1
|
Ding H, Jiang M, Chan AM, Xia Y, Ma RCW, Yao X, Wang L, Huang Y. Targeting the tyrosine kinase Src in endothelium attenuates inflammation and atherogenesis induced by disturbed flow. Br J Pharmacol 2024. [PMID: 39117589 DOI: 10.1111/bph.17307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that Src can regulate inflammation and tumour progression. However, the mechanisms by which Src regulates the inflammatory response of vascular endothelium and atherogenesis are currently poorly understood. This study aimed to investigate the role of Src in endothelial inflammation and atherogenesis, as well as the underlying mechanisms. EXPERIMENTAL APPROACH Real-time quantitative PCR was used to measure the mRNA levels of inflammatory genes. The phosphorylation and localization of proteins were examined using western blotting and immunofluorescence, respectively. The level of p-Src Y416 in mouse endothelium was directly determined using en face staining. Endothelial-specific knockdown of Src was achieved by tail vein injection of AAV-sgSrc in ApoE-/-; Cas9LSL/LSL; Cdh5-cre mice. Atherosclerosis was induced by partial ligation of the carotid artery. KEY RESULTS Oscillatory shear stress (OSS) promotes the phosphorylation of Src at Y416 in endothelial cells, and Piezo1 is required for this regulatory process. Overexpression of constitutively active Src promotes endothelial inflammation, as well as phosphorylation of Stat3 (at Y705) and its nuclear translocation. Endothelial inflammation induced by OSS was abolished by the Src inhibitor dasatinib or si-Src. Dasatinib, when administered orally, reduced endothelial inflammation and plaque formation in ApoE-/- mice induced by partial carotid artery ligation. Additionally, plaque formation was decreased in the ligated left carotid artery of mice with endothelial-specific Src knockdown. CONCLUSION AND IMPLICATIONS Disturbed flow promotes endothelial inflammation and atherogenesis through the Piezo1-Src-Stat3 pathway. Therefore, inhibiting Src in endothelial cells could be a promising therapeutic strategy to treat atherogenesis.
Collapse
Affiliation(s)
- Huanyu Ding
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Minchun Jiang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrew M Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Giardinelli S, Meliota G, Mentino D, D’Amato G, Faienza MF. Molecular Basis of Cardiomyopathies in Type 2 Diabetes. Int J Mol Sci 2024; 25:8280. [PMID: 39125850 PMCID: PMC11313011 DOI: 10.3390/ijms25158280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.
Collapse
Affiliation(s)
- Silvia Giardinelli
- Department of Medical Sciences, Pediatrics, University of Ferrara, 44121 Ferrara, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy;
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Gabriele D’Amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
3
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
4
|
Role of c-Src and reactive oxygen species in cardiovascular diseases. Mol Genet Genomics 2023; 298:315-328. [PMID: 36700976 DOI: 10.1007/s00438-023-01992-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Oxidative stress, caused by the over production of oxidants or inactivity of antioxidants, can modulate the redox state of several target proteins such as tyrosine kinases, mitogen-activated protein kinases and tyrosine phosphatases. c-Src is one such non-receptor tyrosine kinase which activates NADPH oxidases (Noxs) in response to various growth factors and shear stress. Interaction between c-Src and Noxs is influenced by cell type and primary messengers such as angiotensin II, which binds to G-protein coupled receptor and activates the intracellular signaling cascade. c-Src stimulated activation of Noxs results in elevated release of intracellular and extracellular reactive oxygen species (ROS). These ROS species disturb vascular homeostasis and cause cardiac hypertrophy, coronary artery disease, atherosclerosis and hypertension. Interaction between c-Src and ROS in the pathobiology of cardiac fibrosis is hypothesized to be influenced by cell type and stimuli. c-Src and ROS have a bidirectional relationship, thus increased ROS levels due to c-Src mediated activation of Noxs can further activate c-Src by promoting the oxidation and sulfenylation of critical cysteine residues. This review highlights the role of c-Src and ROS in mediating downstream signaling pathways underlying cardiovascular diseases. Furthermore, due to the central role of c-Src in activation of various signaling proteins involved in differentiation, migration, proliferation, and cytoskeletal reorganization of vascular cells, it is presented as therapeutic target for treating cardiovascular diseases except cardiac fibrosis.
Collapse
|
5
|
Di Pietrantonio N, Di Tomo P, Mandatori D, Formoso G, Pandolfi A. Diabetes and Its Cardiovascular Complications: Potential Role of the Acetyltransferase p300. Cells 2023; 12:431. [PMID: 36766773 PMCID: PMC9914144 DOI: 10.3390/cells12030431] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes has been shown to accelerate vascular senescence, which is associated with chronic inflammation and oxidative stress, both implicated in the development of endothelial dysfunction. This condition represents the initial alteration linking diabetes to related cardiovascular (CV) complications. Recently, it has been hypothesised that the acetyltransferase, p300, may contribute to establishing an early vascular senescent phenotype, playing a relevant role in diabetes-associated inflammation and oxidative stress, which drive endothelial dysfunction. Specifically, p300 can modulate vascular inflammation through epigenetic mechanisms and transcription factors acetylation. Indeed, it regulates the inflammatory pathway by interacting with nuclear factor kappa-light-chain-enhancer of activated B cells p65 subunit (NF-κB p65) or by inducing its acetylation, suggesting a crucial role of p300 as a bridge between NF-κB p65 and the transcriptional machinery. Additionally, p300-mediated epigenetic modifications could be upstream of the activation of inflammatory cytokines, and they may induce oxidative stress by affecting the production of reactive oxygen species (ROS). Because several in vitro and in vivo studies shed light on the potential use of acetyltransferase inhibitors, a better understanding of the mechanisms underlying the role of p300 in diabetic vascular dysfunction could help in finding new strategies for the clinical management of CV diseases related to diabetes.
Collapse
Affiliation(s)
- Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Gloria Formoso
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 2021; 134:2707-2727. [PMID: 33095237 DOI: 10.1042/cs20191209] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Arachidonic acid can be metabolized in blood vessels by three primary enzymatic pathways; cyclooxygenase (COX), lipoxygenase (LO), and cytochrome P450 (CYP). These eicosanoid metabolites can influence endothelial and vascular smooth muscle cell function. COX metabolites can cause endothelium-dependent dilation or constriction. Prostaglandin I2 (PGI2) and thromboxane (TXA2) act on their respective receptors exerting opposing actions with regard to vascular tone and platelet aggregation. LO metabolites also influence vascular tone. The 12-LO metabolite 12S-hydroxyeicosatrienoic acid (12S-HETE) is a vasoconstrictor whereas the 15-LO metabolite 11,12,15-trihydroxyeicosatrienoic acid (11,12,15-THETA) is an endothelial-dependent hyperpolarizing factor (EDHF). CYP enzymes produce two types of eicosanoid products: EDHF vasodilator epoxyeicosatrienoic acids (EETs) and the vasoconstrictor 20-HETE. The less-studied cross-metabolites generated from arachidonic acid metabolism by multiple pathways can also impact vascular function. Likewise, COX, LO, and CYP vascular eicosanoids interact with paracrine and hormonal factors such as the renin-angiotensin system and endothelin-1 (ET-1) to maintain vascular homeostasis. Imbalances in endothelial and vascular smooth muscle cell COX, LO, and CYP metabolites in metabolic and cardiovascular diseases result in vascular dysfunction. Restoring the vascular balance of eicosanoids by genetic or pharmacological means can improve vascular function in metabolic and cardiovascular diseases. Nevertheless, future research is necessary to achieve a more complete understanding of how COX, LO, CYP, and cross-metabolites regulate vascular function in physiological and pathological states.
Collapse
|
7
|
Gurung AB, Borah P, Bhattacharjee A. Data-mining technique identifies potential target proteins playing a dual role in inflammation and oxidative stress pathways in relation to atherosclerosis plaque development. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Lysine acetyltransferases and lysine deacetylases as targets for cardiovascular disease. Nat Rev Cardiol 2019; 17:96-115. [DOI: 10.1038/s41569-019-0235-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2019] [Indexed: 12/28/2022]
|
9
|
Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol Ther 2019; 196:15-43. [PMID: 30439455 PMCID: PMC6450782 DOI: 10.1016/j.pharmthera.2018.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the principal cause of cardiovascular death worldwide, is a pathological disease characterized by fibro-proliferation, chronic inflammation, lipid accumulation, and immune disorder in the vessel wall. As the atheromatous plaques develop into advanced stage, the vulnerable plaques are prone to rupture, which causes acute cardiovascular events, including ischemic stroke and myocardial infarction. Emerging evidence has suggested that atherosclerosis is also an epigenetic disease with the interplay of multiple epigenetic mechanisms. The epigenetic basis of atherosclerosis has transformed our knowledge of epigenetics from an important biological phenomenon to a burgeoning field in cardiovascular research. Here, we provide a systematic and up-to-date overview of the current knowledge of three distinct but interrelated epigenetic processes (including DNA methylation, histone methylation/acetylation, and non-coding RNAs), in atherosclerotic plaque development and instability. Mechanistic and conceptual advances in understanding the biological roles of various epigenetic modifiers in regulating gene expression and functions of endothelial cells (vascular homeostasis, leukocyte adhesion, endothelial-mesenchymal transition, angiogenesis, and mechanotransduction), smooth muscle cells (proliferation, migration, inflammation, hypertrophy, and phenotypic switch), and macrophages (differentiation, inflammation, foam cell formation, and polarization) are discussed. The inherently dynamic nature and reversibility of epigenetic regulation, enables the possibility of epigenetic therapy by targeting epigenetic "writers", "readers", and "erasers". Several Food Drug Administration-approved small-molecule epigenetic drugs show promise in pre-clinical studies for the treatment of atherosclerosis. Finally, we discuss potential therapeutic implications and challenges for future research involving cardiovascular epigenetics, with an aim to provide a translational perspective for identifying novel biomarkers of atherosclerosis, and transforming precision cardiovascular research and disease therapy in modern era of epigenetics.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou 510520, China
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
10
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
11
|
Kuwata H, Yuzurihara C, Kinoshita N, Taki Y, Ikegami Y, Washio S, Hirakawa Y, Yoda E, Aiuchi T, Itabe H, Nakatani Y, Hara S. The group VIA calcium‐independent phospholipase A
2
and NFATc4 pathway mediates IL‐1β‐induced expression of chemokines CCL2 and CXCL10 in rat fibroblasts. FEBS J 2018; 285:2056-2070. [DOI: 10.1111/febs.14462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroshi Kuwata
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Chihiro Yuzurihara
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Natsumi Kinoshita
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yuki Taki
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yuki Ikegami
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Sana Washio
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Yushi Hirakawa
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Emiko Yoda
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry Department of Molecular Biology School of Pharmacy Showa University Tokyo Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry Department of Molecular Biology School of Pharmacy Showa University Tokyo Japan
| | - Yoshihito Nakatani
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| | - Shuntaro Hara
- Division of Health Chemistry Department of Healthcare and Regulatory Sciences School of Pharmacy Showa University Tokyo Japan
| |
Collapse
|
12
|
Lim SG, Kim JK, Suk K, Lee WH. Crosstalk between signals initiated from TLR4 and cell surface BAFF results in synergistic induction of proinflammatory mediators in THP-1 cells. Sci Rep 2017; 7:45826. [PMID: 28374824 PMCID: PMC5379196 DOI: 10.1038/srep45826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/06/2017] [Indexed: 12/21/2022] Open
Abstract
Cellular response to stimulation is mediated by meshwork of signaling pathways that may share common signaling adaptors. Here, we present data demonstrating that signaling pathways initiated from the membrane-bound form of B-cell activating factor (BAFF) can crosstalk with lipopolysaccharide (LPS)-induced signaling for synergistic expression of proinflammatory mediators in the human macrophage-like cell line THP-1. Co-treatment of the cells with BAFF-specific monoclonal antibody and LPS resulted in enhanced mitogen-activated protein kinase (MAPK)/mitogen- and stress-activated protein kinase (MSK)-mediated phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 subunit (Ser276), which then interacts with CREB binding protein (CBP) for subsequent acetylation. Simultaneously, the phosphorylation of cyclic AMP-response element binding protein (CREB) was enhanced through the combined action of phosphatidylinositol-3-kinase (PI3K)/AKT and MAPK/MSK pathways, and the resulting phospho-CREB interacted with the NF-κB/CBP complex. Transfection of CREB-specific siRNA inhibited the BAFF-mediated enhancing effect indicating that the formation of the CREB/NF-κB/CBP complex is required for the synergistic induction of the proinflammatory genes. These findings indicate that BAFF-mediated reverse signaling can modulate LPS-induced inflammatory activation through regulation of NF-κB and CREB activity and point out the necessity to re-evaluate the role of BAFF in diseases where its expression is high in macrophages.
Collapse
Affiliation(s)
- Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Kwan Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science &Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
13
|
Thiagarajan D, Vedantham S, Ananthakrishnan R, Schmidt AM, Ramasamy R. Mechanisms of transcription factor acetylation and consequences in hearts. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:2221-2231. [PMID: 27543804 PMCID: PMC5159280 DOI: 10.1016/j.bbadis.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/12/2016] [Accepted: 08/14/2016] [Indexed: 01/06/2023]
Abstract
Acetylation of proteins as a post-translational modification is gaining rapid acceptance as a cellular control mechanism on par with other protein modification mechanisms such as phosphorylation and ubiquitination. Through genetic manipulations and evolving proteomic technologies, identification and consequences of transcription factor acetylation is beginning to emerge. In this review, we summarize the field and discuss newly unfolding mechanisms and consequences of transcription factor acetylation in normal and stressed hearts. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | | | - Radha Ananthakrishnan
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, NYU Langone Medical Center, NY, New York 10016, United States.
| |
Collapse
|
14
|
Ahmadzadeh-Amiri A, Ahmadzadeh-Amiri A. Epigenetic Diabetic Vascular Complications. JOURNAL OF PEDIATRICS REVIEW 2016. [DOI: 10.17795/jpr-3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Li X, Li C, Sun G. Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res 2016; 2016:4065382. [PMID: 27379253 PMCID: PMC4917685 DOI: 10.1155/2016/4065382] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
Diabetic nephropathy (DN) remains a leading cause of mortality worldwide despite advances in its prevention and management. A comprehensive understanding of factors contributing to DN is required to develop more effective therapeutic options. It is becoming more evident that histone acetylation (HAc), as one of the epigenetic mechanisms, is thought to be associated with the etiology of diabetic vascular complications such as diabetic retinopathy (DR), diabetic cardiomyopathy (DCM), and DN. Histone acetylases (HATs) and histone deacetylases (HDACs) are the well-known regulators of reversible acetylation in the amino-terminal domains of histone and nonhistone proteins. In DN, however, the roles of histone acetylation (HAc) and these enzymes are still controversial. Some new evidence has revealed that HATs and HDACs inhibitors are renoprotective in cellular and animal models of DN, while, on the other hand, upregulation of HAc has been implicated in the pathogenesis of DN. In this review, we focus on the recent advances on the roles of HAc and their covalent enzymes in the development and progression of DN in certain cellular processes including fibrosis, inflammation, hypertrophy, and oxidative stress and discuss how targeting these enzymes and their inhibitors can ultimately lead to the therapeutic approaches for treating DN.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chaoyuan Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guangdong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun 130041, China
- *Guangdong Sun:
| |
Collapse
|
16
|
Peroxiredoxin 6 triggers melanoma cell growth by increasing arachidonic acid-dependent lipid signalling. Biochem J 2015; 471:267-79. [PMID: 26285655 DOI: 10.1042/bj20141204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 08/18/2015] [Indexed: 01/02/2023]
Abstract
Tumour cells are reported to display an imbalance in the levels of ROS (reactive oxygen species). Frequently, elevated ROS production goes along with compensatory up-regulation of antioxidant enzymes. Accordingly, we found in a previous study that protein levels of several peroxiredoxins, including PRDX6 (peroxiredoxin 6), are highly elevated in experimentally induced melanomas. In the present study, we investigated the functional role of PRDX6 in human melanoma cells. PRDX6 is a bifunctional enzyme, which harbours iPLA2 (Ca(2+)-independent phospholipase A2) activity in addition to its peroxidase function. Our results show that PRDX6 is strongly expressed in most melanoma cells and its expression levels are maintained in a post-transcriptional manner, particularly by EGFR (epidermal growth factor receptor)-dependent signalling. PRDX6 enhances cell viability mainly by enhancing proliferation, which goes along with activation of Src family kinases. Interestingly, we were able to show that the phospholipase activity of the enzyme mediates the pro-proliferative effect of PRDX6. We identified AA (arachidonic acid) as a crucial effector of PRDX6-dependent proliferation and inducer of Src family kinase activation. These results support further the biological importance of the emerging field of lipid signalling in melanoma and highlight the particular functional relevance of PRDX6-dependent phospholipase activity.
Collapse
|
17
|
Abstract
Diabetic vascular complications (DVCs) affecting several important organ systems of human body such as cardiovascular system contribute a major public health problem. Genetic factors contribute to the risk of diabetic nephropathy (DN). Genetics variants, structural variants (copy number variation) and epigenetic changes play important roles in the development of DN. Apart from nucleus genome, mitochondrial DNA (mtDNA) plays critical roles in regulation of development of DN. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. This review focused on the current knowledge of the genetic and epigenetic basis of DN. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributed to risk or protection of DN will benefit uncovering the complex mechanism underlying DN, with crucial implications for the development of personalized medicine to diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Zi-Hui Tang
- Department of Endocrinology and Metabolism, Shanghai Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | | | | |
Collapse
|
18
|
Kim HY, Cha HJ, Choi JH, Kang YJ, Park SY, Kim HS. CCL5 Inhibits Elevation of Blood Pressure and Expression of Hypertensive Mediators in Developing Hypertension State Spontaneously Hypertensive Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.4167/jbv.2015.45.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hye Ju Cha
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Jin Hee Choi
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Hee Sun Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
19
|
Tang ZH, Wang L, Zeng F, Zhang K. Human genetics of diabetic retinopathy. J Endocrinol Invest 2014; 37:1165-74. [PMID: 25201002 DOI: 10.1007/s40618-014-0172-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/25/2014] [Indexed: 01/03/2023]
Abstract
There is evidence demonstrating that genetic factors contribute to the risk of diabetic retinopathy (DR). Genetics variants, structural variants (copy number variation, CNV) and epigenetic changes play important roles in the development of DR. Genetic linkage and association studies have uncovered a number of genetic loci and common genetic variants susceptibility to DR. CNV and interactions of gene by environment have also been detected by association analysis. Apart from nucleus genome, mitochondrial DNA plays critical roles in regulation of development of DR. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Identification of genetic variants and epigenetic changes contributed to risk or protection of DR will benefit uncovering the complex mechanism underlying DR. This review focused on the current knowledge of the genetic and epigenetic basis of DR.
Collapse
Affiliation(s)
- Z-H Tang
- Department of Endocrinology and Metabolism, Shanghai Tongji Hospital, Tongji University School of Medicine, Room 517 Building 2nd, NO. 389 Xincun Road, Shanghai, 200063, China,
| | | | | | | |
Collapse
|
20
|
Wegner M, Neddermann D, Piorunska-Stolzmann M, Jagodzinski PP. Role of epigenetic mechanisms in the development of chronic complications of diabetes. Diabetes Res Clin Pract 2014; 105:164-75. [PMID: 24814876 DOI: 10.1016/j.diabres.2014.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/13/2014] [Accepted: 03/22/2014] [Indexed: 12/24/2022]
Abstract
There is growing evidence that epigenetic regulation of gene expression including post-translational histone modifications (PTHMs), DNA methylation and microRNA (miRNA)-regulation of mRNA translation could play a crucial role in the development of chronic, diabetic complications. Hyperglycemia can induce an abnormal action of PTHMs and DNA methyltransferases as well as alter the levels of numerous miRNAs in endothelial cells, vascular smooth muscle cells, cardiomyocytes, retina, and renal cells. These epigenetic abnormalities result in changes in the expression of numerous genes contributing to effects such as development of chronic inflammation, impaired clearance of reactive oxygen species (ROS), endothelial cell dysfunction and/or the accumulation of extracellular matrix in the kidney, which causing the development of retinopathy, nephropathy or cardiomyopathy. Some epigenetic modifications, for example PTHMs and DNA methylation, become irreversible over time. Therefore, these processes have gained much attention in explaining the long-lasting detrimental consequences of hyperglycaemia causing the development of chronic complications even after improved glycaemic control is achieved. Our review suggests that the treatment of chronic complications should focus on erasing metabolic memory by targeting chromatin modification enzymes and by restoring miRNA levels.
Collapse
Affiliation(s)
- Malgorzata Wegner
- Lipid Metabolism Laboratory, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland.
| | - Daniel Neddermann
- Novartis Pharma AG, Drug Metabolism and Pharmacokinetics, Postfach, 4002 Basel, Switzerland
| | - Maria Piorunska-Stolzmann
- Department of Clinical Biochemistry and Laboratory Medicine, Chair of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
| | - Pawel P Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781 Poznan, Poland
| |
Collapse
|
21
|
Wang ZW, Wu HB, Mao ZF, Hu XP, Zhang H, Hu ZP, Ren ZL. In vitro selection and identification of ssDNA aptamers recognizing the Ras protein. Mol Med Rep 2014; 10:1481-8. [PMID: 24938205 DOI: 10.3892/mmr.2014.2337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/04/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to develop high-affinity single-stranded DNA (ssDNA) aptamers that can selectively recognize the protein Ras and can be used as preventive and therapeutic agents for restenosis occurring after coronary surgery or angioplasty. For this purpose, we used the systematic evolution of ligands by exponential enrichment (SELEX) technique, also known as in vitro selection. Using this technique, ssDNA aptamers recognizing the Ras protein were obtained from a synthesized random ssDNA library in vitro. The binding rate and affinity of each aptamer pool, isolated in successive rounds of selection, were measured using ELISA, and the finally selected aptamer pool was cloned and sequenced. The binding affinities of each aptamer in this pool were measured. Their primary and secondary structures were analyzed using the DNAMAN 5.29 software, and the relationship between these structures and corresponding binding affinities was analyzed. The rate of aptamer pool binding to the Ras protein gradually increased from 2.4 to 34.5% along the selection process. Optical density (OD) and equilibrium dissociation constant (Kd) measurements showed that OD gradually increased from 0.220 to 1.080 and Kd decreased from 51.5 to 18.3 nM. The 11th pool of aptamers was selected based on these analyses, and cloning and sequencing of individual aptamers was performed. Secondary structure analysis revealed different conformations, but of a single type: stem‑loop. The aptamer Ra1 showed the highest affinity, with a measured OD of 1.213 and an estimated Kd of 15.3 nM. The binding affinity of the aptamer Ra1 to Ras was dose-dependent. In conclusion, high‑affinity ssDNA aptamers recognizing the Ras protein have been successfully selected. These aptamers may serve in the future as preventive and/or therapeutic agents for restenosis occurring after coronary surgery or angioplasty.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong-Bing Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Fu Mao
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Ping Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Peng Hu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zong-Li Ren
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
22
|
Zeng J, Chen B. Epigenetic mechanisms in the pathogenesis of diabetic retinopathy. Ophthalmologica 2014; 232:1-9. [PMID: 24714375 DOI: 10.1159/000357824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022]
Abstract
Diabetic retinopathy (DR), which arises as a result of an increasing incidence of diabetes mellitus, has gradually become a common disease. Due to its complex pathogenesis, the treatment means of DR are very limited. The findings of several studies have shown that instituting tight glycemic control in diabetic patients does not immediately benefit the progression of retinopathy, and the benefits of good control persist beyond the period of good glycemic control. This has led to the concept of persistent epigenetic changes. Epigenetics has now become an increasingly important area of biomedical research. Recently, important roles of various epigenetic mechanisms have been identified in the pathogenesis of diabetes and its complications. The aim of this review is to provide an overview of the epigenetics and epigenetic mechanisms in diabetes and diabetes complications, and the focus is on the emerging evidence for aberrant epigenetic mechanisms in DR.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha City, PR China
| | | |
Collapse
|
23
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
24
|
|
25
|
Son JE, Hwang MK, Lee E, Seo SG, Kim JE, Jung SK, Kim JR, Ahn GH, Lee KW, Lee HJ. Persimmon peel extract attenuates PDGF-BB-induced human aortic smooth muscle cell migration and invasion through inhibition of c-Src activity. Food Chem 2013; 141:3309-16. [DOI: 10.1016/j.foodchem.2013.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 01/14/2023]
|
26
|
Chen H, Li J, Jiao L, Petersen RB, Li J, Peng A, Zheng L, Huang K. Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol 2013; 592:505-21. [PMID: 24247978 DOI: 10.1113/jphysiol.2013.266411] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy is the primary cause of end-stage renal disease. Increasing numbers of patients are suffering from this disease and therefore novel medications and therapeutic approaches are urgently needed. Here, we investigated whether apelin-13, the most active member of the adipokine apelin group, could effectively suppress the development of nephropathy in Akita mouse, a spontaneous type 1 diabetic model. Apelin-13 treatment decreased diabetes-induced glomerular filtration rate, proteinuria, glomerular hypertrophy, mesangial expansion and renal inflammation. The inflammatory factors, activation of NF-κB, histone acetylation and the enzymes involved in histone acetylation were further examined in diabetic kidneys and high glucose- or sodium butyrate-treated mesangial cells in the presence or absence of apelin-13. Apelin-13 treatment inhibited diabetes-, high glucose- and NaB-induced elevation of inflammatory factors, and histone hyperacetylation by upregulation of histone deacetylase 1. Furthermore, overexpression of apelin in mesangial cells induced histone deacetylation under high glucose condition. Thus, apelin-13 may be a novel therapeutic candidate for treatment of diabetic nephropathy via regulation of histone acetylation.
Collapse
Affiliation(s)
- Hong Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Kun Huang: Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Guo J, Li L, Wu YJ, Yan Y, Xu XN, Wang SB, Yuan TY, Fang LH, Du GH. Inhibitory Effects of Brazilin on the Vascular Smooth Muscle Cell Proliferation and Migration Induced by PDGF-BB. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:1283-96. [DOI: 10.1142/s0192415x13500869] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) proliferation and migration contribute to the pathogenesis of vascular diseases including atherosclerosis and restenosis. Brazilin isolated from the heartwood of Caesalpinia sappan L. has been reported to exhibit various biological activities, such as anti-platelet aggregation, anti-inflammation, vasorelaxation and pro-apoptosis. However, the functional effects of Brazilin on VSMCs remain unexplored. The present study investigated the potential effects of Brazilin on platelet-derived growth factor (PDGF)-BB induced VSMC proliferation and migration as well as the underlying mechanism of action. VSMC proliferation and migration were measured by Crystal Violet Staining, wound-healing and Boyden chamber assays, respectively. Cell cycle was analyzed by flow cytometry. Enzymatic action of matrix metalloproteinase-9 (MMP-9) was carried out by gelatin zymography. Expression of adhesion molecules, cell cycle regulatory proteins, the phosphorylated levels of PDGF receptor β (PDGF-Rβ), Src, extracellular signal regulated kinase (ERK) and Akt were tested by immunoblotting. The present study demonstrated that pretreatment with Brazilin dose-dependently inhibited PDGF-BB stimulated VSMC proliferation and migration, which were associated with a cell-cycle arrest at G0/G1 phase, a reduction in the adhesion molecule expression and MMP-9 activation in VSMCs. Furthermore, the increase in PDGF-Rβ, Src, ERK1/2 and Akt phosphorylation induced by PDGF-BB were suppressed by Brazilin. These findings indicate that Brazilin inhibits PDGF-BB induced VSMC proliferation and migration, and the inhibitory effects of Brazilin may be associated with the blockade of PDGF-Rβ - ERK1/2 and Akt signaling pathways. In conclusion, the present study implicates that Brazilin may be useful as an anti-proliferative agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Yu-Jie Wu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu Yan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Na Xu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shou-Bao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| | - Tian-Yi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lian-Hua Fang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing 100050, China
| |
Collapse
|
28
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
29
|
Abstract
Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.
Collapse
|
30
|
Zhang HJ, Sun CH, Kuang HY, Jiang XY, Liu HL, Hua WF, Liu ZJ, Zhou H, Sui H, Qi R. 12S-hydroxyeicosatetraenoic acid levels link to coronary artery disease in Type 2 diabetic patients. J Endocrinol Invest 2013; 36:385-9. [PMID: 23095287 DOI: 10.3275/8654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND 12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE) is a metabolite of arachidonic acid. 12(S)-HETE is involved in the pathogenesis of atherosclerosis and diabetes. However, the correlation between 12(S)-HETE and coronary artery disease (CAD) in the diabetic patient is unclear. AIMS The study investigated the relationship between 12(S)-HETE and CAD in Type 2 diabetes (T2D). METHODS Plasma 12(S)- HETE levels were detected by enzyme-linked immunosorbent assay in 103 healthy controls (control), 109 diabetic patients without CAD (diabetic), and 152 diabetic patients with CAD (diabetic-CAD). RESULTS 12(S)-HETE levels were higher in both diabetic and diabetic-CAD groups compared to control and in the diabetic-CAD group compared to the diabetic group. In the multiple linear stepwise regression analysis, 12(S)-HETE levels correlated independently with CAD, systolic blood pressure, and glycated hemoglobin. CONCLUSIONS These results indicate that 12(S)-HETE levels are increased in diabetic patients with CAD, suggesting a role for atherosclerosis in T2D.
Collapse
Affiliation(s)
- H J Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Findeisen HM, Kahles FK, Bruemmer D. Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Curr Atheroscler Rep 2013; 15:319. [PMID: 23630979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Epigenetics involve heritable and acquired changes in gene transcription that occur independently of the DNA sequence. Epigenetic mechanisms constitute a hierarchic upper-level of transcriptional control through complex modifications of chromosomal components and nuclear structures. These modifications include, for example, DNA methylation or post-translational modifications of core histones; they are mediated by various chromatin-modifying enzymes; and ultimately they define the accessibility of a transcriptional complex to its target DNA. Integrating epigenetic mechanisms into the pathophysiologic concept of complex and multifactorial diseases such as atherosclerosis may significantly enhance our understanding of related mechanisms and provide promising therapeutic approaches. Although still in its infancy, intriguing scientific progress has begun to elucidate the role of epigenetic mechanisms in vascular biology, particularly in the control of smooth muscle cell phenotypes. In this review, we will summarize epigenetic pathways in smooth muscle cells, focusing on mechanisms involved in the regulation of vascular remodeling.
Collapse
Affiliation(s)
- Hannes M Findeisen
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, RWTH Aachen, Pauwelstr. 30, 52074 Aachen, Germany.
| | | | | |
Collapse
|
32
|
Abstract
Diabetes and metabolic disorders are leading causes of micro- and macrovascular complications. Furthermore, efforts to treat these complications are hampered by metabolic memory, a phenomenon in which prior exposure to hyperglycemia predisposes diabetic patients to the continued development of vascular diseases despite subsequent glycemic control. Persistently increased levels of oxidant stress and inflammatory genes are key features of these pathologies. Biochemical and molecular studies showed that hyperglycemia induced activation of NF-κB, signaling and actions of advanced glycation end products and other inflammatory mediators play key roles in the expression of pathological genes. In addition, epigenetic mechanisms such as posttranslational modification of histones and DNA methylation also play central roles in gene regulation by affecting chromatin structure and function. Recent studies have suggested that dysregulation of such epigenetic mechanisms may be involved in metabolic memory leading to persistent changes in the expression of genes associated with diabetic vascular complications. Further exploration of these mechanisms by also taking advantages of recent advances in high throughput epigenomics technologies will greatly increase our understanding of epigenetic variations in diabetes and its complications. This in turn can lead to the development of novel new therapies.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | | |
Collapse
|
33
|
Stavniichuk R, Obrosov AA, Drel VR, Nadler JL, Obrosova IG, Yorek MA. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. ACTA ACUST UNITED AC 2013; 3. [PMID: 24175152 DOI: 10.4236/jdm.2013.33015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. METHODS To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in 5.5 mM or 30 mM glucose with or without CDC. RESULTS 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. CONCLUSION 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA
| | | | | | | | | | | |
Collapse
|
34
|
Tsapenko MV, d'Uscio LV, Grande JP, Croatt AJ, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Increased production of superoxide anion contributes to dysfunction of the arteriovenous fistula. Am J Physiol Renal Physiol 2012; 303:F1601-7. [PMID: 22993073 PMCID: PMC3532470 DOI: 10.1152/ajprenal.00449.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022] Open
Abstract
Vascular access dysfunction causes morbidity in hemodialysis patients. This study examined the generation and pathobiological significance of superoxide anion in a rat femoral arteriovenous fistula (AVF). One week after AVF creation, there was increased production of superoxide anion accompanied by decreased total superoxide dismutase (SOD) and Cu/Zn SOD activities and induction of the redox-sensitive gene heme oxygenase-1. Immunohistochemical studies of nitrotyrosine formation demonstrated that peroxynitrite, a product of superoxide anion and nitric oxide, was present in increased amounts in endothelial and smooth muscle cells in the AVF. Because uncoupled NOS isoforms generate superoxide anion, and NOS coupling requires tetrahydrobiopterin (BH(4)) as a cofactor, we assessed NOS uncoupling by determining the ratio of BH(4) to dihydrobiopterin (BH(2)); the BH(4)-to-BH(2) ratio was markedly attenuated in the AVF. Because Src is a vasculopathic signaling species upstream and downstream of superoxide anion, such expression was evaluated; expression of Src and phosphorylated Src was both markedly increased in the AVF. Expression of NADPH oxidase (NOX) 1, NOX2, NOX4, cyclooxygenase (COX) 1, COX2, p47(phox), and p67(phox) was all unchanged, as assessed by Western analyses, thereby suggesting that these proteins may not be involved in increased production of superoxide anion. Finally, administration of tempol, a superoxide anion scavenger, decreased neointima formation in the juxta-anastomotic venous segment and improved AVF blood flow. We conclude that the AVF exhibits increased superoxide anion generation that may reflect the combined effects of decreased scavenging by SOD and increased generation by uncoupled NOS, and that enhanced superoxide anion production promotes juxta-anastomotic stenosis and impairs AVF function.
Collapse
|
35
|
|
36
|
Leonarduzzi G, Gamba P, Gargiulo S, Biasi F, Poli G. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radic Biol Med 2012; 52:19-34. [PMID: 22037514 DOI: 10.1016/j.freeradbiomed.2011.09.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 12/31/2022]
Abstract
Vascular areas of atherosclerotic development persist in a state of inflammation, and any further inflammatory stimulus in the subintimal area elicits a proatherogenic response; this alters the behavior of the artery wall cells and recruits further inflammatory cells. In association with the inflammatory response, oxidative events are also involved in the development of atherosclerotic plaques. It is now unanimously recognized that lipid oxidation-derived products are key players in the initiation and progression of atherosclerotic lesions. Oxidized lipids, derived from oxidatively modified low-density lipoproteins (LDLs), which accumulate in the intima, strongly modulate inflammation-related gene expression, through involvement of various signaling pathways. In addition, considerable evidence supports a proatherogenic role of a large group of potent bioactive lipids called eicosanoids, which derive from oxidation of arachidonic acid, a component of membrane phospholipids. Of note, LDL lipid oxidation products might regulate eicosanoid production, modulating the enzymatic degradation of arachidonic acid by cyclooxygenases and lipoxygenases; these enzymes might also directly contribute to LDL oxidation. This review provides a comprehensive overview of current knowledge on signal transduction pathways and inflammatory gene expression, modulated by lipid oxidation-derived products, in the progression of atherosclerosis.
Collapse
|
37
|
Lang Y, Chen D, Li D, Zhu M, Xu T, Zhang T, Qian W, Luo Y. Luteolin inhibited hydrogen peroxide-induced vascular smooth muscle cells proliferation and migration by suppressing the Src and Akt signalling pathways. J Pharm Pharmacol 2011; 64:597-603. [PMID: 22420665 DOI: 10.1111/j.2042-7158.2011.01438.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Luteolin is a naturally occurring flavonoid found in many vegetables, fruits and medicinal plants. The migration and proliferation of vascular smooth muscle cells (VSMCs) are the critical pathological processes in various cardiovascular diseases, such as atherosclerosis. In this study, we investigated the effect of luteolin and its latent mechanism on the proliferation and migration of VSMCs stimulated by hydrogen peroxide (H2O2).
Methods
VSMC proliferation and cell viability was assayed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) method or by cell counting, and H2O2-elicited migration of VSMCs was measured using a transwell migration assay. The phosphorylation levels of Src, 3-phosphoinositide-dependent kinase 1 (PDK1) and Akt (protein kinase B) were analysed by immunoblotting.
Key findings
This study demonstrated that luteolin showed a particularly inhibitory effect on H2O2-elicited VSMC proliferation and migration. In previous research, we originally explored the function of luteolin in blocking H2O2-triggered Src and Akt signalling pathways. The activation of Src, PDK1, Akt (308), Akt (473) in the luteolin-treated group was significantly lower than that seen in the H2O2 group.
Conclusions
These findings strongly suggested that luteolin suppresses H2O2-directed migration and proliferation in VSMCs partially due to down-regulation of the Akt and Src signalling pathways, which are important participants in the processes of migration and proliferation of VSMCs.
Collapse
Affiliation(s)
- Yasong Lang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Dan Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Manyi Zhu
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Tian Zhang
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, China
| | - Wenhao Qian
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
38
|
Jennings BL, Anderson LJ, Estes AM, Yaghini FA, Fang XR, Porter J, Gonzalez FJ, Campbell WB, Malik KU. Cytochrome P450 1B1 contributes to renal dysfunction and damage caused by angiotensin II in mice. Hypertension 2011; 59:348-54. [PMID: 22184325 DOI: 10.1161/hypertensionaha.111.183301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 1B1 contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the kidney, as well as in salt and water homeostasis, and blood pressure regulation, we determined the contribution of cytochrome P450 1B1 to renal dysfunction and injury associated with angiotensin II-induced hypertension in male Cyp1b1(+/+) and Cyp1b1(-/-) mice. Angiotensin II infusion (700 ng/kg per minute) given by miniosmotic pumps for 13 and 28 days increased systolic blood pressure in Cyp1b1(+/+) mice; this increase was significantly reduced in Cyp1b1(-/-) mice. Angiotensin II increased renal Cyp1b1 activity, vascular resistance, and reactivity to vasoconstrictor agents and caused endothelial dysfunction in Cyp1b1(+/+) but not Cyp1b1(-/-) mice. Angiotensin II increased water consumption and urine output, decreased urine osmolality, increased urinary Na(+) and K(+) excretion, and caused proteinuria and albuminuria in Cyp1b1(+/+) mice that was diminished in Cyp1b1(-/-) mice. Infusion of angiotensin II for 28 but not 13 days caused renal fibrosis, tubular damage, and inflammation in Cyp1b1(+/+) mice, which was minimized in Cyp1b1(-/-) mice. Angiotensin II increased levels of 12- and 20-hydroxyeicosatetraenoic acids; reactive oxygen species; and activity of NADPH oxidase, extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, and c-Src in the kidneys of Cyp1b1(+/+) but not Cyp1b1(-/-) mice. These data suggest that increased thirst, renal dysfunction, and injury and inflammation associated with angiotensin II-induced hypertension in mice depend on cytochrome P450 1B1 activity, thus indicating that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension.
Collapse
Affiliation(s)
- Brett L Jennings
- Department of Pharmacology, College of Medicine, 874 Union Ave, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Study of gastric fluid induced cytokine and chemokine expression in airway smooth muscle cells and airway remodeling. Cytokine 2011; 56:726-31. [PMID: 21996013 DOI: 10.1016/j.cyto.2011.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/11/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
Abstract
Asthma is a chronic airway inflammatory disease. Chronic aspiration by gastric fluid in gastroesophageal reflux disease (GERD) is considered a primary inflammatory factor exacerbating or predisposing patients to asthma. Airway smooth muscle cells (SMCs) are considered an important component in airway remodeling. To investigate the role of gastric fluid in airway SMC inflammation and airway remodeling, we examined gastric fluid-induced cytokine and chemokine profiles, airway SMC migration and matrix metalloproteinase expression in rat primary rat airway SMCs. The T helper cell type 2 (Th2) cytokines interleukin 4, interleukin 6 and tumor necrosis factor 2 (TNF-α) and the chemokines, lipopolysaccharide-induced CXC chemokine (LIX/CXCL5), cytokine-induced neutrophil chemoattractant 2 (CINC-2), CINC-3, fractalkine, ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor were induced by gastric fluid in primary cultured rat airway SMCs. Migration of rat airway SMCs was enhanced by gastric fluid and conditioned medium. The migration of rat airway SMCs enhanced by gastric fluid was associated with actin polymerization and activation of focal adhesion kinase. Matrix metalloproteinase 2 expressions in airway SMCs was enhanced by gastric fluid and conditioned medium. The results suggest potential mechanisms by which gastric fluid aspiration might influence SMC-mediated airway remodeling.
Collapse
|
40
|
Villeneuve LM, Reddy MA, Natarajan R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 2011; 38:451-9. [PMID: 21309809 PMCID: PMC3123432 DOI: 10.1111/j.1440-1681.2011.05497.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. Increasing evidence suggests that epigenetic factors might regulate the complex interplay between genes and the environment, and affect human diseases, such as diabetes and its complications. 2. Clinical trials have underscored the long lasting beneficial effects of strict glycaemic control for reducing the progression of diabetic complications. They have also shown that diabetic complications, such as diabetic nephropathy, a chronic kidney disorder, can continue even after blood glucose normalization, suggesting a metabolic memory of the prior glycaemic state. 3. Dysregulation of epigenetic post-transcriptional modifications of histones in chromatin, including histone lysine methylation, has been implicated in aberrant gene regulation associated with the pathology of diabetes and its complications. Genome-wide studies have shown cell-type specific changes in histone methylation patterns under diabetic conditions. In addition, studies in vascular cells have shown long lasting changes in epigenetic modifications at key inflammatory gene promoters after prior exposure to diabetic conditions, suggesting a possible mechanism for metabolic memory. 4. Recent studies have shown roles for histone methylation, DNA methylation, as well as microRNA in diabetic nephropathy. Whether these epigenetic factors play a role in metabolic memory of diabetic kidney disease is less well understood. 5. The incidence of diabetes is growing rapidly, as also the cost of treating the resulting complications. A better understanding of metabolic memory and the potential involvement of epigenetic mechanisms in this phenomenon could enable the development of new therapeutic targets for the treatment and/or prevention of sustained diabetic complications.
Collapse
Affiliation(s)
- Louisa M. Villeneuve
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
41
|
Abstract
There has been a rapid increase in the incidence of diabetes as well the associated vascular complications. Both genetic and environmental factors have been implicated in these pathologies. Increasing evidence suggests that epigenetic factors play a key role in the complex interplay between genes and the environment. Actions of major pathological mediators of diabetes and its complications such as hyperglycaemia, oxidant stress, and inflammatory factors can lead to dysregulated epigenetic mechanisms that affect chromatin structure and gene expression. Furthermore, persistence of this altered state of the epigenome may be the underlying mechanism contributing to a 'metabolic memory' that results in chronic inflammation and vascular dysfunction in diabetes even after achieving glycaemic control. Further examination of epigenetic mechanisms by also taking advantage of recently developed next-generation sequencing technologies can provide novel insights into the pathology of diabetes and its complications and lead to the discovery of much needed new drug targets for these diseases. In this review, we highlight the role of epigenetics in diabetes and its vascular complications, and recent technological advances that have significantly accelerated the field.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | |
Collapse
|
42
|
Kim HY, Choi JH, Kang YJ, Park SY, Choi HC, Kim HS. Reparixin, an Inhibitor of CXCR1 and CXCR2 Receptor Activation, Attenuates Blood Pressure and Hypertension-Related Mediators Expression in Spontaneously Hypertensive Rats. Biol Pharm Bull 2011; 34:120-7. [DOI: 10.1248/bpb.34.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye Young Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Jin Hee Choi
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Young Jin Kang
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - So Young Park
- Department of Physiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hyoung Chul Choi
- Department of Pharmacology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| | - Hee Sun Kim
- Department of Microbiology, Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University
| |
Collapse
|
43
|
Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol 2010; 299:F14-25. [PMID: 20462972 DOI: 10.1152/ajprenal.00200.2010] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diabetes is associated with significantly accelerated rates of several debilitating microvascular complications such as nephropathy, retinopathy, and neuropathy, and macrovascular complications such as atherosclerosis and stroke. While several studies have been devoted to the evaluation of genetic factors related to type 1 and type 2 diabetes and associated complications, much less is known about epigenetic changes that occur without alterations in the DNA sequence. Environmental factors and nutrition have been implicated in diabetes and can also affect epigenetic states. Exciting research has shown that epigenetic changes in chromatin can affect gene transcription in response to environmental stimuli, and changes in key chromatin histone methylation patterns have been noted under diabetic conditions. Reports also suggest that epigenetics may be involved in the phenomenon of metabolic memory observed in clinic trials and animal studies. Further exploration into epigenetic mechanisms can yield new insights into the pathogenesis of diabetes and its complications and uncover potential therapeutic targets and treatment options to prevent the continued development of diabetic complications even after glucose control has been achieved.
Collapse
Affiliation(s)
- Louisa M Villeneuve
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
44
|
Yaghini FA, Song CY, Lavrentyev EN, Ghafoor HUB, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 2010; 55:1461-7. [PMID: 20439821 DOI: 10.1161/hypertensionaha.110.150029] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine whether cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation, and protein synthesis. Angiotensin II stimulated migration of these cells, measured by the wound healing approach, by 1.78-fold; and DNA synthesis, measured by [(3)H]thymidine incorporation, by 1.44-fold after 24 hours; and protein synthesis, measured by [(3)H]leucine incorporation, by 1.40-fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor 2,4,3',5'-tetramethoxystilbene or transduction of these cells with adenovirus cytochrome P450 1B1 small hairpin RNA but not its scrambled control reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, as well as [(3)H]thymidine and [(3)H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15-, and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase activity were inhibited by 2,4,3',5'-tetramethoxystilbene and cytochrome P450 1B1 small hairpin RNA (shRNA) and by Tempol, which inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Fariborz A Yaghini
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Soret R, Chevalier J, De Coppet P, Poupeau G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138:1772-82. [PMID: 20152836 DOI: 10.1053/j.gastro.2010.01.053] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/21/2009] [Accepted: 01/28/2010] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Little is known about the environmental and nutritional regulation of the enteric nervous system (ENS), which controls gastrointestinal motility. Short-chain fatty acids (SCFAs) such as butyrate regulate colonic mucosa homeostasis and can modulate neuronal excitability. We investigated their effects on the ENS and colonic motility. METHODS Effects of butyrate on the ENS were studied in colons of rats given a resistant starch diet (RSD) or intracecal perfusion of SCFAs. Effects of butyrate were also studied in primary cultures of ENS. The neurochemical phenotype of the ENS was analyzed with antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) and by quantitative polymerase chain reaction. Signaling pathways involved were analyzed by pharmacologic and molecular biology methods. Colonic motility was assessed in vivo and ex vivo. RESULTS In vivo and in vitro, RSD and butyrate significantly increased the proportion of ChAT- but not nNOS-immunoreactive myenteric neurons. Acetate and propionate did not reproduce the effects of butyrate. Enteric neurons expressed monocarboxylate transporter 2 (MCT2). Small interfering RNAs silenced MCT2 and prevented the increase in the proportion of ChAT- immunoreactive neurons induced by butyrate. Butyrate and trichostatin A increased histone H3 acetylation in enteric neurons. Effects of butyrate were prevented by inhibitors of the Src signaling pathway. RSD increased colonic transit, and butyrate increased the cholinergic-mediated colonic circular muscle contractile response ex vivo. CONCLUSION Butyrate or histone deacetylase inhibitors might be used, along with nutritional approaches, to treat various gastrointestinal motility disorders associated with inhibition of colonic transit.
Collapse
Affiliation(s)
- Rodolphe Soret
- Institut National de Sante et de Recherche Medicale (INSERM), U913, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Ma K, Nunemaker CS, Wu R, Chakrabarti SK, Taylor-Fishwick DA, Nadler JL. 12-Lipoxygenase Products Reduce Insulin Secretion and {beta}-Cell Viability in Human Islets. J Clin Endocrinol Metab 2010; 95:887-93. [PMID: 20089617 PMCID: PMC2840856 DOI: 10.1210/jc.2009-1102] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Inflammation is increasingly recognized as an important contributing factor in diabetes mellitus. Lipoxygenases (LOs) produce active lipids that promote inflammatory damage by catalyzing the oxidation of linoleic and arachidonic acid, and LO is expressed in rodent and human islets. Little is known about the differential effect of the various hydroxyeicosatetraenoic acids (HETEs) that result from LO activity in human islets. OBJECTIVE We compared the effects of 12-LO products on human islet viability and function. DESIGN Human islets were treated with stable compounds derived from LOs: 12(S)-HETE, 15HETE, 12HPETE, and 12RHETE and then examined for insulin secretion and islet viability. The p38-MAPK (p38) and JNK stress-activated pathways were investigated as mechanisms of 12-LO-mediated islet inhibition in rodent and human islets. RESULTS Insulin secretion was consistently reduced by 12(S)-HETE and 12HPETE. 12(S)-HETE at 1 nm reduced viability activity by 32% measured by MTT assay and increased cell death by 50% at 100 nm in human islets. These effects were partially reversed with lisofylline, a small-molecule antiinflammatory compound that protects mitochondrial function. 12(S)-HETE increased phosphorylated p38-MAPK (pp38) protein activity in human islets. Injecting 12-LO siRNA into C57BL/6 mice reduced 12-LO and pp38-MAPK protein levels in mouse islets. The addition of proinflammatory cytokines increased pp38 levels in normal mouse islets but not in siRNA-treated islets. CONCLUSIONS These data suggest that 12(S)-HETE reduces insulin secretion and increases cell death in human islets. The 12-LO pathway is present in human islets, and expression is up-regulated by inflammatory cytokines. Reduction of 12-LO activity could thus provide a new therapeutic approach to protect human beta-cells from inflammatory injury.
Collapse
Affiliation(s)
- K Ma
- Strelitz Diabetes Center, Department of Internal Medicine, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 410, Norfolk, Virginia 23507, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Type 1 and Type 2 diabetes are complex diseases associated with multiple complications, and both genetic and environmental factors have been implicated in these pathologies. While numerous studies have provided a wealth of knowledge regarding the genetics of diabetes, the mechanistic pathways leading to diabetes and its complications remain only partly understood. Studying the role of epigenetics in diabetic complications can provide valuable new insights to clarify the interplay between genes and the environment. DNA methylation and histone modifications in nuclear chromatin can generate epigenetic information as another layer of gene transcriptional regulation sensitive to environmental signals. Recent evidence shows that key biochemical pathways and epigenetic chromatin histone methylation patterns are altered in target cells under diabetic conditions and might also be involved in the metabolic memory phenomenon noted in clinical trials and animal studies. New therapeutic targets and treatment options could be uncovered from an in-depth study of the epigenetic mechanisms that might perpetuate diabetic complications despite glycemic control.
Collapse
Affiliation(s)
- Louisa M Villeneuve
- Division of Diabetes, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA-91010, USA
| | - Rama Natarajan
- Author for correspondence: Division of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA-91010, USA, Tel.: +1 626 256 4673 ext. 62289, Fax: +1 626 301 8136,
| |
Collapse
|
48
|
A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. PLoS One 2009; 4:e7728. [PMID: 19888469 PMCID: PMC2766837 DOI: 10.1371/journal.pone.0007728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/14/2009] [Indexed: 02/08/2023] Open
Abstract
The peroxisome proliferator-activator receptor PPARγ plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARγ. Although the interplay between CD36 and PPARγ in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARγ remains unknown. Here, we demonstrate that ghrelin triggers PPARγ activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRα and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARγ phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARγ Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARγ activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARγ response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Gαq-dependent manner, resulting in Akt recruitment to PPARγ, enhanced PPARγ phosphorylation and activation independently of Ser-84, and increased expression of LXRα and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Gαq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARγ to ghrelin in macrophages.
Collapse
|
49
|
Kim JH, Kang YJ, Kim HS. IL-8/CXCL8 Upregulates 12-Lipoxygenase Expression in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Immune Netw 2009; 9:106-13. [PMID: 20107540 PMCID: PMC2803299 DOI: 10.4110/in.2009.9.3.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 05/15/2009] [Accepted: 05/26/2009] [Indexed: 12/24/2022] Open
Abstract
Background We previously demonstrated remarkable differences in the expression of IL-8/CXCL8 in aortic tissues and vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) compared to VSMC from normotensive Wistar-Kyoto rats (WKY). In the present study, we investigated the direct effect of IL-8/CXCL8 on expression of 12-lipoxygenase (LO), a hypertensive modulator, in SHR VSMC. Methods Cultured aortic VSMC from SHR and WKY were used. Expression of 12-LO mRNA was determined by real-time polymerase chain reaction. Phosphorlyation of ERK1/2 and production of 12-LO and angiotensin II subtype 1 (AT1) receptor were assessed by Western blots. IL-8/CXCL8-stimulated DNA synthesis was determined by measuring incorporation of [3H]-thymidine. And effect of IL-8/CXCL8 on vascular tone was determined by phenylephrine-induced contraction of thoracic aortic rings. Results Treatment with IL-8/CXCL8 greatly increased 12-LO mRNA expression and protein production compared to treatment with angiotensin II. IL-8/CXCL8 also increased the expression of the AT1 receptor. The increase in 12-LO induced by IL-8/CXCL8 was inhibited by treatment with an AT1 receptor antagonist. The induction of 12-LO mRNA production and the proliferation of SHR VSMC by IL-8/CXCL8 was mediated by the ERK pathway. The proliferation of SHR VSMC and the vascular contraction in the thoracic aortic ring, both of which were induced by IL-8/CXCL8, were inhibited by baicalein, a 12-LO inhibitor. Conclusion These results suggest that the potential role of IL-8/CXCL8 in hypertensive processes is likely mediated through the 12-LO pathway.
Collapse
Affiliation(s)
- Jung Hae Kim
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu, Korea
| | | | | |
Collapse
|