1
|
Kim JH, Hong N, Kim H, Choi YH, Lee HC, Ha EJ, Lee S, Lee SH, Kim JB, Kim K, Kim JE, Kim DJ, Cho WS. Autoregulatory dysfunction in adult Moyamoya disease with cerebral hyperperfusion syndrome after bypass surgery. Sci Rep 2024; 14:26451. [PMID: 39488581 PMCID: PMC11531593 DOI: 10.1038/s41598-024-76559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Cerebral hyperperfusion syndrome (CHS) is a serious complication after bypass surgery in Moyamoya disease (MMD), with autoregulatory dysfunction being a major pathogenesis. This study investigated the change of perioperative autoregulation and preoperative prognostic potentials in MMD with postoperative CHS. Among 26 hemispheres in 24 patients with adult MMD undergoing combined bypass, 13 hemispheres experienced postoperative CHS. Arterial blood pressure and cerebral blood flow velocity were perioperatively measured with transcranial Doppler ultrasound during resting and the Valsalva maneuver (VM). Autoregulation profiles were discovered in both the CHS and non-CHS groups using mean flow index (Mxa), VM Autoregulatory Index (VMAI), and a new metric termed VM Overshooting Index (VMOI). The CHS group had inferior autoregulation than the non-CHS group as indicated by VMOI on preoperative day 1 and postoperative 3rd day. Deteriorated autoregulation was observed via Mxa in the CHS group than in the non-CHS group on the postoperative 3rd and discharge days. Postoperative longitudinal autoregulation recovery in the CHS group was found in a logistic regression model with diminished group differences over the time course. This work represents a step forward in utilizing autoregulation indices derived from physiological signals, to predict the postoperative CHS in adult MMD.
Collapse
Affiliation(s)
- Jin Hyung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Noah Hong
- Department of Neurosurgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, 07061, Republic of Korea
| | - Hakseung Kim
- Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Young Hoon Choi
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hee Chang Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Eun Jin Ha
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Seho Lee
- Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung Ho Lee
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Keewon Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Dong-Joo Kim
- Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Department of Neurology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea.
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Yang ES, Jung JY, Kang CK. Effects of low-pressure Valsalva maneuver on changes in cerebral arterial stiffness and pulse wave velocity. PLoS One 2024; 19:e0308866. [PMID: 39331633 PMCID: PMC11432835 DOI: 10.1371/journal.pone.0308866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
The Valsalva maneuver (VM), commonly used to assess cardiovascular and autonomic nervous system functions, can induce changes in hemodynamic function that may affect cerebral vascular functionality, such as arterial elasticity. This study aimed to investigate the effects of low-pressure VM on cerebral arterial stiffness and cerebral vascular dynamics. Thirty-one healthy young participants (average age 21.58±1.72 years) were recruited for this study. These participants were instructed to maintain an expiratory pressure of 30-35 mmHg for 15 seconds. We measured the vasoconstriction and vasodilation diameters (VCD and VDD) of the common carotid artery (CCA), as well as systolic and diastolic blood pressures (SBP and DBP), before and after VM (PRE_VM and POST_VM). Additionally, we assessed mean arterial pressure (MAP), pulse pressure (PP), pulse wave velocity (PWV), and arterial stiffness. Our findings revealed significant increases in both the VCD and VDD of the CCA (2.15%, p = 0.039 and 4.55%, p<0.001, respectively), MAP (1.67%, p = 0.049), and DBP (1.10%, p = 0.029) following low-pressure VM. SBP showed an increasing trend, but this was not statistically significant (p = 0.108). Interestingly, we observed significant decreases in arterial stiffness and PWV in POST_VM when comparing with PRE_VM (p<0.001 and p<0.001, respectively). In conclusion, our study demonstrated the effectiveness of low-pressure VM in reducing the PWV and stiffness of the CCA. This suggests that low-pressure VM can be a simple and cost-effective method to reduce cerebrovascular stiffness in a brief interval, without the need for specific environmental conditions.
Collapse
Affiliation(s)
- Eun-Seon Yang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Republic of Korea
| | - Ju-Yeon Jung
- Institute for Human Health and Science Convergence, Gachon University, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Gachon University, Incheon, Republic of Korea
- Institute for Human Health and Science Convergence, Gachon University, Incheon, Republic of Korea
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
- Department of Radiological Science, College of Medical Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
3
|
Zhou S, Gao X, Park G, Yang X, Qi B, Lin M, Huang H, Bian Y, Hu H, Chen X, Wu RS, Liu B, Yue W, Lu C, Wang R, Bheemreddy P, Qin S, Lam A, Wear KA, Andre M, Kistler EB, Newell DW, Xu S. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024; 629:810-818. [PMID: 38778234 DOI: 10.1038/s41586-024-07381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
Collapse
Affiliation(s)
- Sai Zhou
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Geonho Park
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yizhou Bian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongjie Hu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ray S Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Boyu Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wentong Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Chengchangfeng Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ruotao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Pranavi Bheemreddy
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siyu Qin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arthur Lam
- Department of Anesthesiology and Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Keith A Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Andre
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Erik B Kistler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - David W Newell
- Department of Neurosurgery, Seattle Neuroscience Institute, Seattle, WA, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Lengyel B, Magyar-Stang R, Pál H, Debreczeni R, Sándor ÁD, Székely A, Gyürki D, Csippa B, István L, Kovács I, Sótonyi P, Mihály Z. Non-Invasive Tools in Perioperative Stroke Risk Assessment for Asymptomatic Carotid Artery Stenosis with a Focus on the Circle of Willis. J Clin Med 2024; 13:2487. [PMID: 38731014 PMCID: PMC11084304 DOI: 10.3390/jcm13092487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
This review aims to explore advancements in perioperative ischemic stroke risk estimation for asymptomatic patients with significant carotid artery stenosis, focusing on Circle of Willis (CoW) morphology based on the CTA or MR diagnostic imaging in the current preoperative diagnostic algorithm. Functional transcranial Doppler (fTCD), near-infrared spectroscopy (NIRS), and optical coherence tomography angiography (OCTA) are discussed in the context of evaluating cerebrovascular reserve capacity and collateral vascular systems, particularly the CoW. These non-invasive diagnostic tools provide additional valuable insights into the cerebral perfusion status. They support biomedical modeling as the gold standard for the prediction of the potential impact of carotid artery stenosis on the hemodynamic changes of cerebral perfusion. Intraoperative risk assessment strategies, including selective shunting, are explored with a focus on CoW variations and their implications for perioperative ischemic stroke and cognitive function decline. By synthesizing these insights, this review underscores the potential of non-invasive diagnostic methods to support clinical decision making and improve asymptomatic patient outcomes by reducing the risk of perioperative ischemic neurological events and preventing further cognitive decline.
Collapse
Affiliation(s)
- Balázs Lengyel
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (B.L.); (P.S.J.)
| | - Rita Magyar-Stang
- Department of Neurology, Semmelweis University, 1085 Budapest, Hungary; (R.M.-S.); (H.P.); (R.D.)
- Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Hanga Pál
- Department of Neurology, Semmelweis University, 1085 Budapest, Hungary; (R.M.-S.); (H.P.); (R.D.)
- Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Róbert Debreczeni
- Department of Neurology, Semmelweis University, 1085 Budapest, Hungary; (R.M.-S.); (H.P.); (R.D.)
- Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ágnes Dóra Sándor
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary; (Á.D.S.); (A.S.)
| | - Andrea Székely
- Department of Anesthesiology and Intensive Therapy, Semmelweis University, 1085 Budapest, Hungary; (Á.D.S.); (A.S.)
| | - Dániel Gyürki
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 1085 Budapest, Hungary; (D.G.); (B.C.)
| | - Benjamin Csippa
- Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, 1085 Budapest, Hungary; (D.G.); (B.C.)
| | - Lilla István
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.I.); (I.K.)
| | - Illés Kovács
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary; (L.I.); (I.K.)
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA
- Department of Clinical Ophthalmology, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Sótonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (B.L.); (P.S.J.)
| | - Zsuzsanna Mihály
- Department of Vascular and Endovascular Surgery, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary; (B.L.); (P.S.J.)
| |
Collapse
|
5
|
Kirschen GW, Brown L, Davis J, Kim D, Berman DJ, Al-Khindi T, Caplan J, Osborne SM. A Case Report of Spontaneous Vaginal Delivery Under General Anesthesia in a Patient With a Large Cerebral Aneurysm. Cureus 2024; 16:e53822. [PMID: 38465162 PMCID: PMC10924630 DOI: 10.7759/cureus.53822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Cerebral aneurysms are rarely encountered in pregnancy. Their antepartum and intrapartum management remain clinically challenging, primarily due to concern regarding potential rupture. We present a case of a patient in preterm labor at risk for imminent delivery with a 10mm cerebral aneurysm. She was recommended for cesarean section (CS), yet delivered via spontaneous vaginal delivery in the operating room after induction of general anesthesia for the intended CS. Her aneurysm and neurologic function remained intact postpartum. Cerebral aneurysms <5mm are unlikely to undergo significant growth during pregnancy. The presence of a cerebral aneurysm is not automatically a contraindication to the Valsalva maneuver. The recommendation for which patients with unruptured cerebral aneurysms should deliver by CS, operative vaginal delivery, or unassisted vaginal delivery (i.e., which patients should avoid Valsalva maneuver intrapartum), is complex and requires multidisciplinary discussion.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Lucy Brown
- Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Joy Davis
- Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Dan Kim
- Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David J Berman
- Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Timour Al-Khindi
- Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Justin Caplan
- Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Shannon M Osborne
- Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
6
|
Yiangou A, Weaver SRC, Thaller M, Mitchell JL, Lyons HS, Tsermoulas G, Mollan SP, Lucas SJE, Sinclair AJ. The Impact of Valsalva Manoeuvres and Exercise on Intracranial Pressure and Cerebrovascular Dynamics in Idiopathic Intracranial Hypertension. Neuroophthalmology 2023; 48:122-133. [PMID: 38487358 PMCID: PMC10936629 DOI: 10.1080/01658107.2023.2281433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 03/17/2024] Open
Abstract
Idiopathic intracranial hypertension (IIH) is a disease characterised by elevated intracranial pressure (ICP). The impact of straining and exercise on ICP regulation is poorly understood yet clinically relevant to IIH patient care. We sought to investigate the impact of Valsalva manoeuvres (VMs) and exercise on ICP and cerebrovascular haemodynamics in IIH. People with IIH were prospectively enrolled and had an intraparenchymal telemetric ICP sensor inserted. Three participants (age [mean ± standard deviation]: 40.3 ± 13.9 years) underwent continuous real-time ICP monitoring coupled with cerebrovascular haemodynamic assessments during VMs and moderate exercise. Participants had IIH with supine ICP measuring 15.3 ± 8.7 mmHg (20.8 ± 11.8 cm cerebrospinal fluid (CSF)) and sitting ICP measuring -4.2 ± 7.9 mmHg (-5.7 ± 10.7 cmCSF). During phase I of a VM ICP increased by 29.4 ± 13.5 mmHg (40.0 ± 18.4 cmCSF) but returned to baseline within 16 seconds from VM onset. The pattern of ICP changes during the VM phases was associated to that of changes in blood pressure, the middle cerebral artery blood velocity and prefrontal cortex haemodynamics. Exercise led to minimal effects on ICP. In conclusion, VM-induced changes in ICP were coupled to cerebrovascular haemodynamics and showed no sustained impact on ICP. Exercise did not lead to prolonged elevation of ICP. Those with IIH experiencing VMs (for example, during exercise and labour) may be reassured at the brief nature of the changes. Future research must look to corroborate the findings in a larger IIH cohort.
Collapse
Affiliation(s)
- Andreas Yiangou
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Samuel R. C. Weaver
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Mark Thaller
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - James L. Mitchell
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Academic Department of Military Rehabilitation, Defense Medical Rehabilitation Centre, Stanford Hall, UK
| | - Hannah S. Lyons
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Georgios Tsermoulas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Susan P. Mollan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Alexandra J. Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
7
|
Perry BG, Korad S, Mündel T. Cerebrovascular and cardiovascular responses to the Valsalva manoeuvre during hyperthermia. Clin Physiol Funct Imaging 2023; 43:463-471. [PMID: 37332243 DOI: 10.1111/cpf.12843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND During hyperthermia, the perturbations in mean arterial blood pressure (MAP) produced by the Valsalva manoeuvre (VM) are more severe. However, whether these more severe VM-induced changes in MAP are translated to the cerebral circulation during hyperthermia is unclear. METHODS Healthy participants (n = 12, 1 female, mean ± SD: age 24 ± 3 years) completed a 30 mmHg (mouth pressure) VM for 15 s whilst supine during normothermia and mild hyperthermia. Hyperthermia was induced passively using a liquid conditioning garment with core temperature measured via ingested temperature sensor. Middle cerebral artery blood velocity (MCAv) and MAP were recorded continuously during and post-VM. Tieck's autoregulatory index was calculated from the VM responses, with pulsatility index, an index of pulse velocity (pulse time) and mean MCAv (MCAvmean ) also calculated. RESULTS Passive heating significantly raised core temperature from baseline (37.9 ± 0.2 vs. 37.1 ± 0.1°C at rest, p < 0.01). MAP during phases I through III of the VM was lower during hyperthermia (interaction effect p < 0.01). Although an interaction effect was observed for MCAvmean (p = 0.02), post-hoc differences indicated only phase IIa was lower during hyperthermia (55 ± 12 vs. 49.3 ± 8 cm s- 1 for normothermia and hyperthermia, respectively, p = 0.03). Pulsatility index was increased 1-min post-VM in both conditions (0.71 ± 0.11 vs. 0.76 ± 0.11 for pre- and post-VM during normothermia, respectively, p = 0.02, and 0.86 ± 0.11 vs. 0.99 ± 0.09 for hyperthermia p < 0.01), although for pulse time only main effects of time (p < 0.01), and condition (p < 0.01) were apparent. CONCLUSION These data indicate that the cerebrovascular response to the VM is largely unchanged by mild hyperthermia.
Collapse
Affiliation(s)
- Blake G Perry
- School of Health Sciences, College of Health, Massey University, Wellington, New Zealand
| | - Stephanie Korad
- School of Health Sciences, College of Health, Massey University, Wellington, New Zealand
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, College of Health, Massey University, Palmerston North, New Zealand
- Department of Kinesiology, Brock University, St Catharines, Canada
| |
Collapse
|
8
|
Smith CA, Carpenter KLH, Hutchinson PJ, Smielewski P, Helmy A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J Cereb Blood Flow Metab 2023; 43:1237-1253. [PMID: 37132274 PMCID: PMC10369156 DOI: 10.1177/0271678x231171991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The loss of cerebral autoregulation (CA) is a common and detrimental secondary injury mechanism following acute brain injury and has been associated with worse morbidity and mortality. However patient outcomes have not as yet been conclusively proven to have improved as a result of CA-directed therapy. While CA monitoring has been used to modify CPP targets, this approach cannot work if the impairment of CA is not simply related to CPP but involves other underlying mechanisms and triggers, which at present are largely unknown. Neuroinflammation, particularly inflammation affecting the cerebral vasculature, is an important cascade that occurs following acute injury. We hypothesise that disturbances to the cerebral vasculature can affect the regulation of CBF, and hence the vascular inflammatory pathways could be a putative mechanism that causes CA dysfunction. This review provides a brief overview of CA, and its impairment following brain injury. We discuss candidate vascular and endothelial markers and what is known about their link to disturbance of the CBF and autoregulation. We focus on human traumatic brain injury (TBI) and subarachnoid haemorrhage (SAH), with supporting evidence from animal work and applicability to wider neurologic diseases.
Collapse
Affiliation(s)
- Claudia A Smith
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Hutayanon P, Muengtaweepongsa S. The Role of Transcranial Doppler in Detecting Patent Foramen Ovale. JOURNAL FOR VASCULAR ULTRASOUND 2023; 47:33-39. [DOI: 10.1177/15443167221108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Air embolic signals detected in the intracranial arteries using transcranial Doppler after intravenous injection of agitated saline bubbles indicate right-to-left cardiac shunting. They prove that emboli from venous sites can bypass the lungs and flow to the intracranial arteries. The Valsalva maneuver immediately after an intravenous injection of agitated saline bubbles helps the air bubbles pass through the shunt. If the air embolic signal appears in the intracranial arteries without the Valsalva maneuver, the shunting is highly significant to the etiology of embolism. Transcranial Doppler to detect air embolic signals after intravenous injection of agitated saline bubbles may not be mandatory to diagnose and treat patent foramen ovale; however, as with echocardiography, transcranial Doppler is considered a noninvasive, convenient, and low-cost investigation. The test should be helpful to confirm the significance of the corresponding patent foramen ovale.
Collapse
|
10
|
Favilla CG, Mullen MT, Kahn F, Rasheed IYD, Messe SR, Parthasarathy AB, Yodh AG. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2023:271678X231153728. [PMID: 36703572 PMCID: PMC10369149 DOI: 10.1177/0271678x231153728] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and cerebral blood flow (CBF). Transcranial Doppler (TCD) measures CBF-velocity and is commonly used to assess dCA. Diffuse correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemodynamic were monitored simultaneously with high-speed (20 Hz) DCS and TCD. dCA parameters were calcaulated by a transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r = 0.73, p < 0.001) and stroke patients (r = 0.76, p = 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC 0.87 and 0.82, respectively). DCS and TCD-derived phase (latency of regulation) did not significantly correlate in healthy volunteers (r = 0.12, p = 0.50) but moderately correlated in stroke patients (r = 0.65, p = 0.006). DCS-derived phase was reproducible in both groups (ICC 0.88 and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
Collapse
Affiliation(s)
| | - Michael T Mullen
- Department of Neurology, 6558Temple University, Philadelphia, USA
| | - Farhan Kahn
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Steven R Messe
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
11
|
Korad S, Mündel T, Fan JL, Perry BG. Cerebral autoregulation across the menstrual cycle in eumenorrheic women. Physiol Rep 2022; 10:e15287. [PMID: 35524340 PMCID: PMC9076937 DOI: 10.14814/phy2.15287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
There is emerging evidence that ovarian hormones play a significant role in the lower stroke incidence observed in pre‐menopausal women compared with men. However, the role of ovarian hormones in cerebrovascular regulation remains to be elucidated. We examined the blood pressure‐cerebral blood flow relationship (cerebral autoregulation) across the menstrual cycle in eumenorrheic women (n = 12; mean ± SD: age, 31 ± 7 years). Participants completed sit‐to‐stand and Valsalva maneuvers (VM, mouth pressure of 40 mmHg for 15 s) during the early follicular (EF), late follicular (LF), and mid‐luteal (ML) menstrual cycle phases, confirmed by serum measurement of progesterone and 17β‐estradiol. Middle cerebral artery blood velocity (MCAv), arterial blood pressure and partial pressure of end‐tidal carbon dioxide were measured. Cerebral autoregulation was assessed by transfer function analysis during spontaneous blood pressure oscillations, rate of regulation (RoR) during sit‐to‐stand maneuvers, and Tieck’s autoregulatory index during VM phases II and IV (AI‐II and AI‐IV, respectively). Resting mean MCAv (MCAvmean), blood pressure, and cerebral autoregulation were unchanged across the menstrual cycle (all p > 0.12). RoR tended to be different (EF, 0.25 ± 0.06; LF; 0.19 ± 0.04; ML, 0.18 ± 0.12 sec−1; p = 0.07) and demonstrated a negative relationship with 17β‐estradiol (R2 = 0.26, p = 0.02). No changes in AI‐II (EF, 1.95 ± 1.20; LF, 1.67 ± 0.77 and ML, 1.20 ± 0.55) or AI‐IV (EF, 1.35 ± 0.21; LF, 1.27 ± 0.26 and ML, 1.20 ± 0.2) were observed (p = 0.25 and 0.37, respectively). Although, a significant interaction effect (p = 0.02) was observed for the VM MCAvmean response. These data indicate that the menstrual cycle has limited impact on cerebrovascular autoregulation, but individual differences should be considered.
Collapse
Affiliation(s)
- Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
12
|
Zafeiridis A, Kounoupis A, Papadopoulos S, Koutlas A, Boutou AK, Smilios I, Dipla K. Brain oxygenation during multiple sets of isometric and dynamic resistance exercise of equivalent workloads: Association with systemic haemodynamics. J Sports Sci 2022; 40:1020-1030. [PMID: 35271420 DOI: 10.1080/02640414.2022.2045061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain function relies on sufficient blood flow and oxygen supply. Changes in cerebral oxygenation during exercise have been linked to brain activity and central command. Isometric- and dynamic-resistance exercise-(RE) may elicit differential responses in systemic circulation, neural function and metabolism; all important regulators of cerebral circulation. We examined whether (i) cerebral oxygenation differs between isometric- and dynamic-RE of similar exercise characteristics and (ii) cerebral oxygenation changes relate to cardiovascular adjustments occurring during RE. Fourteen men performed, randomly, an isometric-RE and a dynamic-RE of similar characteristics (bilateral-leg-press, 2-min×4-sets, 30% of maximal-voluntary-contraction, equivalent tension-time-index/workload). Cerebral-oxygenation (oxyhaemoglobin-O2Hb; total haemoglobin-tHb/blood-volume-index; deoxyhemoglobin-HHb) was assessed by NIRS and beat-by-beat haemodynamics via photoplethysmography. Cerebral-O2Hb and tHb progressively increased from the 1st to 4th set in both RE-protocols (p < 0.05); HHb slightly decreased (p < 0.05). Changes in NIRS-parameters were similar between RE-protocols within each exercise-set (p = 0.91-1.00) and during the entire protocol (including resting-phases) (p = 0.48-0.63). O2Hb and tHb changes were not correlated with changes in systemic haemodynamics. In conclusion, cerebral oxygenation/blood-volume steadily increased during multiple-set RE-protocols. Isometric- and dynamic-RE of matched exercise characteristics resulted in similar prefrontal oxygenation/blood volume changes, suggesting similar cerebral haemodynamic and possibly neuronal responses to maintain a predetermined force.
Collapse
Affiliation(s)
- Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios Kounoupis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Stavros Papadopoulos
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Aggelos Koutlas
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Afroditi K Boutou
- Department of Respiratory Medicine, General Papanikolaou Hospital, Thessaloniki, Greece
| | - Ilias Smilios
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
13
|
Tsang SH, Ma KW, She WH, Chu F, Lau V, Lam SW, Cheung TT, Lo CM. High-intensity focused ultrasound ablation of liver tumors in difficult locations. Int J Hyperthermia 2021; 38:56-64. [PMID: 34420450 DOI: 10.1080/02656736.2021.1933217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) has been shown to be a valuable tool in the management of small liver tumors such as hepatocellular carcinoma (HCC). It has been shown to be a safe and effective means to ablate small HCC even in the presence of advanced cirrhosis. This review examines the challenges faced during HIFU ablation when the target tumors are located in difficult locations such as the liver dome, close to the rib cage, near large blood vessels or the heart, or adjacent to hollow viscera; and the special maneuvers employed to tackle such lesions.
Collapse
Affiliation(s)
- Simon H Tsang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Ka Wing Ma
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Wong Hoi She
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Ferdinand Chu
- Department of Radiology, Queen Mary Hospital, Hong Kong, China
| | - Vince Lau
- Department of Radiology, Queen Mary Hospital, Hong Kong, China
| | - Shuk Wan Lam
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong, China
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Perry BG, Lucas SJE. The Acute Cardiorespiratory and Cerebrovascular Response to Resistance Exercise. SPORTS MEDICINE-OPEN 2021; 7:36. [PMID: 34046740 PMCID: PMC8160070 DOI: 10.1186/s40798-021-00314-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022]
Abstract
Resistance exercise (RE) is a popular modality for the general population and athletes alike, due to the numerous benefits of regular participation. The acute response to dynamic RE is characterised by temporary and bidirectional physiological extremes, not typically seen in continuous aerobic exercise (e.g. cycling) and headlined by phasic perturbations in blood pressure that challenge cerebral blood flow (CBF) regulation. Cerebral autoregulation has been heavily scrutinised over the last decade with new data challenging the effectiveness of this intrinsic flow regulating mechanism, particularly to abrupt changes in blood pressure over the course of seconds (i.e. dynamic cerebral autoregulation), like those observed during RE. Acutely, RE can challenge CBF regulation, resulting in adverse responses (e.g. syncope). Compared with aerobic exercise, RE is relatively understudied, particularly high-intensity dynamic RE with a concurrent Valsalva manoeuvre (VM). However, the VM alone challenges CBF regulation and generates additional complexity when trying to dissociate the mechanisms underpinning the circulatory response to RE. Given the disparate circulatory response between aerobic and RE, primarily the blood pressure profiles, regulation of CBF is ostensibly different. In this review, we summarise current literature and highlight the acute physiological responses to RE, with a focus on the cerebral circulation.
Collapse
Affiliation(s)
- Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Effects on cerebral blood flow of position changes, hyperoxia, CO2 partial pressure variations and the Valsalva manoeuvre: A study in healthy volunteers. Eur J Anaesthesiol 2021; 38:49-57. [PMID: 33074942 DOI: 10.1097/eja.0000000000001356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Maintaining adequate blood pressure to ensure proper cerebral blood flow (CBF) during surgery is challenging. Induced mild hypotension, sitting position or unavoidable intra-operative circumstances such as haemorrhage, added to variations in carbon dioxide and oxygen tensions, may influence perfusion. Several of these circumstances may coincide and it is unclear how these may affect CBF. OBJECTIVE To describe the variation in transcranial Doppler and regional cerebral oxygen saturation (rSO2), as a surrogate of CBF, after cardiac preload and gravitational positional changes. DESIGN Observational study. SETTING Operating room at Hospital Clínic de Barcelona. VOLUNTEERS Ten healthy volunteers, white, both sexes. INTERVENTIONS Measurements were performed in the supine, sitting and standing positions during hyperoxia, hypocapnia and hypercapnia protocols and after a Valsalva manoeuvre. MAIN OUTCOME MEASURES Cardiac index (CI), haemodynamic and respiratory variables, maximal and mean velocities (Vmax, Vmean) (transcranial Doppler) and rSO2 were acquired. Results were analysed using a generalised estimating equation technique. RESULTS CI increases more than 16% after a preload challenge were not accompanied by differences in rSO2 or Vmax - Vmean. With positional changes, Vmean decreased more than 7% (P = 0.042) from the supine to the seated position. Hyperoxia induced a cerebral rSO2 increase more than 6% (P = 0.0001) with decreases in Vmax, Vmean and CI values more than 3% (P = 0.001, 0.022 and 0.001) in the supine and standing position. During hypocapnia, CI rose more than 20% from supine to seated and standing (P = 0.0001) with a 4.5% decrease in cerebral rSO2 (P = 0.001) and a decrease of Vmax - Vmean more than 24% in all positions (P = 0.001). Hypercapnia increased cerebral rSO2 more than 17% (P = 0.001), Vmax - Vmean more than 30% (P = 0.001) with no changes in CI. After a Valsalva manoeuvre, rSO2 decreased more than 3% in the right hemisphere in the upright position (P = 0.001). Vmax - Vmean decreased more than 10% (P = 0.001) with no changes in CI. CONCLUSION CBF changes in response to cerebral vasoconstriction and vasodilatation were detected with rSO2 and transcranial Doppler in healthy volunteers during cardiac preload and in different body positions. Acute hypercapnia had a greater effect on recorded brain parameters than hypocapnia.
Collapse
|
16
|
Chen SF, Pan HY, Huang CR, Huang JB, Tan TY, Chen NC, Hsu CY, Chuang YC. Autonomic Dysfunction Contributes to Impairment of Cerebral Autoregulation in Patients with Epilepsy. J Pers Med 2021; 11:jpm11040313. [PMID: 33920691 PMCID: PMC8073240 DOI: 10.3390/jpm11040313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Patients with epilepsy frequently experience autonomic dysfunction and impaired cerebral autoregulation. The present study investigates autonomic function and cerebral autoregulation in patients with epilepsy to determine whether these factors contribute to impaired autoregulation. A total of 81 patients with epilepsy and 45 healthy controls were evaluated, assessing their sudomotor, cardiovagal, and adrenergic functions using a battery of autonomic nervous system (ANS) function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial Doppler examination during the breath-holding test, the Valsalva maneuver, and the head-up tilting test. Autonomic functions were impaired during the interictal period in patients with epilepsy compared to healthy controls. The three indices of cerebral autoregulation—the breath-holding index (BHI), an autoregulation index calculated in phase II of the Valsalva maneuver (ASI), and cerebrovascular resistance measured in the second minute during the head-up tilting test (CVR2-min)—all decreased in patients with epilepsy. ANS dysfunction correlated significantly with impairment of cerebral autoregulation (measured by BHI, ASI, and CVR2-min), suggesting that the increased autonomic dysfunction in patients with epilepsy may augment the dysregulation of cerebral blood flow. Long-term epilepsy, a high frequency of seizures, and refractory epilepsy, particularly temporal lobe epilepsy, may contribute to advanced autonomic dysfunction and impaired cerebral autoregulation. These results have implications for therapeutic interventions that aim to correct central autonomic dysfunction and impairment of cerebral autoregulation, particularly in patients at high risk for sudden, unexplained death in epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Yung Pan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Jyun-Bin Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (S.-F.C.); (H.-Y.P.); (C.-R.H.); (J.-B.H.); (T.-Y.T.); (N.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence:
| |
Collapse
|
17
|
Triggering factors in non-traumatic intracerebral hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:104921. [PMID: 32689642 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In ischemic stroke and subarachnoid hemorrhage, there are known preceding triggering events that predispose to the stroke by, for example, abruptly raising blood pressure. We explored, whether triggering events can be identified in non-traumatic intracerebral hemorrhage (ICH). METHODS We used structured questionnaires to interview consented patients with ICH treated in a tertiary teaching hospital, between 2014 and 2016. We asked of possible trigger factors, including Valsalva-inducing activity, heavy physical exertion, sexual activity, abrupt change in position, a heavy meal, a sudden change in temperature, exposure to traffic jam, and the combination of the first three (any physical trigger) during the hazard period of 0-2 h prior to ICH. The ratio of the reported trigger during the hazard period was compared to the same 2-h period the previous day (control period) to calculate the relative risks for each factor (case-crossover design). RESULTS Of our 216 consented ICH patients, 97 (35.0%) could be interviewed for trigger questions. Reasons for not able to provide consistent and reliable responses included lowered level of consciousness, delirium, impaired memory, and aphasia. None of the studied possible triggers alone were more frequent during the hazard period compared to the control period. However, when all physical triggers were combined, we found an association with the triggering event and onset of ICH (risk ratio 1.32, 95% confidence interval 1.01-1.73). CONCLUSIONS Obtaining reliable information on the preceding events before ICH onset was challenging. However, we found that physical triggers as a group were associated with the onset of ICH.
Collapse
|
18
|
Liu X, Czosnyka M, Donnelly J, Cardim D, Cabeleira M, Lalou DA, Hu X, Hutchinson PJ, Smielewski P. Assessment of cerebral autoregulation indices - a modelling perspective. Sci Rep 2020; 10:9600. [PMID: 32541858 PMCID: PMC7295753 DOI: 10.1038/s41598-020-66346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Various methodologies to assess cerebral autoregulation (CA) have been developed, including model - based methods (e.g. autoregulation index, ARI), correlation coefficient - based methods (e.g. mean flow index, Mx), and frequency domain - based methods (e.g. transfer function analysis, TF). Our understanding of relationships among CA indices remains limited, partly due to disagreement of different studies by using real physiological signals, which introduce confounding factors. The influence of exogenous noise on CA parameters needs further investigation. Using a set of artificial cerebral blood flow velocities (CBFV) generated from a well-known CA model, this study aims to cross-validate the relationship among CA indices in a more controlled environment. Real arterial blood pressure (ABP) measurements from 34 traumatic brain injury patients were applied to create artificial CBFVs. Each ABP recording was used to create 10 CBFVs corresponding to 10 CA levels (ARI from 0 to 9). Mx, TF phase, gain and coherence in low frequency (LF) and very low frequency (VLF) were calculated. The influence of exogenous noise was investigated by adding three levels of colored noise to the artificial CBFVs. The result showed a significant negative relationship between Mx and ARI (r = −0.95, p < 0.001), and it became almost purely linear when ARI is between 3 to 6. For transfer function parameters, ARI positively related with phase (r = 0.99 at VLF and 0.93 at LF, p < 0.001) and negatively related with gain_VLF(r = −0.98, p < 0.001). Exogenous noise changed the actual values of the CA parameters and increased the standard deviation. Our results show that different methods can lead to poor correlation between some of the autoregulation parameters even under well controlled situations, undisturbed by unknown confounding factors. They also highlighted the importance of exogenous noise, showing that even the same CA value might correspond to different CA levels under different ‘noise’ conditions.
Collapse
Affiliation(s)
- Xiuyun Liu
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK. .,Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Warsaw University of Technology, Warszawa, Poland
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
| | - Danilo Cardim
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Manuel Cabeleira
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Despina Aphroditi Lalou
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Xiao Hu
- School of Nursing, Duke University, Durham, NC, USA
| | - Peter J Hutchinson
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Davies DJ, Yakoub KM, Su Z, Clancy M, Forcione M, Lucas SJE, Dehghani H, Belli A. The Valsalva maneuver: an indispensable physiological tool to differentiate intra versus extracranial near-infrared signal. BIOMEDICAL OPTICS EXPRESS 2020; 11:1712-1724. [PMID: 32341842 PMCID: PMC7173884 DOI: 10.1364/boe.11.001712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 05/03/2023]
Abstract
Developing near-infrared spectroscopy (NIRS) parameter recovery techniques to more specifically resolve brain physiology from that of the overlying tissue is an important part of improving the clinical utility of the technology. The Valsalva maneuver (VM) involves forced expiration against a closed glottis causing widespread venous congestion within the context of a fall in cardiac output. Due to the specific anatomical confines and metabolic demands of the brain we believe a properly executed VM has the ability to separate haemodynamic activity of brain tissue from that of the overlying scalp as observed by NIRS, and confirmed by functional magnetic resonance imaging (fMRI). Healthy individuals performed a series of standing maximum effort VMs under separate observation by frequency domain near-infrared spectroscopy (FD-NIRS) and fMRI. Nine individuals completed the clinical protocol (6 males, age 21-40). During the VMs, brain and extracranial tissue targeted signal were significantly different (opposite direction of change) in both fMRI and NIRS (p=0.00025 and 0.00115 respectively), with robust cross correlation of parameters between modalities. Four of these individuals performed further VMs after infiltrating 2% xylocaine/1:100,000 epinephrine (vasoconstrictor) into scalp tissue beneath the probes. No significant difference in the cerebrally derived parameters was observed. The maximum effort VM has the ability to separate NIRS observable physiology of the brain from the overlying extracranial tissue. Observations made by this FD cerebral NIRS device are comparable with fMRI in this context.
Collapse
Affiliation(s)
- David James Davies
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
- Co-first authors with equal contribution
| | - Kamal Makram Yakoub
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
- Co-first authors with equal contribution
| | - Zhangjie Su
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Michael Clancy
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Mario Forcione
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Samuel John Edwin Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham, UK
| | - Antonio Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Neurosurgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| |
Collapse
|
20
|
Cerebrovascular haemodynamics during isometric resistance exercise with and without the Valsalva manoeuvre. Eur J Appl Physiol 2020; 120:467-479. [PMID: 31912226 DOI: 10.1007/s00421-019-04291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE To examine the interactive effects of VM and isometric resistance exercise on cerebral haemodynamics. METHODS Eleven healthy participants (mean ± SD 28 ± 9 years; 2 females) completed 20-s bilateral isometric leg extension at 50% of maximal voluntary contraction with continued ventilation (RE), a 20-s VM at mouth pressure of 40 mmHg (VM), and a combination (RE + VM), in randomised order. Mean beat-to-beat blood velocity in the posterior (PCAvmean) and middle cerebral arteries (MCAvmean), vertebral artery blood flow, end-tidal partial pressure of CO2 and mean arterial pressure (MAP) were measured. RE data were time aligned to RE + VM and analysed according to standard VM phases. RESULTS Interaction effects (VM phase × condition) were observed for MCAvmean, PCAvmean, vertebral artery blood flow and MAP (all ≤ 0.010). Phase I MCAvmean was greatest for RE [88 ± 19, vs. 71 ± 11 and 78 ± 12 cm s-1 for VM (P = 0.008) and RE + VM (P = 0.021), respectively]. Greater increases in MCAvmean than PCAvmean occurred in phase I of RE only (24 ± 15% vs. 16 ± 16%, post hoc P = 0.044). In phase IIb, MAP was lower in RE than RE + VM (115 ± 15 vs. 138 ± 21 mmHg, P = 0.004), but did not reduce MCAvmean (78 ± 8 vs. 79 ± 9 cm s-1, P = 0.579) or PCAvmean (45 ± 11 vs .46 ± 11 cm s-1, P = 0.617). Phase IIb MCAvmean and PCAvmean was lowest in VM (66 ± 6 and 39 ± 8 cm s-1, respectively, all P < 0.001), whereas in Phase IV, MCAvmean, PCAvmean and MAP were greater in VM than in RE and RE + VM (all P < 0.020). CONCLUSION RE and RE + VM produce similar cerebrovascular responses despite different MAP profiles. However, the VM produced the greatest cerebrovascular challenge afterward.
Collapse
|
21
|
Rawlins KW, Governale LS, Leonard JR, Elmaraghy CA, Walz PC. Recurrent Cerebrospinal Leak After Endonasal Cranial Base Surgery in a 4-Year-Old Male: Challenges for Postoperative Management. EAR, NOSE & THROAT JOURNAL 2019; 100:472S-474S. [PMID: 31640409 DOI: 10.1177/0145561319880428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kasey W Rawlins
- Department of Otolaryngology, 12306The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lance S Governale
- Department of Neurosurgery, 3463University of Florida, Gainesville, FL, USA
| | - Jeffery R Leonard
- Department of Pediatric Neurosurgery, 2650Nationwide Children's Hospital, Columbus, OH, USA.,Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Charles A Elmaraghy
- Department of Otolaryngology, 12306The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Otolaryngology, 2650Nationwide Children's Hospital, Columbus, OH, USA
| | - Patrick C Walz
- Department of Otolaryngology, 12306The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Pediatric Otolaryngology, 2650Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
22
|
Chen SF, Jou SB, Chen NC, Chuang HY, Huang CR, Tsai MH, Tan TY, Tsai WC, Chang CC, Chuang YC. Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy. Front Neurol 2018; 9:969. [PMID: 30524358 PMCID: PMC6256185 DOI: 10.3389/fneur.2018.00969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) may regulate the autonomic nervous system (ANS) in epilepsy. The present study investigated the role of IGF-1 and BDNF in the regulation of autonomic functions and cerebral autoregulation in patients with epilepsy. Methods: A total of 57 patients with focal epilepsy and 35 healthy controls were evaluated and their sudomotor, cardiovagal, and adrenergic functions were assessed using a battery of ANS function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial doppler during the breath-holding test and the Valsalva maneuver. Interictal serum levels of BDNF and IGF-1 were measured with enzyme-linked immunosorbent assay kits. Results: During interictal period, reduced serum levels of BDNF and IGF-1, impaired autonomic functions, and decreased cerebral autoregulation were noted in patients with epilepsy compared with healthy controls. Reduced serum levels of BDNF correlated with age, adrenergic and sudomotor function, overall autonomic dysfunction, and the autoregulation index calculated in Phase II of the Valsalva maneuver, and showed associations with focal to bilateral tonic-clonic seizures. Reduced serum levels of IGF-1 were found to correlate with age and cardiovagal function, a parameter of cerebral autoregulation (the breath-hold index). Patients with a longer history of epilepsy, higher seizure frequency, and temporal lobe epilepsy had lower serum levels of IGF-1. Conclusions: Long-term epilepsy and severe epilepsy, particularly temporal lobe epilepsy, may perturb BDNF and IGF-1 signaling in the central autonomic system, contributing to the autonomic dysfunction and impaired cerebral autoregulation observed in patients with focal epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shuo-Bin Jou
- Department of Neurology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Chen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. GeroScience 2018; 40:485-496. [PMID: 30288646 DOI: 10.1007/s11357-018-0044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023] Open
Abstract
Multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds"), which are associated with rupture of small intracerebral vessels, have been recognized as an important cause for cognitive decline in older adults. Although recent studies demonstrate that CMHs are highly prevalent in patients 65 and older, many aspects of the pathogenesis and clinical significance of CMHs remain obscure. In this longitudinal observational study, a case of a 77-year-old man with multifocal CMHs is described, in whom the rupture of intracerebral vessels could be linked to repeatedly performing extended Valsalva maneuvers. This patient was initially seen with acute aphasia after performing a prolonged Valsalva maneuver during underwater swimming. T2-weighted magnetic resonance imaging revealed a left acute frontal intracerebral hemorrhage (ICH) with multiple CMHs. The aphasia was resolved and no cognitive impairment was present. Two years later, he developed unsteadiness and confusion after performing two prolonged Valsalva maneuvers during underwater swimming separated by about 12 days. Repeat brain imaging revealed an acute right and a subacute left ICH, with a marked interval increase in the number of CMHs. The patient also exhibited manifest memory loss after the second admission and was diagnosed with dementia. These observations suggest that prolonged Valsalva maneuver is potentially a common precipitating cause of both CMHs and symptomatic ICHs. The Valsalva maneuver both increases the systolic arterial pressure and gives rise to a venous pressure wave transmitted to the brain in the absence of the competent antireflux jugular vein valves. This pressure increase is superimposed on existing hypertension and/or increases in blood pressure due to exercise and increased venous return due to immersion of the body in water. We advocate that further studies are needed to distinguish between CMHs with arterial and venous origins and their potential to lead to ICH induced by Valsalva maneuver as well as to determine whether these lesions have a predilection for a particular location.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary.,Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L. Young Blvd Suite 2040, Oklahoma City, 73104, OK, USA.
| |
Collapse
|
24
|
Kosinski SA, Carlson BE, Hummel SL, Brook RD, Beard DA. Computational model-based assessment of baroreflex function from response to Valsalva maneuver. J Appl Physiol (1985) 2018; 125:1944-1967. [PMID: 30236047 DOI: 10.1152/japplphysiol.00095.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional metrics of autonomic control of heart rate, including baroreflex sensitivity, have been shown to be strongly associated with cardiovascular risk. A decrease in baroreflex sensitivity with aging is hypothesized to represent a contributing causal factor in the etiology of primary hypertension. To assess baroreflex function in human subjects, two complementary methods to simulate the response in heart rate elicited by the Valsalva maneuver were developed and applied to data obtained from a cohort of healthy normal volunteers. The first method is based on representing the baroreflex arc as a simple linear filter, transforming changes in arterial pressure to changes in R-R interval. The second method invokes a physiologically based model for arterial mechanics, afferent baroreceptor strain-dependent firing, and control of heart rate via central autonomic response to changes in afferent inputs from aortic and carotid sensors. Analysis based on the linear filter model reveals that the effective response time of the baroreflex arc tends to increase with age in healthy subjects and that the response time/response rate is a predictor of resting systolic pressure. Similar trends were obtained based on the physiologically based model. Analysis of the Valsalva response using the physiologically based model further reveals that different afferent inputs from the carotid sinus and the aortic arch baroreceptors govern different parts of the heart rate response. The observed relationship between baroreflex sensitivity and systolic pressure is surprising because hypertensive subjects were excluded from the study, and there was no observed relationship between arterial pressure and age. NEW & NOTEWORTHY We introduce two methods to assess baroreflex function from data recorded from human subjects performing the Valsalva maneuver. Results demonstrate that the baroreflex response time tends to increase with age in healthy subjects, that response time represents a predictor of resting systolic pressure, and that the Valsalva response reveals different effects mediated by baroreceptors in the carotid sinus compared with those in the aortic arch.
Collapse
Affiliation(s)
- Samuel A Kosinski
- Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Brian E Carlson
- Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| | - Scott L Hummel
- Internal Medicine and Cardiology, University of Michigan , Ann Arbor, Michigan.,Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan
| | - Robert D Brook
- Internal Medicine and Cardiology, University of Michigan , Ann Arbor, Michigan
| | - Daniel A Beard
- Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
25
|
Jakimovski D, Topolski M, Kimura K, Marr K, Gandhi S, Ramasamy DP, Bergsland N, Hagemeier J, Weinstock-Guttman B, Zivadinov R. Abnormal venous postural control: multiple sclerosis-specific change related to gray matter pathology or age-related neurodegenerative phenomena? Clin Auton Res 2018; 29:329-338. [PMID: 30120624 DOI: 10.1007/s10286-018-0555-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Autonomic nervous system dysfunction has been previously observed in multiple sclerosis (MS) patients. OBJECTIVE To assess associations between magnetic resonance imaging-detected neuroinflammatory and neurodegenerative pathology and postural venous flow changes indicative of autonomic nervous system function. METHODS We used a standardized 3T magnetic resonance imaging protocol to scan 138 patients with MS and 49 healthy controls. Lesion volume and brain volumes were assessed. The cerebral venous flow (CVF) was examined by color-Doppler sonography in supine and upright positions and the difference was calculated as ΔCVF. Based on ΔCVF, subjects were split into absolute or quartile groups. Student's t test, χ2-test, and analysis of covariance adjusted for age and sex were used accordingly. Benjamini-Hochberg procedure corrected the p-values for multiple comparisons. RESULTS No differences were found between healthy controls and patients with MS in both supine and upright Doppler-derived CVF, nor in prevalence of abnormal postural venous control. Patients with absolute negative ΔCVF had higher disability scores (p = 0.013), lower gray matter (p = 0.039) and cortical (p = 0.044) volumes. The negative ΔCVF MS group also showed numerically worse bladder/bowel function when compared to the positive ΔCVF (2.3 vs. 1.5, p = 0.052). Similarly, the lowest quartile ΔCVF MS group had higher T1-lesion volumes (p = 0.033), T2-lesion volumes (p = 0.032), and lower deep gray matter (p = 0.043) and thalamus (p = 0.033) volumes when compared to those with higher ΔCVF quartiles. CONCLUSION No difference in postural venous outflow between patients with MS and healthy controls was found. However, when the abnormal ΔCVF is present within the MS population, it may be associated with more inflammatory and neurodegenerative pathology. Further studies should explore whether the orthostatic venous changes are an aging or an MS-related phenomenon and if the etiology is due to impaired autonomic nervous system functioning.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Matthew Topolski
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Kana Kimura
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Sirin Gandhi
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Jesper Hagemeier
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs MS Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High Street, Buffalo, NY, 142013, USA. .,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Cerebral autoregulation (CA) is a mechanism that maintains cerebral blood flow constant despite fluctuations in systemic arterial blood pressure. This review will focus on recent studies that measured CA non-invasively in acute cerebrovascular events, a feature unique to the transcranial Doppler ultrasound. We will summarize the rationale for CA assessment in acute cerebrovascular disorders and specifically evaluate the existing data on the value of CA measures in relation to clinical severity, guiding management decisions, and prognostication. RECENT FINDINGS Existing data suggest that CA is generally impaired in various cerebrovascular disorders. In patients with small vessel ischemic stroke, CA has been shown to be impaired in both hemispheres, whereas in large territorial strokes, CA impairment has been limited to the affected hemisphere. In these latter patients, impaired CA is also predictive of secondary complications such as hemorrhagic transformation and cerebral edema, hence worse functional outcome. In patients with carotid stenosis, impaired CA may also be associated with a higher ipsilateral hemispheric stroke risk. CA is also strongly linked to outcome in patients with intracranial hemorrhage. In patients with intraparenchymal hemorrhage, CA impairment correlated with clinical and imaging severity, whereas in those with subarachnoid hemorrhage, CA measures have a predictive value for development of delayed cerebral ischemia and radiographic vasospasm. Assessment of CA is increasingly more accessible in acute cerebrovascular disorders and promises to be a valuable measure in guiding hemodynamic management and predicting secondary complication, thus enhancing the care of these patients in the acute setting.
Collapse
Affiliation(s)
- Pedro Castro
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Farzaneh Sorond
- Department of Neurology, Division of Stroke and Neurocritical, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 12-140, Chicago, IL, 60611, USA.
| |
Collapse
|
27
|
Kim YH, Phillips V Z, Paik SH, Jeon NJ, Kim BM, Kim BJ. Prefrontal hemodynamic changes measured using near-infrared spectroscopy during the Valsalva maneuver in patients with orthostatic intolerance. NEUROPHOTONICS 2018; 5:015002. [PMID: 29392157 PMCID: PMC5786506 DOI: 10.1117/1.nph.5.1.015002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/04/2018] [Indexed: 05/04/2023]
Abstract
The Valsalva maneuver (VM) with beat-to-beat blood pressure and heart rate monitoring are used to evaluate orthostatic intolerance (OI). However, they lack the ability to detect cerebral hemodynamic changes, which may be a cause of OI symptoms. Therefore, we utilized near-infrared spectroscopy during VM. Patients with OI symptoms and normal healthy subjects were recruited. Patients were subgrouped according to VM results: patients with normal VM (NVM) and abnormal VM (AbVM). Oxyhemoglobin (HbO), deoxyhemoglobin, and total hemoglobin changes were measured at four different source-detector distances (SD) (15, 30, 36, and 45 mm), and latency, amplitude, duration, and integrated total signal were calculated. Those parameters were compared between a normal healthy control (HC) group and the two OI patient subgroups. We found that HbO increment latency at 30-mm SD in the HC, NVM, and AbVM groups was as follows: [Formula: see text], [Formula: see text], and [Formula: see text], respectively ([Formula: see text]). Among the four parameters we evaluated, latency of HbO increment was the best marker for differentiating OI.
Collapse
Affiliation(s)
- Yoo Hwan Kim
- Hallym University Medical Center, Department of Neurology, Seoul, Republic of Korea
- Korea University Medical Center, Department of Neurology, Seoul, Republic of Korea
| | - Zephaniah Phillips V
- Korea University College of Health Science, Department of Bioconvergence Engineering, Seoul, Republic of Korea
| | - Seung-ho Paik
- Korea University College of Health Science, Department of Bioconvergence Engineering, Seoul, Republic of Korea
| | - Nam-Joon Jeon
- Korea University Anam Hospital, Neurophysiology Laboratory, Seoul, Republic of Korea
| | - Beop-Min Kim
- Korea University College of Health Science, Department of Bioconvergence Engineering, Seoul, Republic of Korea
- Address all correspondence to: Beop-Min Kim, E-mail: ; Byung-Jo Kim, E-mail:
| | - Byung-Jo Kim
- Korea University Medical Center, Department of Neurology, Seoul, Republic of Korea
- Korea University Anam Hospital, Brain Convergence Research Center, Seoul, Republic of Korea
- Address all correspondence to: Beop-Min Kim, E-mail: ; Byung-Jo Kim, E-mail:
| |
Collapse
|
28
|
Barnes SC, Ball N, Haunton VJ, Robinson TG, Panerai RB. The cerebrocardiovascular response to periodic squat-stand maneuvers in healthy subjects: a time-domain analysis. Am J Physiol Heart Circ Physiol 2017; 313:H1240-H1248. [DOI: 10.1152/ajpheart.00331.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Squat-stand maneuvers (SSMs) have been used to improve the coherence of transfer function analysis (TFA) estimates during the assessment of dynamic cerebral autoregulation (dCA). There is a need to understand the influence of peripheral changes resulting from SSMs on cerebral blood flow, which might confound estimates of dCA. Healthy subjects ( n = 29) underwent recordings at rest (5-min standing) and 15 SSMs (0.05 Hz). Heart rate (three-lead ECG), end-tidal CO2 (capnography), blood pressure (Finometer), cerebral blood velocity (CBV; transcranial Doppler, middle cerebral artery), and the angle of the thigh (tilt sensor) were measured continuously. The response of CBV to SSMs was decomposed into the relative contributions of mean arterial pressure (MAP), resistance-area product (RAP), and critical closing pressure (CrCP). Upon squatting, a rise in MAP (83.6 ± 21.1% contribution) was followed by increased CBV. A dCA response could be detected, determined by adjustments in RAP and CrCP (left hemisphere) with peak contributions of 24.8 ± 12.7% and 27.4 ± 22.8%, respectively, at different times during SSMs. No interhemispheric differences were detected. During standing, the contributions of MAP, RAP, and CrCP changed considerably. In conclusion, the changes of CBV subcomponents during repeated SSMs indicate a complex response of CBV to SSMs that can only be partially explained by myogenic mechanisms. More work is needed to clarify the potential contribution of other cofactors, such as breath-to-breath changes in Pco2, heart rate, stroke volume, and the neurogenic component of dCA. NEW & NOTEWORTHY Here, we describe the different contributions to the cerebral blood flow response after squat-stand maneuvers. Furthermore, we demonstrate the complex interaction of peripheral and cerebral parameters for the first time. Moreover, we show that the cerebral blood velocity response to squatting is likely to include a significant metabolic component.
Collapse
Affiliation(s)
- Sam C. Barnes
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Naomi Ball
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria Joanna Haunton
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Thompson G. Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Ronney B. Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
29
|
Spiegel DR, Smith J, Wade RR, Cherukuru N, Ursani A, Dobruskina Y, Crist T, Busch RF, Dhanani RM, Dreyer N. Transient global amnesia: current perspectives. Neuropsychiatr Dis Treat 2017; 13:2691-2703. [PMID: 29123402 PMCID: PMC5661450 DOI: 10.2147/ndt.s130710] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transient global amnesia (TGA) is a clinical syndrome characterized by the sudden onset of an extraordinarily large reduction of anterograde and a somewhat milder reduction of retrograde episodic long-term memory. Additionally, executive functions are described as diminished. Although it is suggested that various factors, such as migraine, focal ischemia, venous flow abnormalities, and epileptic phenomena, are involved in the pathophysiology and differential diagnosis of TGA, the factors triggering the emergence of these lesions are still elusive. Recent data suggest that the vulnerability of CA1 neurons to metabolic stress plays a pivotal part in the pathophysiological cascade, leading to an impairment of hippocampal function during TGA. In this review, we discuss clinical aspects, new imaging findings, and recent clinical-epidemiological data with regard to the phenotype, functional anatomy, and putative cellular mechanisms of TGA.
Collapse
Affiliation(s)
- David R Spiegel
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Justin Smith
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ryan R Wade
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nithya Cherukuru
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Aneel Ursani
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Yuliya Dobruskina
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Taylor Crist
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Robert F Busch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Rahim M Dhanani
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Nicholas Dreyer
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
30
|
Zhang Z, Bolz N, Laures M, Oremek M, Schmidt C, Qi M, Khatami R. Cerebral blood volume and oxygen supply uniformly increase following various intrathoracic pressure strains. Sci Rep 2017; 7:8344. [PMID: 28827669 PMCID: PMC5566207 DOI: 10.1038/s41598-017-08698-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023] Open
Abstract
Intrathoracic pressure (ITP) swings challenge many physiological systems. The responses of cerebral hemodynamics to different ITP swings are still less well-known due to the complexity of cerebral circulation and methodological limitation. Using frequency-domain near-infrared spectroscopy and echocardiography, we measured changes in cerebral, muscular and cardiac hemodynamics in five graded respiratory maneuvers (RM), breath holding, moderate and strong Valsalva maneuvers (mVM/sVM) with 20 and 40 cmH2O increments in ITP, moderate and strong Mueller maneuvers (mMM/sMM) with 20 and 40 cmH2O decrements in ITP controlled by esophageal manometry. We found cerebral blood volume (CBV) maintains relative constant during the strains while it increases during the recoveries together with increased oxygen supply. By contrast changes in muscular blood volume (MBV) are mainly controlled by systemic changes. The graded changes of ITP during the maneuvers predict the changes of MBV but not CBV. Changes in left ventricular stroke volume and heart rate correlate to MBV but not to CBV. These results suggest the increased CBV after the ITP strains is brain specific, suggesting cerebral vasodilatation. Within the strains, cerebral oxygen saturation only decreases in sVM, indicating strong increment rather than decrement in ITP may be more challenging for the brain.
Collapse
Affiliation(s)
- Zhongxing Zhang
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland.
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Nina Bolz
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Marco Laures
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Margit Oremek
- Cardiac Rehabilitation Clinic, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Christoph Schmidt
- Cardiac Rehabilitation Clinic, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Ming Qi
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
| | - Ramin Khatami
- Center for Sleep Medicine and Sleep Research, Clinic Barmelweid AG, Barmelweid, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Mariaca AF, Valdueza JM, Gaebel C, Gomez-Choco M. Simultaneous transient global amnesia and right MCA stroke after Valsalva manoeuvre. BMJ Case Rep 2017; 2017:bcr-2016-218990. [PMID: 28433970 DOI: 10.1136/bcr-2016-218990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 61-year-old man suffered an episode of transient confusion and anterograde amnesia after a Valsalva-related manoeuvre. The MRI diffusion weighted imaging (DWI) sequences showed a left hippocampal and two right parietal lesions that were deemed as acute. The MR angiography disclosed a high-grade stenosis in the right middle cerebral artery as was described by a transcranial colour-coded ultrasound as well. Ultrasound investigation of the jugular veins showed a right jugular venous reflux after a Valsalva manoeuvre. The patient was diagnosed with transient global amnesia based on clinical grounds and the right parietal lesions were considered as silent strokes. The Valsalva manoeuvre could have played as a common trigger for both diseases.
Collapse
Affiliation(s)
| | | | - Christian Gaebel
- Radiology, Neurological Center, Segeberger Kliniken, Bad Segeberg, Germany
| | - Manuel Gomez-Choco
- Department of Neurology, Hospital Sant Joan Despi Moises Broggi, Sant Joan Despi, Spain
| |
Collapse
|
32
|
Malojcic B, Giannakopoulos P, Sorond FA, Azevedo E, Diomedi M, Oblak JP, Carraro N, Boban M, Olah L, Schreiber SJ, Pavlovic A, Garami Z, Bornstein NM, Rosengarten B. Ultrasound and dynamic functional imaging in vascular cognitive impairment and Alzheimer's disease. BMC Med 2017; 15:27. [PMID: 28178960 PMCID: PMC5299782 DOI: 10.1186/s12916-017-0799-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/21/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The vascular contributions to neurodegeneration and neuroinflammation may be assessed by magnetic resonance imaging (MRI) and ultrasonography (US). This review summarises the methodology for these widely available, safe and relatively low cost tools and analyses recent work highlighting their potential utility as biomarkers for differentiating subtypes of cognitive impairment and dementia, tracking disease progression and evaluating response to treatment in various neurocognitive disorders. METHODS At the 9th International Congress on Vascular Dementia (Ljubljana, Slovenia, October 2015) a writing group of experts was formed to review the evidence on the utility of US and arterial spin labelling (ASL) as neurophysiological markers of normal ageing, vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Original articles, systematic literature reviews, guidelines and expert opinions published until September 2016 were critically analysed to summarise existing evidence, indicate gaps in current knowledge and, when appropriate, suggest standards of use for the most widely used US and ASL applications. RESULTS Cerebral hypoperfusion has been linked to cognitive decline either as a risk or an aggravating factor. Hypoperfusion as a consequence of microangiopathy, macroangiopathy or cardiac dysfunction can promote or accelerate neurodegeneration, blood-brain barrier disruption and neuroinflammation. US can evaluate the cerebrovascular tree for pathological structure and functional changes contributing to cerebral hypoperfusion. Microvascular pathology and hypoperfusion at the level of capillaries and small arterioles can also be assessed by ASL, an MRI signal. Despite increasing evidence supporting the utility of these methods in detection of microvascular pathology, cerebral hypoperfusion, neurovascular unit dysfunction and, most importantly, disease progression, incomplete standardisation and missing validated cut-off values limit their use in daily routine. CONCLUSIONS US and ASL are promising tools with excellent temporal resolution, which will have a significant impact on our understanding of the vascular contributions to VCI and AD and may also be relevant for assessing future prevention and therapeutic strategies for these conditions. Our work provides recommendations regarding the use of non-invasive imaging techniques to investigate the functional consequences of vascular burden in dementia.
Collapse
Affiliation(s)
- Branko Malojcic
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia.
| | | | - Farzaneh A Sorond
- Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| | - Elsa Azevedo
- Department of Neurology, São João Hospital Center and Faculty of Medicine of University of Porto, Porto, Portugal
| | - Marina Diomedi
- Cerebrovascular Disease Center, Stroke Unit, University of Rome Tor Vergata, Rome, Italy
| | - Janja Pretnar Oblak
- Department of Vascular Neurology and Intensive Therapy, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nicola Carraro
- Department of Medical Sciences, Clinical Neurology-Stroke Unit, University Hospital, University of Trieste, Trieste, Italy
| | - Marina Boban
- Department of Neurology, University Hospital Center Zagreb, Zagreb School of Medicine, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Laszlo Olah
- Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Stephan J Schreiber
- Department of Neurology, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Aleksandra Pavlovic
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zsolt Garami
- Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Nantan M Bornstein
- Neurology Department, Tel Aviv Sourasky Medical Centre, Tel Aviv, Israel
| | | |
Collapse
|
33
|
Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol 2017; 312:H1-H20. [PMID: 27793855 PMCID: PMC5283909 DOI: 10.1152/ajpheart.00581.2016] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Increasing evidence from epidemiological, clinical and experimental studies indicate that age-related cerebromicrovascular dysfunction and microcirculatory damage play critical roles in the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. Understanding and targeting the age-related pathophysiological mechanisms that underlie vascular contributions to cognitive impairment and dementia (VCID) are expected to have a major role in preserving brain health in older individuals. Maintenance of cerebral perfusion, protecting the microcirculation from high pressure-induced damage and moment-to-moment adjustment of regional oxygen and nutrient supply to changes in demand are prerequisites for the prevention of cerebral ischemia and neuronal dysfunction. This overview discusses age-related alterations in three main regulatory paradigms involved in the regulation of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction, endothelium-dependent vasomotor function, and neurovascular coupling responses responsible for functional hyperemia. The pathophysiological consequences of cerebral microvascular dysregulation in aging are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages, microvascular rarefaction, and ischemic neuronal dysfunction and damage. Due to the widespread attention that VCID has captured in recent years, the evidence for the causal role of cerebral microvascular dysregulation in cognitive decline is critically examined.
Collapse
Affiliation(s)
- Peter Toth
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Pecs, Hungary; and
| | - Stefano Tarantini
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma;
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Pstras L, Bellavere F. In search of the optimal Valsalva maneuver position for the treatment of supraventricular tachycardia. Am J Emerg Med 2016; 34:2247. [DOI: 10.1016/j.ajem.2016.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022] Open
|
35
|
Williams H. A unifying hypothesis for hydrocephalus and the Chiari malformations part two: The hydrocephalus filling mechanism. Med Hypotheses 2016; 94:30-9. [DOI: 10.1016/j.mehy.2016.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 10/21/2022]
|
36
|
Pstras L, Thomaseth K, Waniewski J, Balzani I, Bellavere F. The Valsalva manoeuvre: physiology and clinical examples. Acta Physiol (Oxf) 2016; 217:103-19. [PMID: 26662857 DOI: 10.1111/apha.12639] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 01/30/2023]
Abstract
The Valsalva manoeuvre (VM), a forced expiratory effort against a closed airway, has a wide range of applications in several medical disciplines, including diagnosing heart problems or autonomic nervous system deficiencies. The changes of the intrathoracic and intra-abdominal pressure associated with the manoeuvre result in a complex cardiovascular response with a concomitant action of several regulatory mechanisms. As the main aim of the reflex mechanisms is to control the arterial blood pressure (BP), their action is based primarily on signals from baroreceptors, although they also reflect the activity of pulmonary stretch receptors and, to a lower degree, chemoreceptors, with different mechanisms acting either in synergism or in antagonism depending on the phase of the manoeuvre. A variety of abnormal responses to the VM can be seen in patients with different conditions. Based on the arterial BP and heart rate changes during and after the manoeuvre several dysfunctions can be hence diagnosed or confirmed. The nature of the cardiovascular response to the manoeuvre depends, however, not only on the shape of the cardiovascular system and the autonomic function of the given patient, but also on a number of technical factors related to the execution of the manoeuvre including the duration and level of strain, the body position or breathing pattern. This review of the literature provides a comprehensive analysis of the physiology and pathophysiology of the VM and an overview of its applications. A number of clinical examples of normal and abnormal haemodynamic response to the manoeuvre have been also provided.
Collapse
Affiliation(s)
- L. Pstras
- Institute of Biocybernetics and Biomedical Engineering; Polish Academy of Sciences; Warsaw Poland
| | - K. Thomaseth
- Institute of Electronics, Computer and Telecommunication Engineering; National Research Council; Padua Italy
| | - J. Waniewski
- Institute of Biocybernetics and Biomedical Engineering; Polish Academy of Sciences; Warsaw Poland
| | - I. Balzani
- Department of Medicine; Sant'Antonio Hospital; Padua Italy
| | - F. Bellavere
- Provincial Agency for Health Services (APSS); Trento Italy
| |
Collapse
|
37
|
Bari V, Marchi A, De Maria B, Rossato G, Nollo G, Faes L, Porta A. Nonlinear effects of respiration on the crosstalk between cardiovascular and cerebrovascular control systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0179. [PMID: 27044988 DOI: 10.1098/rsta.2015.0179] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 05/03/2023]
Abstract
Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.
Collapse
Affiliation(s)
- Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Marchi
- Department of Electronic Information and Bioengineering, Politecnico di Milano, Milan, Italy Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | | | - Gianluca Rossato
- Department of Neurology, Sacro Cuore Hospital, Negrar, Verona, Italy
| | - Giandomenico Nollo
- Biotech, Department of Industrial Engineering, University of Trento, Trento, Italy IRCS Program, PAT-FBK, Trento, Italy
| | - Luca Faes
- Biotech, Department of Industrial Engineering, University of Trento, Trento, Italy IRCS Program, PAT-FBK, Trento, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
38
|
|
39
|
Lucas SJE, Cotter JD, Brassard P, Bailey DM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab 2015; 35:902-11. [PMID: 25833341 PMCID: PMC4640257 DOI: 10.1038/jcbfm.2015.49] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/25/2015] [Accepted: 03/01/2015] [Indexed: 12/14/2022]
Abstract
Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduces similarly novel interventions currently under investigation as alternative means of accelerating exercise-induced cerebrovascular adaptation. We highlight a need for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention. From a clinical perspective, interventions that selectively target the aging brain have the potential to prevent stroke and associated neurovascular diseases.
Collapse
Affiliation(s)
- Samuel J E Lucas
- 1] School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK [2] Department of Physiology, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Patrice Brassard
- 1] Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada [2] Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Damian M Bailey
- 1] Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, South Wales, UK [2] Université de Provence Marseille, Sondes Moléculaires en Biologie, Laboratoire Chimie Provence UMR 6264 CNRS, Marseille, France
| |
Collapse
|
40
|
Effects of thoracic pressure changes on MRI signals in the brain. J Cereb Blood Flow Metab 2015; 35:1024-32. [PMID: 25712496 PMCID: PMC4640249 DOI: 10.1038/jcbfm.2015.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 12/11/2014] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Cerebrovascular stressors, such as breath holding or CO2 inhalation, cause global magnetic resonance imaging (MRI) signal changes. In this study, we show that intrathoracic pressure changes cause rapid MRI signal alterations that have similar spatial patterns to the changes associated with breath holding or CO2 inhalation. Nine subjects performed the Valsalva maneuver during functional MRI data collection. Expiratory pressures ranged from 10 to 40 mm Hg. Breath holds ending on either inhalation or exhalation were also collected. The maximal and minimal functional MRI (fMRI) signal scaled with thoracic pressure load, and the overall amplitude of responses to the Valsalva varied, depending on brain tissue. Additionally, a Valsalva effort as short as 5 seconds yielded signal changes similar in spatial distribution and magnitude to a 20-second breath hold, suggesting potential applications of the Valsalva maneuver for calibrated fMRI experiments.
Collapse
|
41
|
Collapsed Jugular Vein and abnormal cerebral blood flow changes in patients of Panic Disorder. J Psychiatr Res 2014; 58:155-60. [PMID: 25171942 DOI: 10.1016/j.jpsychires.2014.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Panic disorder (PD) is characterized by panic attacks accompanied with respiratory symptoms. Internal jugular vein (IJV) alters its hemodynamics in response to respiration and which might cause cerebral blood flow (CBF) changes. In the present study, we compared (1) respiratory-related IJV hemodynamics and (2) CBF changes during Valsalva maneuver (VM) between PD and normal subjects. METHODS 42 PD patients and age/gender-matched controls (14 men; 52.3 ± 11.4 years) were recruited. Duplex ultrasonography measured time-averaged mean velocity (TAMV) and lumen in IJV at baseline and deep inspiration. Lumen area <0.10 cm(2) at deep inspiration was defined as IJV collapse. CBF changes during VM were recorded by transcranial Doppler (TCD). RESULTS Compared with normal group, PD patients had significantly higher frequency of IJV collapse at deep inspiration (Left: 40.0% vs. 7.0%, p = 0.0003, Right: 17.0% vs. 0%, p = 0.0119). IJV collapse was associated with symptoms of respiratory subtype in our PD patients. PD group also had smaller lumen (Left: 0.53 ± 0.29 vs. 0.55 ± 0.26 cm(2), p = 0.8296, Right: 0.63 ± 0.36 vs. 0.93 ± 0.45 cm(2), p = 0.0014) and slower TAMV of IJV at baseline (Left: 11.8 ± 8.43 vs. 20.6 ± 16.5 cm/s, p = 0.0003, Right: 15.9 ± 9.19 vs. 24.1 ± 15.7 cm/s, p = 0.0062). PD patients with inspiration-induced IJV collapse had more decreased CBF during VM compared with the other PD patients and normal individuals respectively. INTERPRETATION We are the first to show that PD have less IJV flow at baseline and more frequent collapse at deep inspiration. Inspiration-induced IJV collapsed was associated with CBF decrement during VM in PD patients. These results suggest that venous drainage impairment might play a role in the pathophysiology of PD by influencing CBF.
Collapse
|
42
|
Perry BG, Cotter JD, Mejuto G, Mündel T, Lucas SJE. Cerebral hemodynamics during graded Valsalva maneuvers. Front Physiol 2014; 5:349. [PMID: 25309449 PMCID: PMC4163977 DOI: 10.3389/fphys.2014.00349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022] Open
Abstract
The Valsalva maneuver (VM) produces large and abrupt changes in mean arterial pressure (MAP) that challenge cerebral blood flow and oxygenation. We examined the effect of VM intensity on middle cerebral artery blood velocity (MCAv) and cortical oxygenation responses during (phases I–III) and following (phase IV) a VM. Healthy participants (n = 20 mean ± SD: 27 ± 7 years) completed 30 and 90% of their maximal VM mouth pressure for 10 s (order randomized) whilst standing. Beat-to-beat MCAv, cerebral oxygenation (NIRS) and MAP across the different phases of the VM are reported as the difference from standing baseline. There were significant interaction (phase * intensity) effects for MCAv, total oxygenation index (TOI) and MAP (all P < 0.01). MCAv decreased during phases II and III (P < 0.01), with the greatest decrease during phase III (−5 ± 8 and −19 ± 15 cm·s−1 for 30 and 90% VM, respectively). This pattern was also evident in TOI (phase III: −1 ± 1 and −5 ± 4%, both P < 0.05). Phase IV increased MCAv (22 ± 15 and 34 ± 23 cm·s−1), MAP (15 ± 14 and 24 ± 17 mm Hg) and TOI (5 ± 6 and 7 ± 5%) relative to baseline (all P < 0.05). Cerebral autoregulation, indexed, as the %MCAv/%MAP ratio, showed a phase effect only (P < 0.001), with the least regulation during phase IV (2.4 ± 3.0 and 3.2 ± 2.9). These data illustrate that an intense VM profoundly affects cerebral hemodynamics, with a reactive hyperemia occurring during phase IV following modest ischemia during phases II and III.
Collapse
Affiliation(s)
- Blake G Perry
- School of Sport and Exercise, Massey University Palmerston North, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago Dunedin, New Zealand
| | - Gaizka Mejuto
- Laboratory of Sport Performance Analysis, Sport and Physical Education Department, Faculty of Sport Sciences, University of the Basque Country Vitoria-Gasteiz, Spain
| | - Toby Mündel
- School of Sport and Exercise, Massey University Palmerston North, New Zealand
| | - Samuel J E Lucas
- Department of Physiology, University of Otago Dunedin, New Zealand ; School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham Birmingham, UK
| |
Collapse
|
43
|
Bang DH, Son Y, Lee YH, Yoon KH. Doppler ultrasonography measurement of hepatic hemodynamics during Valsalva maneuver: healthy volunteer study. Ultrasonography 2014; 34:32-8. [PMID: 25327526 PMCID: PMC4282232 DOI: 10.14366/usg.14029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/05/2014] [Accepted: 08/27/2014] [Indexed: 01/10/2023] Open
Abstract
Purpose: The aim of our study was to assess the hemodynamic change of liver during the Valsalva maneuver using Doppler ultrasonography. Methods: Thirty healthy men volunteers were enrolled (mean age, 25.5±3.64 years). The diameter, minimal and maximal velocities, and volume flow of intrahepatic inferior vena cava (IVC), middle hepatic vein (MHV), and right main portal vein (RMPV) was measured during both rest and Valsalva maneuver. These changes were compared using paired t-test. Results: The mean diameters (cm) of the intrahepatic IVC at rest and Valsalva maneuver were 1.94±0.40 versus 0.56±0.66 (P<0.001). The mean diameter (cm), minimal velocity (cm/sec), maximal velocity (cm/sec), and volume flow (mL/min) of MHV at rest and Valsalva maneuver were 0.60±0.15 versus 0.38±0.20 (P<0.001), -7.98±5.47 versus 25.74±13.13 (P<0.001), 21.34±6.89 versus 35.12±19.95 (P=0.002), and 106.94±97.65 versus 153.90±151.80 (P=0.014), respectively. Those of RMPV at rest and Valsalva maneuver were 0.78±0.21 versus 0.76±0.20 (P=0.485), 20.21±8.22 versus 18.73±7.43 (P=0.351), 26.79±8.85 versus 24.93±9.91 (P=0.275), and 391.52±265.63 versus 378.43±239.36 (P=0.315), respectively. Conclusion: The blood flow velocity and volume flow of MHV increased significantly during Valsalva maneuver. These findings suggest that hepatic vein might play an important role to maintain venous return to the heart during the maneuver.
Collapse
Affiliation(s)
- Dong-Ho Bang
- Department of Radiology, Wonkwang University School of Medicine, Iksan, Korea
| | - Youngjun Son
- Department of Radiology, Wonkwang University School of Medicine, Iksan, Korea
| | - Young Hwan Lee
- Department of Radiology, Wonkwang University School of Medicine, Iksan, Korea
| | - Kwon-Ha Yoon
- Department of Radiology, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
44
|
Abstract
ZusammenfassungZu einer verlässlichen Standardisierung der diagnostischen Befunderhebung und der Befunddokumentation bei der farb-duplexsonographischen Untersuchung des Beinvenen-systems gehört eine einheitliche, standardisierte Patientenlagerung bei der Duplex-Untersuchung. Wir haben uns bemüht, spezielle Argumente für eine differenzierte duplexsonographische Untersuchung des Beinvenen-systems im Liegen gegenüber der routinemäßigen, ausschließlichen Untersuchung im Stehen darzustellen. Selbstverständlich wird man je nach diagnostischer Fragestellung oder Befund eine angepasste Wahl der Patientenlagerung – liegend, sitzend, stehend – vornehmen.Unseres Erachtens ist eine differenzierte, aufwändige Refluxdiagnostik die Domäne der Untersuchung im Liegen. Dies trifft auch für die Beurteilung des Krossenrezidivs zu. Da große, relevante Refluxwege mit der Untersuchung im Stehen üblicherweise ausreichend dargestellt und dokumentiert werden können, kann damit die Indikation für große varizenausschaltende Maßnahmen durchaus abgesichert werden.Bei der Untersuchung der Beinarterien ist die Waagerechtlagerung des Patienten soweit möglich für die Knöchelarteriendruckmes-sung obligat. Die Untersuchung des Lymph-gefäßsystems mit der hochauflösenden Duplexsonographie wurde nur gestreift, da es keine speziellen lagerungsbedingten Untersuchungsprobleme gibt.
Collapse
|
45
|
Perry BG, Lucas SJE, Thomas KN, Cochrane DJ, Mündel T. The effect of hypercapnia on static cerebral autoregulation. Physiol Rep 2014; 2:2/6/e12059. [PMID: 24973333 PMCID: PMC4208638 DOI: 10.14814/phy2.12059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypercapnia impairs cerebrovascular control during rapid changes in blood pressure (BP); however, data concerning the effect of hypercapnia on steady state, nonpharmacological increases in BP is scarce. We recruited fifteen healthy volunteers (mean ± SD: age, 28 ± 6 years; body mass, 77 ± 12 kg) to assess the effect of hypercapnia on cerebrovascular control during steady-state elevations in mean arterial BP (MAP), induced via lower body positive pressure (LBPP). Following 20 min of supine rest, participants completed 5 min of eucapnic 20 and 40 mm Hg LBPP (order randomized) followed by 5 min of hypercapnia (5% CO2 in air) with and without LBPP (order randomized), and each stage was separated by ≥5 min to allow for recovery. Middle cerebral artery blood velocity (MCAv), BP, partial pressure of end-tidal carbon dioxide (PETCO2) and heart rate were recorded and presented as the change from the preceding baseline. No difference in MCAv was apparent between eupcapnic baseline and LBPPs (grouped mean 65 ± 11 cm·s(-1), all P > 0.05), despite the increased MAP with LBPP (Δ6 ± 5 and Δ8 ± 3 mm Hg for 20 and 40 mm Hg, respectively, both P < 0.001 vs. baseline). Conversely, MCAv during the hypercapnic +40 mm Hg stage (Δ31 ± 13 cm·s(-1)) was greater than hypercapnia alone (Δ25 ± 11 cm·s(-1), P = 0.026), due to an increased MAP (Δ14 ± 7 mm Hg, P < 0.001 vs. hypercapnia alone and P = 0.026 vs. hypercapnia +20 mm Hg). As cardiac output and PETCO2 were similar across all hypercapnic stages (all P > 0.05), our findings indicate that hypercapnia impairs static autoregulation, such that higher blood pressures are translated into the cerebral circulation.
Collapse
Affiliation(s)
- Blake G Perry
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK Department of Physiology, University of Otago, Dunedin, New Zealand School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Kate N Thomas
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Darryl J Cochrane
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| |
Collapse
|
46
|
Faull OK, Cotter JD, Lucas SJE. Cerebrovascular responses during rowing: Do circadian rhythms explain morning and afternoon performance differences? Scand J Med Sci Sports 2014; 25:467-75. [DOI: 10.1111/sms.12273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
Affiliation(s)
- O. K. Faull
- School of Physical Education, Sport and Exercise Sciences; University of Otago; Dunedin New Zealand
- Nuffield Department of Clinical Neuroscience; University of Oxford; Oxford UK
| | - J. D. Cotter
- School of Physical Education, Sport and Exercise Sciences; University of Otago; Dunedin New Zealand
| | - S. J. E. Lucas
- Department of Physiology; University of Otago; Dunedin New Zealand
- School of Sport, Exercise & Rehabilitation Sciences; College of Life and Environmental Sciences; University of Birmingham; Birmingham UK
| |
Collapse
|
47
|
Castro PM, Santos R, Freitas J, Panerai RB, Azevedo E. Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects. J Appl Physiol (1985) 2014; 117:205-13. [PMID: 24925980 DOI: 10.1152/japplphysiol.00893.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of autonomic nervous system (ANS) in adapting cerebral blood flow (CBF) to arterial blood pressure (ABP) fluctuations [cerebral autoregulation (CA)] is still controversial. We aimed to study the repercussion of autonomic failure (AF) on dynamic CA during the Valsalva maneuver (VM). Eight AF subjects with familial amyloidotic polineuropahty (FAP) were compared with eight healthy controls. ABP and CBF velocity (CBFV) were measured continuously with Finapres and transcranial Doppler, respectively. Cerebrovascular response was evaluated by cerebrovascular resistance index (CVRi), critical closing pressure (CrCP), and resistance-area product (RAP) changes. Dynamic CA was derived from continuous estimates of autoregulatory index (ARI) [ARI(t)]. During phase II of VM, FAP subjects showed a more pronounced decrease in normalized CBFV (78 ± 19 and 111 ± 16%; P = 0.002), ABP (78 ± 19 and 124 ± 12%; P = 0.0003), and RAP (67 ± 17 and 89 ± 17%; P = 0.019) compared with controls. CrCP and CVRi increased similarly in both groups during strain. ARI(t) showed a biphasic variation in controls with initial increase followed by a decrease during phase II but in FAP this response was blunted (5.4 ± 3.0 and 2.0 ± 2.9; P = 0.033). Our data suggest that dynamic cerebral autoregulatory response is a time-varying phenomena during VM and that it is disturbed by autonomic dysfunction. This study also emphasizes the fact that RAP + CrCP model allowed additional insights into understanding of cerebral hemodynamics, showing a higher vasodilatory response expressed by RAP in AF and an equal CrCP response in both groups during the increased intracranial and intrathoracic pressure, while classical CVRi paradoxically suggests a cerebral vasoconstriction.
Collapse
Affiliation(s)
- Pedro M Castro
- Department Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal;
| | - Rosa Santos
- Department Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal
| | - João Freitas
- Autonomic Unit, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal; and
| | - Ronney B Panerai
- Department of Cardiovascular Sciences and Biomedical Research Unit, University of Leicester, Leicester, United Kingdom
| | - Elsa Azevedo
- Department Neurology, São João Hospital Center, Faculty of Medicine of University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Nonstationarity of dynamic cerebral autoregulation. Med Eng Phys 2014; 36:576-84. [DOI: 10.1016/j.medengphy.2013.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/23/2013] [Accepted: 09/04/2013] [Indexed: 11/18/2022]
|
49
|
PERRY BLAKEG, SCHLADER ZACHARYJ, BARNES MATTHEWJ, COCHRANE DARRYLJ, LUCAS SAMUELJE, MüNDEL TOBY. Hemodynamic Response to Upright Resistance Exercise. Med Sci Sports Exerc 2014; 46:479-87. [DOI: 10.1249/mss.0b013e3182a7980f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Perry BG, Mündel T, Cochrane DJ, Cotter JD, Lucas SJE. The cerebrovascular response to graded Valsalva maneuvers while standing. Physiol Rep 2014; 2:e00233. [PMID: 24744902 PMCID: PMC3966248 DOI: 10.1002/phy2.233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/02/2022] Open
Abstract
The Valsalva maneuver (VM) produces large and abrupt increases in mean arterial pressure (MAP) at the onset of strain (Phase I), however, hypotension, sufficient to induce syncope, occurs upon VM release (phase III). We examined the effect of VM intensity and duration on middle cerebral artery blood velocity (MCAv) responses. Healthy men (n =10; mean ± SD: 26 ± 4 years) completed 30%, 60%, and 90% of their maximal VM mouth pressure, for 5 and 10 sec (order randomized) while standing. Beat‐to‐beat MCAv and MAP during phase I (peak), at nadir (phase III), and recovery are reported as the change from standing baseline. During phase I, MCAv rose 15 ± 6 cm·s−1 (P <0.001), which was not reliably different between intensities (P =0.11), despite graded increases in MAP (P <0.001; e.g., +12 ± 9 mmHg vs. +35 ± 14 for 5 sec 30% and 90% VM, respectively). During Phase III, the MCAv response was duration‐ (P = 0.045) and intensity dependent (P < 0.001), with the largest decrease observed following the 90% VM (e.g., −19 ± 13 and −15 ± 11 cm·s−1 for 5 and 10 sec VM, respectively) with a concomitant decrease in MAP (P <0.001, −23 ± 11 and −23 ± 9 mmHg). This asymmetric response may be attributable to the differential modulators of MCAv throughout the VM. The mechanical effects of the elevated intrathoracic pressure during phase I may restrain increases in cerebral perfusion via related increases in intracranial pressure; however, during phase III the decrease in MCAv arises from an abrupt hypotension, the extent of which is dependent upon both the duration and intensity of the VM. More intense Valsalva maneuvers when standing are associated with an increase blood pressure response during Phase I of the maneuver although this is not accompanied by changes in cerebral blood flow. However, following the maneuver (phase III) more intense straining is associated with a greater decrease in both blood pressure and cerebral blood flow and in some instances is sufficient to induce syncope.
Collapse
Affiliation(s)
- Blake G Perry
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - Darryl J Cochrane
- School of Sport and Exercise, Massey University, Palmerston North, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J E Lucas
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand ; Department of Physiology, University of Otago, Dunedin, New Zealand ; School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|