1
|
Saeedan AS, Abdel-Rahman RF, Soliman GA, Ogaly HA, Abdel-Kader MS. Amentoflavone attenuates oxidative stress and neuroinflammation induced by cerebral ischemia/reperfusion in rats by targeting HMGB1-mediated TLR4/NF-κB signaling pathway. Saudi Pharm J 2023; 31:101798. [PMID: 37811125 PMCID: PMC10551888 DOI: 10.1016/j.jsps.2023.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Surveys indicated that stroke classified among the leading cause of death as well as combined death and disability worldwide resulting in a great loss for the global economy. The present study aims to evaluate the neuroprotective potential of the biflavonoid amentoflavone (AMNT) in alleviating cerebral ischemia/reperfusion (IR) injury in rats, and to elucidate the possible underlying mechanism of an experimental condition with similar circumstances to stroke. Cerebral ischemia was achieved through left common carotid artery occlusion for 60 min, followed by blood flow restoration. Sham-operated control rats subjected to the same surgical process except for brain IR. Rats were orally administered AMNT/ or vehicle for three days' prior surgical operation, and for another three days after left brain IR. Rats of all groups were assessed for neurological deficits 24 h following brain IR. Each group was divided into two subgroups one for the rotarod testing and biochemical assessment while the other subgroup to perform the activity cage testing, histopathological study, immunohistochemistry, and gene expression analysis. AMNT enhanced brain levels of GSH and CAT activities, suppressed neuroinflammation via reducing the inflammatory cytokines in the serum, and enhanced brain contents of TBK1 and IFNβ. AMNT downregulated TLR4-/NF-κB signaling pathway as a result of the HMGB1 suppression. Moreover, AMNT blocked apoptotic cell death by suppressing the NF-κB signaling pathway and reducing the activation of caspase-3. These findings revealed that AMNT attenuates I/R-induced cerebral injury possibly by regulating the HMGB1-mediated TLR4/NF-kB pathway. Thus, AMNT could provide potential preventive and therapeutic option for cerebral stroke.
Collapse
Affiliation(s)
- Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| |
Collapse
|
2
|
Abstract
Stroke is a devastating disease with high morbidity and mortality. Animal models are indispensable tools that can mimic stroke processes and can be used for investigating mechanisms and developing novel therapeutic regimens. As a heterogeneous disease with complex pathophysiology, mimicking all aspects of human stroke in one animal model is impossible. Each model has unique strengths and weaknesses. Models such as transient or permanent intraluminal thread occlusion middle cerebral artery occlusion (MCAo) models and thromboembolic models are the most commonly used in simulating human ischemic stroke. The endovascular filament occlusion model is characterized by easy manipulation and accurately controllable reperfusion and is suitable for studying the pathogenesis of focal ischemic stroke and reperfusion injury. Although the reproducibility of the embolic model is poor, it is more convenient for investigating thrombolysis. Rats are the most frequently used animal model for stroke. This review mainly outlines the stroke models of rats and discusses their strengths and shortcomings in detail.
Collapse
Affiliation(s)
- Yanyu Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Diseases of Guangdong Medical UniversityZhanjiangChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Diseases of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
3
|
Quick S, Moss J, Rajani RM, Williams A. A Vessel for Change: Endothelial Dysfunction in Cerebral Small Vessel Disease. Trends Neurosci 2020; 44:289-305. [PMID: 33308877 DOI: 10.1016/j.tins.2020.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/24/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The blood vessels of the brain are lined with endothelial cells and it has been long known that these help to regulate blood flow to the brain. However, there is increasing evidence that these cells also interact with the surrounding brain tissue. These interactions change when the endothelial cells become dysfunctional and have an impact in diseases such as cerebral small vessel disease, the leading cause of vascular dementia. In this review, we focus on what endothelial dysfunction is, what causes it, how it leads to surrounding brain pathology, how researchers can investigate it with current models, and where this might lead in the future for dementia therapies.
Collapse
Affiliation(s)
- Sophie Quick
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jonathan Moss
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
4
|
Recurrent seizures cause immature brain injury and changes in GABA a receptor α1 and γ2 subunits. Epilepsy Res 2020; 163:106328. [DOI: 10.1016/j.eplepsyres.2020.106328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
5
|
Washida K, Hattori Y, Ihara M. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. Int J Mol Sci 2019; 20:ijms20246176. [PMID: 31817864 PMCID: PMC6941004 DOI: 10.3390/ijms20246176] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular cognitive impairment (VCI) or vascular dementia occurs as a result of brain ischemia and represents the second most common type of dementia after Alzheimer’s disease. To explore the underlying mechanisms of VCI, several animal models of chronic cerebral hypoperfusion have been developed in rats, mice, and primates. We established a mouse model of chronic cerebral hypoperfusion by narrowing the bilateral common carotid arteries with microcoils, eventually resulting in hippocampal atrophy. In addition, a mouse model of white matter infarct-related damage with cognitive and motor dysfunction has also been established by asymmetric common carotid artery surgery. Although most experiments studying chronic cerebral hypoperfusion have been performed in rodents because of the ease of handling and greater ethical acceptability, non-human primates appear to represent the best model for the study of VCI, due to their similarities in much larger white matter volume and amyloid β depositions like humans. Therefore, we also recently developed a baboon model of VCI through three-vessel occlusion (both the internal carotid arteries and the left vertebral artery). In this review, several animal models of chronic cerebral hypoperfusion, from mouse to primate, are extensively discussed to aid in better understanding of pathophysiology of VCI.
Collapse
Affiliation(s)
- Kazuo Washida
- Correspondence: ; Tel.: +81-6-6170-1070; Fax: +81-6-6170-1782
| | | | | |
Collapse
|
6
|
Zhao N, Liang P, Zhuo X, Su C, Zong X, Guo B, Han D, Yan X, Hu S, Zhang Q, Tie X. After Treatment with Methylene Blue is Effective against Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. Basic Clin Pharmacol Toxicol 2017; 122:470-480. [PMID: 29151273 DOI: 10.1111/bcpt.12940] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022]
Abstract
Delayed encephalopathy after acute carbon monoxide (CO) poisoning (DEACMP) is the most severe and clinically intractable complication that occurs following acute CO poisoning. Unfortunately, the mechanism of DEACMP is still vague. Growing evidence indicates that delayed cerebral damage after CO poisoning is related to oxidative stress, abnormal neuro-inflammation, apoptosis and immune-mediated injury. Our recent report indicated that methylene blue (MB) may be a promising therapeutic agent in the prevention of neuronal cell death and cognitive deficits after transient global cerebral ischaemia (GCI). In this study, we aimed to investigate the potential of MB therapy to ameliorate the signs and symptoms of DEACMP. Rats were exposed to 1000 ppm CO for 40 min. in the first step; CO was then increased to 3000 ppm, which was maintained for another 20 min. The rats were implanted with 7-day release Alzet osmotic mini-pumps subcutaneously under the back skin, which provided MB at a dose of 0.5 mg/kg/day 1 hr after CO exposure. The results showed that MB significantly suppressed oxidative damage and expression of pro-inflammatory factors, including tumour necrosis factor-α and interleukin (IL)-1β. MB treatment also suitably modulated mitochondrial fission and fusion, which is helpful in the preservation of mitochondrial function. Furthermore, MB dramatically attenuated apoptosis and neuronal death. Lastly, behavioural studies revealed that MB treatment preserved spatial learning and memory in the Barnes maze test. Our findings indicated that MB may have protective effects against DEACMP.
Collapse
Affiliation(s)
- Ningjun Zhao
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Pengchong Liang
- Department of Emergency Medicine, Central Hospital of Baoji City, Baoji, Shanxi, China
| | - Xiaoying Zhuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Chenglei Su
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Xuemei Zong
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Bingnan Guo
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Dong Han
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Xianliang Yan
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Shuqun Hu
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| | - Quanguang Zhang
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Xu Tie
- Institute of Emergency and Rescue medicine, Xuzhou Medical University, Xuzhou, Jiangsu province, China.,The Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu province, China
| |
Collapse
|
7
|
Akinmoladun AC, Saliu IO, Olowookere BD, Ojo OB, Olaleye MT, Farombi EO, Akindahunsi AA. Improvement of 2-Vessel Occlusion Cerebral Ischaemia/Reperfusion-Induced Corticostriatal Electrolyte and Redox Imbalance, Lactic Acidosis and Modified Acetylcholinesterase Activity by Kolaviron Correlates with Reduction in Neurobehavioural Deficits. Ann Neurosci 2017; 25:53-62. [PMID: 29887685 DOI: 10.1159/000484517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/19/2017] [Indexed: 01/30/2023] Open
Abstract
Background Disruption of electrolyte, redox and neurochemical homeostasis alongside cellular energy crisis is a hallmark of cerebral ischaemia and reperfusion injury. Purpose This study investigated the effect of kolaviron (KV) on cortical and striatal cation imbalance, oxidative stress and neurochemical disturbances as well as neurobehavioural deficits in animals subjected to bilateral common carotid artery occlusion (BCCAO)-induced ischaemia/reperfusion injury. Methods KV was administered at a dose of 100 or 200 mg/kg to male Wistar rats 1 h before a 30 min BCCAO/4 h reperfusion (I/R). This was followed by neurobehavioral assessment and biochemical evaluations of cation levels, oxidative stress indicators, lactate dehydrogenase activity and acetylcholinesterase (AChE) activity in the brain of animals. Conclusion KV significantly restored altered cortical and striatal Ca2+, Na+, K+ and Mg2+ levels, ameliorated redox imbalance, lactic acidosis and modified AChE activity caused by I/R injury. The favourable neurobehavioural effects of KV correlated with biochemical outcomes. The pharmacological potential of KV in the treatment and management of ischemic stroke and allied pathological conditions via multiple targets (neurotransmitter metabolism, bioenergetic failure and ionic homeostasis) is highlighted by the study.
Collapse
Affiliation(s)
- Afolabi Clement Akinmoladun
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ibrahim Olabayode Saliu
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Boyede Dele Olowookere
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Olubukola Benedicta Ojo
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| | - Ebenezer Olatunde Farombi
- Drug Metabolism and Molecular Toxicology Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Biochemical Pharmacology and Toxicology Laboratories, Department of Biochemistry, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
8
|
Neuroprotective Effects of Bone Marrow Mesenchymal Stem Cells on Bilateral Common Carotid Arteries Occlusion Model of Cerebral Ischemia in Rat. Behav Neurol 2016; 2016:2964712. [PMID: 27847404 PMCID: PMC5101406 DOI: 10.1155/2016/2964712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/07/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is the most advanced treatment of the cerebral ischemia, nowadays. Herein, we discuss the neuroprotective effects of bone marrow mesenchymal stem cells (BMSCs) on rat hippocampal cells following intravenous injection of these cells in an ischemia-reperfusion model. Adult male Wistar rats were divided into 5 groups: control, sham (surgery without blockage of common carotid arteries), ischemia (common carotid arteries were blocked for 30 min prior to reperfusion), vehicle (7 days after ischemia PBS was injected via the tail vein), and treatment (injections of BMSC into the tail veins 7 days after ischemia). We performed neuromuscular and vestibulomotor function tests to assess behavioral function and, finally, brains were subjected to hematoxylin and eosin (H&E), anti-Brdu immunohistochemistry, and TUNEL staining. The ischemia group had severe apoptosis. The group treated with BMSCs had a lower mortality rate and also had significant improvement in functional recovery (P < 0.001). Ischemia-reperfusion for 30 min causes damage and extensive neuronal death in the hippocampus, especially in CA1 and CA3 regions, leading to several functional and neurological deficits. In conclusion, intravenous injection of BMSCs can significantly decrease the number of apoptotic neurons and significantly improve functional recovery, which may be a beneficial treatment method for ischemic injuries.
Collapse
|
9
|
Preliminary evidence that abscisic acid improves spatial memory in rats. Physiol Behav 2014; 139:231-9. [PMID: 25449403 DOI: 10.1016/j.physbeh.2014.11.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/22/2023]
Abstract
Abscisic acid (ABA) is a crucial phytohormone that exists in a wide range of animals, including humans, and has multiple bioactivities. As direct derivatives of carotenoids, ABA and retinoic acid (RA) share similar molecular structures, and RA has been reported to improve spatial memory in rodents. To explore the potential effects of ABA on spatial learning and memory in rodents, 20mg/kg ABA was administered to young rats for 6weeks, and its effects on behaviour performance were evaluated through a series of behavioural tests. ABA pharmacokinetic analysis revealed that the exogenous ABA was distributed widely in the rat brain, characterised by rapid absorption and slow elimination. The behavioural tests showed that ABA increased both the duration spent in the target quadrant and the frequency it was entered in the probe test of the Morris water maze (MWM) and decreased the latency to locate the target quadrant. Moreover, ABA decreased the latency to enter the novel arm in the Y-maze test, accompanied by increases in the total entries and distance travelled in the three arms. However, there were no significant differences between the ABA-treated and control rats in the open field test and elevated plus-maze test. These results preliminarily indicate that ABA improves spatial memory in MWM and exploratory activity in Y-maze in young rats.
Collapse
|
10
|
Zhang ZH, Shi GX, Li QQ, Wang YJ, Li P, Zhao JX, Yang JW, Liu CZ. Comparison of cognitive performance between two rat models of vascular dementia. Int J Neurosci 2014; 124:818-23. [PMID: 24397495 DOI: 10.3109/00207454.2014.880435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE An ideal animal model to explore that pathogenesis and prevention of dementia is essential. The present study was designed to compare the difference of behavior and cerebral blood flow of the two vascular dementia rat models at different time intervals. METHODS The rats were randomly allocated to three groups: bilateral common carotid artery occlusion (BCCAO) group, thromboembolism (TE) group and sham-operated (SHAM) group. The performance in the Morris water maze (MWM) was analyzed at 7, 14 and 28 d after operation and cerebral blood flow (CBF) was analyzed at 28 days after operation. RESULT The results showed that the two models exhibited longer latency, less times to crossing platform in MWM and lower CBF than the SHAM rats. Compared with the TE rats, the BCCAO rats have a significant prolongation of escape latency at 7 days and 28 days. In the probe trial, the BCCAO rats showed less number of times across the platform. CONCLUSION The BCCAO rats maybe provide a more useful model to study the physiopathological mechanisms of cognitive impairment related to chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- 1Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Dongcheng District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
He Y, Fujii M, Inoue T, Nomura S, Maruta Y, Oka F, Shirao S, Owada Y, Kida H, Kunitsugu I, Yamakawa T, Tokiwa T, Yamakawa T, Suzuki M. Neuroprotective effects of focal brain cooling on photochemically-induced cerebral infarction in rats: Analysis from a neurophysiological perspective. Brain Res 2013; 1497:53-60. [DOI: 10.1016/j.brainres.2012.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/20/2012] [Accepted: 11/22/2012] [Indexed: 11/25/2022]
|
12
|
Zhang F, Guo RM, Yang M, Wen XH, Shen J. A stable focal cerebral ischemia injury model in adult mice: assessment using 7T MR imaging. AJNR Am J Neuroradiol 2012; 33:935-9. [PMID: 22268078 DOI: 10.3174/ajnr.a2887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE A stable stroke experimental model is highly desirable for performing longitudinal studies using MR imaging. The purpose of this study is to establish a stable focal cerebral ischemia model with a high survival rate in adult mice. MATERIALS AND METHODS One hundred twenty adult mice were randomly divided into 10 groups of 12 each to respectively undergo intraluminal suture occlusion, with suture insertion depths from 0.8 cm to maximum; thromboembolic occlusion; and hypoxic-ischemic injury with hypoxia exposure times from 30-120 minutes. Coronal brain T2-weighted images were obtained on a 7T scanner. The induced infarct volume and location were assessed and correlated with histologic TTC staining. One-day and 7-day survival rates were recorded. RESULTS The infarct location was highly variable in the thromboembolic model, while it showed a cortex predominance in the intraluminal model with the suture insertion depth ≥1.4 cm, and the HI model with hypoxia exposure times ≥60 minutes (P = .001). The infarct volume in the intraluminal model with suture depths ≥1.4 cm (29.7 ± 3.3%, 35.4 ± 4.3%) and the HI model with the hypoxia exposure times ≥90 minutes (26.3 ± 4.1%, 33.4 ± 2.8%) were larger than other groups (9.7 ± 3.3%-20.9 ± 9.3%; P < .05). The HI group (72.5%) had higher 7-day survival rate than the intraluminal suture occlusion (28%) and thromboembolic occlusion groups (20%; P = .001). CONCLUSIONS The HI injury model with a reproducible ishemia and high survival rate can be used for a longitudinal study of brain ischemia in adult mice.
Collapse
Affiliation(s)
- F Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangdong, China
| | | | | | | | | |
Collapse
|
13
|
Sunil AG, Kesavanarayanan KS, Kalaivani P, Sathiya S, Ranju V, Priya RJ, Pramila B, Paul FDS, Venkhatesh J, Babu CS. Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 2011; 84:394-405. [PMID: 21272618 DOI: 10.1016/j.brainresbull.2011.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 11/15/2022]
Abstract
Interactions between neurons and astrocytes play a critical role in the central nervous system homeostasis. Cyperus rotundus (family: Cyperaceae), a traditional Indian medicinal herb, used as nervine tonic and nootropic in the Ayurvedic system of medicine. The present study was undertaken to investigate the neuroprotective effect of total oligomeric flavonoids (TOFs), prepared from C. rotundus, in rat model of cerebral ischemia and reperfusion. Male Sprague Dawley rats (290-340g) were subjected to middle cerebral artery occlusion (MCAO) for 2h and reperfusion for 70h. Experimental animals were divided into four groups: Group I - sham operated (n=7); Group II - vehicle treated ischemic-reperfusion (IR) (n=9), and Group III and IV - TOFs treated (100 and 200mg/kg body weight, p.o., respectively; n=7 in each group). Vehicle or TOFs were pretreated for four days before the induction of ischemia and continued for next three days after the ischemia i.e. treatment was scheduled totally for a period of 7 days. MCAO surgery was performed on day 4, 1h after TOFs administration. Neuroprotective effect of TOFs was substantiated in terms of neurological deficits, excitotoxicity (glutamate, glutamine synthetase and Na(+)K(+)ATPase levels), oxidative stress (malondialdehyde, super oxide dismutase, and glutathione) and neurobehavioral functions in the experimental animals. TOFs decreased glutamate, glutamine synthetase (GS) and increased Na(+)K(+)ATPase activity in a dose dependent manner when compared to the IR rats. Treatment with TOFs significantly reduced the neurological deficits and reversed the anxiogenic behavior in rats. Further, it also significantly decreased MDA and increased superoxide dismutase (SOD) and glutathione content in brains of experimental rats. Histopathological examination using cresyl violet staining revealed the attenuation of neuronal loss by TOFs in stroke rats. The present study demonstrates the unswerving involvement of TOFs on ischemia-reperfusion triggered biochemical alterations in MCAO/R rats. Hence, TOFs might be an attractive candidate for further studies in the development of new drugs for cerebral stroke treatment.
Collapse
Affiliation(s)
- A G Sunil
- Centre for Toxicology and Developmental Research (CEFT), Sri Ramachandra University, Chennai, Tamilnadu, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Chronic all-trans retinoic acid administration induced hyperactivity of HPA axis and behavioral changes in young rats. Eur Neuropsychopharmacol 2010; 20:839-47. [PMID: 20659790 DOI: 10.1016/j.euroneuro.2010.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/14/2010] [Accepted: 06/24/2010] [Indexed: 11/22/2022]
Abstract
Although clinical reports suggest a possible relationship between excess retinoids and the development of depression, the effect of retinoids on mood-related behavior remains controversial. Hyperactivity of the hypothalamus-pituitary-adrenal (HPA) axis plays a key role in the development of affective disorders. The present study aimed to elucidate the effect of retinoid on the activity of HPA axis in rat and whether this goes together with behavioral changes. All-trans retinoic acid (ATRA) was administered to juvenile male rats by daily intraperitoneal injection for 6 weeks. ATRA treatment increased basal serum corticosterone concentration as well as the thickness of adrenal cortex in young rat. Furthermore, the mRNA expression of corticotropin release factor (CRF) and retinoic acid receptor-α (RAR-α) in the hypothalamus was both markedly increased in ATRA-treated rats compared with vehicle. Some behavioral alterations were also observed. ATRA-treated rats showed anxiety-like behavior in elevated-plus maze and decreased spontaneous exploratory activities in novel open field. However, in the sucrose preference test chronic ATRA treatment did not modify behavior in the juvenile animals. Chronic administration of ATRA did not impair physical motor ability in either the prehensile traction or the beam balance/walk test. In conclusion, long-term ATRA administration resulted in hyperactivated HPA axis which was accompanied by several behavioral changes in young rat.
Collapse
|
16
|
Merelli A, Caltana L, Girimonti P, Ramos AJ, Lazarowski A, Brusco A. Recovery of Motor Spontaneous Activity After Intranasal Delivery of Human Recombinant Erythropoietin in a Focal Brain Hypoxia Model Induced by CoCl2 in Rats. Neurotox Res 2010; 20:182-92. [DOI: 10.1007/s12640-010-9233-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023]
|
17
|
Jiwa NS, Garrard P, Hainsworth AH. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 2010; 115:814-28. [PMID: 20731763 DOI: 10.1111/j.1471-4159.2010.06958.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vascular cognitive impairment (VCI) encompasses vascular dementia and is the second most common cause of dementing illness after Alzheimer's disease. The main causes of VCI are: cerebral small vessel disease; multi-infarct dementia; strategic infarct (i.e. located in a functionally-critical brain area); haemorrhage/microbleed; angiopathy (including cerebral amyloid angiopathy); severe hypoperfusion (e.g. cardiac arrhythmia); and hereditary vasculopathy (e.g. cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, CADASIL). In this systematic analysis, we aimed to relate cognitive and neuropathological features of experimental models to clinical VCI. We extracted data from 107 studies covering 16 models. These included: brief global ischaemic insults (in rats, mice or gerbils); chronic global hypoperfusion (rats, mice, gerbils); chronic hypertension (in primates or stroke-prone, spontaneously-hypertensive rats); multiple ischaemic lesions because of intra-vascular emboli (in rodents, rabbits or primates); strategic ischaemic lesions (in rats or mini-pigs); generalised vasculopathies, because of mutant Notch3, hyperhomocysteinaemia, experimental diabetes mellitus or lack of cerebral vasodilator M(5) receptors (rats or mice). Most cognitive testing showed deficits in working and reference memory. The lesions observed were microinfarcts, diffuse white matter lesions, hippocampal neuronal death, focal ischaemic lesions and micro-haemorrhages. The most-used model was bilateral carotid artery occlusion in rats, leading to chronic hypoperfusion and white matter injury.
Collapse
Affiliation(s)
- Nadim S Jiwa
- Clinical Neuroscience, Division of Clinical Sciences, St George's University of London, London, UK
| | | | | |
Collapse
|
18
|
Oku T, Fujii M, Tanaka N, Imoto H, Uchiyama J, Oka F, Kunitsugu I, Fujioka H, Nomura S, Kajiwara K, Fujisawa H, Kato S, Saito T, Suzuki M. The influence of focal brain cooling on neurophysiopathology: validation for clinical application. J Neurosurg 2009; 110:1209-17. [DOI: 10.3171/2009.1.jns08499] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Focal brain cooling has been recognized to have a suppressive effect on epileptiform discharges or a protective effect on brain tissue. However, the precise influence of brain cooling on normal brain function and histology has not yet been thoroughly investigated. The aim of this study was to investigate the neurophysiopathological consequences of focal cooling and to detect the threshold temperature that causes irreversible histological change and motor dysfunction.
Methods
The experiments were performed in adult male Sprague-Dawley rats (weighing 250–350 g) after induction of halothane anesthesia. A thermoelectric chip (6 × 6 × 2 mm) was used as a cooling device and was placed on the surface of the sensorimotor cortex after a 10 × 8–mm craniotomy. A thermocouple was placed between the chip and the brain surface. Focal cooling of the cortex was performed at the temperatures of 20, 15, 10, 5, 0, and −5°C for 1 hour (5 rats in each group). Thereafter, the cranial window was repaired. Motor function was evaluated using the beam-walking scale (BWS) every day for 7 days. The rats were killed 7 days after the operation for histological examination with H & E, Klüver-Barrera, glial fibrillary acidic protein, and terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick-end labeling stainings. The authors also euthanized some rats 24 hours after cooling and obtained brain sections by the same methods.
Results
The BWS score was decreased on the day after cooling only in the −5°C group (p < 0.05), whereas the score did not change in the other temperature groups. Histologically, the appearance of cryoinjury such as necrosis, apoptosis, loss of neurons, and marked proliferation of astrocytes at the periphery of the lesion was observed only in the −5°C group, while no apparent changes were observed in the other temperature groups.
Conclusions
The present study confirmed that the focal cooling of the cortex for 1 hour above the temperature of 0°C did not induce any irreversible histological change or motor dysfunction. These results suggest that focal brain cooling above 0°C has the potential to be a minimally invasive and valuable modality for the treatment of severe brain injury or to assist in the examination of brain function.
Collapse
Affiliation(s)
| | | | | | | | - Joji Uchiyama
- 3Applied Medical Engineering Science, Graduate School of Medicine Yamaguchi University, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | - Takashi Saito
- 3Applied Medical Engineering Science, Graduate School of Medicine Yamaguchi University, Ube, Yamaguchi, Japan
| | | |
Collapse
|
19
|
Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 2008; 28:1877-91. [PMID: 18698331 DOI: 10.1038/jcbfm.2008.91] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cerebral small vessel disease (SVD) is a major cause of stroke and dementia. Pathologically, three lesions are seen: small vessel arteriopathy, lacunar infarction, and diffuse white matter injury (leukoaraiosis). Appropriate experimental models would aid in understanding these pathologic states and also in preclinical testing of therapies. The objective was to perform a systematic review of animal models of SVD and determine whether these resemble four key clinicopathologic features: (1) small, discrete infarcts; (2) small vessel arteriopathy; (3) diffuse white matter damage; (4) cognitive impairment. Fifteen different models were included, under four categories: (1) embolic injuries (injected blood clot, photochemical, detergent-evoked); (2) hypoperfusion/ischaemic injury (bilateral common carotid occlusion/stenosis, striatal endothelin-1 injection, striatal mitotoxin 3-NPA); (3) hypertension-based injuries (surgical narrowing of the aorta, or genetic mutations, usually in the renin-angiotensin system); (4) blood vessel damage (injected proteases, endothelium-targeting viral infection, or genetic mutations affecting vessel walls). Chronic hypertensive models resembled most key features of SVD, and shared the major risk factors of hypertension and age with human SVD. The most-used model was the stroke-prone spontaneously hypertensive rat (SHR-SP). No model described all features of the human disease. The optimal choice of model depends on the aspect of pathophysiology being studied.
Collapse
|
20
|
Hossmann KA. Cerebral ischemia: Models, methods and outcomes. Neuropharmacology 2008; 55:257-70. [DOI: 10.1016/j.neuropharm.2007.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 01/31/2023]
|
21
|
Altun M, Bergman E, Edström E, Johnson H, Ulfhake B. Behavioral impairments of the aging rat. Physiol Behav 2007; 92:911-23. [PMID: 17675121 DOI: 10.1016/j.physbeh.2007.06.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/24/2022]
Abstract
Several disturbances occurring during aging of humans and rodents alike stem from changes in sensory and motor functions. Using a battery of behavioral tests we have studied alterations in performance with advancing age in female and male rats of some frequently used strains. In parallel, we collected survival and body weight data. The median survival age was similar for female and male Sprague-Dawley rats, inbred female Lewis and outbred male Wistar rats (29-30 months). In contrast, male Fisher 344 had a significantly shorter median life span. During aging there is a gradual decline in locomotor activity and explorative behavior while disturbances of coordination and balance first became evident at more advanced age. In old age, also weight carrying capacity, limb movement and temperature threshold were impaired. While whole body weight continues to increase over the better part of a rats' life span, the behavioral changes in old age associated with a decrease in both total body weight and muscle mass. Dietary restriction increases median life span expectancy; retards the pace of behavioral aging and impedes sarcopenia. Housing in enriched environment did not improve the scoring in the behavioral tests but tended to increase median life span. Finally, there was an agreement between behavioral data collected from longitudinal age-cohorts and those obtained from multiple age-cohorts.
Collapse
Affiliation(s)
- Mikael Altun
- Experimental Neurogerontology, Department of Neuroscience, Karolinska Institutet, Retziusväg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
Burger R, Zuechner M, Bendszus M, Vince GH, Roosen K. Moderate hypothermia improves neurobehavioral deficits after an epidural focal mass lesion in rodents. J Neurotrauma 2003; 20:543-58. [PMID: 12906739 DOI: 10.1089/089771503767168474] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to evaluate the effects of a moderate, intraischemic hypothermia on the behavorial deficits up to 4 weeks after induction of a focal mass lesion. A focal epidural mass lesion was induced by an epidural balloon. The severity of the trauma was defined by the balloon volume and flattening of electroencephalography. Hypothermia (32 degrees C) was induced as soon as maximum balloon infIation was reached. Ischemia was extended over 30 min. After reperfusion, normothermic (n = 24) and hypothermic animals (n = 25) were monitored for 3 h followed by a rewarming of the cooled animals. Results were compared to sham-operated animals (n = 10). Behavioral deficits were assessed by postural reflex (PR), open field (OF), beam balance (BB), beam walking (BW), and water maze tests (WMT). MRI follow-up and histology was evaluated. Sham-operated rats showed normal test results. Rats with normothermia showed worsening of test performance (PR, p < 0.05; OF, p < 0.05; BB, p < 0.05; BW, p < 0.05; WMT, p < 0.05) compared to controls over the whole observation period. A significantly better behavioral outcome was observed in animals treated with hypothermia which showed no differences from controls 3-4 days after injury (PR, OF, BB, BW, WMT, p > 0.05). Lesion induced mortality was reduced in cooled animals but overall mortality rates were not influenced by this therapeutic measure. Neuronal cell loss in the CA1-CA4 region (p < 0.05) was reduced and the lesion size smaller (21%/p > 0.05) in hypothermic animals. Magnetic resonance imaging revealed that the lesion was more pronounced in the cortical grey matter after normothermia, whereas hypothermic animals showed more subcortical brain lacerations. In conclusion, intraischemic hypothermia significantly improved the behavioral outcome, and decreased lesion-induced mortality and the size of the lesion after an epidural focal mass lesion.
Collapse
Affiliation(s)
- Ralf Burger
- Department of Neurosurgery, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Kundrotiené J, Wägner A, Liljequist S. Extradural compression of sensorimotor cortex: a useful model for studies on ischemic brain damage and neuroprotection. J Neurotrauma 2002; 19:69-84. [PMID: 11852980 DOI: 10.1089/089771502753460259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Behavioral and morphological changes were examined for up to 9 days after moderate cerebral ischemia caused by slow compression of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. Functional deficits after the cerebral ischemia were assessed by daily beam-walking tests, whereas morphological changes were verified using Nissl staining on day 1, 2, 3, 5, and 9, respectively. Rats exposed to cerebral ischemia displayed impaired beam walking performance. Mild hypothermia prevented both the compression-produced functional deficits and the brain damage. Younger (5 weeks) animals showed less neurological deficits than older (9 weeks) animals. Histological examination revealed a pronounced increase in the number of injured pyramidal neurons from day 1 to day 3 in the primarily damaged brain region. Between day 3 and day 5, the number of injured cells remained constant, whereafter there was a slow decline of thionin-positive neurons as examined on day 9. The noncompetitive NMDA receptor antagonist, dizocilpine (MK-801; 3 mg/kg, i.p.), did not alter the neurological impairment on day 1, but improved thereafter the rate of functional recovery and reduced the number of damaged cells. The AMPA receptor antagonist, LY326325 (15 or 30 mg/kg; i.p.), dose-dependently diminished the neurological deficits on day 1, enhanced the rate of recovery, and reduced the number of injured neurons over time. Our data suggest that short-lasting extradural compression of a well-defined brain area in the sensorimotor cortex is a highly reproducible model with a high success rate for the study of functional and morphological consequences after cerebral ischemia as well as for the evaluation of the therapeutic potential of novel, neuroprotective pharmacological agents.
Collapse
|
24
|
Carter RJ, Morton J, Dunnett SB. Motor Coordination and Balance in Rodents. ACTA ACUST UNITED AC 2001; Chapter 8:Unit 8.12. [DOI: 10.1002/0471142301.ns0812s15] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Zhang L, Chen J, Li Y, Zhang ZG, Chopp M. Quantitative measurement of motor and somatosensory impairments after mild (30 min) and severe (2 h) transient middle cerebral artery occlusion in rats. J Neurol Sci 2000; 174:141-6. [PMID: 10727700 DOI: 10.1016/s0022-510x(00)00268-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We tested the hypothesis that mild and severe ischemic cell damage are reflected in neurological and functional recovery after stroke. Rats were subjected to either 30 min or 120 min of middle cerebral artery occlusion or sham operation. Neurological and functional tests including, gross neurological score, and rotarod and adhesive removal tests were performed at various time points up to 21 days after stroke. Significant differences between groups of animals were detected using the rotarod and adhesive removal test. A significant correlation between lesion volume and adhesive removal test was detected in rats subjected to 30 min of ischemia. Our data indicate that quantitative rotarod and adhesive removal tests measure different aspects of functional recovery after stroke, and both are useful in characterizing functional recovery from an ischemic insult.
Collapse
Affiliation(s)
- L Zhang
- Henry Ford Health Sciences Center, Department of Neurology, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
26
|
Eijkenboom M, Gerlach I, Jork R, Lowe D, van der Staay FJ. Effects of subdural haematoma on sensorimotor functioning and spatial learning in rats. Neuropharmacology 2000; 39:817-34. [PMID: 10699447 DOI: 10.1016/s0028-3908(00)00002-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Twenty per cent of all strokes are haemorrhagic in character and are associated with severe disturbances in sensorimotor behaviour and cognition. Although spontaneous recovery of pre-stroke functioning occurs in some cases, the process is demanding, slow, and often incomplete. A first step in the preclinical testing of new putative, neuroprotective and recovery-supporting therapeutics is to validate animal models of brain injury. In a series of four experiments we evaluated the behavioural impairments and the time course of recovery of functional deficits in rats with an experimentally induced subdural haematoma. We found that unilateral subdural haematoma resulted in dysfunction in both simple reflexive (experiment 1) and skilled sensorimotor behaviour (experiment 2). Reflexive behaviour did not recover, or recovered only marginally, and neither did the deficits in skilled forepaw use. Bilateral subdural haematoma impaired the learning and memory performance of adult (experiment 3) and old rats (experiment 4) in the Morris water escape task. Considering the diversity of the deficits found in our experiments, we conclude that different models are needed to cover the broad range of deficits seen in stroke patients.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/physiology
- Corpus Callosum/pathology
- Crosses, Genetic
- Disease Models, Animal
- Escape Reaction/physiology
- Forelimb/physiology
- Hematoma, Subdural, Acute/pathology
- Hematoma, Subdural, Acute/physiopathology
- Hindlimb/physiology
- Male
- Maze Learning/physiology
- Motor Cortex/pathology
- Motor Cortex/physiopathology
- Psychomotor Performance/physiology
- Rats
- Rats, Inbred BN
- Rats, Inbred F344
- Rats, Wistar
- Reaction Time/physiology
- Reflex/physiology
- Somatosensory Cortex/pathology
- Somatosensory Cortex/physiopathology
- Space Perception
Collapse
Affiliation(s)
- M Eijkenboom
- CNS Research, Bayer AG, Pharma Research Center, Building 500, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | | | | | | |
Collapse
|
27
|
Dietrich WD, Truettner J, Prado R, Stagliano NE, Zhao W, Busto R, Ginsberg MD, Watson BD. Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neurotrophic factor, glial fibrillary acidic protein, and heat shock protein 70 mRNA in rats. J Cereb Blood Flow Metab 2000; 20:103-11. [PMID: 10616798 DOI: 10.1097/00004647-200001000-00014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The hypotheses that cerebral embolic events lead to repetitive episodes of cortical spreading depression (CSD) and that these propagating waves trigger the expression of c-fos, brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and heat shock protein 70 (HSP70) mRNA were tested. Wistar rats underwent photochemically induced right common carotid artery thrombosis (CCAT) (n = 18) or sham (n = 8) procedures. In a subgroup of rats (n = 5), laser-Doppler flowmetry probes were placed overlying the right parietal cortex to record CSD-like changes in cortical blood flow during the initial 2-hour postinjury period. Rats were killed by decapitation at 2 or 24 hours after CCAT, and brains were processed for in situ localization of the gene expression. Two to five intermittent transient hyperemic episodes lasting 1 to 2 minutes were recorded ipsilaterally after CCAT. At 2 hours after CCAT, the widespread expression of c-fos and BDNF mRNAs was observed throughout the ipsilateral cerebral cortex. Pretreatment with the N-methyl-D-aspartate receptor blocker MK-801 (2 mg/kg) 1 hour before CCAT reduced the expression of BDNF mRNA expression at 2 hours. At 24 hours after CCAT, increased expression of GFAP mRNA was present in cortical and subcortical regions. In contrast, multifocal regions of HSP70 expression scattered throughout the thrombosed hemisphere were apparent at both 2 and 24 hours after injury. These data indicate that thromboembolic events lead to episodes of CSD and time-dependent alterations in gene expression. The ability of embolic processes to induce widespread molecular responses in neurons and glia may be important in the pathogenesis of transient ischemic attacks and may influence the susceptibility of the postembolic brain to subsequent insults including stroke.
Collapse
Affiliation(s)
- W D Dietrich
- Department of Neurology, Cerebral Vascular Disease Research Center, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- W D Dietrich
- Department of Neurology, University of Miami of School of Medicine, Florida 33101, USA
| |
Collapse
|
29
|
Stagliano NE, Zhao W, Prado R, Dewanjee MK, Ginsberg MD, Dietrich WD. The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab 1997; 17:1182-90. [PMID: 9390650 DOI: 10.1097/00004647-199711000-00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relative importance of hemodynamic factors in the pathogenesis of thrombotic or embolic stroke is unclear. Of particular therapeutic interest are those substances that facilitate vasodilation and the clearance of platelet aggregates in the compromised microvasculature. A likely contributor to these functions is nitric oxide because it is known to inhibit platelet aggregability and promote vascular relaxation. To investigate the involvement of nitric oxide in the hemodynamic changes after experimental ischemia, photochemically induced nonocclusive common carotid artery thrombosis (CCAT) was studied. CCAT is a rat model of unilateral carotid artery stenosis and platelet embolization to the brain. This study characterized the acute hemodynamic consequences of CCAT and the resultant pattern of platelet deposits with and without nitric oxide synthase inhibition by nitro-L-arginine methyl ester (L-NAME). In addition, the subacute local cerebral blood flow changes were studied at 24 hours. Right CCAT was produced in 30 male Wistar rats injected with (111)In-labeled platelets. Between 5 and 15 minutes after thrombosis, rats were treated with either 15 mg/kg of L-NAME (intravenously) or saline vehicle. Hemodynamic changes were studied 30 to 45 minutes after thrombosis using [14C]iodoantipyrine autoradiography. Eight coronal levels were analyzed, and cortical and subcortical regions of interest were defined. Significant increases were observed in total platelets in the ipsilateral hemisphere after L-NAME treatment, and in the distribution of platelets in the anterior frontal and occipital cortices with nitric oxide synthase inhibition, encompassing the anterior and posterior border zone areas of the ipsilateral cortex. Otherwise, foci of labeled platelets were detected throughout the ipsilateral and contralateral hemispheres. Mean local cerebral blood flow images (n = 5) revealed a moderate bilateral global reduction in flow acutely, which normalized in the untreated thrombosed group by 24 hours. In contrast, the L-NAME-treated groups (sham and experimental) had lasting, widespread reductions in flow of approximately 25%. Pairwise comparisons between groups showed that CCAT/L-NAME was significantly different from shams in the corpus callosum and different from L-NAME shams in the internal capsule (P < 0.05) These hemodynamic and platelet accumulation changes may partially account for the aggravation of cognitive and sensorimotor deficits previously reported in this model of thromboembolic stroke.
Collapse
Affiliation(s)
- N E Stagliano
- Department of Neurology and the Cerebral Vascular Disease Research Center, University of Miami School of Medicine, Florida 33101, U.S.A
| | | | | | | | | | | |
Collapse
|
30
|
Stagliano NE, Dietrich WD, Prado R, Green EJ, Busto R. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res 1997; 759:32-40. [PMID: 9219860 DOI: 10.1016/s0006-8993(97)00200-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although nitric oxide (NO) has been shown to play an important role in the pathophysiology of cerebral ischemia, its contribution to the pathogenesis of experimentally induced thromboembolic stroke is unknown. In this study, we pharmacologically manipulated NO levels in the acute post-thrombotic stage and determined the effects on behavior and histopathology. The following drugs were used: nitro-L-arginine-methyl ester (L-NAME), a non-specific endothelial and neuronal nitric oxide synthase (eNOS and nNOS) inhibitor, 3-bromo-7-nitroindazole (7-NI), a specific inhibitor for nNOS, the NO precursor, exogenous L-arginine and the NO-donor, 3-morpholino-sydnonimine (SIN-1). Male Wistar rats (n = 76) were randomly assigned to receive vehicle or drug immediately after common carotid artery thrombosis (CCAT). Regional measurements of cortical NOS activity using the [3H]L-arginine to [3H]L-citrulline conversion assay were decreased 1 h after treatment with L-NAME and 7-NI by 50 and 65%, respectively; hippocampal NOS activity was reduced with L-NAME by 35% and with 7-NI by 65%. L-NAME significantly worsened forelimb placing as compared to other groups. 7-NI accelerated sensorimotor recovery. Water maze retention deficits were noted 48 h after CCAT and these were exacerbated by L-NAME treatment. Histopathological protection was conferred in the hippocampus by 7-NI and SIN-1; conversely, L-NAME increased neuronal injury in the contralateral cortex. L-arginine had no effect on these outcomes. In conclusion, both structural and functional consequences of CCAT can be aggravated by limiting endothelial NO production in the acutely post-thrombotic brain. In contrast, inhibition of nNOS and infusion of an NO donor has a beneficial effect on pathology.
Collapse
Affiliation(s)
- N E Stagliano
- Department of Neurology, University of Miami School of Medicine, FL 33101, USA
| | | | | | | | | |
Collapse
|
31
|
Kawamata T, Alexis NE, Dietrich WD, Finklestein SP. Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 1996; 16:542-7. [PMID: 8964792 DOI: 10.1097/00004647-199607000-00003] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a potent neurotrophic agent that promotes neuronal survival and outgrowth. Previous studies have shown that bFGF, administered intraventricularly or intravenously before or within hours after ischemia, reduces infarct size and neurological deficits in models of focal cerebral ischemia in rats. In the current study, we tested the hypothesis that bFGF, administered at later time points after ischemia, might improve behavioral recovery without affecting infarct size. Mature Sprague-Dawley rats received bFGF (1 microgram/injection) or vehicle by biweekly intracisternal injection for 4 weeks, starting at 1 day following permanent proximal middle cerebral artery (MCA) occlusion. Animals were examined every other day using four different behavioral tests to assess sensorimotor and reflex function. At 4 weeks after ischemia, there was no difference in infarct volume between bFGF- and vehicle-treated animals. There was, however, an enhancement in the rate and degree of behavioral recovery among bFGF-treated animals, as measured by all four tests. There were no apparent side effects of bFGF treatment, except that bFGF-treated animals tended to recover body weight more slowly than did vehicle-treated animals following stroke. The mechanisms of enhancement of behavioral recovery by bFGF require further study, but may include protection against retrograde neuronal death and/or stimulation of neuronal sprouting.
Collapse
Affiliation(s)
- T Kawamata
- CNS Growth Factor Research Laboratory, Massachusetts General Hospital, Boston, USA
| | | | | | | |
Collapse
|