaha.115.305363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
OBJECTIVE-- Moyamoya disease (MMD) is a common cause of childhood stroke, in which the abnormal function of the endothelial colony-forming cell (ECFC) plays a key role in the pathogenesis of the disease. This study was designed to identify genes involved in MMD pathogenesis using gene expression profiling and to understand the defective function of MMD ECFCs. APPROACH AND RESULTS-- We compared gene expression profiles of ECFCs isolated from patients with MMD and normal controls. Among the differentially expressed genes, we selected a gene with the most downregulated expression, retinaldehyde dehydrogenase 2 (RALDH2). The activity of RALDH2 in MMD ECFCs was assessed by in vitro tube formation assay and in vivo Matrigel plug assay in the presence of all-trans retinoic acid. The transcriptional control of RALDH2 was tested using ChIP assays on acetyl-histone H3. In the results, MMD ECFCs inefficiently formed capillary tubes in vitro and capillaries in vivo, a defect restored by all-trans retinoic acid treatment. Knockdown of RALDH2 mRNA in normal ECFCs also induced decreased activity of capillary formation in vitro. The decreased level of RALDH2 mRNA in MMD ECFCs was attributed to defective acetyl-histone H3 binding to the promoter region. CONCLUSIONS-- From these results, we conclude that the expression of RALDH2 was epigenetically suppressed in ECFCs from patients with MMD, which may play a key role in their functional impairment.
Collapse
Affiliation(s)
- Ji Yeoun Lee
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Youn Joo Moon
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Hae-Ock Lee
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Ae-Kyung Park
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Seung-Ah Choi
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Kyu-Chang Wang
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Jung Woo Han
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Je-Gun Joung
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Hyun Seung Kang
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Jeong Eun Kim
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Ji Hoon Phi
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.)
| | - Woong-Yang Park
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.).
| | - Seung-Ki Kim
- From the Department of Anatomy (J.Y.L.), Division of Pediatric Neurosurgery, Seoul National University Children's Hospital (J.Y.L., Y.J.M., S.-A.C., K.-C.W., J.W.H., J.H.P., S.-K.K.), and Department of Neurosurgery (H.S.K., J.E.K.), Seoul National University College of Medicine, Seoul, Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (H.-O.L., J.-G.J., W.-Y.P.); College of Pharmacy, Sunchon National University, Jeonnam, Korea (A.-K.P.); and Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (H.-O.L., W.-Y.P.).
| |
Collapse
|
26
|
Jeon JP, Cho WS, Kang HS, Kim JE, Kim SK, Oh CW. Elevated cellular retinoic Acid binding protein-I in cerebrospinal fluid of patients with hemorrhagic cerebrovascular diseases : preliminary study. J Korean Neurosurg Soc 2015; 57:88-93. [PMID: 25733988 PMCID: PMC4345199 DOI: 10.3340/jkns.2015.57.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 12/02/2022] Open
Abstract
Objective Elevated cellular retinoic acid binding protein-I (CRABP-I) is thought to be related to the abnormal proliferation and migration of smooth muscle cells (SMCs). Accordingly, a higher CRABP-I level could cause disorganized vessel walls by causing immature SMC phenotypes and altering extracellular matrix proteins which could result in vulnerable arterial walls with inadequate responses to hemodynamic stress. We hypothesized that elevated CRABP-I level in the cerebrospinal fluid (CSF) could be related to subarachnoid hemorrhage (SAH). Moreover, we also extended this hypothesis in patients with vascular malformation according to the presence of hemorrhage. Methods We investigated the CSF of 26 patients : SAH, n=7; unruptured intracranial aneurysm (UIA), n=7; arteriovenous malformation (AVM), n=4; cavernous malformation (CM), n=3; control group, n=5. The optical density of CRABP-I was confirmed by Western blotting and presented as mean±standard error of the measurement. Results CRABP-I in SAH (0.33±0.09) was significantly higher than that in the UIA (0.12±0.01, p=0.033) or control group (0.10±0.01, p=0.012). Hemorrhage presenting AVM (mean 0.45, ranged 0.30-0.59) had a higher CRABP-I level than that in AVM without hemorrhage presentation (mean 0.16, ranged 0.14-0.17). The CRABP-I intensity in CM with hemorrhage was 0.21 and 0.31, and for CM without hemorrhage 0.14. Overall, the hemorrhage presenting group (n=11, 0.34±0.06) showed a significantly higher CRABP-I intensity than that of the non-hemorrhage presenting group (n=10, 0.13±0.01, p=0.001). Conclusion The results suggest that elevated CRABP-I in the CSF could be related with aneurysm rupture. Additionally, a higher CRABP-I level seems to be associated with hemorrhage development in vascular malformation.
Collapse
Affiliation(s)
- Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Jeon JS, Ahn JH, Moon YJ, Cho WS, Son YJ, Kim SK, Wang KC, Bang JS, Kang HS, Kim JE, Oh CW. Expression of cellular retinoic acid-binding protein-I (CRABP-I) in the cerebrospinal fluid of adult onset moyamoya disease and its association with clinical presentation and postoperative haemodynamic change. J Neurol Neurosurg Psychiatry 2014; 85:726-31. [PMID: 24292994 DOI: 10.1136/jnnp-2013-305953] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The elevation of cellular retinoic acid-binding protein-I (CRABP-I) has been suggested as a candidate in the pathogenesis of paediatric moyamoya disease (MMD). However, few studies have addressed CRABP-I in adult onset MMD. The aim of this study was to examine the expression of CRABP-I in the cerebrospinal fluid (CSF) of adult onset MMD, and to evaluate its association with clinical presentation and postoperative haemodynamic change. METHODS This study examined the CSF from 103 patients: bilateral MMD, n=58 (56.3%); unilateral MMD, n=19 (18.4%); atherosclerotic cerebrovascular disease (ACVD), n=21 (20.4%); and control group, n=5 (4.9%). The intensity of CRABP-I was confirmed by western blotting and expressed as the median (25th-75th percentile). The differences in CRABP-I expression according to disease entity (unilateral MMD vs bilateral MMD vs ACVD), initial presenting symptoms (haemorrhage vs ischaemia) and postoperative haemodynamic change (vascular reserve in single photon emission CT and basal collateral vessels in digital subtraction angiography) were analysed. RESULTS CRABP-I intensities in bilateral MMD (1.45(0.86-2.52)) were significantly higher than in unilateral MMD (0.91(0.78-1.20)) (p=0.044) or ACVD (0.85(0.66-1.11)) (p=0.004). No significant differences were noted based on the initial presenting symptoms (p=0.687). CRABP-I was not associated with improvement in vascular reserve (p=0.327), but with decrease in basal collateral vessels (p=0.023) postoperatively. CONCLUSIONS Higher CRABP-I in the CSF can be associated with typical bilateral MMD pathogenesis in adults. Additionally, postoperative basal collateral change may be related to the degree of CRABP-I expression.
Collapse
Affiliation(s)
- Jin Sue Jeon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Youn-Joo Moon
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Je Son
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Seung Bang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Wan Oh
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Sharma A, Soneji N, Farah G. Clinical and angiographic findings in Moya Moya. AMERICAN JOURNAL OF CASE REPORTS 2014; 15:147-51. [PMID: 24753782 PMCID: PMC3992217 DOI: 10.12659/ajcr.890222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
Patient: Female, 40 Final Diagnosis: Moya-Moya Disease Symptoms: Blurred vision • headache • lethargy Medication: — Clinical Procedure: — Specialty: Neurology
Collapse
Affiliation(s)
- Aman Sharma
- Department of Haematology, Churchill Hospital, Oxford, U.K
| | - Neil Soneji
- Department of Radiology, Hammersmith Hospital, London, U.K
| | - George Farah
- Department of Endocrine, Wexham Park Hospital, London, U.K
| |
Collapse
|
29
|
Kim JE, Jeon JS. An update on the diagnosis and treatment of adult Moyamoya disease taking into consideration controversial issues. Neurol Res 2014; 36:407-16. [DOI: 10.1179/1743132814y.0000000351] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Xiao XH, Miao HM, Xu YG, Zhang JY, Chai LH, Xu JJ. Analysis of skin and secretions of Dybowski's frogs (Rana dybowskii) exposed to Staphylococcus aureus or Escherichia coli identifies immune response proteins. Vet J 2014; 200:127-32. [PMID: 24613415 DOI: 10.1016/j.tvjl.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to investigate responses in Dybowski's frogs (Rana dybowskii) exposed to bacteria, using proteomic and transcriptomic approaches. Staphylococcus aureus and Escherichia coli were used as representative Gram-positive and Gram-negative bacteria, respectively, in an infectious challenge model. Frog skin and skin secretions were collected and protein expression in infected frogs compared to control frogs by two-dimensional gel electrophoresis, silver staining, and image analysis. Proteins that demonstrated differential expression were analysed by mass spectrometry and identified by searching protein databases. More than 180 protein spots demonstrated differential expression in E. coli- or S. aureus-challenged groups and, of these, more than 55 spots were up- or down-regulated at least sixfold, post-infection. Proteins with a potential function in the immune response were identified, such as stathmin 1a, annexin A1, superoxide dismutase A, C-type lectin, lysozyme, antimicrobial peptides, cofilin-1-B, mannose receptor, histone H4, prohormone convertase 1, carbonyl reductase 1 and some components of the Toll-like receptor (TLR) signalling pathway. These molecules are potential candidates for further investigation of immune mechanisms in R. dybowskii; in particular, TLR-mediated responses, which might be activated in frogs exposed to pathogenic bacteria as part of innate immune defence, but which might also impact on adaptive immunity to infection.
Collapse
Affiliation(s)
- Xiang-Hong Xiao
- Wildlife Resources College, Northeast Forestry University, He Xing Road 26, Harbin, China
| | - Hui-Min Miao
- Wildlife Resources College, Northeast Forestry University, He Xing Road 26, Harbin, China
| | - Yi-Gang Xu
- Technology Centre, Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Gan Shui Road 9, Harbin, China.
| | - Jing-Yu Zhang
- Wildlife Resources College, Northeast Forestry University, He Xing Road 26, Harbin, China
| | - Long-Hui Chai
- Wildlife Resources College, Northeast Forestry University, He Xing Road 26, Harbin, China
| | - Jia-Jia Xu
- Wildlife Resources College, Northeast Forestry University, He Xing Road 26, Harbin, China
| |
Collapse
|
31
|
Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF, Liotta LA. CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics 2014; 2:57-70. [PMID: 15966853 DOI: 10.1586/14789450.2.1.57] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proteomic analysis is not limited to the analysis of serum or tissues. Synovial, peritoneal, pericardial and cerebrospinal fluid represent unique proteomes for disease diagnosis and prognosis. In particular, cerebrospinal fluid serves as a rich source of putative biomarkers that are not solely limited to neurologic disorders. Peptides, proteolytic fragments and antibodies are capable of crossing the blood-brain barrier, thus providing a repository of pathologic information. Proteomic technologies such as immunoblotting, isoelectric focusing, 2D gel electrophoresis and mass spectrometry have proven useful for deciphering this unique proteome. Cerebrospinal fluid proteins are generally less abundant than their corresponding serum counterparts, necessitating the development and use of sensitive analytical techniques. This review highlights some of the promising areas of cerebrospinal fluid proteomic research and their clinical applications.
Collapse
Affiliation(s)
- Martin J Romeo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Kang HS, Moon YJ, Kim YY, Park WY, Park AK, Wang KC, Kim JE, Phi JH, Lee JY, Kim SK. Smooth-muscle progenitor cells isolated from patients with moyamoya disease: novel experimental cell model. J Neurosurg 2013; 120:415-25. [PMID: 24160477 DOI: 10.3171/2013.9.jns131000] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Moyamoya disease (MMD) is a cerebrovascular occlusive disease affecting bilateral internal carotid termini. Smooth-muscle cells are one of the major cell types involved in this disease process. The characteristics of circulating smooth-muscle progenitor cells (SPCs) in MMD are poorly understood. The authors purified SPCs from the peripheral blood of patients with MMD and sought to identify differentially expressed genes (DEGs) in SPCs from these patients. METHODS The authors cultured and isolated SPCs from the peripheral blood of patients with MMD (n = 25) and healthy control volunteers (n = 22). After confirmation of the cellular phenotype, RNA was extracted from the cells and DEGs were identified using a commercially available gene chip. Real-time quantitative reverse transcription polymerase chain reaction was performed to confirm the putative pathogenetic DEGs. RESULTS The SPC-type outgrowth cells in patients with MMD invariably showed a hill-and-valley appearance under microscopic examination, and demonstrated high α-smooth muscle actin, myosin heavy chain, and calponin expression (96.5% ± 2.1%, 42.8% ± 18.6%, and 87.1% ± 8.2%, respectively), and minimal CD31 expression (less than 1%) on fluorescence-activated cell sorter analysis. The SPCs in the MMD group tended to make more irregularly arranged and thickened tubules on the tube formation assay. In the SPCs from patients with MMD, 286 genes (124 upregulated and 162 downregulated) were differentially expressed; they were related to cell adhesion, cell migration, immune response, and vascular development. CONCLUSIONS With adequate culture conditions, SPCs could be established from the peripheral blood of patients with MMD. These cells showed specific DEGs compared with healthy control volunteers. This study provides a novel experimental cell model for further research of MMD.
Collapse
Affiliation(s)
- Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Young AMH, Karri SK, Ogilvy CS, Zhao N. Is there a role for treating inflammation in moyamoya disease?: a review of histopathology, genetics, and signaling cascades. Front Neurol 2013; 4:105. [PMID: 23966972 PMCID: PMC3742998 DOI: 10.3389/fneur.2013.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022] Open
Abstract
Moyamoya disease is a slowly progressing steno-occlusive condition affecting the cerebrovasculature. Affecting the terminal internal carotid arteries (ICA) and there branches, bilaterally, a resulting in a fine vascular network in the base of the brain to allow for compensation of the stenosed vessels. While there is obvious evidence of the involvement of inflammatory proteins in the condition, this has historically not been acknowledged as a causal factor. Here we describe the fundamental histopathology, genetics, and signaling cascades involved in moyamoya and debate whether these factors can be linked as causal factor for the condition or whether they are simply a secondary result of the ischemia described in the condition. A particular focus has been placed on the multitude of signaling cascades linked to the condition as these are viewed as having the greatest therapeutic potential. As such we hope to draw some novel insight into potential diagnostic and therapeutic inflammatory targets in the condition.
Collapse
Affiliation(s)
- Adam M H Young
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital , Boston, MA , USA ; School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge , Cambridge , UK
| | | | | | | |
Collapse
|
34
|
Houkin K, Ito M, Sugiyama T, Shichinohe H, Nakayama N, Kazumata K, Kuroda S. Review of past research and current concepts on the etiology of moyamoya disease. Neurol Med Chir (Tokyo) 2013; 52:267-77. [PMID: 22688062 DOI: 10.2176/nmc.52.267] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research on moyamoya disease has progressed remarkably in the past several decades. Indeed, many new facts concerning the epidemiology of the disease have been revealed and surgical treatments have been drastically improved. However, despite extensive research, the mechanism of moyamoya disease is still unknown. Consequently, the cardinal treatment of this disease has not yet been developed. For further clarification of its etiology, innovative studies are therefore indispensable. The aim of this paper is to review research on the pathogenesis of moyamoya disease to identify milestones in the direction of its true solution. Many hypotheses of the pathogenesis of moyamoya disease have been proposed in the past half century, including infection (viral and bacterial), autoimmune disorders, proteins abnormality, and gene abnormality. Some of these are now considered to be historical achievements. Others, however, can be still subjected to contemporary research. Currently, several genetic abnormalities are considered to offer the most probable hypothesis. In addition, interesting papers have been presented on the role of the endothelial progenitor cell on the pathogenesis of moyamoya disease. Intuitively, however, it appears that a single theory cannot always explain the pathogenesis of this disease adequately. In other words, the complex mechanism of several factors may comprehensively explain the formation of moyamoya disease. The "double hit hypothesis" is probably the best explanation for the complicated pathology and epidemiology of this disease.
Collapse
Affiliation(s)
- Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu W, Morito D, Takashima S, Mineharu Y, Kobayashi H, Hitomi T, Hashikata H, Matsuura N, Yamazaki S, Toyoda A, Kikuta KI, Takagi Y, Harada KH, Fujiyama A, Herzig R, Krischek B, Zou L, Kim JE, Kitakaze M, Miyamoto S, Nagata K, Hashimoto N, Koizumi A. Identification of RNF213 as a susceptibility gene for moyamoya disease and its possible role in vascular development. PLoS One 2011; 6:e22542. [PMID: 21799892 PMCID: PMC3140517 DOI: 10.1371/journal.pone.0022542] [Citation(s) in RCA: 450] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 06/29/2011] [Indexed: 11/19/2022] Open
Abstract
Background Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Methodology/Principal Findings Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10-4). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10−119). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. Conclusions/Significance We provide evidence suggesting, for the first time, the involvement of RNF213 in genetic susceptibility to moyamoya disease.
Collapse
Affiliation(s)
- Wanyang Liu
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Morito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Seiji Takashima
- Department of Molecular Cardiology, Osaka University, Suita, Osaka, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Hatasu Kobayashi
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Toshiaki Hitomi
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Hirokuni Hashikata
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Norio Matsuura
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Satoru Yamazaki
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | - Yasushi Takagi
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Kouji H. Harada
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Principles of Informatics Research Division, National Institute of Informatics, Tokyo, Japan
| | - Roman Herzig
- Palacky University Hospital, Olomouc, Czech Republic
| | - Boris Krischek
- Department of Neurosurgery, University of Tubingen, Tubingen, Germany
| | - Liping Zou
- Department of Pediatrics, Chinese People's Liberation Army General Hospital, Beijing, People's Republic of China
| | - Jeong Eun Kim
- Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Nobuo Hashimoto
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
- National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail: (NH); (AK)
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University, Kyoto, Japan
- * E-mail: (NH); (AK)
| |
Collapse
|
36
|
Weinberg DG, Arnaout OM, Rahme RJ, Aoun SG, Batjer HH, Bendok BR. Moyamoya disease: a review of histopathology, biochemistry, and genetics. Neurosurg Focus 2011; 30:E20. [DOI: 10.3171/2011.3.focus1151] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Moyamoya disease (MMD) is a rare cerebrovascular disorder involving stenosis of the major vessels of the circle of Willis and proximal portions of its principal branches. Despite concerted investigation, the pathophysiology of the disorder has not been fully elucidated. Currently, the major proteins believed to play an active role in the pathogenesis include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), transforming growth factor–β1 (TGFβ1), and granulocyte colony-stimulating factor (G-CSF). In terms of the genetics, recent literature suggests a low penetrance autosomal dominant or polygenic mode of transmission involving chromosomes 3, 6, 8, 12, and 17 for familial MMD. This review summarizes the current knowledge on the histopathology, pathophysiology and genetics of MMD.
Methods
A PubMed/Medline systematic study of the literature was performed, from which 45 articles regarding MMD pathophysiology were identified and analyzed.
Conclusions
Moyamoya disease is characterized by the intimal thickening and media attenuation of the proximal vessels of the circle of Willis as well as the development of an aberrant distal vascular network. The primary proteins that are currently implicated in the pathophysiology of MMD include VEGF, bFGF, HGF, TGFβ1, and G-CSF. Furthermore, the current literature on familial MMD has pointed to a low penetrance autosomal dominant or polygenic mode of transmittance at loci on chromosomes 3, 6, 8, 12, and 17.
Collapse
|
37
|
Steatosis induced by the accumulation of apolipoprotein A-I and elevated ROS levels in H-ras12V transgenic mice contributes to hepatic lesions. Biochem Biophys Res Commun 2011; 409:532-8. [PMID: 21600874 DOI: 10.1016/j.bbrc.2011.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022]
Abstract
Hepatic steatosis is considered to have an important impact on liver tumorigenesis, despite a lack of clear experimental evidence. Histopathological analysis of H-ras12V transgenic mice showed liver lesions on a steatosis background had significantly higher incidence than on a non-steatosis background. Further investigation showed that apolipoprotein A-I was elevated and accumulated around fatty vacuoles. This elevated level of apolipoprotein A-I was coupled with an elevated level of H-ras12V protein and ROS. In conclusion, our results suggest that the expression of H-ras12V oncogene leads to elevated levels of ROS and apolipoprotein A-I that contribute to steatosis. The steatosis, in turn, promotes the development of hepatic lesions induced by H-ras12V oncogene.
Collapse
|
38
|
Jang SS, Park J, Hur SW, Hong YH, Hur J, Chae JH, Kim SK, Kim J, Kim HS, Kim SJ. Endothelial progenitor cells functionally express inward rectifier potassium channels. Am J Physiol Cell Physiol 2011; 301:C150-61. [PMID: 21411724 DOI: 10.1152/ajpcell.00002.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the first isolation of endothelial progenitor cells (EPCs) from human peripheral blood in 1997, many researchers have conducted studies to understand the characteristics and therapeutic effects of EPCs in vascular disease models. Nevertheless, the electrophysiological properties of EPCs have yet to be clearly elucidated. The inward rectifier potassium channel (Kir) performs a major role in controlling the membrane potential and cellular events. Here, via the whole cell patch-clamp technique, we found inwardly rectifying currents in EPCs and that these currents were inhibited by Ba(2+) (100 μM) and Cs(+) (1 mM), known as Kir blockers, in a dose-dependent manner (Ba(2+), 91.2 ± 1.4% at -140 mV and Cs(+), 76.1 ± 6.9% at -140 mV, respectively). Next, using DiBAC(3), a fluorescence indicator of membrane potential, we verified that Ba(2+) induced an increase of fluorescence in EPCs (10 μM, 123 ± 2.8%), implying the depolarization of EPCs. At the mRNA and protein levels, we confirmed the existence of several Kir subtypes, including Kir2.x, 3.x, 4.x, and 6.x. In a functional experiment, we observed that, in the presence of Ba(2+), the number of tubes on Matrigel formed by EPCs was dose-dependently reduced (10 μM, 62.3 ± 6.5%). In addition, the proliferation of EPCs was increased in a dose-dependent fashion (10 μM, 157.9 ± 17.4%), and specific inhibition of Kir2.1 by small interfering RNA also increased the proliferation of EPCs (116.2 ± 2.5%). Our results demonstrate that EPCs express several types of Kir which may modulate the endothelial function and proliferation of EPCs.
Collapse
Affiliation(s)
- Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Polymorphisms in TGFB1 and PDGFRB are associated with Moyamoya disease in European patients. Acta Neurochir (Wien) 2010; 152:2153-60. [PMID: 20571834 DOI: 10.1007/s00701-010-0711-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The etiology of Moyamoya disease (MMD) is still widely unknown. Several publications on Moyamoya describe differences of cytokine and growth factor concentrations in different specimen. We analyzed the DNA of patients with MMD for single nucleotide polymorphisms (SNPs) in and upstream of the genes for previously described associated cytokines and growth factors. METHOD Thirteen SNPs were genotyped in or upstream to four genes-basic fibroblast growth factor (BFGF), cellular retinoic acid-binding protein 1 (CRABP1), platelet derived growth factor receptor beta (PDGFRB), and transforming growth factor beta 1 (TGFB1)-comparing 40 DNA samples of MMD patients to 68 healthy controls from central Europe. Genotyping was performed by sequencing the SNP-containing genetic regions with custom made primers. FINDINGS We found association of two SNPs: rs382861 [A/C] (p = 0.0373, OR = 1.81, 95% CI = 1.03-3.17) in the promoter region of PDGFRB and rs1800471[C/G] (p = 0.0345, OR = 7.65, 95% CI = 0.97-59.95), located in the first exon of TGFB1. CONCLUSION Our results indicate possible genetic risk factors for the genesis of MMD. TGFB1 and PDGFRB are involved in vascular growth and transformation processes which may play a role in the development of MMD. Further analyses in larger European cohorts and replication in patients of different ethnicity, as well as functional studies, may lead to possible early detection of patients at risk for developing MMD and subsequently to future preventive therapies.
Collapse
|
40
|
Araki Y, Yoshikawa K, Okamoto S, Sumitomo M, Maruwaka M, Wakabayashi T. Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS. BMC Neurol 2010; 10:112. [PMID: 21059247 PMCID: PMC2992492 DOI: 10.1186/1471-2377-10-112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/08/2010] [Indexed: 12/17/2022] Open
Abstract
Background Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis. Methods For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed. Results A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients. Conclusions In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.
Collapse
Affiliation(s)
- Yoshio Araki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Kim JH, Jung JH, Phi JH, Kang HS, Kim JE, Chae JH, Kim SJ, Kim YH, Kim YY, Cho BK, Wang KC, Kim SK. Decreased level and defective function of circulating endothelial progenitor cells in children with moyamoya disease. J Neurosci Res 2010; 88:510-8. [PMID: 19774676 DOI: 10.1002/jnr.22228] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) play an important role in physiological and pathological neovascularization and may be involved in attenuating ischemic diseases. This study aimed to characterize circulating EPCs in moyamoya disease (MMD), one of the most common pediatric cerebrovascular diseases. Twenty-eight children with MMD prior to any surgical treatment and 12 healthy volunteers were recruited. Peripheral blood mononuclear cells (PBMNCs) were isolated and cultured in endothelial cell growth medium. Temporal change of phenotype of cells was analyzed on days 0 and 7. The formation of EPC clusters was evaluated on day 7. The CD34(+), CD133(+), and KDR(+) cells, and the number of EPC clusters was significantly reduced in children with MMD. In controls, CD34(+) cells were significantly decreased on day 7 compared with day 0, but in MMD they were only slightly decreased. The change in KDR(+) cells on day 7 compared with day 0 was the reverse of that for CD34(+) cells. Functional assay of EPC demonstrated less tube formation and increased senescent-like phenotype in children with MMD. Analysis of the circulating EPCs of MMD children reveals decreased level and defective function. This study suggests that circulating EPCs may be associated with MMD pathogenesis.
Collapse
Affiliation(s)
- Jin Hyun Kim
- Clinical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hong SH, Wang KC, Kim SK, Cho BK, Park MH. Association of HLA-DR and -DQ Genes with Familial Moyamoya Disease in Koreans. J Korean Neurosurg Soc 2009; 46:558-63. [PMID: 20062572 DOI: 10.3340/jkns.2009.46.6.558] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/04/2009] [Accepted: 11/09/2009] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Moyamoya disease (MMD) is an uncommon cerebrovascular disorder, characterized by progressive occlusion at the terminal portion of the internal carotid artery. Incidence of the disease is high in East Asia and familial MMD accounts for about 15% of the disease. Although the pathogenesis is unknown, association of HLA class I or II alleles with MMD has been reported with conflicting results. We investigated whether there is a difference in HLA class II association between familial and non-familial forms of the disease. METHODS A total of 70 Korean children with MMD, including 16 familial cases (10 probands), and 207 healthy controls were studied. Among familial cases, only 10 probands were used for the HLA frequency analysis. High resolution HLA-DRB1 and DQB1 genotyping was performed using polymerase chain reaction (PCR)-sequence specific oligonucleotide hybridization and PCR-single strand conformation polymorphism methods. RESULTS The phenotype frequencies of HLA-DRB1(*)1302 (70.0%) and DQB1(*)0609 (40.0%) were significantly increased in familial MMD compared to both controls [vs. 15.5%, corrected p (p(c)) = 0.008, odds ratio (OR) = 12.76; vs. 4.3%, p(c) = 0.02, OR = 14.67] and non-familial MMD patients (vs. 14.8%, p(c) = 0.02, OR = 13.42; vs. 1.9%, p(c) = 0.02, OR = 35.33). The frequencies of DRB1 and DQB1 alleles in non-familial MMD patients were not significantly different from those in controls. CONCLUSION Our findings suggest that the genetic polymorphism of HLA class II genes or other closely linked disease relevant gene(s) could be a genetic predisposing factor for familial MMD.
Collapse
Affiliation(s)
- Seok Ho Hong
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
43
|
Yang JY, Jung JY, Cho SW, Choi HJ, Kim SW, Kim SY, Kim HJ, Jang CH, Lee MG, Han J, Shin CS. Chloride intracellular channel 1 regulates osteoblast differentiation. Bone 2009; 45:1175-85. [PMID: 19703605 DOI: 10.1016/j.bone.2009.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 12/15/2022]
Abstract
We have identified chloride intracellular channel 1 (CLIC1) through proteomic approach, which was increased in response to canonical wnt signaling while being almost shut-off by adipogenic treatment in mouse mesenchymal C3H10T1/2 cells. We found that CLIC1 was expressed in mouse (MC3T3-E1), rat (ROS 17/2.8 and UMR-106) or human (MG63 and SaOS2) osteoblastic cell lines as well as primary culture of mouse calvarial cells by RT-PCR or Western blot analysis. The expression level of CLIC1 is increased upon treatment of osteogenic medium, whereas it almost disappeared in adipogenic condition, confirming the proteomic data. The expression of CLIC1 was localized mainly in nuclear membrane and vesiculo-cytoplasmic, the latter of which was colocalized with mitochondria. Retroviral overexpression of CLIC1 did not increase whole-cell current but induces hyperpolarization of mitochondrial membrane potential estimated using the fluorescent dye TMRE. Moreover, overexpression of CLIC1 resulted in increase in osteoblastic differentiation of C3H10T1/2 cells as measured by ALP activities or osteoblastic gene expression (osterix, ALP and osteocalcin), although it did not result in induction of Runx2 transcription activities at mouse osteocalcin (OG2) promoter. Finally, in vitro knock-down of CLIC1 using stable siRNA CLIC1 significantly suppressed osteoblastic differentiation. Taken together, these results suggest that CLIC1 may play a role in the regulation of osteoblastic differentiation from mesenchymal progenitors, although its physiologic role in osteoblasts remains to be determined.
Collapse
Affiliation(s)
- Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul 110-744, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Moyamoya disease is an uncommon cerebrovascular disease that is characterised by progressive stenosis of the terminal portion of the internal carotid artery and its main branches. The disease is associated with the development of dilated, fragile collateral vessels at the base of the brain, which are termed moyamoya vessels. The incidence of moyamoya disease is high in east Asia, and familial forms account for about 15% of patients with this disease. Moyamoya disease has several unique clinical features, which include two peaks of age distribution at 5 years and at about 40 years. Most paediatric patients have ischaemic attacks, whereas adult patients can have ischaemic attacks, intracranial bleeding, or both. Extracranial-intracranial arterial bypass, including anastomosis of the superficial temporal artery to the middle cerebral artery and indirect bypass, can help prevent further ischaemic attacks, although the beneficial effect on haemorrhagic stroke is still not clear. In this Review, we summarise the epidemiology, aetiology, clinical features, diagnosis, surgical treatment, and outcomes of moyamoya disease. Recent updates and future perspectives for moyamoya disease will also be discussed.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan.
| | | |
Collapse
|
45
|
Jung KH, Chu K, Lee ST, Park HK, Kim DH, Kim JH, Bahn JJ, Song EC, Kim M, Lee SK, Roh JK. Circulating endothelial progenitor cells as a pathogenetic marker of moyamoya disease. J Cereb Blood Flow Metab 2008; 28:1795-803. [PMID: 18612318 DOI: 10.1038/jcbfm.2008.67] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Moyamoya disease (MMD) is an unusual form of chronic cerebrovascular occlusive disease that involves the formation of characteristically abnormal vessels. Recent studies have reported that colony-forming unit (CFU) and outgrowth cells represent a subpopulation of endothelial progenitor cells (EPCs). Here, we attempted to determine the significance of CFU number and outgrowth cell yield in MMD. Endothelial progenitor cells were isolated from the blood of 24 adult MMD patients and from 48 age- and risk factor-matched control subjects. After 7 days of culture, CFUs were determined, and yields of outgrowth cells were measured during 2 months of culture. The EPC function was also evaluated using matrigel plate assays. It was found that CFU numbers were significantly lower in MMD patients than in controls. Moreover, during long-term culture, outgrowth cells were isolated from only 10% of control subjects but from 33% of MMD patients, and CFU numbers and tube formation were found to be lower in advanced MMD cases than in those with early stage disease, whereas outgrowth cells were more frequently detected in those with early MMD and moyamoya vessels than in those with advanced disease. These characteristics of circulating EPCs reflect mixed conditions of vascular occlusion and abnormal vasculogenesis during the pathogenesis of MMD.
Collapse
Affiliation(s)
- Keun-Hwa Jung
- Stroke and Stem Cell Laboratory, Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Affiliation(s)
- Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Seoul National University College of Medicine, Korea.
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University College of Medicine, Korea.
| |
Collapse
|
48
|
Seol HJ, Wang KC, Kim SK, Hwang YS, Kim KJ, Cho BK. Familial occurrence of moyamoya disease: a clinical study. Childs Nerv Syst 2006; 22:1143-8. [PMID: 16565850 DOI: 10.1007/s00381-006-0089-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND We reviewed a consecutive series of moyamoya disease (MMD) in children and studied their familial pedigrees to determine whether they showed specific clinical features or patterns of inheritance, and to investigate any correlation between familial MMD and common Asian diseases. METHODS Cases of familial MMD (N=10) were reviewed in the aspect of clinical presentation, such as, symptoms and signs, age of onset, imaging studies including magnetic resonance imaging (MRI), cerebral angiography, and single photon emission computed tomography (SPECT), and operative results including complications, to identify differences between these patients and those with sporadic MMD (N=194). The male to female ratio in those with familial MMD was 4:6 and mean age was 8 years (3-17). All were ischemic cases and five showed cerebral infarction on MRI. As a preliminary genetic study, familial pedigrees were examined. In addition, their familial histories concerning common Asian diseases, such as, hepatic disease, cancers, stroke, coronary heart disease, amyloidosis, and systemic lupus erythematosus, were investigated by telephone survey. RESULTS AND CONCLUSIONS The familial MMD cases did not reveal any differences from the other MMD children in terms of clinical findings, imaging data, or surgical results. In our series, five cases (50%) showed MMD between siblings. Familial MMD relations were also observed with cousins, a mother, and an aunt. No specific pattern of genetic inheritance was observed, and no relation was found between the familial occurrence of MMD and common Asian diseases.
Collapse
Affiliation(s)
- Ho Jun Seol
- Department of Neurosurgery, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | | | | | | | | | | |
Collapse
|
49
|
Kang HS, Kim SK, Cho BK, Kim YY, Hwang YS, Wang KC. Single Nucleotide Polymorphisms of Tissue Inhibitor of Metalloproteinase Genes in Familial Moyamoya Disease. Neurosurgery 2006; 58:1074-80; discussion 1074-80. [PMID: 16723886 DOI: 10.1227/01.neu.0000215854.66011.4f] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The genes encoding tissue inhibitor of metalloproteinase (TIMP) 4 and TIMP2 span chromosomes 3p24.2-p26 and 17q25, respectively, which are the locations of familial moyamoya disease (FMMD) genes. We investigated single nucleotide polymorphisms of the TIMP2 and TIMP4 genes in FMMD patients to determine genetic predispositions. METHODS Eleven blood samples from FMMD patients were recruited. Controls included 50 blood samples from patients with nonfamilial moyamoya disease (MMD) and another 50 blood samples from non-MMD persons. We evaluated the promoter regions, exon-intron junctions, and the exons of the TIMP2 and TIMP4 genes by direct sequencing, and compared single nucleotide polymorphisms frequencies among the study groups. RESULTS A significantly higher frequency of a heterozygous genotype was found in the TIMP2 promoter region at position -418 in FMMD; that is, the G/C heterozygous genotype at position -418 was observed in nine of 11 patients with FMMD, in 16 out of 50 nonfamilial MMD control participants, and in 14 out of 50 non-MMD control participants (FMMD versus nonfamilial MMD: odds ratio, 9.56; 95% confidence interval, 1.85-49.48; P = 0.005; and FMMD versus non-MMD: odds ratio, 10.50; 95% confidence interval, 2.02-54.55; P = 0.001). This base at position -418 corresponds to the third base of the GAGGCTGGG sequence, an Sp1 binding site. Thus, changes in this position may influence Sp1 binding and subsequent transcription of the gene. CONCLUSION Our findings suggest that the presence of a G/C heterozygous genotype at position -418 in TIMP2 promoter could be a genetic predisposing factor for FMMD.
Collapse
Affiliation(s)
- Hyun-Seung Kang
- Department of Neurosurgery, Konkuk University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Ishimori ML, Cohen SN, Hallegua DS, Moser FG, Weisman MH. Ischemic Stroke in a Postpartum Patient: Understanding the Epidemiology, Pathogenesis, and Outcome of Moyamoya Disease. Semin Arthritis Rheum 2006; 35:250-9. [PMID: 16461070 DOI: 10.1016/j.semarthrit.2005.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Moyamoya disease (MMD), or spontaneous occlusion of blood vessels in the circle of Willis, is a noninflammatory, nonatheromatous vasculopathy that often presents with ischemia or hemorrhage and has a tendency to affect young women. We discuss a case of a woman 7 days postpartum with new onset strokes, suspected initially to have benign angiopathy of the central nervous system (BACNS)/postpartum angiopathy versus primary CNS vasculitis. Cerebral angiography was suspicious for MMD and the patient underwent surgical revascularization. OBJECTIVES To review the epidemiology, presentation, diagnosis, differential diagnosis, treatment, prognosis, and postpartum maternal outcomes of MMD. METHODS The authors reviewed the English-language literature published between 1996 and 2004 using Medline databases. Additional articles were obtained from references described in literature obtained by the primary search. RESULTS MMD is characterized by severe bilateral stenosis of the distal internal carotid arteries and their first branches, with prominent collateralization. Autoantibodies relating to endothelial cell dysfunction have been studied as possible pathogenetic mechanisms. The gold standard for diagnosing MMD is digital subtraction contrast angiography (DSA). MMD-related findings on imaging studies may, at times, be mistaken for those of vasculitis. A surgical approach may need to be considered. Despite treatment, the overall prognosis of MMD is worse in adults compared with children. CONCLUSION Awareness of the specific features of MMD is crucial for clinical decision-making to avoid unnecessary exposure to aggressive immunosuppressive therapy. It is important for rheumatologists to consider MMD in the differential diagnosis of suspected CNS vasculitis.
Collapse
Affiliation(s)
- Mariko L Ishimori
- Rheumatology Fellow, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|