1
|
Reolizo LM, Williams H, Wadey K, Frankow A, Li Z, Gaston K, Jayaraman PS, Johnson JL, George SJ. Inhibition of Intimal Thickening By PRH (Proline-Rich Homeodomain) in Mice. Arterioscler Thromb Vasc Biol 2023; 43:456-473. [PMID: 36700427 PMCID: PMC9944393 DOI: 10.1161/atvbaha.122.318367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Late vein graft failure is caused by intimal thickening resulting from endothelial cell (EC) damage and inflammation which promotes vascular smooth muscle cell (VSMC) dedifferentiation, migration, and proliferation. Nonphosphorylatable PRH (proline-rich homeodomain) S163C:S177C offers enhanced stability and sustained antimitotic effect. Therefore, we investigated whether adenovirus-delivered PRH S163C:S177C protein attenuates intimal thickening via VSMC phenotype modification without detrimental effects on ECs. METHODS PRH S163C:S177C was expressed in vitro (human saphenous vein-VSMCs and human saphenous vein-ECs) and in vivo (ligated mouse carotid arteries) by adenoviruses. Proliferation, migration, and apoptosis were quantified and phenotype was assessed using Western blotting for contractile filament proteins and collagen gel contraction. EC inflammation was quantified using VCAM (vascular cell adhesion protein)-1, ICAM (intercellular adhesion molecule)-1, interleukin-6, and monocyte chemotactic factor-1 measurement and monocyte adhesion. Next Generation Sequencing was utilized to identify novel downstream mediators of PRH action and these and intimal thickening were investigated in vivo. RESULTS PRH S163C:S177C inhibited proliferation, migration, and apoptosis and promoted contractile phenotype (enhanced contractile filament proteins and collagen gel contraction) compared with virus control in human saphenous vein-VSMCs. PRH S163C:S177C expression in human saphenous vein-ECs significantly reduced apoptosis, without affecting cell proliferation and migration, while reducing TNF (tumor necrosis factor)-α-induced VCAM-1 and ICAM-1 and monocyte adhesion and suppressing interleukin-6 and monocyte chemotactic factor-1 protein levels. PRH S163C:S177C expression in ligated murine carotid arteries significantly impaired carotid artery ligation-induced neointimal proliferation and thickening without reducing endothelial coverage. Next Generation Sequencing revealed STAT-1 (signal transducer and activator of transcription 1) and HDAC-9 (histone deacetylase 9) as mediators of PRH action and was supported by in vitro and in vivo analyses. CONCLUSIONS We observed PRH S163C:S177C attenuated VSMC proliferation, and migration and enhanced VSMC differentiation at least in part via STAT-1 and HDAC-9 signaling while promoting endothelial repair and anti-inflammatory properties. These findings highlight the potential for PRH S163C:S177C to preserve endothelial function whilst suppressing intimal thickening, and reducing late vein graft failure.
Collapse
Affiliation(s)
- Lien M. Reolizo
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Helen Williams
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kerry Wadey
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Aleksandra Frankow
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Ze Li
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Kevin Gaston
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Padma-Sheela Jayaraman
- School of Medicine and Biodiscovery Institute, Faculty of Medicine & Health Sciences, University of Nottingham, UK (K.G., P.-S.J.)
| | - Jason L. Johnson
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| | - Sarah J. George
- Bristol Heart Institute, University of Bristol, UK (L.M.R., H.W., K.W., A.F., Z.L., J.L.J., S.J.G.)
| |
Collapse
|
2
|
Feng S, Peden EK, Guo Q, Lee TH, Li Q, Yuan Y, Chen C, Huang F, Cheng J. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem 2022; 298:101816. [PMID: 35278430 PMCID: PMC9052161 DOI: 10.1016/j.jbc.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Collapse
Affiliation(s)
- Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Yuhui Yuan
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
3
|
Ward AO, Angelini GD, Caputo M, Evans PC, Johnson JL, Suleiman MS, Tulloh RM, George SJ, Zakkar M. NF-κB inhibition prevents acute shear stress-induced inflammation in the saphenous vein graft endothelium. Sci Rep 2020; 10:15133. [PMID: 32934266 PMCID: PMC7492228 DOI: 10.1038/s41598-020-71781-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/14/2020] [Indexed: 12/17/2022] Open
Abstract
The long saphenous vein (LSV) is commonly used as a conduit in coronary artery bypass grafting. However, long term patency remains limited by the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. The impact of acute exposure of venous endothelial cells (ECs) to acute arterial wall shear stress (WSS) in the arterial circulation, and the subsequent activation of inflammatory pathways, remain poorly defined. Here, we tested the hypothesis that acute exposure of venous ECs to high shear stress is associated with inflammatory responses that are regulated by NF-κB both in-vitro and ex-vivo. Analysis of the LSV endothelium revealed that activation of NF-κB occurred within 30 min after exposure to arterial rates of shear stress. Activation of NF-κB was associated with increased levels of CCL2 production and enhanced binding of monocytes in LSVECs exposed to 6 h acute arterial WSS. Consistent with this, ex vivo exposure of LSVs to acute arterial WSS promoted monocyte interactions with the vessel lumen. Inhibition of the NF-κB pathway prevented acute arterial WSS-induced CCL2 production and reduced monocyte adhesion, both in vitro and in human LSV ex vivo, demonstrating that this pathway is necessary for the induction of the acute arterial WSS-induced pro-inflammatory response. We have identified NF-κB as a critical regulator of acute endothelial inflammation in saphenous vein in response to acute arterial WSS. Localised endothelial-specific inhibition of the NF-κB pathway may be beneficial to prevent vein graft inflammation and consequent failure.
Collapse
Affiliation(s)
- Alexander O Ward
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Gianni D Angelini
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jason L Johnson
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - M Saadeh Suleiman
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Robert M Tulloh
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Sarah J George
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Mustafa Zakkar
- Bristol Medical School, University of Bristol, Research Floor Level 7, Queens' Building, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
4
|
Zhou G, Liao M, Wang F, Qi X, Yang P, Berceli SA, Sharma AK, Upchurch GR, Jiang Z. Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1. FASEB J 2019; 33:11396-11410. [PMID: 31311317 PMCID: PMC6766662 DOI: 10.1096/fj.201900601rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Recent recognition that TGF-β signaling disruption is involved in the development of aortic aneurysms has led to renewed investigations into the role of TGF-β biology in the aortic wall. We previously found that the type I receptor of TGF-β (TGFBR2) receptor contributes to formation of ascending aortic aneurysms and dissections (AADs) induced by smooth muscle cell (SMC)-specific, postnatal deletion of Tgfbr1 (Tgfbr1iko). Here, we aimed to decipher the mechanistic signaling pathway underlying the pathogenic effects of TGFBR2 in this context. Gene expression profiling demonstrated that Tgfbr1iko triggers an acute inflammatory response in developing AADs, and Tgfbr1iko SMCs express an inflammatory phenotype in culture. Comparative proteomics profiling and mass spectrometry revealed that Tgfbr1iko SMCs respond to TGF-β1 stimulation via robust up-regulation of cyclophilin A (CypA). This up-regulation is abrogated by inhibition of TGFBR2 kinase activity, small interfering RNA silencing of Tgfbr2 expression, or inhibition of SMAD3 activation. In mice, Tgfbr1iko rapidly promotes CypA production in SMCs of developing AADs, whereas treatment with a CypA inhibitor attenuates aortic dilation by 56% (P = 0.003) and ameliorates aneurysmal degeneration (P = 0.016). These protective effects are associated with reduced aneurysm-promoting inflammation. Collectively, these results suggest a novel mechanism, wherein loss of type I receptor of TGF-β triggers promiscuous, proinflammatory TGFBR2 signaling in SMCs, thereby promoting AAD formation.-Zhou, G., Liao, M., Wang, F., Qi, X., Yang, P., Berceli, S. A., Sharma, A. K., Upchurch, G. R., Jr., Jiang, Z. Cyclophilin A contributes to aortopathy induced by postnatal loss of smooth muscle TGFBR1.
Collapse
Affiliation(s)
- Guannan Zhou
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Xiaoyan Qi
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Ashish K. Sharma
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Gilbert R. Upchurch
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
5
|
Gameiro J, Ibeas J. Factors affecting arteriovenous fistula dysfunction: A narrative review. J Vasc Access 2019; 21:134-147. [PMID: 31113281 DOI: 10.1177/1129729819845562] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular access dysfunction is one of the most important causes of morbidity and mortality in haemodialysis patients, contributing to up to one third of hospitalisations and accounting for a significant amount of the health care costs of these patients. In the past decades, significant scientific advances in understanding mechanisms of arteriovenous fistula maturation and failure have contributed to an increase in the amount of research into techniques for creation and strategies for arteriovenous fistula dysfunction prevention and treatment, in order to improve patient care and outcomes. The aim of this review is to describe the pathogenesis of vascular access failure and provide a comprehensive analysis of the associated risk factors and causes of vascular access failure, in order to interpret possible future therapeutic approaches. Arteriovenous fistula failure is a multifactorial process resulting from the combination of upstream and downstream events with consequent venous neo-intimal hyperplasia and/or inadequate outward remodelling. Inflammation appears to be central in the biology of arteriovenous fistula dysfunction but important triggers still need to be revealed. Given the significant association of arteriovenous fistula failure and patient's prognosis, it is therefore imperative to further research in this area in order to improve prevention, surveillance and treatment, and ultimately patient care and outcomes.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Lisboa, Portugal
| | - Jose Ibeas
- Nephrology Department, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
6
|
Liu G, Gong Y, Zhang R, Piao L, Li X, Liu Q, Yan S, Shen Y, Guo S, Zhu M, Yin H, Funk CD, Zhang J, Yu Y. Resolvin E1 attenuates inj ury‐induced vascular neointimal formation by inhibition of inflammatory responses and vascular smooth muscle cell migration. FASEB J 2018; 32:5413-5425. [DOI: 10.1096/fj.201800173r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guizhu Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yanjun Gong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lingjuan Piao
- Graduate School of Pharmaceutical SciencesCollege of Pharmacy, Ewha Women's UniversitySeoulSouth Korea
| | - Xinzhi Li
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Qian Liu
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shuai Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Yujun Shen
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shumin Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Colin D. Funk
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Jian Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
7
|
de Vries MR, Quax PHA. Inflammation in Vein Graft Disease. Front Cardiovasc Med 2018; 5:3. [PMID: 29417051 PMCID: PMC5787541 DOI: 10.3389/fcvm.2018.00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Bypass surgery is one of the most frequently used strategies to revascularize tissues downstream occlusive atherosclerotic lesions. For venous bypass surgery the great saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low due to the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and even mortality. The last couple of decades not much has changed in the treatment of vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of VGD has increased. In this review, we discuss the latest insights on VGD and the role of inflammation in this. We discuss vein graft pathophysiology including hemodynamic changes, the role of vessel wall constitutions and vascular remodeling. We show that profound systemic and local inflammatory responses, including inflammation of the perivascular fat, involve both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Liao M, Zhou J, Wang F, Ali YH, Chan KL, Zou F, Offermanns S, Jiang Z, Jiang Z. An X-linked Myh11-CreER T2 mouse line resulting from Y to X chromosome-translocation of the Cre allele. Genesis 2018; 55. [PMID: 28845554 DOI: 10.1002/dvg.23054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022]
Abstract
The Myh11-CreERT2 mouse line (Cre+ ) has gained increasing application because of its high lineage specificity relative to other Cre drivers targeting smooth muscle cells (SMCs). This Cre allele, however, was initially inserted into the Y chromosome (X/YCre+ ), which excluded its application in female mice. Our group established a Cre+ colony from male ancestors. Surprisingly, genotype screening identified female carriers that stably transmitted the Cre allele to the following generations. Crossbreeding experiments revealed a pattern of X-linked inheritance for the transgene (k > 1000), indicating that these female carries acquired the Cre allele through a mechanism of Y to X chromosome translocation. Further characterization demonstrated that in hemizygous X/XCre+ mice Cre activity was restricted to a subset arterial SMCs, with Cre expression in arteries decreased by 50% compared to X/YCre+ mice. This mosaicism, however, diminished in homozygous XCre+ /XCre+ mice. In a model of aortic aneurysm induced by a SMC-specific Tgfbr1 deletion, the homozygous XCre+ /XCre+ Cre driver unmasked the aortic phenotype that is otherwise subclinical when driven by the hemizygous X/XCre+ Cre line. In conclusion, the Cre allele carried by this female mouse line is located on the X chromosome and subjected to X-inactivation. The homozygous XCre+ /XCre+ mice produce uniform Cre activity in arterial SMCs.
Collapse
Affiliation(s)
- Mingmei Liao
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Department of Surgery, Xiangya Hospital Central South University, Changsha, Peoples Republic of China
| | - Junmei Zhou
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610.,Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Fen Wang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Yasmin H Ali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Kelvin L Chan
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Fei Zou
- Department of Biostatistics, University of Florida College of Public Health & Health Professions College of Medicine, Gainesville, Florida, 32611
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, University of Heidelberg, Bad Nauheim, Germany
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|
9
|
Singh NK, Janjanam J, Rao GN. p115 RhoGEF activates the Rac1 GTPase signaling cascade in MCP1 chemokine-induced vascular smooth muscle cell migration and proliferation. J Biol Chem 2017; 292:14080-14091. [PMID: 28655771 DOI: 10.1074/jbc.m117.777896] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Although the involvement of Rho proteins in the pathogenesis of vascular diseases is well studied, little is known about the role of their upstream regulators, the Rho guanine nucleotide exchange factors (RhoGEFs). Here, we sought to identify the RhoGEFs involved in monocyte chemotactic protein 1 (MCP1)-induced vascular wall remodeling. We found that, among the RhoGEFs tested, MCP1 induced tyrosine phosphorylation of p115 RhoGEF but not of PDZ RhoGEF or leukemia-associated RhoGEF in human aortic smooth muscle cells (HASMCs). Moreover, p115 RhoGEF inhibition suppressed MCP1-induced HASMC migration and proliferation. Consistent with these observations, balloon injury (BI) induced p115 RhoGEF tyrosine phosphorylation in rat common carotid arteries, and siRNA-mediated down-regulation of its levels substantially attenuated BI-induced smooth muscle cell migration and proliferation, resulting in reduced neointima formation. Furthermore, depletion of p115 RhoGEF levels also abrogated MCP1- or BI-induced Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling, which, as we reported previously, is involved in vascular wall remodeling. Our findings also show that protein kinase N1 (PKN1) downstream of Rac1-cyclin D1/CDK6 and upstream of CDK4-PAK1 in the p115 RhoGEF-Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling axis is involved in the modulation of vascular wall remodeling. Of note, we also observed that CCR2-Gi/o-Fyn signaling mediates MCP1-induced p115 RhoGEF and Rac1 GTPase activation. These findings suggest that p115 RhoGEF is critical for MCP1-induced HASMC migration and proliferation in vitro and for injury-induced neointima formation in vivo by modulating Rac1-NFATc1-cyclin D1-CDK6-PKN1-CDK4-PAK1 signaling.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| | - Jagadeesh Janjanam
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Gadiparthi N Rao
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
| |
Collapse
|
10
|
Wu CC, Chen TY, Hsieh MY, Lin L, Yang CW, Chuang SY, Tarng DC. Monocyte Chemoattractant Protein-1 Levels and Postangioplasty Restenosis of Arteriovenous Fistulas. Clin J Am Soc Nephrol 2017; 12:113-121. [PMID: 27797894 PMCID: PMC5220654 DOI: 10.2215/cjn.04030416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Inflammation is relevant in restenosis of atherosclerotic vascular diseases, but its role in dialysis arteriovenous fistula remains unknown. In animal studies, upregulation of monocyte chemoattractant protein-1 has been shown in venous segments of arteriovenous fistula. We, therefore, aimed to investigate serial changes in circulating monocyte chemoattractant protein-1 after percutaneous transluminal angioplasty of dialysis arteriovenous fistulas and its relation to restenosis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Fifty-nine patients with dysfunctional arteriovenous fistulas that were referred for percutaneous transluminal angioplasty were enrolled prospectively between January of 2010 and July of 2012. Three of them were excluded due to percutaneous transluminal angioplasty failure or acute infection. Blood was sampled from arteriovenous fistulas at baseline, 2 days, 2 weeks, and 3 months after percutaneous transluminal angioplasty. Clinical follow-up was continued monthly for 3 months. Angiographic follow-up was arranged at the end of 3 months. Seventeen patients without significant stenosis were enrolled as the control group. RESULTS Fifty-six patients completed clinical follow-up. Significant increases in monocyte chemoattractant protein-1 were observed at 2 days and 2 weeks (both P<0.001) after percutaneous transluminal angioplasty. Twenty-three (41%) patients had symptomatic restenosis. The restenosis group had a higher percentage change in monocyte chemoattractant protein-1 levels at 2 days (median =47%; interquartile range, 27%-65% versus median =17%; interquartile range, 10%-25%; P<0.001) after percutaneous transluminal angioplasty compared with the patent group. Fifty-two patients completed angiographic follow-up. A positive correlation between relative luminal loss and monocyte chemoattractant protein-1 increase at 2 days after percutaneous transluminal angioplasty was found (r=0.53; P<0.001). In multivariate analysis, postangioplasty monocyte chemoattractant protein-1 increase at 2 days was an independent predictor of restenosis. Using receiver operator characteristic analysis, >25% postangioplasty increase of monocyte chemoattractant protein-1 was significantly associated with restenosis after percutaneous transluminal angioplasty (hazard ratio, 5.36; 95% confidence interval, 1.81 to 15.8). CONCLUSIONS Circulating monocyte chemoattractant protein-1 levels were elevated 2 days and 2 weeks after percutaneous transluminal angioplasty. Early postangioplasty increase of monocyte chemoattractant protein-1 level was associated with restenosis of arteriovenous fistulas.
Collapse
Affiliation(s)
- Chih-Cheng Wu
- Cardiovascular Center, National Taiwan University Hospital, Hsinchu Branch, Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
- College of Medicine, National Taiwan University and School of Medicine and
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Mu-Yang Hsieh
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lin Lin
- College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Wei Yang
- Hemodialysis Centers, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Shao-Yuan Chuang
- Division of Preventive Medicine and Health Services Research, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; and
| | - Der-Cheng Tarng
- Institutes of Physiology and Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep 2016; 6:35444. [PMID: 27739498 PMCID: PMC5064316 DOI: 10.1038/srep35444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF)-β signaling disorder has emerged as a common molecular signature for aortic aneurysm development. The timing of postnatal maturation plays a key role in dictating the biological outcome of TGF-β signaling disorders in the aortic wall. In this study, we investigated the impact of deficiency of TGFβ receptors on the structural homeostasis of mature aortas. We used an inducible Cre-loxP system driven by a Myh11 promoter to delete Tgfbr1, Tgfbr2, or both in smooth muscle cells (SMCs) of adult mice. TGFBR1 deficiency resulted in rapid and severe aneurysmal degeneration, with 100% penetrance of ascending thoracic aortas, whereas TGFBR2 deletion only caused mild aortic pathology with low (26%) lesion prevalence. Removal of TGFBR2 attenuated the aortic pathology caused by TGFBR1 deletion and correlated with a reduction of early ERK phosphorylation. In addition, the production of angiotensin (Ang)-converting enzyme was upregulated in TGFBR1 deficient aortas at the early stage of aneurysmal degeneration. Inhibition of ERK phosphorylation or blockade of AngII type I receptor AT1R prevented aneurysmal degeneration of TGFBR1 deficient aortas. In conclusion, loss of SMC-Tgfbr1 triggers multiple deleterious pathways, including abnormal TGFBR2, ERK, and AngII/AT1R signals that disrupt aortic wall homeostasis to cause aortic aneurysm formation.
Collapse
|
12
|
Liu Y, Chen W, Wu C, Minze LJ, Kubiak JZ, Li XC, Kloc M, Ghobrial RM. Macrophage/monocyte-specific deletion of Ras homolog gene family member A (RhoA) downregulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts. J Heart Lung Transplant 2016; 36:340-354. [PMID: 27692539 DOI: 10.1016/j.healun.2016.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms of chronic rejection of transplanted organs remain obscure; however, macrophages are known to play a critical role in the injury and repair of allografts. Among multiple factors influencing macrophage infiltration to allografts, the fractalkine chemokine (C-X3-C motif) ligand 1(CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) signaling pathway and actin cytoskeleton, which is regulated by a small guanosine-5׳-triphosphatase Ras homolog gene family member A (RhoA), are of the utmost importance. To define the role of macrophage/RhoA pathway involvement in chronic rejection, we generated mice with monocyte/macrophage-specific deletion of RhoA. METHODS Hearts from BALB/c (H-2d) donors were transplanted into RhoAflox/flox (no Cre) and heterozygous Lyz2Cre+/-RhoAflox/flox recipients treated with cytotoxic T-lymphocyte-associated protein 4 immunoglobulin to inhibit early T-cell response. Allografts were assessed for chronic rejection and monocyte/macrophage functions. RESULTS The deletion of RhoA inhibited macrophage infiltration, neointimal hyperplasia of vasculature, and abrogated chronic rejection of the allografts. The RhoA deletion downregulated G protein-coupled fractalkine receptor CX3CR1, which activates the RhoA pathway and controls monocyte/macrophage trafficking into the vascular endothelium. This in turn promotes, through overproliferation and differentiation of smooth muscle cells in the arterial walls, neointimal hyperplasia. CONCLUSIONS Our finding of codependence of chronic rejection on monocyte/macrophage CX3CR1/CX3CL1 and RhoA signaling pathways may lead to the development of novel anti-chronic rejection therapies.
Collapse
Affiliation(s)
- Yianzhu Liu
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenhao Chen
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Chenglin Wu
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; The Organ Transplant Center, The First Affiliated Hospital, Su Yat-sen University and Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Gungzhou, China
| | - Laurie J Minze
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Jacek Z Kubiak
- CNRS UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, IFR 140 GFAS, France; University of Rennes 1, Faculty of medicine, Rennes, France; Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Xian C Li
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas.
| | - Rafik M Ghobrial
- The Houston Methodist Research Institute, Houston, Texas; Department of Surgery, The Houston Methodist Hospital, Houston, Texas; University of Rennes 1, Faculty of medicine, Rennes, France; The Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
13
|
de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 2016; 13:451-70. [PMID: 27194091 DOI: 10.1038/nrcardio.2016.76] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Occlusive arterial disease is a leading cause of morbidity and mortality worldwide. Aside from balloon angioplasty, bypass graft surgery is the most commonly performed revascularization technique for occlusive arterial disease. Coronary artery bypass graft surgery is performed in patients with left main coronary artery disease and three-vessel coronary disease, whereas peripheral artery bypass graft surgery is used to treat patients with late-stage peripheral artery occlusive disease. The great saphenous veins are commonly used conduits for surgical revascularization; however, they are associated with a high failure rate. Therefore, preservation of vein graft patency is essential for long-term surgical success. With the exception of 'no-touch' techniques and lipid-lowering and antiplatelet (aspirin) therapy, no intervention has hitherto unequivocally proven to be clinically effective in preventing vein graft failure. In this Review, we describe both preclinical and clinical studies evaluating the pathophysiology underlying vein graft failure, and the latest therapeutic options to improve patency for both coronary and peripheral grafts.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
14
|
Cao L, Pan D, Li D, Zhang Y, Chen Q, Xu T, Li W, Wu W. Relation between anti-atherosclerotic effects of IRAK4 and modulation of vascular smooth muscle cell phenotype in diabetic rats. Am J Transl Res 2016; 8:899-910. [PMID: 27158377 PMCID: PMC4846934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Deregulation of phenotypic modulation in VSMCs is the initial stage of atherosclerosis, especially in diabetes. Functional deficiency of IRAK4 inhibits the formation of vascular lesions in ApoE-/- mice. Therefore, in this study, we examined the functions of IRAK4 in the regulation of VSMCs differentiation and phenotypic modulation at the levels of transcription and translation in T2D rats. The T2D rat model was generated by feeding a high-fat diet and injecting a low dose of streptozotocin intraperitoneally. VSMCs were isolated from the thoracic aortas of the T2D rats. VSMCs proliferation and migration were measured using water soluble tetrazolium salt-1 assay, 5-ethynyl-29-deoxyuridine staining and migration assay. IRAK4 was knocked down by siRNA and inhibited by an IRAK1/4 inhibitor. The mRNAs and proteins of signal molecules and phenotypic markers were detected by qRT-PCR and western blotting. The results demonstrated that LPS significantly increased viability, cell migration rate and amount of DNA in VSMCs. The IRAK4 inhibitor also reduced LPS-mediated protein expression of myosin heavy chain and nuclear factor κB p65 subunit and increased smooth muscle 22α expression. Moreover, IRAK4 knock-down reduced the LPS-mediated expression of mRNAs for myosin heavy chain, nuclear factor κB p65 subunit, and monocyte chemoattractant protein-1 (MCP-1), but increased the mRNA of smooth muscle 22α in VSMCs. The activation of IRAK4 phenotypically modulated VSMCs from differentiation to dedifferentiation. Inactivation of IRAK4 exerts a protective effect on VSMCs differentiation and inhibits inflammation. IRAK4 could therefore be a target for interventions to prevent and treat the initial phase of atherosclerosis.
Collapse
Affiliation(s)
- Lijuan Cao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Defeng Pan
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Yanbin Zhang
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Qiuping Chen
- Institute of Cardiovascular Disease Research, Xuzhou Medical College84 West Huaihai Road, Xuzhou, Jiangsu, Peoples Republic of China
| | - Tongda Xu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wenhua Li
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| | - Wanling Wu
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical College99 West Huaihai Road, Xuzhou 221002, Jiangsu, Peoples Republic of China
| |
Collapse
|
15
|
Yang P, Hong MS, Fu C, Schmit BM, Su Y, Berceli SA, Jiang Z. Preexisting smooth muscle cells contribute to neointimal cell repopulation at an incidence varying widely among individual lesions. Surgery 2015; 159:602-12. [PMID: 26387788 DOI: 10.1016/j.surg.2015.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/01/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND With the diverse origin of neointimal cells, previous studies have documented differences of neointimal cell lineage composition across models, but the animal-to-animal difference has not attracted much attention, although the cellular heterogeneity may impact neointimal growth and its response to therapeutic interventions. METHODS R26R(+);Myh11-CreER(+), and R26R(+);Scl-CreER(+) mice were used to attach LacZ tags to the preexisting smooth muscle cells (SMCs) and endothelial cells (ECs), respectively. Neointimal lesions were created via complete ligation of the common carotid artery (CCA) and transluminal injury to the femoral artery (FA). RESULTS LacZ-tagged SMCs were physically relocated from media to neointima and changed to a dedifferentiated phenotype in both CCA and FA lesions. The content of SMCs in the neointimal tissue, however, varied widely among specimens, ranging from 5 to 70% and 0 to 85%, with an average at low levels of 27% and 29% in CCA (n = 15) and FA (n = 15) lesions, respectively. Bone marrow cells, although able to home to the injured arteries, did not differentiate fully into SMCs after either type of injury. Preexisting ECs were located in the subendothelial region and produced mesenchymal marker α-actin, indicating endothelial-mesenchymal transition (EndoMT); however, EC-derived cells represented only 7% and 3% of the total neointimal cell pool of CCA (n = 7) and FA (n = 7) lesions, respectively. ECs located on the luminal surface exhibited little evidence of EndoMT. CONCLUSION Neointimal hyperplasia proceeds with a wide range of variation in its cellular composition between individual lesions. Relative to ECs, SMCs are major contributors to the lesion-to-lesion heterogeneity in neointimal cell lineage composition.
Collapse
Affiliation(s)
- Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael S Hong
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Chunhua Fu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Bradley M Schmit
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, Georgia, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States; The Malcom Randall VAMC, Gainesville, FL, United States
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
16
|
Wu J, Grassia G, Cambrook H, Ialenti A, MacRitchie N, Carberry J, Wadsworth RM, Lawrence C, Kennedy S, Maffia P. Perivascular mast cells regulate vein graft neointimal formation and remodeling. PeerJ 2015; 3:e1192. [PMID: 26312183 PMCID: PMC4548472 DOI: 10.7717/peerj.1192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/26/2015] [Indexed: 01/26/2023] Open
Abstract
Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling.
Collapse
Affiliation(s)
- Junxi Wu
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Helen Cambrook
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Armando Ialenti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Jaclyn Carberry
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Roger M Wadsworth
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Catherine Lawrence
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
17
|
Schmit BM, Yang P, Fu C, DeSart K, Berceli SA, Jiang Z. Hypertension overrides the protective effect of female hormones on the development of aortic aneurysm secondary to Alk5 deficiency via ERK activation. Am J Physiol Heart Circ Physiol 2014; 308:H115-25. [PMID: 25398982 DOI: 10.1152/ajpheart.00521.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of aortic aneurysm is five times higher in men than women among the general population. Similar sexual dimorphism also exists in syndromic aortic aneurysms triggered by TGF-β signaling disorders. To understand the responsible mechanisms, we developed an animal model where inducible deletion of the type I TGF-β receptor, Alk5, specifically in smooth muscle cells (Alk5iko) causes spontaneous aortic aneurysm formation. This model recapitulated an extreme scenario of the dimorphism in aortic aneurysm development between genders. In a comparative experiment, all Alk5iko males (n=42) developed aortic aneurysms and 26% of them died prematurely from aortic rupture. In contrast, the Alk5iko females (n=14) presented only a subclinical phenotype characteristic of scarcely scattered elastin breaks. Removal of male hormones via orchiectomy (n=7) resulted in only minimal influence on aortic pathology. However, reduction of female hormones via ovariectomy (n=15) increased the phenotypic penetrance from zero to 53%. Finally, an elevation of systolic blood pressure by 30 points unmasked the subclinical phenotype of Alk5iko females (n=17) to 59%. This exaggerated phenotypic penetrance was coupled with an early intensification of ERK signaling, a molecular signature that correlated to 100% phenotypic penetrance in normotensive Alk5iko males. In conclusion, aortic aneurysm induced by Alk5iko exhibits dimorphic incidence between genders with females less susceptible to aortic disease. This sexual dimorphism is partially the result from the protective effects of female hormones. Hypertension, a known risk factor for aortic aneurysm, is able to break the female sex protective effects through mechanisms associated with enhanced ERK activity.
Collapse
Affiliation(s)
- Bradley M Schmit
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and
| | - Pu Yang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and
| | - Chunhua Fu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and
| | - Kenneth DeSart
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and The Malcom Randall VA Medical Center, Gainesville, Florida
| | - Zhihua Jiang
- Division of Vascular Surgery and Endovascular Therapy, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
18
|
Cross Talk Between Vascular Smooth Muscle Cells and Monocytes Through Interleukin-1β/Interleukin-18 Signaling Promotes Vein Graft Thickening. Arterioscler Thromb Vasc Biol 2014; 34:2001-11. [DOI: 10.1161/atvbaha.113.303145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective—
Interleukin (IL)-1β and IL-18 are key proinflammatory cytokines that play important roles in the pathophysiology of vein graft remodeling. However, the mechanism of IL-1β/IL-18 production and its role in the development of graft remodeling remain unclear.
Approach and Results—
IL-1β/IL-18 were rapidly expressed in venous interposition grafts. Vascular smooth muscle cell (VSMC) death and monocytic inflammasome activation occurred in grafted veins. Necrotic VSMCs induced the expression of IL-1β, IL-18, and other inflammasome-associated proteins in monocytes, which was partially inhibited by their antagonist, recombinant IL-1ra-Fc-IL-18bp. Activated monocytes stimulated proliferation of VSMCs by activating cell growth–related signaling molecules (AKT, STAT3, ERK1/2, and mTOR [AKT/protein kinase B, signal transducer and activator of transcription 3, extracellular signal-regulated kinase 1/2, mammalian target of rapamycin]) and increasing production of platelet-derived growth factor-bb; these effects were suppressed by IL-1ra-Fc-IL-18bp. Activated monocytes also promoted migration of VSMCs, which was independent of IL-1β/IL-18 signaling. Importantly, administration of IL-1ra-Fc-IL-18bp inhibited activation of cell growth–related signaling molecules, VSMC proliferation, and vein graft thickening in vivo.
Conclusions—
Our work identified an interaction among necrotic VSMCs, monocytes, and viable VSMCs through IL-1β/IL-18 signaling, which might be exploited as a therapeutic target in vein graft remodeling.
Collapse
|
19
|
Role of Girdin in intimal hyperplasia in vein grafts and efficacy of atelocollagen-mediated application of small interfering RNA for vein graft failure. J Vasc Surg 2014; 60:479-489.e5. [DOI: 10.1016/j.jvs.2013.06.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 12/14/2022]
|
20
|
McGraw AP, McCurley A, Preston IR, Jaffe IZ. Mineralocorticoid receptors in vascular disease: connecting molecular pathways to clinical implications. Curr Atheroscler Rep 2014; 15:340. [PMID: 23719923 DOI: 10.1007/s11883-013-0340-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mineralocorticoid receptor (MR), a steroid-hormone-activated transcription factor, plays a substantial role in cardiovascular diseases. MR antagonists (MRAs) have long been appreciated as effective treatments for heart failure and hypertension; however, recent research suggests that additional patient populations may also benefit from MRA therapy. Experimental evidence demonstrates that in addition to its classic role in the regulating sodium handling in the kidney, functional MR is expressed in the blood vessels and contributes to hypertension, vascular inflammation and remodeling, and atherogenesis. MR activation drives pathological phenotypes in smooth muscle cells, endothelial cells, and inflammatory cells, whereas MRAs inhibit these effects. Collectively, these studies demonstrate a new role for extrarenal MR in cardiovascular disease. This review summarizes these new lines of evidence and how they contribute to the mechanisms of atherosclerosis, pulmonary and systemic hypertension, and vein graft failure, and describes new patient populations that may benefit from MRA therapy.
Collapse
Affiliation(s)
- Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, USA.
| | | | | | | |
Collapse
|