1
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
3
|
Zhang X, Yu X, Wen Y, Jin L, Zhang L, Zhu H, Zhang D, Xie C, Guo D, Tong J, Shen Y. Functions of retinal astrocytes and Müller cells in mammalian myopia. BMC Ophthalmol 2022; 22:451. [PMID: 36418970 PMCID: PMC9686084 DOI: 10.1186/s12886-022-02643-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Background Changes in the retina and choroid blood vessels are regularly observed in myopia. However, if the retinal glial cells, which directly contact blood vessels, play a role in mammalian myopia is unknown. We aimed to explore the potential role and mechanism of retinal glial cells in form deprived myopia. Methods We adapted the mice form-deprivation myopia model by covering the right eye and left the left eye open for control, measured the ocular structure with anterior segment optical coherence tomography, evaluated changes in the morphology and distribution of retinal glial cells by fluorescence staining and western blotting; we also searched the online GEO databases to obtain relative gene lists and confirmed them in the form-deprivation myopia mouse retina at mRNA and protein level. Results Compared with the open eye, the ocular axial length (3.54 ± 0.006 mm v.s. 3.48 ± 0.004 mm, p = 0.027) and vitreous chamber depth (3.07 ± 0.005 mm v.s. 2.98 ± 0.006 mm, p = 0.007) in the covered eye became longer. Both glial fibrillary acidic protein and excitatory amino acid transporters 4 elevated. There were 12 common pathways in human myopia and anoxic astrocytes. The key proteins were also highly relevant to atropine target proteins. In mice, two common pathways were found in myopia and anoxic Müller cells. Seven main genes and four key proteins were significantly changed in the mice form-deprivation myopia retinas. Conclusion Retinal astrocytes and Müller cells were activated in myopia. They may response to stimuli and secretory acting factors, and might be a valid target for atropine. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02643-0.
Collapse
Affiliation(s)
- Xuhong Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Xin Yu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Yingying Wen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Le Jin
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Liyue Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Hong Zhu
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyan Zhang
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China ,Department of Ophthalmology, Shaoxing Central Hospital, Shaoxing, 312030 Zhejiang China
| | - Chen Xie
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Dongyu Guo
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Jianping Tong
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| | - Ye Shen
- grid.452661.20000 0004 1803 6319Ophthalmology department, the First Affiliated Hospital of Zhejiang University, Qingchun Road No.79, Hangzhou, 310003 China
| |
Collapse
|
4
|
Qiu H, Zhang L, He X, Wei Y, Wang M, Ma B, Hu D, Shi Z. Promotion of angiogenesis in vitro by Astragalus polysaccharide via activation of TLR4 signaling pathway. J Food Biochem 2022; 46:e14329. [PMID: 35867029 DOI: 10.1111/jfbc.14329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 12/01/2022]
Abstract
During the implantation of functional tissue-engineered constructs for treating bone defects, a functional vascular network is critical for the survival of the construct. One strategy to achieve rapid angiogenesis for this application is the co-culture of outgrowth endothelial cells (OECs) and primary human osteoblasts (POBs) within a scaffold prior to implantation. In the present study, we aim to investigate whether Astragalus polysaccharide (APS) promotes angiogenesis or vascularization via the TLR4 signaling pathway in a co-culture of OECs and POBs. The co-cultures were treated with various concentrations of APS for 24 h and, subsequently, another 7 days, followed by CD31 staining and analysis of micro-vessel-formation areas using software. Additionally, APS (0.4 mg/ml for 24 h) was added to monocultures of OECs or POBs for evaluating proliferation, apoptosis, angiogenesis, osteogenesis, TLR4 signaling pathway, and inflammatory cytokine release. We found that APS promoted angiogenesis in the co-culture at the optimal concentration of 0.4 mg/ml. TLR4 activation by APS up-regulated the expression level of TLR4/MyD88 and enhanced angiogenesis and osteogenesis in monocultures of OECs and POBs. The levels of E-selectin adhesion molecules, three cytokines (IL-6, TNF-α, and IFN-γ), and VEGF and PDGF-BB, which can induce angiogenesis, increased significantly (p < .05) following APS treatment. Therefore, APS appears to promote angiogenesis and ossification in the co-culture system via the TLR4 signaling pathway. PRACTICAL APPLICATIONS: This study demonstrates that APS may promote angiogenesis and osteocyte proliferation in OEC and POB co-culture systems through the MyD88-dependent TLR4 signaling pathway. APS might represent a potential therapeutic strategy in tissue-engineered bone implantation for the treatment of large bone defects; additionally, it has the advantage of safety, as it exhibits low or no side effects. In the future, it is expected to be used in vitro for the construction of tissue-engineered bone and in vivo after implantation in patients with bone defects for promoting rapid vascularization and ossification of tissue-engineered bone and early fusion with the recipient's bone. In addition, as a food additive, Astragalus membranaceus can be used as a tonic material in patients recovering from a fracture for promoting blood-vessel formation at the fracture site and fracture recovery. Combining traditional Chinese medicine with tissue engineering can provide further strategies for promoting the development of regenerative medicine.
Collapse
Affiliation(s)
- Huiqing Qiu
- Department of Geriatrics, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.,Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China
| | - Liyan Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yusen Wei
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Miaoran Wang
- Graduate School of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Bin Ma
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Zhongli Shi
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, People's Republic of China.,Central Laboratory, The First Hospital of Hebei Medical University, College of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
5
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Mahaling B, Low SWY, Beck M, Kumar D, Ahmed S, Connor TB, Ahmad B, Chaurasia SS. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int J Mol Sci 2022; 23:ijms23052591. [PMID: 35269741 PMCID: PMC8910759 DOI: 10.3390/ijms23052591] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules released from the extracellular and intracellular space of damaged tissue or dead cells. Recent evidence indicates that DAMPs are associated with the sterile inflammation caused by aging, increased ocular pressure, high glucose, oxidative stress, ischemia, mechanical trauma, stress, or environmental conditions, in retinal diseases. DAMPs activate the innate immune system, suggesting their role to be protective, but may promote pathological inflammation and angiogenesis in response to the chronic insult or injury. DAMPs are recognized by specialized innate immune receptors, such as receptors for advanced glycation end products (RAGE), toll-like receptors (TLRs) and the NOD-like receptor family (NLRs), and purine receptor 7 (P2X7), in systemic diseases. However, studies describing the role of DAMPs in retinal disorders are meager. Here, we extensively reviewed the role of DAMPs in retinal disorders, including endophthalmitis, uveitis, glaucoma, ocular cancer, ischemic retinopathies, diabetic retinopathy, age-related macular degeneration, rhegmatogenous retinal detachment, proliferative vitreoretinopathy, and inherited retinal disorders. Finally, we discussed DAMPs as biomarkers, therapeutic targets, and therapeutic agents for retinal disorders.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Shermaine W. Y. Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Molly Beck
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Devesh Kumar
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Simrah Ahmed
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
| | - Thomas B. Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Vitreoretinal Surgery, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shyam S. Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Froedtert and MCW Eye Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (B.M.); (S.W.Y.L.); (M.B.); (D.K.); (S.A.); (T.B.C.); (B.A.)
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-2050
| |
Collapse
|
7
|
Toll-like Receptor 4, Osteoblasts and Leukemogenesis; the Lesson from Acute Myeloid Leukemia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030735. [PMID: 35163998 PMCID: PMC8838156 DOI: 10.3390/molecules27030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognizing receptor that can bind exogenous and endogenous ligands. It is expressed by acute myeloid leukemia (AML) cells, several bone marrow stromal cells, and nonleukemic cells involved in inflammation. TLR4 can bind a wide range of endogenous ligands that are present in the bone marrow microenvironment. Furthermore, the TLR4-expressing nonleukemic bone marrow cells include various mesenchymal cells, endothelial cells, differentiated myeloid cells, and inflammatory/immunocompetent cells. Osteoblasts are important stem cell supporting cells localized to the stem cell niches, and they support the proliferation and survival of primary AML cells. These supporting effects are mediated by the bidirectional crosstalk between AML cells and supportive osteoblasts through the local cytokine network. Finally, TLR4 is also important for the defense against complicating infections in neutropenic patients, and it seems to be involved in the regulation of inflammatory and immunological reactions in patients treated with allogeneic stem cell transplantation. Thus, TLR4 has direct effects on primary AML cells, and it has indirect effects on the leukemic cells through modulation of their supporting neighboring bone marrow stromal cells (i.e., modulation of stem cell niches, regulation of angiogenesis). Furthermore, in allotransplant recipients TLR4 can modulate inflammatory and potentially antileukemic immune reactivity. The use of TLR4 targeting as an antileukemic treatment will therefore depend both on the biology of the AML cells, the biological context of the AML cells, aging effects reflected both in the AML and the stromal cells and the additional antileukemic treatment combined with HSP90 inhibition.
Collapse
|
8
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
9
|
Bayan N, Yazdanpanah N, Rezaei N. Role of Toll-Like Receptor 4 in Diabetic Retinopathy. Pharmacol Res 2021; 175:105960. [PMID: 34718133 DOI: 10.1016/j.phrs.2021.105960] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM) and a leading cause of blindness worldwide. Evidence has shown that DR is an inflammatory disease with hyperglycemia playing a causative role in the development of its main features, including inflammation, cellular apoptosis, neurodegeneration, oxidative stress, and neovascularization. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors (PRRs) responsible for the initiation of inflammatory and immune responses. TLR4 identifies both endogenous and exogenous ligands and is associated with various physiological and pathological pathways in the body. While the detailed pathophysiology of DR is still unclear, increasing data suggests a crucial role for TLR4 in the development of DR. Due to hyperglycemia, TLR4 expression increases in diabetic retina, which activates various pathways leading to DR. Considering the role of TLR4 in DR, several studies have focused on the association of TLR4 polymorphisms and risk of DR development. Moreover, evidence concerning the effect of microRNAs in the pathogenesis of DR, through their interaction with TLR4, indicates the determinant role of TLR4 in this disease. Of note, several agents have proven as effective in alleviating DR through the inhibition of the TLR4 pathway, suggesting new avenues in DR treatment. In this review, we provided a brief overview of the TLR4 structure and biological function and a more comprehensive discussion about the mechanisms of TLR4 activation in DR. Furthermore, we summarized the relationship between TLR4 polymorphisms and risk of DR and the relationship between microRNAs and TLR4 in DR. Finally, we discussed the current progress in designing TLR4 inhibitors, which could be helpful in DR clinical management.
Collapse
Affiliation(s)
- Nikoo Bayan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Aref Z, Quax PHA. In Vivo Matrigel Plug Assay as a Potent Method to Investigate Specific Individual Contribution of Angiogenesis to Blood Flow Recovery in Mice. Int J Mol Sci 2021; 22:ijms22168909. [PMID: 34445616 PMCID: PMC8396178 DOI: 10.3390/ijms22168909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Neovascularization restores blood flow recovery after ischemia in peripheral arterial disease. The main two components of neovascularization are angiogenesis and arteriogenesis. Both of these processes contribute to functional improvements of blood flow after occlusion. However, discriminating between the specific contribution of each process is difficult. A frequently used model for investigating neovascularization is the murine hind limb ischemia model (HLI). With this model, it is difficult to determine the role of angiogenesis, because usually the timing for the sacrifice of the mice is chosen to be optimal for the analysis of arteriogenesis. More importantly, the occurring angiogenesis in the distal calf muscles is probably affected by the proximally occurring arteriogenesis. Therefore, to understand and subsequently intervene in the process of angiogenesis, a model is needed which investigates angiogenesis without the influence of arteriogenesis. In this study we evaluated the in vivo Matrigel plug assay in genetic deficient mice to investigate angiogenesis. Mice deficient for interferon regulatory factor (IRF)3, IRF7, RadioProtective 105 (RP105), Chemokine CC receptor CCR7, and p300/CBP-associated factor (PCAF) underwent the in vivo Matrigel model. Histological analysis of the Matrigel plugs showed an increased angiogenesis in mice deficient of IRF3, IRF7, and RP105, and a decreased angiogenesis in PCAF deficient mice. Our results also suggest an involvement of CCR7 in angiogenesis. Comparing our results with results of the HLI model found in the literature suggests that the in vivo Matrigel plug assay is superior in evaluating the angiogenic response after ischemia.
Collapse
Affiliation(s)
| | - Paul H. A. Quax
- Correspondence: ; Tel.: +31-71-526-1584; Fax: +31-71-526-6570
| |
Collapse
|
11
|
Sun Y, Ni Y, Kong N, Huang C. TLR2 signaling contributes to the angiogenesis of oxygen-induced retinopathy. Exp Eye Res 2021; 210:108716. [PMID: 34352266 DOI: 10.1016/j.exer.2021.108716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the role of Toll-like receptor 2 (TLR2) signaling in retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). MATERIALS AND METHODS The OIR model was established in C57BL/6J wild type (WT) mice and TLR2-/- mice. Retinal neovascularization in the OIR model was measured by counting new vascular cell nuclei above the internal limiting membrane and analyzing flat-mounted retinas perfused with fluorescein dextran and immunostained with Griffonia Simplicifolia (GS) isolectin. The expression of TLR2 and VEGF in the retina was detected by immunofluorescence. Expression of TGF- β1, b-FGF, and IL-6 mRNA in the retina was measured by quantitative real-time PCR. RESULTS Compared to WT OIR mice, retinal neovascularization was attenuated in TLR2-/- OIR mice. The co-expressions of TLR2 and VEGF were remarkably and consistently increased in WT OIR mice; however, there was no expression of TLR2 and a significant decrease in VEGF expression in TLR2-/- OIR mice. These results suggest that TLR2 plays a central role in OIR model angiogenesis. Expression of TGF- β1, b-FGF, and IL-6 mRNA were reduced in the TLR2-/- OIR mice, suggesting that the inflammatory response induced by TLR2 relates to angiogenesis. CONCLUSION TLR2 signaling in the retina is associated with neovascularization in mice. Inflammation contributes to the activation of angiogenesis and is partially mediated through the TLR2-VEGF retinal signaling pathway.
Collapse
Affiliation(s)
- Yuying Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Yao Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China
| | - Ning Kong
- Department of Ophthalmology, Panyu Central Hospital, Guangzhou, 510080, Guangdong Province, China.
| | - Chunyu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
12
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
13
|
Famakin BM, Vemuganti R. Toll-Like Receptor 4 Signaling in Focal Cerebral Ischemia: a Focus on the Neurovascular Unit. Mol Neurobiol 2020; 57:2690-2701. [PMID: 32306272 DOI: 10.1007/s12035-020-01906-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
A robust innate immune activation leads to downstream expression of inflammatory mediators that amplify tissue damage and consequently increase the morbidity after stroke. The Toll-like receptor 4 (TLR4) pathway is a major innate immune pathway activated acutely and chronically after stroke. Hence, understanding the intricacies of the temporal profile, specific control points, and cellular specificity of TLR4 activation is crucial for the development of any novel therapeutics targeting the endogenous innate immune response after focal cerebral ischemia. The goal of this review is to summarize the current findings related to TLR4 signaling after stroke with a specific focus on the components of the neurovascular unit such as astrocytes, neurons, endothelial cells, and pericytes. In addition, this review will examine the effects of focal cerebral ischemia on interaction of these neurovascular unit components.
Collapse
Affiliation(s)
| | - R Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton VA Hospital, Madison, WI, USA
| |
Collapse
|
14
|
Liu Y, Yang Z, Lai P, Huang Z, Sun X, Zhou T, He C, Liu X. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Am J Cancer Res 2020; 10:4250-4264. [PMID: 32226551 PMCID: PMC7086358 DOI: 10.7150/thno.43731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a vision-threatening complication of diabetes mellitus characterized by chronic retinal microvascular inflammation. The involvement of CD4+ T cells in retinal vascular inflammation has been considered, but the specific subset and mechanism of T cell-mediated response during the process remains unclear. Here, we aim to investigate the potential role of follicular helper T (Tfh) cells, a newly identified subset of CD4+ T cells in retinal vascular inflammation in DR. Methods: Patients with DR were enrolled and the PD-1+CXCR5+CD4+ Tfh cells were detected in the peripheral blood by flow cytometry. The streptozotocin (STZ)-induced DR model and oxygen-induced retinopathy (OIR) model were established, and 79-6, an inhibitor of Bcl-6, was injected intraperitoneally to suppress Tfh cells. The Tfh cells-related genes were investigated in the spleen, lymph nodes, and retina of mice by flow cytometry, immunofluorescence, and qPCR. Results: The Tfh cells expanded in the circulation of patients with DR and also increased in circulation, lymph nodes and retinal tissues from the STZ-induced DR mice and OIR mice. Notably, inhibition of Bcl-6, a critical transcription factor for Tfh cells development, prevented upregulation of Tfh cells and its typical IL-21 cytokine, and ameliorated vascular leakage in DR mice or retinal angiogenesis in OIR mice, indicating that Bcl-6-directed Tfh cells could promote vascular inflammation and angiogenesis. Conclusions: Our results suggested that excessive Bcl-6-directed Tfh cells represent an unrecognized feature of DR and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to DR.
Collapse
|
15
|
Chen W, Zhang J, Zhang P, Hu F, Jiang T, Gu J, Chang Q. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy. FASEB J 2019; 33:3451-3464. [PMID: 30475644 DOI: 10.1096/fj.201801086rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Retinopathy of prematurity is a vision-threatening condition, and therapies based on antagonizing VEGF may elicit serious side effects in premature infants. Mechanisms of retinal angiogenesis, particularly the signaling pathways independent of VEGF, remain elusive. The goals of our study were to explore TLR4-mediated signaling pathways in human retinal microvascular endothelial cells (HRMECs) and to examine the effects of TLR4 antagonists in models of oxygen-induced retinopathy (OIR). Our results show that intravitreal injection of the TLR4 antagonist TAK-242 reduced areas of nonperfusion, inhibited aberrant angiogenesis, and improved vascular density in the retina of OIR mice. The effects were further potentiated by the anti-VEGF antibody ranibizumab. In cultured HRMECs, the TLR4 agonist LPS up-regulated TLR4/MAPKK kinase kinase 4 (MAP4K4) signaling, and promoted cell proliferation and migration, and reduced barrier functions of the cells. Down-regulation of MAP4K4 in HRMECs abolished the proangiogenic effects by LPS. Our data suggest that the TLR4-MAP4K4 pathway can regulate retinal neovascularization via mechanisms independent of VEGF.-Chen, W., Zhang, J., Zhang, P., Hu, F., Jiang, T., Gu, J., Chang, Q. Role of TLR4-MAP4K4 signaling pathway in models of oxygen-induced retinopathy.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Juan Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Peijun Zhang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Fangyuan Hu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Tingting Jiang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Junxiang Gu
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Qing Chang
- Department of Ophthalmology and Vision Science, Eye and Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
16
|
Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Sci Rep 2019; 9:2986. [PMID: 30814628 PMCID: PMC6393426 DOI: 10.1038/s41598-019-39914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.
Collapse
|
17
|
Zaharieva ET, Kamenov ZA, Savov AS. TLR4 polymorphisms seem not to be associated with prediabetes and type 2 diabetes but predispose to diabetic retinopathy; TLR4 polymorphisms in glucose continuum. Endocr Regul 2019; 51:137-144. [PMID: 28858846 DOI: 10.1515/enr-2017-0014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Compared to type 1 diabetes, the role of the immune and autoimmune pathogenetic mechanisms is much less studied in the type 2 diabetes. Toll-like receptors 4 (TLR4) have a leading role in inflammation, insulin resistance, and vascular damage. This study aimed to analyze the relationship between the polymorphisms in TLR4 gene and different stages in the glucose continuum from prediabetes to the type 2 diabetes and chronic microvascular complications. MATERIALS AND METHODS The study included 113 patients with the type 2 diabetes, 29 participants with prediabetes, and 28 controls. Polymerase chain reaction (PCR) was used for genotyping Asp299Gly and Thr399Ile polymorphism, followed by restriction analysis. RESULTS The difference in the genotype frequency for both polymorphisms in patients with the type 2 diabetes or prediabetes compared to that in controls was not significant. Patients with heterozygous genotype of Asp299Gly polymorphism had a higher prevalence of diabetic retinopathy (42.9%) than participants with homozygous genotype (9.0%) (OR [95%CI]=7.61 [1.41-41.08]; p=0.018). No association was established for diabetic polyneuropathy and nephropathy. Prevalence of chronic diabetes complications was not related to Thr399Ile polymorphism. CONCLUSION Our study demonstrates that Asp299Gly and Thr399Ile polymorphisms seem not to be associated with the type 2 diabetes and prediabetes but Asp299Gly may contribute to diabetic retinopathy predisposition.
Collapse
|
18
|
Feng Y, Ke J, Cao P, Deng M, Li J, Cai H, Meng Q, Li Y, Long X. HMGB1-induced angiogenesis in perforated disc cells of human temporomandibular joint. J Cell Mol Med 2017; 22:1283-1291. [PMID: 29083089 PMCID: PMC5783830 DOI: 10.1111/jcmm.13410] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/29/2017] [Indexed: 11/29/2022] Open
Abstract
High mobility group 1 protein (HMGB1), a highly conserved nuclear DNA‐binding protein and inflammatory mediator, has been recently found to be involved in angiogenesis. Our previous study has demonstrated the elevation of HMGB1 in the tissue of perforated disc of temporomandibular joint (TMJ). Here, we investigated a novel mediator of HMGB1 in regulating hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) to mediate angiogenesis in perforated disc cells of TMJ. HMGB1 increased the expression of HIF‐1α and VEGF in a dose‐ and time‐dependent manner in these cells. Moreover, immunofluorescence assay exhibits that the HIF‐1α were activated by HMGB1. In addition, HMGB1 activated extracellular signal‐related kinase 1/2 (Erk1/2), Jun N‐terminal kinase (JNK), but not P38 in these cells. Furthermore, both U0126 (ErK inhibitor) and SP600125 (JNK inhibitor) significantly suppressed the enhanced production of HIF‐1α and VEGF induced by HMGB1. Tube formation of human umbilical vein endothelial cells (HUVECs) was significantly increased by exposure to conditioned medium derived from HMGB1‐stimulated perforated disc cells, while attenuated with pre‐treatment of inhibitors for VEGF, HIF‐1α, Erk and JNK, individually. Therefore, abundance of HMGB1 mediates activation of HIF‐1α in disc cells via Erk and JNK pathway and then, initiates VEGF secretion, thereby leading to disc angiogenesis and accelerating degenerative change of the perforated disc.
Collapse
Affiliation(s)
- Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Pinyin Cao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Mohong Deng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Jian Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Hengxing Cai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qinggong Meng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yingjie Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Minhas G, Sharma J, Khan N. Cellular Stress Response and Immune Signaling in Retinal Ischemia-Reperfusion Injury. Front Immunol 2016; 7:444. [PMID: 27822213 PMCID: PMC5075763 DOI: 10.3389/fimmu.2016.00444] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/07/2016] [Indexed: 01/04/2023] Open
Abstract
Ischemia–reperfusion injury is a well-known pathological hallmark associated with diabetic retinopathy, glaucoma, and other related retinopathies that ultimately can lead to visual impairment and vision loss. Retinal ischemia pathogenesis involves a cascade of detrimental events that include energy failure, excitotoxic damage, calcium imbalance, oxidative stress, and eventually cell death. Retina for a long time has been known to be an immune privileged site; however, recent investigations reveal that retina, as well as the central nervous system, elicits immunological responses during various stress cues. Stress condition, such as reperfusion of blood supply post-ischemia results in the sequestration of different immune cells, inflammatory mediators including cytokines, chemokines, etc., to the ischemic region, which in turn facilitates induction of inflammatory conditions in these tissues. The immunological activation during injury or stress per se is beneficial for repair and maintenance of cellular homeostasis, but whether the associated inflammation is good or bad, during ischemia–reperfusion injury, hitherto remains to be explored. Keeping all these notions in mind, the current review tries to address the immune response and host stress response mechanisms involved in ischemia–reperfusion injury with the focus on the retina.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| | - Jyoti Sharma
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , Telangana, India
| |
Collapse
|
20
|
Xu WQ, Wang YS. The role of Toll-like receptors in retinal ischemic diseases. Int J Ophthalmol 2016; 9:1343-51. [PMID: 27672603 DOI: 10.18240/ijo.2016.09.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/01/2016] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptors (TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands. Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases, including ischemia-reperfusion injury, glaucoma, diabetic retinopathy (DR) and retinopathy of prematurity (ROP). TLRs can be expressed in multiple cells in the retina, such as glial cells, retinal pigment epithelium (RPE), as well as photoreceptor cells and endothelium cells. Activation of TLRs in retina could initiate a complex signal transduction cascade, induce the production of inflammatory cytokines and regulate the level of co-stimulatory molecules, which play prominent roles in the pathogenesis of retinal ischemic diseases. In this review, we summarized current studies about the relationship between TLRs and ischemic retinopathy. A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions.
Collapse
Affiliation(s)
- Wen-Qin Xu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
21
|
TLR2/4 deficiency prevents oxygen-induced vascular degeneration and promotes revascularization by downregulating IL-17 in the retina. Sci Rep 2016; 6:27739. [PMID: 27297042 PMCID: PMC4906284 DOI: 10.1038/srep27739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Vascular degeneration is a critical pathological process in many human degenerative diseases, which need efficient ways to revascularization. However, little is known about cellular and molecular mechanisms that are used during vascular degeneration and revascularization. Here, we show that Toll-like receptor 2 and 4 (TLR2/4) double deficiency suppressed hyperoxia induced retinal vessel regression in an oxygen-induced retinopathy (OIR) model. Notably, the TLR2/4−/− mice experienced more revascularization after reduced vessel regression compared with wild-type mice, accompanied with less activation of glial cells. Mechanistically, TLR2/4 activation can tip the balance between Th17 cells and regulatory T cells towards Th17 cells, a critical source of the IL-17A. Less migration and infiltration of IL-17A-expressing proinflammatory cells but elevated regulatory T cells were observed in OIR-retinae from TLR2/4−/− mice. Coincidentally, TLR2/4 deficiency suppressed IL-17A production and increased expressions of anti-inflammatory genes. Furthermore, IL-17A promoted activation of glial cells. IL-17A blockade using a neutralizing antibody alleviated retinal cell apoptosis and glial activation in C57/B6-OIR mice, demonstrating the important role of IL-17A pathway in glial function during revascularization. Thus TLR2/4-mediated IL-17A inflammatory signaling is involved in vessel degeneration and revascularization, indicating that modulation of the TLR2/4-IL-17A pathway may be a novel therapeutic strategy for degenerative diseases.
Collapse
|
22
|
Lei C, Wu B, Cao T, Liu M, Hao Z. Brain recovery mediated by toll-like receptor 4 in rats after intracerebral hemorrhage. Brain Res 2015; 1632:1-8. [PMID: 26657742 DOI: 10.1016/j.brainres.2015.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/07/2015] [Accepted: 11/27/2015] [Indexed: 02/05/2023]
Abstract
Activation of the immune system via toll-like receptor 4 (TLR4) is implicated in both negative and positive processes in the central nervous system, including inflammation and angiogenesis. Whether TLR4 also participates in brain recovery following intracerebral hemorrhage (ICH) has not been investigated. We used the rat model of collagenase-induced ICH to determine whether TLR4 acts as a key regulator of brain recovery in the late phase of injury. After ICH, TLR4 levels in the ipsilateral striatum were significantly higher in the ICH group than in the Sham group on days 1, 3, 7 and 14 after ICH induction. By 14 d, the ICH group showed significantly higher levels of vascular endothelial growth factor, brain-derived neurotrophic factor, and MMP-9 than the Sham group, as well as greater numbers of vessels and BrdU- and DCX-positive cells. All these ICH-induced increases were significantly smaller in the TAK-242 group. The TLR4 antagonist also inhibited the recovery of neurological function after ICH. A TLR4 antagonist reduced ICH-induced neurogenesis and angiogenesis in a rat. These findings suggest that TLR4 may promote brain repair in the late phase of ICH.
Collapse
Affiliation(s)
- Chunyan Lei
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Bo Wu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China; State Key Laboratory of Human Disease Biotherapy and Ministry of Education, West China Hospital, Sichuan University, PR China.
| | - Tian Cao
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| | - Ming Liu
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China; State Key Laboratory of Human Disease Biotherapy and Ministry of Education, West China Hospital, Sichuan University, PR China
| | - Zilong Hao
- Stroke Clinical Research Unit, Department of Neurology, West China Hospital, Sichuan University, PR China
| |
Collapse
|
23
|
Yu Y, Chen H, Su SB. Neuroinflammatory responses in diabetic retinopathy. J Neuroinflammation 2015; 12:141. [PMID: 26245868 PMCID: PMC4527131 DOI: 10.1186/s12974-015-0368-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/27/2015] [Indexed: 01/14/2023] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and has been recognized as a vascular dysfunction leading to blindness in working-age adults. It becomes increasingly clear that neural cells in retina play an important role in the pathogenesis of DR. Neural retina located at the back of the eye is part of the brain and a representative of the central nervous system. The neurosensory deficits seen in DR are related to inflammation and occur prior to the clinically identifiable vascular complications. The neural deficits are associated with abnormal reactions of retina glial cells and neurons in response to hyperglycemia. Improper activation of the innate immune system may also be an important contributor to the pathophysiology of DR. Therefore, DR manifests characteristics of both vasculopathy and chronic neuroinflammatory diseases. In this article, we attempt to provide an overview of the current understanding of inflammation in neural retina abnormalities in diabetes. Inhibition of neuroinflammation may represent a novel therapeutic strategy to the prevention of the progression of DR.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S Xianlie Road, Guangzhou, 510060, China.
| | - Hui Chen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Shao Bo Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 S Xianlie Road, Guangzhou, 510060, China.
| |
Collapse
|
24
|
Ma B, Dohle E, Li M, Kirkpatrick CJ. TLR4 stimulation by LPS enhances angiogenesis in a co-culture system consisting of primary human osteoblasts and outgrowth endothelial cells. J Tissue Eng Regen Med 2015. [PMID: 26205614 DOI: 10.1002/term.2075] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of new approaches leading to fast and successful vascularization of tissue-engineered constructs is one of the most intensively studied subjects in tissue engineering and regenerative medicine. Recently, TLR4 activation and LPS stimulation of endothelial cells have been reported to promote angiogenesis in a variety of settings. In this study, we demonstrate that TLR4 activation by Ultrapure LPS Escherichia coli 0111:B4 (LPS-EB) significantly enhances microvessel formation in a co-culture system consisting of outgrowth endothelial cells (OECs) and primary human osteoblasts (pOBs). The precise modes of TLR4 action on the process of angiogenesis have also been investigated in this study. Using quantitative fluorescence microscopy in monocultures of OECs and pOBs, it was found that TLR4 activation through LPS-EB upregulates the expression level of TLR4/MYD88 and enhances both angiogenesis and osteogenesis. Furthermore, ELISA and qRT-PCR have shown that the level of two adhesion molecules (ICAM-1 and E-selectin), two cytokines (IL-6 and IL-8) and two growth factors (VEGF and PDGF-BB) related to angiogenesis increase significantly after LPS-EB treatment. This increased understanding of the role of TLR4 in angiogenesis could be of value in various settings related to tissue repair and tissue engineering. Moreover, since LPS and TLR4 agonists improve angiogenesis and osteogenesis, TLR4 agonists (endogenous or synthetic) could be used for angiogenesis intervention in vivo and therefore could be tested for their potential clinical applications in promoting angiogenesis in bone tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bin Ma
- REPAIR-Lab, Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.,Department of Molecular and Biomedical Sciences, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.,School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Eva Dohle
- REPAIR-Lab, Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ming Li
- REPAIR-Lab, Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Charles James Kirkpatrick
- REPAIR-Lab, Institute of Pathology, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
25
|
|
26
|
Wang L, Wang J, Fang J, Zhou H, Liu X, Su SB. High glucose induces and activates Toll-like receptor 4 in endothelial cells of diabetic retinopathy. Diabetol Metab Syndr 2015; 7:89. [PMID: 26468333 PMCID: PMC4604707 DOI: 10.1186/s13098-015-0086-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia-induced inflammation causes the dysfunction of blood vessels, and Toll-like receptor 4 (TLR4) plays a key role in inflammation-induced angiogenesis. However, the impact of TLR4 on the pathogenesis of diabetic retinopathy (DR) is poorly understood. In this study, we examined the expression of TLR4 in retinal vascular endothelial cells of patients with DR and diabetic mice, and explored the role of TLR4 in mediating inflammatory responses by human microvascular endothelial cells (HMEC-1) under high-glucose condition. METHODS The expression of TLR4 in retinal vascular endothelial cells of patients with proliferative diabetic retinopathy and diabetic mice induced by streptozotocin was examined using immunofluorescence. HMEC-1 cells were cultured and the expression of TLR4, MyD88 and Interleukin-1β (IL-1β) was examined under high-glucose condition. Endothelial cells with TLR4 silencing and antagonist of TLR4 as well as endothelial cells from TLR4 deficient mice were used to study the effect of activated TLR4 on inflammation induced by high-glucose treatment. RESULTS We observed that TLR4 was detected in CD31-labled human retinal vascular endothelia and its expression was markedly increased in fibrovascular membranes from DR patients and in retinal vascular endothelial cells of diabetic mice. The expression of TLR4, MyD88 and IL-1β was enhanced by high glucose in cultured HMEC-1 and the expression of TLR4 and IL-1β was inhibited by TLR4 siRNA knock-down and TLR4 antagonist. The expression of IL-1β by endothelial cells from TLR4 deficient mice under high glucose condition was decreased. CONCLUSIONS Our results revealed that hyperglycemia induced overexpression and activation of TLR4 in endothelial cells. This effect may lead to inflammatory responses contribute to the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Lu Wang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
- />Guangdong Province Hospital of Traditional Chinese Medicine, Guangzhou, 510120 China
| | - Jing Wang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Jiazhu Fang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Hongyan Zhou
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Xialin Liu
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| | - Shao Bo Su
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060 China
| |
Collapse
|
27
|
Murad S. Toll-like receptor 4 in inflammation and angiogenesis: a double-edged sword. Front Immunol 2014; 5:313. [PMID: 25071774 PMCID: PMC4083339 DOI: 10.3389/fimmu.2014.00313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/22/2014] [Indexed: 01/04/2023] Open
Affiliation(s)
- Sheeba Murad
- Molecular Immunology Lab, Health Care Biotech Department, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology , Islamabad , Pakistan
| |
Collapse
|
28
|
Al-Shabrawey M, Elsherbiny M, Nussbaum J, Othman A, Megyerdi S, Tawfik A. Targeting Neovascularization in Ischemic Retinopathy: Recent Advances. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 8:267-286. [PMID: 25598837 DOI: 10.1586/eop.13.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathological retinal neovascularization (RNV) is a common micro-vascular complication in several retinal diseases including retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration and central vein occlusion. The current therapeutic modalities of RNV are invasive and although they may slow or halt the progression of the disease they are unlikely to restore normal acuity. Therefore, there is an urgent need to develop treatment modalities, which are less invasive and therefore associated with fewer procedural complications and systemic side effects. This review article summarizes our understanding of the pathophysiology and current treatment of RNV in ischemic retinopathies; lists potential therapeutic targets; and provides a framework for the development of future treatment modalities.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA ; Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt ; Vascular Biology Center, Medical College of Georgia, GRU
| | - Mohamed Elsherbiny
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA ; Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt
| | - Julian Nussbaum
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU
| | - Amira Othman
- Anatomy, Mansoura Faculty of Medicine, Mansoura University-Egypt
| | - Sylvia Megyerdi
- Oral Biology/Anatomy, College of Dental Medicine, GeorgiaRegentsUniversity (GRU), Augusta GA, USA
| | - Amany Tawfik
- Ophthalmology and Vision Discovery Institute, Medical College of Georgia, GRU ; Cellular Biology and Anatomy, Medical College of Georgia, GRU
| |
Collapse
|
29
|
Lin YW, Huang CY, Chen YH, Shih CM, Tsao NW, Lin CY, Chang NC, Tsai CS, Tsai HY, Tsai JC, Huang PH, Li CY, Lin FY. GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, impairs neovascularization by decreasing endothelial progenitor cell function. PLoS One 2013; 8:e84731. [PMID: 24376840 PMCID: PMC3871664 DOI: 10.1371/journal.pone.0084731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/19/2013] [Indexed: 01/04/2023] Open
Abstract
The number and function of endothelial progenitor cells (EPCs) are sensitive to hyperglycemia, hypertension, and smoking in humans, which are also associated with the development of atherosclerosis. GroEL1 from Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis. However, the actual effects of GroEL1 on EPC function are unclear. In this study, we investigate the EPC function in GroEL1-administered hind limb-ischemic C57BL/B6 and C57BL/10ScNJ (a toll-like receptor 4 (TLR4) mutation) mice and human EPCs. In mice, laser Doppler imaging, flow cytometry, and immunohistochemistry were used to evaluate the degree of neo-vasculogenesis, circulating level of EPCs, and expression of CD34, vWF, and endothelial nitric oxide synthase (eNOS) in vessels. Blood flow in the ischemic limb was significantly impaired in C57BL/B6 but not C57BL/10ScNJ mice treated with GroEL1. Circulating EPCs were also decreased after GroEL1 administration in C57BL/B6 mice. Additionally, GroEL1 inhibited the expression of CD34 and eNOS in C57BL/B6 ischemic muscle. In vitro, GroEL1 impaired the capacity of differentiation, mobilization, tube formation, and migration of EPCs. GroEL1 increased senescence, which was mediated by caspases, p38 MAPK, and ERK1/2 signaling in EPCs. Furthermore, GroEL1 decreased integrin and E-selectin expression and induced inflammatory responses in EPCs. In conclusion, these findings suggest that TLR4 and impaired NO-related mechanisms could contribute to the reduced number and functional activity of EPCs in the presence of GroEL1 from C. pneumoniae.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nai-Wen Tsao
- Division of Cardiovascular Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Cheng-Yen Lin
- Department of Computer Science and Information Management, Hung Kuang University, Taichung, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Division of Cardiovascular Surgery, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Chi Tsai
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|