1
|
Abu Deiab GI, Croatt MP. Synthetic approaches to isocarbacyclin and analogues as potential neuroprotective agents against ischemic stroke. Bioorg Med Chem 2019; 27:338-342. [PMID: 30545734 DOI: 10.1016/j.bmc.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
Abstract
Isocarbacyclin is a valuable synthetic analogue of prostacyclin with potential neuroprotective effects for the treatment of ischemic stroke. Herein, we describe the synthesis of isocarbacyclin and bicyclic analogues in only 7-10 steps, with the ω-side chain diversified at a late stage. A combination of new reaction design, function-oriented synthesis, and late-stage diversification led to a series of compounds that were tested for their neuroprotective activities. Efforts toward the synthesis of tricyclic analogues of isocarbacyclin, using the same combination of metal-catalyzed reactions, is also described.
Collapse
Affiliation(s)
- Ghina'a I Abu Deiab
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro 27402, USA.
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro 27402, USA.
| |
Collapse
|
2
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Yang C, DeMars KM, Alexander JC, Febo M, Candelario-Jalil E. Sustained Neurological Recovery After Stroke in Aged Rats Treated With a Novel Prostacyclin Analog. Stroke 2017; 48:1948-1956. [PMID: 28588054 DOI: 10.1161/strokeaha.117.016474] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Targeting the prostaglandin I2 prostanoid (IP) receptor to reduce stroke injury has been hindered by the lack of selective drugs. MRE-269 is the active metabolite of selexipag showing a high selectivity toward the IP receptor. Selexipag has been recently approved for clinical use in pulmonary hypertension. We hypothesized that postischemic treatment with MRE-269 provides long-lasting neuroprotection with improved neurological outcomes in a clinically relevant rat stroke model. METHODS Aged male Sprague-Dawley rats underwent transient middle cerebral artery occlusion and were randomly selected to receive either vehicle or MRE-269 (0.25 mg/kg) intravenously starting at 4.5 hours post ischemia. Accelerating rotarod and adhesive removal tests were conducted before and at 3, 7, 14, and 21 days after stroke. Infarct volume was quantified by magnetic resonance imaging at 48 hours and 21 days post middle cerebral artery occlusion. In parallel experiments, cerebral cortex samples from stroke and nonstroke sides from vehicle- and MRE-269-treated groups were collected at 18 hours post middle cerebral artery occlusion for molecular biology analyses. RESULTS Quantitative magnetic resonance imaging data showed that postischemic MRE-269 treatment significantly reduced infarct volume compared with vehicle-treated rats at both 48 hours and 3 weeks after stroke. MRE-269 treatment resulted in a significant long-term recovery in both locomotor and somatosensory functions after middle cerebral artery occlusion, which was associated with a reduced weight loss in animals receiving the IP receptor agonist. Postischemic MRE-269 treatment reduced proinflammatory cytokines/chemokines and oxidative stress. Damage to the blood-brain barrier, as assessed by extravasation of immunoglobulin G to the ischemic brain, was significantly reduced by MRE-269, which was associated with a reduction in matrix metalloproteinase-9 activity in the brain of stroked aged rats given the IP agonist at 4.5 hours after ischemia onset. CONCLUSIONS Our data suggest that targeting the IP receptor with MRE-269 is a novel strategy to reduce cerebral ischemia injury and promote long-term neurological recovery in ischemic stroke.
Collapse
Affiliation(s)
- Changjun Yang
- From the Departments of Neuroscience (C.Y., K.M.D, E.C.-J.), Anesthesiology (J.C.A.), and Psychiatry (M.F.), University of Florida, Gainesville
| | - Kelly M DeMars
- From the Departments of Neuroscience (C.Y., K.M.D, E.C.-J.), Anesthesiology (J.C.A.), and Psychiatry (M.F.), University of Florida, Gainesville
| | - Jon C Alexander
- From the Departments of Neuroscience (C.Y., K.M.D, E.C.-J.), Anesthesiology (J.C.A.), and Psychiatry (M.F.), University of Florida, Gainesville
| | - Marcelo Febo
- From the Departments of Neuroscience (C.Y., K.M.D, E.C.-J.), Anesthesiology (J.C.A.), and Psychiatry (M.F.), University of Florida, Gainesville
| | - Eduardo Candelario-Jalil
- From the Departments of Neuroscience (C.Y., K.M.D, E.C.-J.), Anesthesiology (J.C.A.), and Psychiatry (M.F.), University of Florida, Gainesville.
| |
Collapse
|
4
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
5
|
Tong FC, Zhang X, Kempf DJ, Yepes MS, Connor-Stroud FR, Zola S, Howell L. An Enhanced Model of Middle Cerebral Artery Occlusion in Nonhuman Primates Using an Endovascular Trapping Technique. AJNR Am J Neuroradiol 2015; 36:2354-9. [PMID: 26381560 DOI: 10.3174/ajnr.a4448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/20/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Current nonhuman primate stroke models are limited by either stroke variability or survivability. A new nonhuman primate stroke model was developed by using endovascular trapping techniques to limit collateral vessels with serial MR imaging and neurologic assessments. MATERIALS AND METHODS Eight adult rhesus monkeys (female, 7-13 years of age) underwent MR imaging and Spetzler neurologic assessment followed by endovascular stroke induction consisting of superselective endovascular placement of surgical silk sutures into the right MCA by using a trapping technique. Two initial subjects were euthanized immediately following postocclusion MR imaging. The subsequent 6 subjects recovered and underwent follow-up MR imaging and Spetzler neurologic assessments at 48 hours, with 4 being followed to 96 hours. Stroke infarct volumes were measured, and the longitudinal Spetzler clinical neurologic scores were assessed. The brain tissues were harvested and prepared with hematoxylin-eosin staining. RESULTS Focal permanent cerebral ischemia was induced in the targeted right MCA territory in all subjects. The volumes of the ischemic lesions at 6, 48, and 96 hours were 3.18 ± 1.007 mL (standard error of the mean) (n = 8), 6.70 ± 1.666 mL (standard error of the mean) (n = 6), and 7.23 ± 1.371 mL (standard error of the mean) (n = 4). For the survival animals, the immediate postsurgical Spetzler grading score improved from 60.7 at 24 hours to 68.7 at 48 hours. CONCLUSIONS We report a trapping modification to an established endovascular suture stroke model that yielded reproducible ischemia and clinically quantifiable neurologic deficits with no strokes in nontarget areas. This technique may be useful in evaluating translational stroke and penumbral imaging research in addition to preclinical testing of neuroprotective therapies.
Collapse
Affiliation(s)
- F C Tong
- From the Departments of Radiology and Neurosurgery (F.C.T.)
| | - X Zhang
- Yerkes National Primate Research Center (X.Z., D.J.K., F.R.C.-S, S.Z., L.H.), Emory University, Atlanta, Georgia
| | - D J Kempf
- Yerkes National Primate Research Center (X.Z., D.J.K., F.R.C.-S, S.Z., L.H.), Emory University, Atlanta, Georgia
| | | | - F R Connor-Stroud
- Yerkes National Primate Research Center (X.Z., D.J.K., F.R.C.-S, S.Z., L.H.), Emory University, Atlanta, Georgia
| | - S Zola
- Psychiatry and Behavioral Sciences (S.Z., L.H.), School of Medicine Yerkes National Primate Research Center (X.Z., D.J.K., F.R.C.-S, S.Z., L.H.), Emory University, Atlanta, Georgia Atlanta Veterans Affairs Medical Center (S.Z.), Decatur, Georgia
| | - L Howell
- Psychiatry and Behavioral Sciences (S.Z., L.H.), School of Medicine Yerkes National Primate Research Center (X.Z., D.J.K., F.R.C.-S, S.Z., L.H.), Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Yu L, Yang B, Wang J, Zhao L, Luo W, Jiang Q, Yang J. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav Brain Funct 2014; 10:42. [PMID: 25388440 PMCID: PMC4240876 DOI: 10.1186/1744-9081-10-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation plays pivotal roles in the progression of cerebral ischemia injury. Prostaglandins (PGs) as the major inflammatory mediators in the brain participate in the pathophysiological processes of cerebral ischemia injury. Cyclooxygenase-2 (COX2) is the rate-limiting enzyme of PGs, and thus it is necessary to characterize of the expression patterns of COX2 and its downstream products at the same time in a cerebral ischemia/reperfusion (I/R) model. METHODS The levels of prostacyclin (PGI2) and thromboxane (TXA2) and the expression of COX2 were detected in the rat hippocampus at different time points after reperfusion (30 min, 2 h, 6 h, 24 h, 48 h, 7 d, and 15 d). RESULTS The COX2 mRNA and protein expressions in hippocampus both remarkably increased at 30 min, and peaked at 7 d after global cerebral I/R compared with the sham-operated group. The level of PGI2 significantly increased at 2 h after reperfusion, with a peak at 48 h, but was still significantly higher than the sham-operated animals at 15 d. TXA2 level decreased at 30 min and 2 h after reperfusion, but significantly increased at 6 h and peaked at 48 h. PGI2/TXA2 ratio increased at 30 min after reperfusion, and peaked at 48 h compared with the sham-operated animals. CONCLUSIONS I/R injury significantly increased the COX2 expression, PGI2 and TXA2 levels, and the PGI2/TXA2 ratio in rat hippocampus in a time-dependent manner. As a consequence, the increased PGI2 level and PGI2/TXA2 ratio may represent a physiological mechanism to protect the brain against the neuronal damage produced by I/R injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd, No 1, Chongqing 400016, China.
| |
Collapse
|
7
|
Suzuki M, Doi H, Koyama H, Zhang Z, Hosoya T, Onoe H, Watanabe Y. Pd0-Mediated Rapid Cross-Coupling Reactions, the RapidC-[11C]Methylations, Revolutionarily Advancing the Syntheses of Short-Lived PET Molecular Probes. CHEM REC 2014; 14:516-41. [DOI: 10.1002/tcr.201400002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Masaaki Suzuki
- National Center for Geriatrics and Gerontology; 35 Gengo Morioka-cho Obu-shi Aichi 474-8511 Japan
| | - Hisashi Doi
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Hiroko Koyama
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Zhouen Zhang
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Takamitsu Hosoya
- Division of Regeneration and Advanced Medical Science; Graduate School of Medicine; Gifu University; 1-1 Yanagido Gifu 501-1194 Japan
| | - Hirotaka Onoe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| | - Yasuyoshi Watanabe
- Division of Bio-Function Dynamics Imaging; Riken Center for Life Science Technologies (CLST); 6-7-3 Minatojima-minamimachi Chuo-ku Kobe 650-0047 Japan
| |
Collapse
|
8
|
An Y, Belevych N, Wang Y, Zhang H, Nasse JS, Herschman H, Chen Q, Tarr A, Liu X, Quan N. Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury. J Inflamm Res 2014; 7:57-67. [PMID: 24971026 PMCID: PMC4070856 DOI: 10.2147/jir.s63205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In a previous study, we found that intracerebral administration of excitotoxin (RS)-(tetrazole-5yl) glycine caused increased neural damage in the brain in an endothelial COX-2 deleted mouse line (Tie2Cre COX-2(flox/flox) ). In this study, we investigated whether prostacyclin might mediate this endothelial COX-2-dependent neuroprotection. Administration of excitotoxin into the striatum induced the production of prostacyclin (PGI2) in wild type, but not in endothelial COX-2 deleted mice. Inhibition of PGI2 synthase exacerbated brain lesions induced by the excitotoxin in wild type, but not in endothelial COX-2 deleted mice. Administration of a PGI2 agonist reduced neural damage in both wild type and endothelial COX-2 deleted mice. Increased PGI2 synthase expression was found in infiltrating neutrophils. In an ex vivo assay, PGI2 reduced the excitotoxin-induced calcium influx into neurons, suggesting a cellular mechanism for PGI2 mediated neuroprotection. These results reveal that PGI2 mediates endothelial COX-2 dependent neuroprotection.
Collapse
Affiliation(s)
- Ying An
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Natalya Belevych
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Yufen Wang
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Hao Zhang
- Institute for Behavior Medicine Research, Columbus, OH, USA
| | - Jason S Nasse
- Neuroscience Graduate Studies Program, The Ohio State University, Columbus, OH, USA
| | - Harvey Herschman
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA
| | - Qun Chen
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Andrew Tarr
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Xiaoyu Liu
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| | - Ning Quan
- Institute for Behavior Medicine Research, Columbus, OH, USA ; Department of Oral Biology, College of Dentistry, Columbus, OH, USA
| |
Collapse
|
9
|
Vollert C, Ohia O, Akasaka H, Berridge C, Ruan KH, Eriksen JL. Elevated prostacyclin biosynthesis in mice impacts memory and anxiety-like behavior. Behav Brain Res 2014; 258:138-44. [PMID: 24140503 PMCID: PMC3849419 DOI: 10.1016/j.bbr.2013.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/05/2013] [Accepted: 10/07/2013] [Indexed: 01/22/2023]
Abstract
Prostacyclin is an endogenous lipid metabolite with properties of vasodilation and anti-platelet aggregation. While the effects of prostacyclin on the vascular protection have been well-documented, the role of this eicosanoid in the central nervous system has not been extensively studied. Recently, a transgenic mouse containing a hybrid enzyme, of cyclooxygenase-1 linked to prostacyclin synthase, was developed that produces elevated levels of prostacyclin in vivo. The goal of this study was to investigate whether increased prostacyclin biosynthesis could affect behavioral phenotypes in mice. Our results uncovered that elevated levels of prostacyclin broadly affect both cognitive and non-cognitive behaviors, including decreased anxiety-like behavior and improved learning in the fear-conditioning memory test. This study demonstrates that prostacyclin plays an important, but previously unrecognized, role in central nervous system function and behavior.
Collapse
Affiliation(s)
- Craig Vollert
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | | | | | | | | | | |
Collapse
|
10
|
Watanabe Y. Molecular Imaging-based Early-Phase and Exploratory Clinical Research. YAKUGAKU ZASSHI 2013; 133:187-95. [DOI: 10.1248/yakushi.12-00246-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yasuyoshi Watanabe
- RIKEN Center for Molecular Imaging Science
- Department of Physiology, Osaka City University Graduate School of Medicine
| |
Collapse
|
11
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
12
|
Majed BH, Khalil RA. Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. Pharmacol Rev 2012; 64:540-82. [PMID: 22679221 DOI: 10.1124/pr.111.004770] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prostacyclin (PGI(2)) is a member of the prostanoid group of eicosanoids that regulate homeostasis, hemostasis, smooth muscle function and inflammation. Prostanoids are derived from arachidonic acid by the sequential actions of phospholipase A(2), cyclooxygenase (COX), and specific prostaglandin (PG) synthases. There are two major COX enzymes, COX1 and COX2, that differ in structure, tissue distribution, subcellular localization, and function. COX1 is largely constitutively expressed, whereas COX2 is induced at sites of inflammation and vascular injury. PGI(2) is produced by endothelial cells and influences many cardiovascular processes. PGI(2) acts mainly on the prostacyclin (IP) receptor, but because of receptor homology, PGI(2) analogs such as iloprost may act on other prostanoid receptors with variable affinities. PGI(2)/IP interaction stimulates G protein-coupled increase in cAMP and protein kinase A, resulting in decreased [Ca(2+)](i), and could also cause inhibition of Rho kinase, leading to vascular smooth muscle relaxation. In addition, PGI(2) intracrine signaling may target nuclear peroxisome proliferator-activated receptors and regulate gene transcription. PGI(2) counteracts the vasoconstrictor and platelet aggregation effects of thromboxane A(2) (TXA(2)), and both prostanoids create an important balance in cardiovascular homeostasis. The PGI(2)/TXA(2) balance is particularly critical in the regulation of maternal and fetal vascular function during pregnancy and in the newborn. A decrease in PGI(2)/TXA(2) ratio in the maternal, fetal, and neonatal circulation may contribute to preeclampsia, intrauterine growth restriction, and persistent pulmonary hypertension of the newborn (PPHN), respectively. On the other hand, increased PGI(2) activity may contribute to patent ductus arteriosus (PDA) and intraventricular hemorrhage in premature newborns. These observations have raised interest in the use of COX inhibitors and PGI(2) analogs in the management of pregnancy-associated and neonatal vascular disorders. The use of aspirin to decrease TXA(2) synthesis has shown little benefit in preeclampsia, whereas indomethacin and ibuprofen are used effectively to close PDA in the premature newborn. PGI(2) analogs have been used effectively in primary pulmonary hypertension in adults and have shown promise in PPHN. Careful examination of PGI(2) metabolism and the complex interplay with other prostanoids will help design specific modulators of the PGI(2)-dependent pathways for the management of pregnancy-related and neonatal vascular disorders.
Collapse
Affiliation(s)
- Batoule H Majed
- Harvard Medical School, Brigham and Women's Hospital, Division of Vascular Surgery, 75 Francis St., Boston, MA 02115, USA
| | | |
Collapse
|
13
|
Khafagy ES, Morishita M. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 2012; 64:531-9. [PMID: 22245080 DOI: 10.1016/j.addr.2011.12.014] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 12/25/2022]
Abstract
During the past few decades, the novel biotherapeutic agents such as peptides and proteins have been contributed to the treatment of several diseases. However, their oral absorption is significantly limited due to their poor delivery through the intestinal mucosa. Therefore, the feasible approaches are needed for improving the oral bioavailability of biodrugs. Recently, cell-penetrating peptides (CPPs) such as HIV-1 Tat, penetratin and oligoarginine are considered as a useful tool for the intracellular delivery of therapeutic macromolecules. Hence, it was expected that the ability of CPPs may be applicable to enhance the absorption of biodrugs through intestinal epithelial membrane. CPPs are likely to become powerful tools for overcoming the low permeability of therapeutic peptides and proteins through the intestinal membrane, the major barrier to their oral delivery. Further advantage of this promising strategy is that this successful intestinal absorption could be achieved by more convenient methodology, coadministration of CPP with drugs via intermolecular interaction among them. Hereafter, the further establishment of delivery system based on CPPs is required to realize the development of the oral forms of therapeutic peptides and proteins. The aim here is to introduce our vision focusing on oral biodrug delivery by the use of CPPs as potential peptide carrier in order to provide new information in the design and development of new oral delivery systems for novel biotherapeutics.
Collapse
|
14
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
15
|
Takashima T, Nagata H, Nakae T, Cui Y, Wada Y, Kitamura S, Doi H, Suzuki M, Maeda K, Kusuhara H, Sugiyama Y, Watanabe Y. Positron Emission Tomography Studies Using (15R)-16-m-[11C]tolyl-17,18,19,20-tetranorisocarbacyclin Methyl Ester for the Evaluation of Hepatobiliary Transport. J Pharmacol Exp Ther 2010; 335:314-23. [DOI: 10.1124/jpet.110.170092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
16
|
Tsukada H. [Applications of PET imaging in the preclinical stage of drug development]. Nihon Yakurigaku Zasshi 2010; 135:80-83. [PMID: 20154416 DOI: 10.1254/fpj.135.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
17
|
Ikeda-Matsuo Y, Hirayama Y, Ota A, Uematsu S, Akira S, Sasaki Y. Microsomal prostaglandin E synthase-1 and cyclooxygenase-2 are both required for ischaemic excitotoxicity. Br J Pharmacol 2010; 159:1174-86. [PMID: 20128796 DOI: 10.1111/j.1476-5381.2009.00595.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Although both microsomal prostaglandin E synthase (mPGES)-1 and cyclooxygenase (COX)-2 are critical factors in stroke injury, but the interactions between these enzymes in the ischaemic brain is still obscure. This study examines the hypothesis that mPGES-1 activity is required for COX-2 to cause neuronal damage in ischaemic injury. EXPERIMENTAL APPROACH We used a glutamate-induced excitotoxicity model in cultures of rat or mouse hippocampal slices and a mouse middle cerebral artery occlusion-reperfusion model in vivo. The effect of a COX-2 inhibitor on neuronal damage in mPGES-1 knockout (KO) mice was compared with that in wild-type (WT) mice. KEY RESULTS In rat hippocampal slices, glutamate-induced excitotoxicity, as well as prostaglandin (PG) E(2) production and PGES activation, was significantly attenuated by either MK-886 or NS-398, inhibitors of mPGES-1 and COX-2 respectively; however, co-application of these inhibitors had neither an additive nor a synergistic effect. The protective effect of NS-398 on the excitotoxicity observed in WT slices was completely abolished in mPGES-1 KO slices, which showed less excitotoxicity than WT slices. In the transient focal ischaemia model, mPGES-1 and COX-2 were co-localized in the infarct region of the cortex. Injection of NS-398 reduced not only ischaemic PGE(2) production, but also ischaemic injuries in WT mice, but not in mPGES-1 KO mice, which showed less dysfunction than WT mice. CONCLUSION AND IMPLICATIONS Microsomal prostaglandin E synthase-1 and COX-2 are co-induced by excess glutamate in ischaemic brain. These enzymes are co-localized and act together to exacerbate stroke injury, by excessive PGE(2) production.
Collapse
|
18
|
Suzuki M, Doi H. Pd0-Mediated Rapid C-[11C]Methylations and C-[18F]Fluoromethylations: Revolutionary New Methodologies for the Synthesis of Short-Lived PET Molecular Probes. J SYN ORG CHEM JPN 2010. [DOI: 10.5059/yukigoseikyokaishi.68.1195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kawaguchi AT, Haida M, Yamano M, Fukumoto D, Ogata Y, Tsukada H. Liposome-Encapsulated Hemoglobin Ameliorates Ischemic Stroke in Nonhuman Primates: An Acute Study. J Pharmacol Exp Ther 2009; 332:429-36. [DOI: 10.1124/jpet.109.160051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|