1
|
Liu R, Cao S, Cai Y, Zhou M, Gou X, Huang Y. Brain and serum metabolomic studies reveal therapeutic effects of san hua decoction in rats with ischemic stroke. Front Endocrinol (Lausanne) 2023; 14:1289558. [PMID: 38098862 PMCID: PMC10720749 DOI: 10.3389/fendo.2023.1289558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
San Hua Decoction (SHD) is a traditional four-herbal formula that has long been used to treat stroke. Our study used a traditional pharmacodynamic approach combined with systematic and untargeted metabolomics analyses to further investigate the therapeutic effects and potential mechanisms of SHD on ischemic stroke (IS). Male Sprague-Dawley rats were randomly divided into control, sham-operated, middle cerebral artery occlusion reperfusion (MCAO/R) model and SHD groups. The SHD group was provided with SHD (7.2 g/kg, i.g.) and the other three groups were provided with equal amounts of purified water once a day in the morning for 10 consecutive days. Our results showed that cerebral infarct volumes were reduced in the SHD group compared with the model group. Besides, SHD enhanced the activity of SOD and decreased MDA level in MCAO/R rats. Meanwhile, SHD could ameliorate pathological abnormalities by reducing neuronal damage, improving the structure of damaged neurons and reducing inflammatory cell infiltration. Metabolomic analysis of brain and serum samples with GC-MS techniques revealed 55 differential metabolites between the sham and model groups. Among them, the levels of 12 metabolites were restored after treatment with SHD. Metabolic pathway analysis showed that SHD improved the levels of 12 metabolites related to amino acid metabolism and carbohydrate metabolism, 9 of which were significantly associated with disease. SHD attenuated brain inflammation after ischemia-reperfusion. The mechanisms underlying the therapeutic effects of SHD in MCAO/R rats are related to amino acid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Ruisi Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengxuan Cao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Yufeng Cai
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| | - Mingmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Beijing, China
| |
Collapse
|
2
|
Distinguishing core from penumbra by lipid profiles using Mass Spectrometry Imaging in a transgenic mouse model of ischemic stroke. Sci Rep 2019; 9:1090. [PMID: 30705295 PMCID: PMC6355923 DOI: 10.1038/s41598-018-37612-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/27/2018] [Indexed: 02/01/2023] Open
Abstract
Detecting different lipid profiles in early infarct development may give an insight on the fate of compromised tissue. Here we used Mass Spectrometry Imaging to identify lipids at 4, 8 and 24 hours after ischemic stroke in mice, induced by transient middle cerebral artery occlusion (tMCAO). Combining linear transparency overlay, a clustering pipeline and spatial segmentation, we identified three regions: infarct core, penumbra (i.e. comprised tissue that is not yet converted to core), and surrounding healthy tissue. Phosphatidylinositol 4-phosphate (m/z = 965.5) became visible in the penumbra 24 hours after tMCAO. Infarct evolution was shown by 2D-renderings of multiple phosphatidylcholine (PC) and Lyso-PC isoforms. High-resolution Secondary Ion Mass Spectrometry, to evaluate sodium/potassium ratios, revealed a significant increase in sodium and a decrease in potassium species in the ischemic area (core and penumbra) compared to healthy tissue at 24 hours after tMCAO. In a transgenic mouse model with an enhanced susceptibility to ischemic stroke, we found a more pronounced discrimination in sodium/potassium ratios between penumbra and healthy regions. Insight in changes in lipid profiles in the first hours of stroke may guide the development of new prognostic biomarkers and novel therapeutic targets to minimize infarct progression.
Collapse
|
3
|
Brose SA, Golovko SA, Golovko MY. Brain 2-Arachidonoylglycerol Levels Are Dramatically and Rapidly Increased Under Acute Ischemia-Injury Which Is Prevented by Microwave Irradiation. Lipids 2016; 51:487-95. [PMID: 27021494 DOI: 10.1007/s11745-016-4144-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
The involvement of brain 2-arachidonoylglycerol (2-AG) in a number of critical physiological and pathophysiological regulatory mechanisms highlights the importance for an accurate brain 2-AG determination. In the present study, we validated head-focused microwave irradiation (MW) as a method to prevent postmortem brain 2-AG alterations before analysis. We compared MW to freezing to prevent 2-AG induction and estimated exogenous and endogenous 2-AG stability upon exposure to MW. Using MW, we measured, for the first time, true 2-AG brain levels under basal conditions, 30 s after brain removal from the cranium, and upon exposure to 5 min of brain global ischemia. Our data indicate that brain 2-AG levels are instantaneously and dramatically increased approximately 60-fold upon brain removal from the cranium. With 5 min of brain global ischemia 2-AG levels are also, but less dramatically, increased 3.5-fold. Our data indicate that brain tissue fixation with MW is a required technique to measure both true basal 2-AG levels and 2-AG alterations under different experimental conditions including global ischemia, and 2-AG is stable upon exposure to MW.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
4
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
5
|
Murphy EJ. Carbon recycling goes full circle: fatty acids to excitatory amino acids and now excitatory amino acids to fatty acids. J Neurochem 2014; 129:363-5. [PMID: 24646196 DOI: 10.1111/jnc.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Eric J Murphy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
6
|
Brose SA, Golovko MY. Eicosanoid post-mortem induction in kidney tissue is prevented by microwave irradiation. Prostaglandins Leukot Essent Fatty Acids 2013; 89:313-8. [PMID: 24113545 PMCID: PMC3825172 DOI: 10.1016/j.plefa.2013.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/07/2013] [Accepted: 09/07/2013] [Indexed: 10/26/2022]
Abstract
Previously, we, and others, have demonstrated a rapid and significant post-mortem increase in brain prostanoid (PG) levels analyzed without microwave fixation, and this is not the result of PG trapping or destruction in microwave-irradiated brain tissue. In the present study, we demonstrate a dramatic increase in kidney eicosanoid levels when analyzed without microwave fixation which was mainly accounted for by the 142-, 81-, and 62-fold increase in medullary 6-ketoPGF1α, PGE2, and PGF2α, levels, respectively, while PGD2 and TXB2 levels were increased ~7-fold. Whole kidney and cortex PG were also significantly increased in non-microwaved tissue, but at lesser extent. Arachidonic acid and the lipoxygenase products hydroxyeicosatetraenoic acids (HETE) were also induced in whole kidney, cortex, and medulla 1.5- to 5.5-fold depending upon tissue and metabolite. Cyclooxygenase inhibition with indomethacin decreased PG mass in non-microwaved tissue to basal levels, however HETE and arachidonic acid were not decreased. These data demonstrate the critical importance of kidney tissue fixation to limiting artifacts during kidney eicosanoid analysis.
Collapse
Affiliation(s)
| | - Mikhail Y. Golovko
- Corresponding author: Department of Pharmacology, Physiology, and Therapeutics School of Medicine and Health Sciences University of North Dakota 501 N. Columbia Rd. Grand Forks, ND 58202-9037 701-777-2305 phone 701-777-4490 fax
| |
Collapse
|
7
|
Liu Y, Kintner DB, Begum G, Algharabli J, Cengiz P, Shull GE, Liu XJ, Sun D. Endoplasmic reticulum Ca2+ signaling and mitochondrial Cyt c release in astrocytes following oxygen and glucose deprivation. J Neurochem 2010; 114:1436-46. [PMID: 20557423 DOI: 10.1111/j.1471-4159.2010.06862.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the present study, we investigated changes of cytosolic Ca2+([Ca2+](cyt)), endoplasmic reticulum Ca2+([Ca2+](ER)) and mitochondrial Ca2+(Ca2+(m)) in astrocytes following oxygen/glucose deprivation and reoxygenation (OGD/REOX). Two hours OGD did not cause changes in [Ca2+](cyt), but led to a significant increase in [Ca2+](ER). The elevation in [Ca2+](ER) continued and reached a peak level (130 +/- 2 microM) by 90 min REOX. An abrupt release of Ca2+(ER) occurred during 1.5-2.5 h REOX, which was accompanied with a delayed and sustained rise in [Ca2+](cyt). Moreover, Ca2+(m) content was increased significantly within 15 min REOX followed by a secondary rise (approximately 4.5-fold) and a release of mitochondrial cytochrome c (Cyt c). Astrocytes exhibited translocation of Cyt c from mitochondria to endoplasmic reticulum (ER) and up regulation of ER stress protein p-eIF2alpha. Blocking Na+-K+-Cl(-) cotransporter isoform 1 activity, either by its potent inhibitor bumetanide or genetic ablation, abolished release of ER Ca2+, delayed rise in [Ca2+](cyt) and Ca2+(m). Inhibition of the reverse mode operation of the Na+/Ca2+ exchanger significantly attenuated OGD/REOX-mediated Cyt c release. In summary, this study illustrates that OGD/REOX triggers a time-dependent loss of Ca2+ homeostasis in cytosol and organelles (ER and mitochondria) in astrocytes. Collective stimulation of Na+-K+-Cl(-) cotransporter isoform 1 and reverse mode function of Na+/Ca2+ exchanger contributes to these changes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Golovko MY, Murphy EJ. Brain prostaglandin formation is increased by alpha-synuclein gene-ablation during global ischemia. Neurosci Lett 2007; 432:243-7. [PMID: 18226447 DOI: 10.1016/j.neulet.2007.12.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/13/2007] [Accepted: 12/15/2007] [Indexed: 12/31/2022]
Abstract
We have previously demonstrated that alpha-synuclein (Snca) gene ablation reduces brain arachidonic acid (20:4n-6) turnover rate in phospholipids through modulation of endoplasmic reticulum-localized acyl-CoA synthetase activity. Although 20:4n-6 is a precursor for prostaglandin (PG), Snca effect on PG levels is unknown. In the present study, we examined the effect of Snca ablation on brain PG level at basal conditions and following 30s of global ischemia. Brain PG were extracted with methanol, purified on C(18) cartridges, and analyzed by LC-MS/MS. We demonstrate, for the first time, that Snca gene ablation did not affect brain PG mass under normal physiological conditions. However, total PG mass and masses of individual PG were elevated approximately 2-fold upon global ischemia in the absence of Snca. These data are consistent with our previously observed reduction in 20:4n-6 recycling through endoplasmic reticulum-localized acyl-CoA synthetase in the absence of Snca, which may result in the increased 20:4n-6 availability for PG production in the absence of Snca during global ischemia and suggest a role for Snca in brain inflammatory response.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Road, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|
9
|
Jin K, Mao XO, Eshoo MW, del Rio G, Rao R, Chen D, Simon RP, Greenberg DA. cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem Res 2002; 27:1105-12. [PMID: 12462408 DOI: 10.1023/a:1020913123054] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used cDNA microarray gene expression profiling to characterize the transcriptional response to exposure of cultured mouse cerebral cortical neurons to hypoxia for 24 hr. Of 11,200 genes examined, 1,405 (12.5%) were induced or repressed at least 1.5-fold, whereas 26 known genes were induced and 20 known genes were repressed at least 2.5-fold. The most strongly induced genes included genes coding for endoplasmic reticulum proteins (Ero1L/Giig11, Sac1p, Ddit3/Gadd153), proteins involved in ubiquitination (Arih2, P4hb), proteins induced by hypoxia in non-neuronal systems (Gpi1, Aldo1, Anxa2, Hig1), and proteins that might promote cell death (Gas5, Egr1, Ndr1, Vdac2). These findings reinforce the importance of endoplasmic reticulum-based mechanisms and of protein-ubiquitination pathways in the neuronal response to hypoxia.
Collapse
Affiliation(s)
- K Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun GY, Hsu CY. Poly-phosphoinositide-mediated messengers in focal cerebral ischemia and reperfusion. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1996; 14:137-45. [PMID: 8906556 DOI: 10.1016/0929-7855(96)00519-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The receptor-mediated poly-phosphoinositide (PI) signalling pathway is known to play an important role in maintaining intracellular calcium homeostasis, which in turn, is critical for mediating neuronal function. In this study, we examined the effects of focal cerebral ischemia induced in rats by temporary occlusion of the middle cerebral artery (MCA) and both common carotid arteries (CCAs) on this signal transduction pathway. Results indicate that several parts of the pathway are altered, both during the early phase of focal cerebral ischemic insult and after recirculation. Cerebral ischemia induced a decrease in levels of phosphatidylinositol 4,5-bisphosphate (PIP2) in the ischemic MCA cortex, due partly to stimulated poly-PI hydrolysis and partly to the depletion of ATP required for resynthesis of this substrate. ATP depletion during ischemia was also attributed to a sustained decrease in inositol 1,4,5-trisphosphate (IP3) levels. On the other hand, the decline in IP3 3-kinase activity after 30 min of ischemic insult was not related to ATP depletion. During reperfusion upon prolonged ischemic insult, neither IP3 level nor IP3 3-kinase activity were able to show recovery after reperfusion, despite that ATP levels recovered by 80%. In situ hybridization studies indicated a decrease in mRNA expression of IP3 receptor but not IP3 3-kinase during the initial 4 h of reperfusion after a 45 min ischemic insult. Under this same condition, insulted cortical neurons started to show morphological changes between 4 and 8 h after reperfusion and extensive cell death could be observed by 16 h. Taken together, these results demonstrated early and delayed changes in the poly-PI signalling pathway due to focal cerebral ischemia. These effects are likely to cause impairment in neuronal function and underline the process of cerebral ischemic damage.
Collapse
Affiliation(s)
- G Y Sun
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
11
|
Inoue N, Yamamoto YL, Nagao T, Goto S, Nagahiro S, Ushio Y. Alterations of local cerebral blood flow, phorbol 12,13-dibutyrate binding activity, and histological damage during acute focal ischaemia in rat brain. A pathophysiology of acute focal ischaemia: Part 1. Acta Neurochir (Wien) 1996; 138:1118-24; discussion 1124-5. [PMID: 8911551 DOI: 10.1007/bf01412317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The alterations of the local cerebral blood flow (LCBF), 3H-phorbol 12,13-dibutyrate (PDBu) binding activity were measured, and histological findings were also examined during the closed time course (0, 1, 3, 5, 7 hour) after middle cerebral artery occlusion (MCAO) in rat brain to assess the complex pathophysiology of acute focal ischaemia. From 1 to 3 hours after the start of MCAO, significant (p < 0.01) hyperreactivity of the second messenger system involving PDBu binding may be present, despite low perfusion of LCBF, and severe damage in the striatum whereas sparing almost completely the cortex on histological examination. At 5 hours, the PDBu binding activity increased slightly but not significantly but is reduced markedly at 7 hours after MCAO compared with the control group. The measurement of PDBu binding activity, additionally to measuring the LCBF and observation of the histological change might be a useful indicator in determining the threshold and duration of ischaemia which cause functionally irreversible cell damage in the brain.
Collapse
Affiliation(s)
- N Inoue
- Neuro-Isotope Laboratory, Montreal Neurological Institute, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Cristòfol RM, Rodríguez-Farré E, Sanfeliu C. Effects of glucose and oxygen deprivation on phosphoinositide hydrolysis in cerebral cortex slices from neonatal rats. Life Sci 1996; 59:587-97. [PMID: 8761348 DOI: 10.1016/0024-3205(96)00340-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of glucose deprivation, hypoxia and glucose-free hypoxia conditions on phosphoinositide (PI) hydrolysis were studied in cortical slices from 8-day-old rats. Only glucose-free hypoxia induced a significant increase of inositol phosphate formation. The inositol phosphate formation induced by noradrenaline, carbachol and several excitatory amino acid receptor agonists, but not the Ca2+ ionophore A23187-induced stimulation, was blocked by glucose-free hypoxia and differentially reduced by glucose and oxygen deprivation depending on the neurotransmitter receptor agonist. The stimulatory effect of glucose-free hypoxia was not reduced by the muscarinic receptor antagonist atropine or by the inhibitors of the excitatory amino acid-stimulated PI hydrolysis DL-2-amino-3-phosphono-propionic acid and L-aspartate-beta-hydroxamate, and neither by the voltage-sensitive Na+ channel tetrodotoxin. The effect of glucose-free hypoxia was partially dependent on extracellular Ca2+ and it was blocked by verapamil and amiloride, but not by nifedipine, Co2+ and neomycin. These results suggest that Ca2+ influx through the Na(+)-Ca2+ exchanger underlies the PI hydrolysis stimulation induced by combined glucose and oxygen deprivation in neonatal cerebral cortical slices.
Collapse
Affiliation(s)
- R M Cristòfol
- Departamento de Farmacología y Toxicología, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain
| | | | | |
Collapse
|
13
|
Wang LQ, Persson BG, Xu N, Seidegård J, Jeppsson B, Bengmark S. Glutathione and phospholipid depletion of liver tumors after arterial ischemia. J Surg Oncol 1996; 61:284-9. [PMID: 8628000 DOI: 10.1002/(sici)1096-9098(199604)61:4<284::aid-jso11>3.0.co;2-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Breakdown of membrane phospholipids is a causative event leading to irreversible cell injury after ischemia and reperfusion insults, which might be one mechanism leading to liver tumor cell death after repeated arterial ischemia as well. After 2 hr of hepatic dearterialization followed by 30 min of reperfusion tumor phospholipid was measured chromatographically, glutathione (GSH) analyzed by determining nonprotein sulfhydryl and activity of glutathione-S-transferase (GST) determined spectrophotometrically using 1-chloro-2,4-dinitrobenzene (CDNB) as the substrate. A transient, arterial ischemia for 2 hr induced a substantial decrease of phosphatidylserine (PS) and phosphatidylinosital (PI) compared with sham treatment (P < 0.01). Although phosphatidylcholine (PC) and phosphatidylethanolamine (PE) did not significantly decline after a single arterial ischemia for 2 hr, they dropped dramatically following repeated arterial ischemia for 2 hr during 5 days (P < 0.01 and P < 0.05 respectively). GSH was depleted in tumors after both a single (P < 0.01) and repeated arterial ischemia (P < 0.05) and GST was inactivated as well (P < 0.001). By contrast, neither liver phospholipid nor liver GSH or GST was significantly changed. Tumor growth was significantly retarded in rats subjected to repeated arterial ischemia compared with sham treatment (P < 0.01). Repeated arterial ischemia facilitated degradation of tumor membrane phospholipids and induced depletion of GSH and inactivation of GST without affecting the normal liver. Thus, ischemia/reperfusion induced depletion of membrane phospholipids and of GSH might represent two mechanisms by which repeated arterial ischemia led to tumor growth delay.
Collapse
Affiliation(s)
- L Q Wang
- Department of Surgery, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Zhang JP, Sun GY. Regulation of FFA by the acyltransferase pathway in focal cerebral ischemia-reperfusion. Neurochem Res 1995; 20:1279-86. [PMID: 8786813 DOI: 10.1007/bf00992502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cerebral insult is associated with a rapid increase in free fatty acids (FFA) and arachidonic acid release has been linked to the increase in eicosanoid biosynthesis. In transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, there is an inverse relationship between the increase in FFA and the decrease in ATP, both during the ischemia period and at later time periods after reperfusion. In this study, the focal cerebral ischemia model was used to examine incorporation of [14C]arachidonic acid into the glycerolipids in rat MCA cortex at different reperfusion times after a 60 min ischemia. The label was injected intracerebrally into left and right MCA cortex 1 hr prior to decapitation. Labeled arachidonic acid was incorporated into phosphatidylcholine, phosphatidylethanolamine and neutral glycerides. With increasing time (4-16 hr) after a 60 min ischemia, an inhibition of labeled arachidonate uptake could be found in the right ischemic MCA cortex, whereas the distribution of radioactivity among the major phospholipids was not altered. When compared to labeled PC, there was a 3-4 fold increase in incorporation of label into phosphatidic acid and triacylglycerols (TG) in the right MCA cortex, suggesting of an increase in de novo biosynthesis of TG. In an in vitro assay system, synaptosomal membranes isolated from MCA cortex 8 and 16 hr after a 60 min ischemia showed a significant decrease in arachidonoyl transfer to lysophospholipids, due mainly to a decrease in lysophospholipid:acylCoA acyltransferase activity. Assay of phospholipase A2 activity with both syaptosomes and cytosol, however, did not show differences between left and right MCA cortex or with time after reperfusion. These results suggest that besides ATP availability, the decrease in acyltransferase activity may also contribute to the increase in FFA in cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- J P Zhang
- Biochemistry Department, University of Missouri, Columbia 65212, USA
| | | |
Collapse
|
15
|
Johnson EM, Greenlund LJ, Akins PT, Hsu CY. Neuronal apoptosis: current understanding of molecular mechanisms and potential role in ischemic brain injury. J Neurotrauma 1995; 12:843-52. [PMID: 8594212 DOI: 10.1089/neu.1995.12.843] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Apoptosis is a rediscovered mechanism of cell death crucial in normal development. Recent exploration of the genetic mechanisms of apoptosis has broadened our insight into the regulation of cell death in development as well as disease states. We present an overview on current understanding of the genetic molecular events in apoptosis in all, or most cell types, with emphasis on events observed in a well-characterized model of neuronal death in vitro. The second part of this article reviews recent studies in in vivo stroke models on the mechanism of cell death relevant to apoptosis after cerebral ischemia. Further delineation of the mechanisms of cell death, especially those that trigger apoptosis, is likely to redirect our approaches in the development of new therapeutic interventions for ischemic stroke.
Collapse
Affiliation(s)
- E M Johnson
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
16
|
Murphy EJ, Haun SE, Rosenberger TA, Horrocks LA. Altered lipid metabolism in the presence and absence of extracellular Ca2+ during combined oxygen-glucose deprivation in primary astrocyte cultures. J Neurosci Res 1995; 42:109-16. [PMID: 8531219 DOI: 10.1002/jnr.490420112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of combined oxygen-glucose deprivation (COGD) on lipid metabolism in primary rat cortical astrocyte cultures was studied in both the presence and absence of extracellular Ca2+. In this study, increases in intracellular Ca2+ from internal Ca2+ stores were not inhibited nor were internal Ca2+ levels buffered. Combined oxygen-glucose deprivation resulted in a quantitative reduction in phospholipid levels and an increase in free fatty acid and lysophospholipid levels. Four hours after the onset of COGD, ethanolamine- and choline glycerophospholipid levels were decreased by 40 and 46% from control levels in the presence of Ca2+, respectively. A similar decrease was found 6 hr after onset of COGD in the absence of Ca2+. These changes were accompanied by elevated levels of the corresponding lysophospholipids. However, the increases in lysophospholipid content did not account for the entire loss of ethanolamine- or choline glycerophospholipid. Phosphatidylserine was reduced in both the presence and absence of extracellular Ca2+ but phosphatidylinositol was only decreased in the absence of Ca2+. Statistically significant increases in total fatty acid (FA) and polyunsaturated fatty acid (PUFA) levels occurred at 30 min and 3 hr after the onset of COGD in the absence and presence of Ca2+, respectively. Arachidonic acid levels were increased in both groups by 1 hr. These increases in FA, PUFA, and specifically arachidonic acid were time-dependent and increased over the 12 hr of COGD. Collectively, these results indicate the activation of an acylhydrolase mechanism in the possible presence of an inhibited reacylation pathway.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E J Murphy
- Department of Medical Biochemistry, Ohio State University, Columbus, USA
| | | | | | | |
Collapse
|
17
|
Zhang SX, Zhang JP, Fletcher DL, Zoeller RT, Sun GY. In situ hybridization of mRNA expression for IP3 receptor and IP3-3-kinase in rat brain after transient focal cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 32:252-60. [PMID: 7500836 DOI: 10.1016/0169-328x(95)00085-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Loss of intracellular calcium homeostasis has been regarded an important factor underlying neuron cell death after cerebral ischemic insult. In the brain, a major mechanism for regulation of intracellular calcium is through the signal transduction pathway involving hydrolysis of poly-phosphoinositides and release of the second messenger, inositol 1,4,5-trisphosphate (IP3). IP3 mobilizes calcium by interacting with an intracellular receptor. Upon its release after agonist stimulation, this second messenger is catabolized by a 3-kinase and a 5-phosphatase. In this study, in situ hybridization was carried out to examine the mRNA expression of IP3, receptor (IP3R) and IP3 3-kinase (IP3K) in rat brain cortex after transient focal cerebral ischemia induced by temporary occlusion of the middle cerebral artery (MCA) and the common carotid arteries (CCAs). Results indicate a large decrease (52%) in IP3R mRNA levels in the ischemic cortex as compared to that in the contralateral side at 4 h after a 45 min ischemic insult. By 16 h, practically no IP3R mRNA could be detected in the ischemic cortex. On the other hand, IP3K mRNA levels remained unaltered until 16 h after reperfusion, during which time, expression in the infarct core decreased but that surrounding the core area increased instead. Hybridization of adjacent brain sections with probes for neuron specific enolase (NSE) and beta-actin indicated also a time-dependent decrease in mRNA levels after ischemia, but these changes were less dramatic as compared to IP3R. At 16 and 24 h after reperfusion, there was an increase in beta-actin mRNA in cortical areas outside the MCA cortex, suggesting of reactive gliosis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S X Zhang
- Department of Biochemistry, University of Missouri, Columbia 65212, USA
| | | | | | | | | |
Collapse
|
18
|
Sequential Expression of Immediate Early Genes and Neurotrophin Genes after Focal Cerebral Ischemia**Studies cited in this review are supported by NIH grants, NS25545 and NS 28995. We thank Drs. G. An, M.H. Jiang, T.N. Lin, J.S. Liu, and J.J. Xue for their contribution to works presented here. Cerebrovasc Dis 1995. [DOI: 10.1016/b978-0-7506-9603-6.50031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Sun GY, Lin TA, Wixom P, Zoeller RT, Lin TN, He YY, Hsu CY. Effects of focal cerebral ischemia on expression and activity of inositol 1,4,5-trisphosphate 3-kinase in rat cortex. Ann N Y Acad Sci 1993; 679:382-7. [PMID: 8390148 DOI: 10.1111/j.1749-6632.1993.tb18326.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Results from this study clearly indicate that Ins(1,4,5)P3 3-kinase is a target enzyme of cerebral ischemia insult. This enzyme is responsible for removal of Ins(1,4,5)P3 which, in turn, plays an important role in the maintenance of intracellular Ca2+ homeostasis. Not only did a time-dependent decrease in enzyme activity occur due to the focal cerebral ischemic insult, but there was also a second phase for the decline in enzyme activity around 6 h after the insult. Examination of the mRNA for the 3-kinase in frozen brain sections suggested an increase in message at a time (around 8 h) prior to development of tissue infarct. Since the initial decline in enzyme activity during ligation correlated well with the time for development of an infarct, assay of this enzyme could be used as a biochemical marker of cerebral ischemic insult.
Collapse
Affiliation(s)
- G Y Sun
- Department of Biochemistry, University of Missouri, Columbia 65212
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin TA, Zhang JP, Sun GY. Metabolism of inositol 1,4,5-trisphosphate in mouse brain due to decapitation ischemic insult: effects of acute lithium administration and temporal relationship to diacylglycerols, free fatty acids and energy metabolites. Brain Res 1993; 606:200-6. [PMID: 8490717 DOI: 10.1016/0006-8993(93)90985-v] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that global cerebral ischemia induced by decapitation leads to the stimulated hydrolysis of poly-phosphoinositides. In this study, the decapitation model was used to further examine the temporal events related to metabolism of Ins(1,4,5)P3 and the release of diacylglycerols (DGs) and free fatty acids (FFAs) in the mouse brain. Since lithium administration is known to inhibit inositol monophosphatase activity in brain, the effects of acute lithium injection on Ins(1,4,5)P3 metabolism were also examined. Cerebral ischemia induced by decapitation of C57 Bl/6J mice resulted in transient increases of Ins(1,4,5)P3, Ins(1,4)P2 and Ins(4)P which peaked at 35, 65 and 125 s, respectively. The level of Ins(1)P, however, was not altered. Mice administered lithium by intraperitoneal injection (8 meq/kg for 4 h) gave rise to a 40- and 4-fold increase in levels of Ins(1)P, Ins(4)P, respectively, a 20% increase in levels of Ins(1,4)P2 but no apparent changes in the levels of Ins(1,4,5)P3. Decapitation also induced an increase in the levels of DGs and FFAs. Unlike the transient appearance of Ins(1,4,5)P3, however, DG levels increased steadily for 2 min and then reached a plateau whereas the FFAs showed a lag time of 35 s prior to a biphasic increase. During the initial 2 min after decapitation, there was a preferential increase in the DG species containing 18:0 and 20:4. Lithium administration did not alter the decapitation-induced release of DG and FFA. As expected, decapitation gave rise to a rapid decrease in the levels of phosphocreatine and ATP and the decline in ATP was marked by a transient appearance of ADP and a concomitant increase in AMP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T A Lin
- Biochemistry Department, University of Missouri, School of Medicine, Columbia 65212
| | | | | |
Collapse
|
21
|
Sun GY, Lu FL, Lin SE, Ko MR. Decapitation ischemia-induced release of free fatty acids in mouse brain. Relationship with diacylglycerols and lysophospholipids. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1992; 17:39-50. [PMID: 1388450 DOI: 10.1007/bf03159980] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, the release of lysophospholipids (to depict phospholipase A2 activity) and diacylglycerols (DG) (to depict stimulated hydrolysis of polyphosphoinositides) was related to the decapitation-induced release of free fatty acid (FFA) in the mouse brain. To assay for lysophospholipids, Balb/c mice were injected intracerebrally with either [3H]choline or [3H]inositol for 16 h in order to label their respective phospholipids. These lipids were examined at various times (30 s to 30.5 min) after decapitation. Between 30 s and 1.5 min after decapitation, the rate of FFA release (3 micrograms FA/mg FA in phospholipids/min) was three times more rapid than that between 10 and 15 min (0.8 microgram FA/mg FA in phospholipids/min). FFA released during the initial phase were enriched in 20:4 and 18:0 whereas those released during the latter phase were nonspecific. The DG fatty acids are enriched in 18:0 and 20:4. Ischemia induced a rapid release of DG as measured by its fatty acid content (3.2 micrograms FA/mg FA in phospholipids/min). Unlike FFA, the level of DG reached a plateau after 1.5 min and remained elevated for the entire 30.5 min. In agreement with previous notions indicating the involvement of phospholipase A2 in ischemic insult, steady increases in radioactivity of both lysophosphatidylcholines and lysophosphatidylinositols were observed with time after decapitation. Based on the preferential increase in both 18:0 and 20:4 during the initial time period, the results suggest that poly-PI hydrolysis coupled to DG-lipase may contribute to the initial release of FFA, whereas the FFA released subsequent to the initial phase may be mainly a result of activation of phospholipase A2 acting on phosphatidylcholines and phosphatidylinositols.
Collapse
Affiliation(s)
- G Y Sun
- Biochemistry Department, University of Missouri, School of Medicine, Columbia 65212
| | | | | | | |
Collapse
|
22
|
Lin TA, Lin TN, He YY, Hsu CY, Sun GY. Effects of focal cerebral ischemia on inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities in rat cortex. Biochem Biophys Res Commun 1992; 184:871-7. [PMID: 1315536 DOI: 10.1016/0006-291x(92)90671-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both common carotid arteries resulted in a time-dependent decrease in the 3-kinase activity but not the 5-phosphatase activity. Approximately 50% of the 3-kinase activity in the cerebral cortex of the right MCA territory disappeared after 60 min of ischemia, and the enzyme activity was not restored during reperfusion. Reperfusion for 24 hr after a 60 min ischemic insult almost abolished the 3-kinase activity but the 5-phosphatase activity remained unaltered. These results suggest that the Ins(1,4,5)P3 3-kinase is one of the target enzymes of cerebral ischemia. The changes in Ins(1,4,5)P3 metabolism may be associated with the changes in intracellular Ca2+ homeostasis that underlies the pathophysiology of neuronal cell death.
Collapse
Affiliation(s)
- T A Lin
- Biochemistry Department, University of Missouri-School of Medicine, Columbia 65212
| | | | | | | | | |
Collapse
|
23
|
Sun GY. Contributions to arachidonic acid release in mouse cerebrum by the phosphoinositide-phospholipase C and phospholipase A2 pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 318:103-14. [PMID: 1322024 DOI: 10.1007/978-1-4615-3426-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent studies have indicated two major mechanisms for the release of arachidonic acid (20:4) from membrane phospholipids: 1) activation of phospholipase A2 and 2) stimulated hydrolysis of poly-phosphoinositides (PI) and diacylglycerols (DG) through phospholipase C and diacylglycerol lipase, respectively. In mammalian brain both mechanisms seem to be operable, although the relative contributions by these two pathways have not been carefully assessed. In this study three experimental protocols were used to examine 20:4 release in brain due to ischemia and agonist stimulation, as well as the metabolic relationship between this release and the increase in diacylglycerols, lysophospholipids, and inositol phosphates. The preferential release of arachidonic acid during the initial phase after decapitation was attributed mainly to the sequential hydrolysis of poly-PI to DG. During the second phase, the release of 20:4 along with other free fatty acids (FFA) correlated well with the increase in labeled lysophospholipids, suggesting the involvement of phospholipase A2. Diacylglycerols in brain are enriched in 18:0 and 20:4. Decapitation induced a rapid increase in the level of DG, which remained elevated during the 30 min period under study. Between 5 sec and 5 min, the increase in FFA lagged behind that of DG. The parallel increases in 18:0 and 20:4 in the FFA pool further support the notion that, during the early phase, 20:4 could be derived from the sequential hydrolysis of poly-PI and DG. Decapitation also induced a sequential appearance of Ins(1,4,5)P3, Ins(1,4)P2, and Ins(4)P, which peaked at 30 sec, 1 min, and 2 min, respectively. The level of 20:4 in brain was also examined with respect to poly-PI turnover due to stimulation by cholinergic agonists. Administration of pilocarpine to lithium-treated mice resulted in increased accumulation of labeled inositol monophosphate (IP1) compared to the amount in controls receiving lithium alone, as well as a less obvious increase in 20:4. Both pilocarpine-mediated increases (IP1 and 20:4) could be blocked by atropine. These results point to the presence of an active mechanism for poly-PI turnover and for the recycling of 20:4 in brain.
Collapse
Affiliation(s)
- G Y Sun
- Biochemistry Department, University of Missouri School of Medicine, Columbia 65212
| |
Collapse
|