1
|
Wang D, Yang Z, Wu P, Li Q, Yu C, Yang Y, Du Y, Jiang M, Ma J. Adrenomedullin 2 attenuates anxiety-like behaviors by increasing IGF-II in amygdala and re-establishing blood-brain barrier. Transl Psychiatry 2025; 15:10. [PMID: 39809730 PMCID: PMC11733292 DOI: 10.1038/s41398-025-03229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice. Based on transcriptome analysis and biochemical analyses, we found that ADM2 facilitates the expression of insulin-like growth factor 2 (IGF-II), which then triggers the activation of the AKT-GSK3β-mTOR signaling pathway via the IGF-II receptor (IGF-IIR), rather than the IGF-I receptor (IGF-IR). Furthermore, as evidenced by increased Evans blue staining and decreased VE-cadherin levels, the BBB exhibited dysfunction in ADM2 knockout mice with anxiety-like behaviors. In in vitro studies, ADM2 administration promoted the expression of VE-cadherin and decreased IGF-II leakage through the endothelial barrier in a BBB model. Taken together, ADM2 may alleviate anxiety-like behavior and social deficits by enhancing BBB integrity and increasing IGF-II levels in the brain. These findings highlight the potential of ADM2 as a therapeutic target for anxiety and related mental disorders.
Collapse
Affiliation(s)
- Denian Wang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Wu
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Yu
- Frontiers Science Center for Disease-related Molecular Network, Laboratory of Omics Technology and Bioinformatics. West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuefan Du
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengwei Jiang
- Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- Department of Neurosurgery, West China Tianfu Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Feng Z, Li M, Ma A, Wei Y, Huang L, Kong L, Kang Y, Wang Z, Xiao F, Zhang W. Intermedin (adrenomedullin 2) plays a protective role in sepsis by regulating T- and B-cell proliferation and activity. Int Immunopharmacol 2023; 121:110488. [PMID: 37352568 DOI: 10.1016/j.intimp.2023.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Sepsis is the major cause of death in intensive care units. We previously found that intermedin (IMD), a calcitonin family peptide, can protect against sepsis by dynamically repairing vascular endothelial junctions and can ameliorate the inflammatory response by inhibiting the infiltration of macrophages in peripheral tissues. The effects of IMD on inflammatory and immune responses indicate that IMD may play a role in immunity. However, whether IMD affects immune cell development, differentiation and response to infection remains unclear. METHODS IMD-knockout (Adm2-/-) mice were generated in our previous work. Wild-type and IMD-KO mice were subjected to sham or cecal ligation and puncture (CLP) surgery, and bone marrow cells were obtained for RNA sequencing (RNA-Seq) analysis. The RNA-Seq results were verified by real-time RT-PCR. The effect of IMD KO or IMD rescue on the septic mice was explored using mild and severe infection models induced by CLP surgery at different levels of severity, and the survival outcomes were analyzed using Kaplan-Meier curves and the log-rank test. The mechanism underlying the effects of IMD in T/B cell proliferation and differentiation were investigated by PCR, Western blot (WB), and cell proliferation assays and flow cytometry analysis. RESULTS RNA-Seq showed that IMD-KO mice exhibited a primary immunosuppression phenotype characterized by a marked decrease in the expression of T- and B-cell function-related genes. This immunosuppression made the IMD-KO mice vulnerable to pathogenic invasion, and even mild infection killed nearly half of the IMD-KO mice. Supplementation with the IMD peptide restored the expression of T/B-cell-related genes and significantly reduced the mortality rate of the IMD-KO mice. IMD is likely to directly promote T- and B-cell proliferation through ERK1/2 phosphorylation, stimulate T-cell differentiation via Ilr7/Rag1/2-controled T cell receptor (TCR) recombination, and activate B cells via Pax5, a transcription factor that activates at least 170 genes needed for B-cell functions. CONCLUSION Together with previous findings, our results indicate that IMD may play a protective role in sepsis via three mechanisms: protecting the vascular endothelium, reducing the inflammatory response, and activating T/B-cell proliferation and differentiation. Our study may provide the first identification of IMD as a calcitonin peptide that plays an important role in the adaptive immune response by activating T/B cells and provides translational opportunities for the design of immunotherapies for sepsis and other diseases associated with primary immunodeficiency.
Collapse
Affiliation(s)
- Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Aijia Ma
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China
| | - Yong'gang Wei
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| |
Collapse
|
4
|
Kakihara S, Matsuda Y, Hirabayashi K, Imai A, Iesato Y, Sakurai T, Kamiyoshi A, Tanaka M, Ichikawa-Shindo Y, Kawate H, Zhao Y, Zhang Y, Guo Q, Li P, Onishi N, Murata T, Shindo T. Role of Adrenomedullin 2/Intermedin in the Pathogenesis of Neovascular Age-Related Macular Degeneration. J Transl Med 2023; 103:100038. [PMID: 36870288 DOI: 10.1016/j.labinv.2022.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Adrenomedullin 2 (AM2; also known as intermedin) is a member of the adrenomedullin (AM) peptide family. Similarly to AM, AM2 partakes in a variety of physiological activities. AM2 has been reported to exert protective effects on various organ disorders; however, its significance in the eye is unknown. We investigated the role of AM2 in ocular diseases. The receptor system of AM2 was expressed more abundantly in the choroid than in the retina. In an oxygen-induced retinopathy model, physiological and pathologic retinal angiogenesis did not differ between AM2-knockout (AM2-/-) and wild-type mice. In contrast, in laser-induced choroidal neovascularization, a model of neovascular age-related macular degeneration, AM2-/- mice had enlarged and leakier choroidal neovascularization lesions, with exacerbated subretinal fibrosis and macrophage infiltration. Contrary to this, exogenous administration of AM2 ameliorated the laser-induced choroidal neovascularization-associated pathology and suppressed gene expression associated with inflammation, fibrosis, and oxidative stress, including that of VEGF-A, VEGFR-2, CD68, CTGF, and p22-phox. The stimulation of human adult retinal pigment epithelial (ARPE) cell line 19 cells with TGF-β2 and TNF-α induced epithelial-to-mesenchymal transition (EMT), whereas AM2 expression was also elevated. The induction of EMT was suppressed when the ARPE-19 cells were pretreated with AM2. A transcriptome analysis identified 15 genes, including mesenchyme homeobox 2 (Meox2), whose expression was significantly altered in the AM2-treated group compared with that in the control group. The expression of Meox2, a transcription factor that inhibits inflammation and fibrosis, was enhanced by AM2 treatment and attenuated by endogenous AM2 knockout in the early phase after laser irradiation. The AM2 treatment of endothelial cells inhibited endothelial to mesenchymal transition and NF-κB activation; however, this effect tended to be canceled following Meox2 gene knockdown. These results indicate that AM2 suppresses the neovascular age-related macular degeneration-related pathologies partially via the upregulation of Meox2. Thus, AM2 may be a promising therapeutic target for ocular vascular diseases.
Collapse
Affiliation(s)
- Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yorishige Matsuda
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Akira Imai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yasuhiro Iesato
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yan Zhang
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - QianQian Guo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Peixuan Li
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Naho Onishi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| |
Collapse
|
5
|
Kong L, Xiong Y, Wang D, Huang L, Li M, Feng Z, Zhou Y, Zhang H, Liu F, Xiao F, Wei Y, Zhang W. Intermedin (adrenomedullin 2) promotes breast cancer metastasis via Src/c-Myc-mediated ribosome production and protein translation. Breast Cancer Res Treat 2022; 195:91-103. [PMID: 35896852 DOI: 10.1007/s10549-022-06687-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE Breast cancer is the most frequently diagnosed cancer and is the leading cause of cancer-associated mortality in women worldwide. Intermedin (IMD, also known as Adrenomedullin 2, ADM2) is an endogenous peptide that belongs to the calcitonin gene-related peptide family and has been reported to play important roles in several types of cancers, including breast cancer. In this study, we sought to investigate how IMD affects the behavior of breast cancer cells, the underlying mechanism of these effects, and whether blockade of IMD has a therapeutic effect against breast cancer. METHODS Transcriptome sequencing (RNA-Seq), cell biological experiments, Western blotting, immunoprecipitation, and animal tumor models were used. RESULTS IMD expression was significantly increased in breast cancer samples, and the IMD level was positively correlated with lymph node metastasis and Ki67 expression. Cell biological experiments showed that IMD promoted the anchorage-independent growth, migration, and invasive ability of breast cancer cells. Inhibiting IMD activity with an anti-IMD monoclonal antibody blocked these tumor-promoting effects. In addition, blockade of IMD reduced in situ tumor growth and significantly decreased lung metastasis of 4T1 breast cancer in vivo. IMD induced Src kinase phosphorylation, which triggered the transcription of c-Myc, a major oncoprotein controlling the expression of genes that encode ribosomal components. Our data suggest that IMD is involved in breast cancer cell invasion and metastasis, potentially through increasing ribosome biogenesis and protein translation via the Src/c-Myc signaling pathway. CONCLUSION These results suggest that IMD may be a novel target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Denian Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China
| | - Yue Zhou
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China
| | - Haili Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 2222, Frontier Medical Center, Xin Chuan Road, Zhong He Street, Chengdu, 610212, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Study on Protection of Human Umbilical Vein Endothelial Cells from Amiodarone-Induced Damage by Intermedin through Activation of Wnt/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8889408. [PMID: 34434487 PMCID: PMC8382522 DOI: 10.1155/2021/8889408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Amiodarone (AM) is one of the most effective antiarrhythmic drugs and normally administrated by intravenous infusion which is liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. Intermedin (IMD), a member of calcitonin family, has a broad spectrum of biological effects including anti-inflammatory effects, antioxidant activities, and antiapoptosis. But now, the protective effects of IMD against amiodarone-induced phlebitis and the underlying molecular mechanism are not well understood. In this study, the aim was to investigate the protective efficiency and potential mechanisms of IMD in amiodarone-induced phlebitis. The results of this study revealed that treatment with IMD obviously attenuated apoptosis and exfoliation of vascular endothelial cells and infiltration of inflammatory cells in the rabbit model of phlebitis induced by intravenous infusion of amiodarone compared with control. Further tests in vitro demonstrated that IMD lessened amiodarone-induced endothelial cell apoptosis, improved amiodarone-induced oxidative stress injury, reduced inflammatory reaction, and activated the Wnt/β-catenin signal pathway which was inhibited by amiodarone. And these effects could be reversed by Wnt/β-catenin inhibitor IWR-1-endo, and si-RNA knocked down the gene of Wnt pathway. These results suggested that IMD exerted the protective effects against amiodarone-induced endothelial injury via activating the Wnt/β-catenin pathway. Thus, IMD could be used as a potential agent for the treatment of phlebitis.
Collapse
|
7
|
Wang F, Kong L, Wang W, Shi L, Wang M, Chai Y, Xu J, Kang Q. Adrenomedullin 2 improves bone regeneration in type 1 diabetic rats by restoring imbalanced macrophage polarization and impaired osteogenesis. Stem Cell Res Ther 2021; 12:288. [PMID: 33985585 PMCID: PMC8117361 DOI: 10.1186/s13287-021-02368-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Background Both advanced glycation end products (AGEs) and AGE-mediated M1 macrophage polarization contribute to bone marrow mesenchymal stem cell (BMSC) dysfunction, leading to impaired bone regeneration in type 1 diabetes mellitus (T1DM). Adrenomedullin 2 (ADM2), an endogenous bioactive peptide belonging to the calcitonin gene-related peptide family, exhibits various biological activities associated with the inhibition of inflammation and reduction of insulin resistance. However, the effects and underlying mechanisms of ADM2 in AGE-induced macrophage M1 polarization, BMSC dysfunction, and impaired bone regeneration remain poorly understood. Methods The polarization of bone marrow-derived macrophages was verified using flow cytometry analysis. Alkaline phosphatase (ALP) staining, ALP activity detection, and alizarin red staining were performed to assess the osteogenesis of BMSCs. Quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting, and immunofluorescence staining were used to assess polarization markers, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, and osteogenic markers. In vivo, a distraction osteogenesis (DO) rat model with T1DM was established, and tibia samples were collected at different time points for radiological, biomechanical, and histological analyses, to verify the effects of ADM2 on bone regeneration and M2 polarization under diabetic conditions. Results ADM2 treatment reversed AGE-induced M1 macrophage polarization towards the M2 phenotype, which was partially achieved by the peroxisome proliferator-activated receptor γ (PPARγ)-mediated inhibition of NF-κB signaling. The PPARγ inhibitor GW9662 significantly attenuated the effects of ADM2. Besides, ADM2 treatment improved the AGE-impaired osteogenic potential of BMSCs in vitro. Furthermore, ADM2 accelerated bone regeneration, as revealed by improved radiological and histological manifestations and biomechanical parameters, accompanied by improved M2 macrophage polarization in diabetic DO rats, and these effects were partially blocked by GW9662 administration. Conclusions These results indicate that ADM2 enhances diabetic bone regeneration during DO, by attenuating AGE-induced imbalances in macrophage polarization, partly through PPARγ/NF-κB signaling, and improving AGE-impaired osteogenic differentiation of BMSCs simultaneously. These findings reveal that ADM2 may serve as a potential bioactive factor for promoting bone regeneration under diabetic conditions, and imply that management of inflammation and osteogenesis, in parallel, may present a promising therapeutic strategy for diabetic patients during DO treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02368-9.
Collapse
Affiliation(s)
- Feng Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Lingchi Kong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Wenbo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Li Shi
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Mengwei Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yimin Chai
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Jia Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Qinglin Kang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
8
|
Xiao F, Li H, Feng Z, Huang L, Kong L, Li M, Wang D, Liu F, Zhu Z, Wei Y, Zhang W. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci Rep 2021; 11:488. [PMID: 33436794 PMCID: PMC7803743 DOI: 10.1038/s41598-020-80066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state by activating the ERK1/2-EGR1 (early growth response 1) signaling cascade, through which HCC cells acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage-inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER-stress related apoptotic pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Denian Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Huang L, Wang D, Feng Z, Zhao H, Xiao F, Wei Y, Zhang H, Li H, Kong L, Li M, Liu F, Zhang H, Zhang W. Inhibition of Intermedin (Adrenomedullin 2) Suppresses the Growth of Glioblastoma and Increases the Antitumor Activity of Temozolomide. Mol Cancer Ther 2020; 20:284-295. [PMID: 33298587 DOI: 10.1158/1535-7163.mct-20-0619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 11/18/2020] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM; grade IV glioma) is the most malignant type of primary brain tumor and is characterized by rapid proliferation and invasive growth. Intermedin (IMD) is an endogenous peptide belonging to the calcitonin gene-related peptide family and has been reported to play an important role in cell survival and invasiveness in several types of cancers. In this study, we found that the expression level of IMD was positively related to the malignancy grade of gliomas. The highest expression of IMD was found in GBM, indicating that IMD may play an important role in glioma malignancy. IMD increased the invasive ability of glioma cells by promoting filopodia formation, which is dependent on ERK1/2 activation. IMD-induced ERK1/2 phosphorylation also promoted GBM cell proliferation. In addition, IMD enhanced mitochondrial function and hypoxia-induced responses in GBM cells. Treatment with anti-IMD monoclonal antibodies not only inhibited tumor growth in both ectopic and orthotopic models of GBM but also significantly enhanced the antitumor activity of temozolomide. Our study may provide novel insights into the mechanism of GBM cell invasion and proliferation and provide an effective strategy to improve the therapeutic effect of GBM treatments.
Collapse
Affiliation(s)
- Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China
| | - Denian Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China
| | - Huan Zhao
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan, China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Sichuan, China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan, China
| | - Haili Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Sichuan, China
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, China.
| |
Collapse
|
10
|
Fan S, Qi D, Yu Q, Tang X, Wen X, Wang D, Deng X. Intermedin alleviates the inflammatory response and stabilizes the endothelial barrier in LPS-induced ARDS through the PI3K/Akt/eNOS signaling pathway. Int Immunopharmacol 2020; 88:106951. [PMID: 32892076 DOI: 10.1016/j.intimp.2020.106951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 12/19/2022]
Abstract
Inflammatory storms and endothelial barrier dysfunction are the central pathophysiological features of acute respiratory distress syndrome (ARDS). Intermedin (IMD), a member of the calcitonin gene-related peptide (CGRP) family, has been reported to alleviate inflammation and protect endothelial cell (EC) integrity. However, the effects of IMD on ARDS have not been clearly elucidated. In the present study, clinical ARDS data were used to explore the relationship between serum IMD levels and disease severity and prognosis, and we then established a model to predict the possibility of hospital survival. Mouse models of ARDS and LPS-challenged endothelial cells were used to analyze the protective effect and underlying mechanism of IMD. We found that in patients with ARDS, increased serum IMD levels were associated with reduced disease severity and increased rates of hospital survival. IMD alleviated the LPS-induced inflammatory response by decreasing proinflammatory cytokines, NF-κB p65 expression and NF-κB p65 nuclear translocation. In addition, IMD stabilized the endothelial barrier by repairing adherens junctions (AJs), cytoskeleton and capillary leakage. IMD exerted protective effects against ARDS on pulmonary endothelial cells, at least partly, through PI3K/Akt/eNOS signaling, while IMD's anti-inflammation effect was mediated through an eNOS-independent mechanism. Our study may provide new therapeutic insight for ARDS treatment.
Collapse
Affiliation(s)
- Shulei Fan
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoting Wen
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Kong L, Xiao F, Wang L, Li M, Wang D, Feng Z, Huang L, Wei Y, Li H, Liu F, Kang Y, Liao X, Zhang W. Intermedin promotes vessel fusion by inducing VE-cadherin accumulation at potential fusion sites and to achieve a dynamic balance between VE-cadherin-complex dissociation/reconstitution. MedComm (Beijing) 2020; 1:84-102. [PMID: 34766111 PMCID: PMC8489673 DOI: 10.1002/mco2.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/05/2023] Open
Abstract
To create a closed vascular system, angiogenic sprouts must meet and connect in a process called vessel fusion, which is a prerequisite for establishment of proper blood flow in nascent vessels. However, the molecular machinery underlying this process remains largely unknown. Herein, we report that intermedin (IMD), a calcitonin family member, promotes vessel fusion by inducing endothelial cells (ECs) to enter a "ready-to-anchor" state. IMD promotes vascular endothelial cadherin (VEC) accumulation at the potential fusion site to facilitate anchoring of approaching vessels to each other. Simultaneously, IMD fine-tunes VEC activity to achieve a dynamic balance between VEC complex dissociation and reconstitution in order to widen the anastomotic point. IMD induces persistent VEC phosphorylation. Internalized phospho-VEC preferentially binds to Rab4 and Rab11, which facilitate VEC vesicle recycling back to the cell-cell contact for reconstruction of the VEC complex. This novel mechanism may explain how neovessels contact and fuse to adjacent vessels to create a closed vascular system.
Collapse
Affiliation(s)
- Lingmiao Kong
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics West China Second University Hospital Sichuan University Chengdu China
| | - Lijun Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Min Li
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Denian Wang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Zhongxue Feng
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Luping Huang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| | - Yong'gang Wei
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Hongyu Li
- Liver Transplantation Center Beijing Friendship Hospital Capital Medical University Chengdu China
| | - Fei Liu
- Department of Liver Surgery West China Hospital Sichuan University Chengdu China
| | - Yan Kang
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Xuelian Liao
- Department of Critical Care Medicine West China Hospital Sichuan University Chengdu China
| | - Wei Zhang
- Department of Critical Care Medicine State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center of Biotherapy Chengdu China
| |
Collapse
|
12
|
Wang Y, Wu Z, Tian J, Mi Y, Ren X, Kang J, Zhang W, Zhou X, Wang G, Li R. Intermedin protects HUVECs from ischemia reperfusion injury via Wnt/β-catenin signaling pathway. Ren Fail 2019; 41:159-166. [PMID: 30931679 PMCID: PMC6450471 DOI: 10.1080/0886022x.2019.1587468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP) superfamily and a pro-angiogenic factor. In the present study, we identified activation of the Wnt/β-catenin signaling pathway by IMD. Adding CoCl2 HUVECs was used to establish an in vitro model. The migration of HUVECs was measured by wound healing assays and transwell migration assays. Capillary formation was measured using tube formation assays. Immunocytochemistry (ICC) analysis was used to evaluate VEGF and RAMP2 expression in HUVECs. The relevant signaling molecules were detected with western blot. Our study shows that IMD could promote H/R impaired HUVECs migration and tube formation in vitro. On the other hand, inhibition of Wnt/β-catenin signaling led to the suppression of this promotion of migration and tube formation. This result suggests that Wnt/β-catenin signaling is correlated to IMD induced angiogenesis. Analysis of results from ICC assays indicated that IMD works through increasing levels of VEGF and RAMP2. Meanwhile, the Wnt/β-catenin signaling specific inhibitor IWR-1-endo was shown to down-regulate VEGF and RAMP2 expression. Western blot results further confirmed the signaling mechanism by which IMD promotes angiogenesis. Thus, Wnt/β-catenin signaling plays an important role in IMD induced neovascularization. The data further suggest that the PI3K axis contributes positively downstream.
Collapse
Affiliation(s)
- Yanhong Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China.,b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Zhijing Wu
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Jihua Tian
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Yang Mi
- c Department of Urology , First Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaojun Ren
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Jing Kang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Wan Zhang
- d Department of Nephrology , Shanxi Dayi Hospital of Shanxi Medical University , Taiyuan , China
| | - Xiaoshuang Zhou
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| | - Guiqin Wang
- a Department of Microbiology and Immunology , Shanxi Medical University , Taiyuan , China
| | - Rongshan Li
- b Department of Nephrology , The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute , Taiyuan , China
| |
Collapse
|
13
|
Dong H, Zhou Y, Wang Y, Zhou Q, Zhang Y, Gan X, Luo Y, Li R. The protective role of intermedin in promoting angiogenesis during renal fibrosis. Gene 2019; 688:34-43. [DOI: 10.1016/j.gene.2018.11.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 01/12/2023]
|
14
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
15
|
Xiao F, Wang D, Kong L, Li M, Feng Z, Shuai B, Wang L, Wei Y, Li H, Wu S, Tan C, Zhao H, Hu X, Liu J, Kang Y, Liao X, Zhou Y, Zhang W. Intermedin protects against sepsis by concurrently re-establishing the endothelial barrier and alleviating inflammatory responses. Nat Commun 2018; 9:2644. [PMID: 29980671 PMCID: PMC6035189 DOI: 10.1038/s41467-018-05062-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/11/2018] [Indexed: 02/05/2023] Open
Abstract
Sepsis is a life-threatening condition caused by dysregulated host responses to infection. Widespread vascular hyperpermeability and a “cytokine storm” are two pathophysiological hallmarks of sepsis. Here, we show that intermedin (IMD), a member of the calcitonin family, alleviates organ injury and decreases mortality in septic mice by concurrently alleviating vascular leakage and inflammatory responses. IMD promotes the relocation of vascular endothelial cadherin through a Rab11-dependent pathway to dynamically repair the disrupted endothelial junction. Additionally, IMD decreases inflammatory responses by reducing macrophage infiltration via downregulating CCR2 expression. IMD peptide administration ameliorates organ injuries and significantly improves the survival of septic mice, and the experimental results correlate with the clinical data. Patients with high IMD levels exhibit a lower risk of shock, lower severity scores, and greatly improved survival outcomes than those with low IMD levels. Based on our data, IMD may be an important self-protective factor in response to sepsis. Sepsis is a life-threatening condition. Here, the authors show that intermedin alleviates organ injury and decreases mortality in septic mice by concurrently alleviating vascular leakage and inflammatory responses. Patients with high intermedin levels exhibit a low risk of shock, lower severity scores, and greatly improved survival outcomes.
Collapse
Affiliation(s)
- Fei Xiao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Denian Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingmiao Kong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongxue Feng
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingxing Shuai
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijun Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyu Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sisi Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chun Tan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huan Zhao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Kang
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelian Liao
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zhou
- Department of Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Wang M, Wang J, Liu Z, Guo X, Wang N, Jia N, Zhang Y, Yuan J. Effects of intermedin on autophagy in cerebral ischemia/reperfusion injury. Neuropeptides 2018; 68:15-21. [PMID: 29128104 DOI: 10.1016/j.npep.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/30/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effects of intermedin (IMD) on autophagy in cerebral ischemia/reperfusion (I/R) injury (CIRI). METHODS Sixty rats were randomly averaged into four groups: sham, ischemia/reperfusion (I/R), IMD, and 3-methyladenine (3-MA). In the sham group, the right common carotid artery, external carotid artery, and internal carotid artery were detached, and no monofilament was inserted. In the other groups, two hours after cerebral ischemia, the rats were injected through the lateral ventricle with normal saline for I/R group, IMD for the IMD group, and 3-MA for the 3-MA group for 24h. The cerebral injury was assessed by evaluation of neurological function, hematoxylin and eosin (H&E) staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expressions of autophagy associated proteins, such as microtubule-associated protein 1 light chain 3 (LC3), Beclin1, and sequestosome 1 (P62) were analyzed using immunohistochemistry staining and western blot. Meanwhile, transmission electron microscopy was used to investigate the ultrastructure of the brains. RESULTS IMD could reduce neuron cell damage and infarction formation and has a protective effect against CIRI as 3-MA. The levels of LC3II/LC3I and Beclin1 were significantly decreased and the P62 level was significantly higher in the IMD group compared with I/R group, which is similar to the effect of 3-MA on CIRI. CONCLUSIONS IMD has a similar effect as 3-MA, can reduce pathological neuronal injury and protect the brain against CIRI in rats by attenuating the effects of autophagy. Our findings provide evidence for IMD's protective effects in relation to ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Jing Wang
- Department of Clinical Medicine, Tangshan Vocational and Technical College, Tangshan 063000, Hebei Province, China; Department of Internal Medicine, Tangshan Union Medical College Hospital, Tangshan 063000, Hebei Province, China
| | - Zhengang Liu
- Department of Neurosurgery, The Second People's Hospital of Liaocheng, Liaocheng 252600, Shandong province, China
| | - Xin Guo
- Department of Neurology, North China University of Science and Technology Affiliated Hospital, Tangshan 063000, Hebei Province, China
| | - Ning Wang
- College of Psychology, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Nana Jia
- College of Psychology, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Jie Yuan
- Institute of Mental Health, North China University of Science and Technology, Tangshan 063000, Hebei Province, China.
| |
Collapse
|
17
|
Wang LJ, Xiao F, Kong LM, Wang DN, Li HY, Wei YG, Tan C, Zhao H, Zhang T, Cao GQ, Zhang K, Wei YQ, Yang HS, Zhang W. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation. Arterioscler Thromb Vasc Biol 2017; 38:398-413. [PMID: 29242270 DOI: 10.1161/atvbaha.117.310317] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. APPROACH AND RESULTS To study the role of intermedin, we generated the IMD-KO (Adm2-/-) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. CONCLUSIONS Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement.
Collapse
Affiliation(s)
- Li-Jun Wang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Fei Xiao
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Ling-Miao Kong
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - De-Nian Wang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Hong-Yu Li
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Yong-Gang Wei
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Chun Tan
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Huan Zhao
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Ting Zhang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Gui-Qun Cao
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Kang Zhang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Yu-Quan Wei
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu
| | - Han-Shuo Yang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu.
| | - Wei Zhang
- From the Molecular Medicine Research Center, State Key Laboratory of Biotherapy (L.-j.W., L.-m.K., D.-n.W., C.T., H.Z., T.Z., G.-q.C., K.Z., W.Z.) and State Key Laboratory of Biotherapy and Cancer Center (Y.-q.W., H.-s.Y.), West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu; and Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital (F.X.) and Department of Liver Surgery, West China Hospital (H.-y.L., Y.-g.W.), Sichuan University, Chengdu.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This study is to highlight recent discoveries associated with the role of calcitonin peptide family and their receptors in prostate cancer progression and bone metastasis. RECENT FINDINGS Studies have linked adrenomedullin (AM), calcitonin (CT) and calcitonin gene-related peptide (CGRP) to the spread of prostate tumours to the bone. AM can induce a metastatic phenotype in prostate cancer cells through its action on TRPV2 calcium channels and is also capable of influencing localised levels of RANKL in the bone to favour tumourigenesis. CT utilises A-kinase anchoring proteins to indirectly act on PKA and promote metastasis in prostate cancer. The receptor for CT contains a PDZ-binding domain, the deletion of which stops metastasis to the bone in orthotopic prostate models. SUMMARY Recent findings show strong evidence for the role of calcitonin peptides and receptors in prostate cancer and bone metastasis. Further research could provide potential prognostic markers and therapeutic targets for prostate cancer patients.
Collapse
|
19
|
Zhang SY, Xu MJ, Wang X. Adrenomedullin 2/intermedin: a putative drug candidate for treatment of cardiometabolic diseases. Br J Pharmacol 2017; 175:1230-1240. [PMID: 28407200 DOI: 10.1111/bph.13814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/28/2022] Open
Abstract
Adrenomedullin (ADM) 2/intermedin (IMD) is a short peptide that belongs to the CGRP superfamily. Although it shares receptors with CGRP, ADM and amylin, ADM2 has significant and unique functions in the cardiovascular system. In the past decade, the cardiovascular effect of ADM2 has been carefully analysed. In this review, progress in understanding the effects of ADM2 on the cardiovascular system and its protective role in cardiometabolic diseases are summarized. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Ming-Jiang Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
20
|
Chen K, Yan M, Li Y, Dong Z, Huang D, Li J, Wei M. Intermedin1‑53 enhances angiogenesis and attenuates adverse remodeling following myocardial infarction by activating AMP‑activated protein kinase. Mol Med Rep 2017; 15:1497-1506. [PMID: 28259938 PMCID: PMC5365003 DOI: 10.3892/mmr.2017.6193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Adverse ventricular remodeling is a maladaptive response to acute loss of myocardium and an important risk factor for heart failure following myocardial infarction (MI). Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene‑related peptide family, which may possess potent cardioprotective properties. The aim of the present study was to determine whether IMD1‑53, a mature bioactive form of IMD, may promote therapeutic angiogenesis within the infarcted myocardium, therefore attenuating adverse ventricular remodeling post‑MI. The present study observed that treatment with IMD1‑53 promoted proliferation, migration and tube formation of primary cultured myocardial microvascular endothelial cells (MMVECs). In a rat model of MI, chronic administration of IMD1‑53 increased capillary density in the peri‑infarct zone, attenuated ventricular remodeling and improved cardiac performance post‑MI. Treatment with IMD1‑53 also significantly increased the expression levels of phosphorylated‑AMP‑activated protein kinase (AMPK) and the subsequent activation of endothelial nitric oxide synthase in MMVECs and post‑MI rat myocardium, without a significant influence on the expression of vascular endothelial growth factor. Notably, the in vitro effects of IMD1‑53 on angiogenesis and the in vivo effects of IMD1‑53 on post‑MI ventricular remodeling were largely abrogated by the co‑administration of compound C, an AMPK inhibitor. In conclusion, the present study demonstrated that IMD1‑53 could attenuate adverse ventricular remodeling post‑MI via the promotion of therapeutic angiogenesis, possibly through the activation of AMPK signaling.
Collapse
Affiliation(s)
- Kankai Chen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meiling Yan
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongguang Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhifeng Dong
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Dong Huang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jingbo Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
21
|
Schmidt T, Leha A, Salinas-Riester G. Treatment of prostate cancer cells with S-adenosylmethionine leads to genome-wide alterations in transcription profiles. Gene 2016; 595:161-167. [PMID: 27688072 DOI: 10.1016/j.gene.2016.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022]
Abstract
The hypomethylation of DNA may support tumor progression; however, the mechanism underlying this relationship is not clear. Several studies have demonstrated that the in vitro application of the methyl donor S-adenosylmethionine (SAM) leads to promoter remethylation and the downregulation of proto-oncogene expression in cancer cells. It is not clear if this represents a general mechanism of SAM or is limited to selected genes. We examined this problem using new bisulfite sequencing and transcriptomic technologies. Treatment with SAM caused the downregulation of proliferation, migration, and invasion of prostate cancer (PC-3) cells. RNA sequencing revealed the genome-wide downregulation of genes involved in proliferation, migration, invasion, and angiogenesis. Real-time PCR of a subset of the genes confirmed these results. Reduced representation bisulfite sequencing (RRBS) displayed only minor differential methylation between treated cells and controls. In summary, we confirmed the anti-proliferative and anti-invasive effects of SAM. Additionally, we observed anti-migratory effects and downregulation of genes, especially those related to cancerogenesis. For some of the related genes, this is the first reported evidence of an association with prostate cancer. However, genome-wide modifications in methylation profiles were not observed by RRBS; thus, they are obviously not a major cause of alteration in transcription profiles and anti-cancer effects.
Collapse
Affiliation(s)
- Thomas Schmidt
- Institute of Anatomy and Clinical Morphology, University of Witten/Herdecke, 58448 Witten, Germany.
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center, Goettingen, 37073 Goettingen, Germany
| | | |
Collapse
|
22
|
Kovaleva IE, Garaeva AA, Chumakov PM, Evstafieva AG. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4. Gene 2016; 590:177-85. [DOI: 10.1016/j.gene.2016.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/03/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
23
|
Li P, Shi L, Han Y, Zhao Y, Qi Y, Wang B. Prognostic Value of Plasma Intermedin Level in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome. Medicine (Baltimore) 2016; 95:e3422. [PMID: 27100434 PMCID: PMC4845838 DOI: 10.1097/md.0000000000003422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Intermedin (IMD), an autocrine/paracrine biologically active peptide, plays a critical role in maintaining vascular homeostasis. Recent research has shown that high plasma levels of IMD are associated with poor outcomes for patients with ST-segment elevation acute myocardial infarction. However, the prognostic utility of IMD levels in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) has not yet been investigated. We hypothesized that the level of plasma IMD would have prognostic value in patients with NSTE-ACS. Plasma IMD was determined by radioimmunoassay in 132 NSTE-ACS patients on admission to hospital and 132 sex- and age-matched healthy-control subjects. Major adverse cardiovascular events (MACEs), including death, heart failure, hospitalization, and acute myocardial infarction, were noted during follow-up. In total, 23 patients suffered MACEs during the follow-up period (mean 227 ± 118 days, range 2-421 days). Median IMD levels were higher in NSTE-ACS patients than control [320.0 (250.9/384.6) vs. 227.2 (179.7/286.9) pg/mL, P <0.001]. The area under the receiver-operating characteristic curve for IMD and N-terminal pro-B-type brain natriuretic peptide (NT-proBNP) did not significantly differ (0.73 and 0.79, both P <0.001, respectively; P = 0.946). ROC curve analysis revealed a cut-off value for IMD at 340.7 pg/mL. Cox regression analysis with cardiovascular risk variables and NT-proBNP showed that the risk of MACEs increased by a factor of 12.96 (95% CI, 3.26-49.42; P <0.001) with high IMD levels (at the cut-off value). IMD has potential as a prognostic biomarker for predicting MACEs in patients with NSTE-ACS.
Collapse
Affiliation(s)
- Pengyang Li
- From the Peking University Aerospace School of Clinical Medicine (PL, LS, BW), Peking University Health Science Center; Department of Cardiology (PL, YH, YZ, BW), Aerospace Central Hospital; Laboratory of Cardiovascular Bioactive Molecule (YQ), School of Basic Medical Sciences; Key Laboratory of Molecular Cardiovascular Science (YQ), Ministry of Education; and Department of Pathogen Biology (YQ), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | |
Collapse
|
24
|
Bowers S, Norden P, Davis G. Molecular Signaling Pathways Controlling Vascular Tube Morphogenesis and Pericyte-Induced Tube Maturation in 3D Extracellular Matrices. ADVANCES IN PHARMACOLOGY 2016; 77:241-80. [DOI: 10.1016/bs.apha.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Hollander LL, Guo X, Salem RR, Cha CH. The novel tumor angiogenic factor, adrenomedullin-2, predicts survival in pancreatic adenocarcinoma. J Surg Res 2015; 197:219-24. [PMID: 25982376 DOI: 10.1016/j.jss.2014.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 10/19/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Tumor angiogenesis has been demonstrated to have an important role in the development, progression, and metastasis of pancreas cancer. Adrenomedullin-2 (ADM2) is a calcitonin gene-related peptide that has recently been shown to be a novel tumor angiogenesis factor, acting via mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase/Akt, and vascular endothelial growth factor/vascular endothelial growth factor-2 signaling pathways. Through the use of tissue microarray (TMA) technology, we hypothesize that ADM2 is an important tumor angiogenesis factor in pancreatic cancer. METHODS Multiple TMAs were created using tissue from pancreatic cancer patients resected between January 1996 and December 2006. Core tissue samples of formalin-fixed, paraffin-embedded blocks of pancreatic cancer tissue were collected through an institutional review board-approved protocol and linked to available clinicopathologic data. Two TMAs consisting of 112 and 60 patients with pancreatic adenocarcinoma were studied for ADM2 protein expression using a quantitative, automated immunofluorescent microscopy system, a technology that removes potential observer bias in TMA analysis. The results were analyzed using independent Student t-test, chi-square, log-rank regression, and Kaplan-Meier methods. RESULTS One hundred sixteen patients were identified for complete analysis, and 56 patients had complete survival data. Median follow-up for survivors was 14.5 mo. Total cellular levels of ADM2 were found to be a predictor of survival in pancreatic cancer. Low ADM2 levels were associated with a higher 5-y survival compared with high ADM2 levels (18% versus 6%, P = 0.05). Median survival was also worse in high ADM2 expressers (18.7 versus 8.6 mo). In accordance with prior-published pancreatic cancer data, a worse histologic grade (P = 0.001), tumor (T) stage (P = 0.009), and overall disease stage (P = 0.004), all portended a worse survival. CONCLUSIONS For the first time, we have demonstrated that high levels of ADM2 expression predict a poorer survival in patients with pancreatic adenocarcinoma. This suggests a possible role of ADM2 in pancreas cancer and as a novel biomarker that predicts poorer survival. Additional study of ADM2 in pancreatic cancer will help reveal its true angiogenic role in pancreas cancer and its potential role as a novel therapeutic target.
Collapse
Affiliation(s)
- Lindsay L Hollander
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut; Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Xiaojia Guo
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Ronald R Salem
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Charles H Cha
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
Agrawal V, Maharjan S, Kim K, Kim NJ, Son J, Lee K, Choi HJ, Rho SS, Ahn S, Won MH, Ha SJ, Koh GY, Kim YM, Suh YG, Kwon YG. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget 2015; 5:2761-77. [PMID: 24811731 PMCID: PMC4058043 DOI: 10.18632/oncotarget.1942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis.
Collapse
Affiliation(s)
- Vijayendra Agrawal
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The prognostic value of intermedin in patients with breast cancer. DISEASE MARKERS 2015; 2015:862158. [PMID: 25694747 PMCID: PMC4324930 DOI: 10.1155/2015/862158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/12/2015] [Indexed: 12/23/2022]
Abstract
This study aimed to evaluate the prognostic value of preoperative plasma intermedin levels in breast cancer patients. Plasma intermedin levels of 252 breast cancer women and 100 healthy women were determined using radioimmunoassay kit. Adverse event was defined as first local recurrence, distant metastasis, second primary cancer of another organ, or death from any cause during 5-year follow-up. Disease-free survival was defined as the time between surgery and the date of any adverse event whichever appeared first. Overall survival was defined from surgery to death for any cause. The relationships between plasma intermedin levels and clinical outcomes of breast cancer patients were evaluated using multivariate analysis. The results showed that preoperative plasma intermedin levels were substantially higher in patients than in healthy subjects using t-test. Intermedin was identified as an independent predictor for 5-year mortality, adverse event, disease-free survival, and overall survival using multivariate analysis. Based on receiver operating characteristic curve analysis, preoperative plasma intermedin levels had high predictive value for 5-year mortality and adverse event. In conclusion, preoperative plasma intermedin levels are highly associated with poor patient outcomes and intermedin may be a potential prognostic biomarker for patients with breast cancer.
Collapse
|
28
|
Xiao F, Wang LJ, Zhao H, Tan C, Wang DN, Zhang H, Wei YG, Liu J, Zhang W. Intermedin restricts vessel sprouting by inhibiting the loosening of endothelial junction. Biochem Biophys Res Commun 2015; 458:174-9. [PMID: 25637664 DOI: 10.1016/j.bbrc.2015.01.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/19/2015] [Indexed: 02/05/2023]
Abstract
Vessel sprouting from pre-existing vasculature is a key step for the formation of a functional vasculature. The low level of vascular endothelial growth factor (VEGF) induces normal and stable angiogenesis, whereas high level of VEGF causes irregular and over sprouted vasculature. Intermedin (IMD) is a novel member of calcitonin family, and was found to be able to restrict the excessive vessel sprouting. However, the underlying mechanism had not been elucidated. In this study, using in vitro and in vivo angiogenic models, we found that the loosening of endothelial junction could significantly increase the ability of low-dose VEGF to induce vessel sprouting. IMD inhibited the junction dissociation-induced vessel sprouting by re-establishing the complex of vascular endothelial cadherin on the cell-cell contact. Our findings suggested a novel mechanism through which IMD could restrict the excessive vessel sprouting by preventing the endothelial junction from dissociation, and provide new insight into the understanding of the regulation of sprouting angiogenesis.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Li-jun Wang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Huan Zhao
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Chun Tan
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - De-nian Wang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Heng Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Yong-gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, PR China.
| | - Wei Zhang
- Molecular Medicine Research Center, West China Hospital, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China.
| |
Collapse
|
29
|
Tang NN, Zhu H, Zhang HJ, Zhang WF, Jin HL, Wang L, Wang P, He GJ, Hao B, Shi RH. HIF-1α induces VE-cadherin expression and modulates vasculogenic mimicry in esophageal carcinoma cells. World J Gastroenterol 2014; 20:17894-17904. [PMID: 25548487 PMCID: PMC4273139 DOI: 10.3748/wjg.v20.i47.17894] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/03/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether hypoxia inducible factor (HIF)-1α modulates vasculogenic mimicry (VM) by upregulating VE-cadherin expression in esophageal squamous cell carcinoma (ESCC).
METHODS: Esophageal squamous cancer cell lines Eca109 and TE13 were transfected with plasmids harboring small interfering RNAs targeting HIF-1α or VE-cadherin. The proliferation and invasion of esophageal carcinoma cells were detected by MTT and Transwell migration assays. The formation of tubular networks of cells was analyzed by 3D culture in vitro. BALB/c nude mice were used to observe xenograft tumor formation. The relationship between the expression of HIF-1α and VE-cadherin, ephrinA2 (EphA2) and laminin5γ2 (LN5γ2) was measured by Western blot and real-time polymerase chain reaction.
RESULTS: Knockdown of HIF-1α inhibited cell proliferation (32.3% ± 6.1% for Eca109 cells and 38.6% ± 6.8% for TE13 cells, P < 0.05). Both Eca109 and TE13 cells formed typical tubular networks. The number of tubular networks markedly decreased when HIF-1α or VE-cadherin was knocked down. Expression of VE-cadherin, EphA2 and LN5γ2 was dramatically inhibited, but the expression of matrix metalloproteinase 2 had no obvious change in HIF-1α-silenced cells. Knockdown of VE-cadherin significantly decreased expression of both EphA2 and LN5γ2 (P < 0.05), while HIF-1α expression was unchanged. The time for xenograft tumor formation was 6 ± 1.2 d for Eca109 cells and Eca109 cells transfected with HIF-1α Neo control short hairpin RNA (shRNA) vector, and 8.4 ± 2.1 d for Eca109 cells transfected with an shRNA against HIF-1α. Knockdown of HIF-1α inhibited vasculogenic mimicry (VM) and tumorigenicity in vivo.
CONCLUSION: HIF-1α may modulate VM in ESCC by regulating VE-cadherin expression, which affects VM formation through EphA2 and LN5γ2.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Esophageal Neoplasms/blood supply
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/metabolism
- Esophageal Neoplasms/pathology
- Esophageal Squamous Cell Carcinoma
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Laminin/genetics
- Laminin/metabolism
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Mimicry
- Neoplasm Invasiveness
- Neovascularization, Pathologic
- RNA Interference
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Burden
Collapse
|
30
|
Ni X, Zhang J, Tang C, Qi Y. Intermedin/adrenomedullin2: an autocrine/paracrine factor in vascular homeostasis and disease. SCIENCE CHINA-LIFE SCIENCES 2014; 57:781-9. [DOI: 10.1007/s11427-014-4701-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
|
31
|
Lee K, Agrawal V, Kim K, Kim J, Park H, Lee S, Kim YM, Suh YG, Kwon YG. Combined effect of vascular-leakage-blocker Sac-1004 and antiangiogenic drug sunitinib on tumor angiogenesis. Biochem Biophys Res Commun 2014; 450:1320-6. [DOI: 10.1016/j.bbrc.2014.06.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
|