1
|
Kang J, Lee JH, Cha H, An J, Kwon J, Lee S, Kim S, Baykan MY, Kim SY, An D, Kwon AY, An HJ, Lee SH, Choi JK, Park JE. Systematic dissection of tumor-normal single-cell ecosystems across a thousand tumors of 30 cancer types. Nat Commun 2024; 15:4067. [PMID: 38744958 PMCID: PMC11094150 DOI: 10.1038/s41467-024-48310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The complexity of the tumor microenvironment poses significant challenges in cancer therapy. Here, to comprehensively investigate the tumor-normal ecosystems, we perform an integrative analysis of 4.9 million single-cell transcriptomes from 1070 tumor and 493 normal samples in combination with pan-cancer 137 spatial transcriptomics, 8887 TCGA, and 1261 checkpoint inhibitor-treated bulk tumors. We define a myriad of cell states constituting the tumor-normal ecosystems and also identify hallmark gene signatures across different cell types and organs. Our atlas characterizes distinctions between inflammatory fibroblasts marked by AKR1C1 or WNT5A in terms of cellular interactions and spatial co-localization patterns. Co-occurrence analysis reveals interferon-enriched community states including tertiary lymphoid structure (TLS) components, which exhibit differential rewiring between tumor, adjacent normal, and healthy normal tissues. The favorable response of interferon-enriched community states to immunotherapy is validated using immunotherapy-treated cancers (n = 1261) including our lung cancer cohort (n = 497). Deconvolution of spatial transcriptomes discriminates TLS-enriched from non-enriched cell types among immunotherapy-favorable components. Our systematic dissection of tumor-normal ecosystems provides a deeper understanding of inter- and intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jun Hyeong Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hongui Cha
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jinhyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joonha Kwon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Division of Cancer Data Science, National Cancer Center, Bioinformatics Branch, Goyang, Republic of Korea
| | - Seongwoo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seongryong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mert Yakup Baykan
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So Yeon Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dohyeon An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Kwon
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-si, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
- Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Guan X, Shi C, Wang Y, He Y, Li Y, Yang Y, Mu W, Li W, Hou T. The possible role of Gremlin1 in inflammatory apical periodontitis. Arch Oral Biol 2024; 157:105848. [PMID: 37977053 DOI: 10.1016/j.archoralbio.2023.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE In this study, we investigated the involvement of Gremlin1 on the pathological process of apical periodontitis and detect the underlying mechanisms preliminarily. METHODS Clinical healthy and inflamed periapical specimens were collected. Then, apical periodontitis (AP) animal models were established by consistent pulp exposure. In addition, AAV-shGremlin1 was injected into inflamed periapical lesions to inhibit the expression of Gremlin1. Alveolar bone loss was measured by Micro-CT. Furthermore, immunohistochemical or immunofluorescence staining of Gremlin1, phosphorylated-CREB, ICAM-1, VCAM-1, IL-1β were performed. RESULTS The expression of Gremlin1 is markedly increased in periapical lesions not only in clinic samples but also in animal models. Moreover, in rats' AP model, we uncovered that the Gremlin1 protein expression levels in apical lesions is positively correlated with those of IL-1β. Besides, the blockade of Gremlin1 in periapical lesions could substantially suppress the alveolar bone loss and restrains the inflammatory status by impacting the activation levels of phosphorylated-CREB, ICAM-1, VCAM-1, IL-1β. CONCLUSIONS Taken together, these results illustrated that Gremlin1 acts as a crucial mediator and possibly serves as a potential diagnostic marker for periapical periodontitis. Discovery of new factors involved in the pathophysiology of periapical periodontitis could contribute to the development of novel therapeutic treatment for the disease.
Collapse
Affiliation(s)
- Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chen Shi
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Sichuan Hospital of Stomatology, Chengdu, Sichuan, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yani He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xian Jiaotong University, Xi'an, Shaanxi, China; Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Huynh NV, Rehage C, Hyndman KA. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am J Physiol Renal Physiol 2023; 325:F717-F732. [PMID: 37767569 PMCID: PMC11550884 DOI: 10.1152/ajprenal.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.
Collapse
Affiliation(s)
- Nha Van Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
4
|
Vliora M, Ravelli C, Grillo E, Corsini M, Flouris AD, Mitola S. The impact of adipokines on vascular networks in adipose tissue. Cytokine Growth Factor Rev 2023; 69:61-72. [PMID: 35953434 DOI: 10.1016/j.cytogfr.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 02/07/2023]
Abstract
Adipose tissue (AT) is a highly active and plastic endocrine organ. It secretes numerous soluble molecules known as adipokines, which act locally to AT control the remodel and homeostasis or exert pleiotropic functions in different peripheral organs. Aberrant production or loss of certain adipokines contributes to AT dysfunction associated with metabolic disorders, including obesity. The AT plasticity is strictly related to tissue vascularization. Angiogenesis supports the AT expansion, while regression of blood vessels is associated with AT hypoxia, which in turn mediates tissue inflammation, fibrosis and metabolic dysfunction. Several adipokines can regulate endothelial cell functions and are endowed with either pro- or anti-angiogenic properties. Here we address the role of adipokines in the regulation of angiogenesis. A better understanding of the link between adipokines and angiogenesis will open the way for novel therapeutic approaches to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Maria Vliora
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece; Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy
| | - Andreas D Flouris
- FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, Italy.
| |
Collapse
|
5
|
Grillo E, Ravelli C, Colleluori G, D'Agostino F, Domenichini M, Giordano A, Mitola S. Role of gremlin-1 in the pathophysiology of the adipose tissues. Cytokine Growth Factor Rev 2023; 69:51-60. [PMID: 36155165 DOI: 10.1016/j.cytogfr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/07/2023]
Abstract
Gremlin-1 is a secreted bone morphogenetic protein (BMP) antagonist playing a pivotal role in the regulation of tissue formation and embryonic development. Since its first identification in 1997, gremlin-1 has been shown to be a multifunctional factor involved in wound healing, inflammation, cancer and tissue fibrosis. Among others, the activity of gremlin-1 is mediated by its interaction with BMPs or with membrane receptors such as the vascular endothelial growth factor receptor 2 (VEGFR2) or heparan sulfate proteoglycans (HSPGs). Growing evidence has highlighted a central role of gremlin-1 in the homeostasis of the adipose tissue (AT). Of note, gremlin-1 is involved in AT dysfunction during type 2 diabetes, obesity and non-alcoholic fatty liver disease (NAFLD) metabolic disorders. In this review we discuss recent findings on gremlin-1 involvement in AT biology, with particular attention to its role in metabolic diseases, to highlight its potential as a prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Georgia Colleluori
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Francesco D'Agostino
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Domenichini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Tronto 10/A, 60020 Ancona, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
6
|
Ma J, Chen X, Zhang L, Ma L, Li J, Li J, Zang J. The stability and absorption of naturally occurring cAMP by its weak interactions with jujube polysaccharides were greatly improved. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Lee HG, Roh S, Kim HJ, Kim S, Hong Y, Lee G, Jeon OH. Nanoscale biophysical properties of small extracellular vesicles from senescent cells using atomic force microscopy, surface potential microscopy, and Raman spectroscopy. NANOSCALE HORIZONS 2022; 7:1488-1500. [PMID: 36111604 DOI: 10.1039/d2nh00220e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells secrete extracellular vesicles (EVs) carrying cell-of-origin markers to communicate with surrounding cells. EVs regulate physiological processes ranging from intercellular signaling to waste management. However, when senescent cells (SnCs) secrete EVs, the EVs, which are newly regarded as senescence-associated secretory phenotype (SASP) factors, can evoke inflammation, senescence induction, and metabolic disorders in neighboring cells. Unlike other soluble SASP factors, the biophysical properties of EVs, including small EVs (sEVs), derived from SnCs have not yet been investigated. In this study, sEVs were extracted from a human IMR90 lung fibroblast in vitro senescence model. Their biomechanical properties were mapped using atomic force microscopy-based quantitative nanomechanical techniques, surface potential microscopy, and Raman spectroscopy. The surfaces of sEVs derived from SnCs are slightly stiffer but their cores are softer than those of sEVs secreted from non-senescent cells (non-SnCs). This inversely proportional relationship between deformation and stiffness, attributed to a decrease in the concentration of genetic and protein materials inside the vesicles and the adsorption of positively charged SASP factors onto the vesicle surfaces, respectively, was found to be a peculiar characteristic of SnC-derived sEVs. Our results demonstrate that the biomechanical properties of SnC-derived sEVs differ from those of non-SnC-derived sEVs and provide insight into the mechanisms underlying their formation and composition.
Collapse
Affiliation(s)
- Hyo Gyeong Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Jung Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, Republic of Korea.
| | - Seokho Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoochan Hong
- Department of Medical Device, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, Republic of Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
9
|
Qin W, Wang L, Tian H, Wu X, Xiao C, Pan Y, Fan M, Tai Y, Liu W, Zhang Q, Yang Y. CAF-derived exosomes transmitted Gremlin-1 promotes cancer progression and decreases the sensitivity of hepatoma cells to sorafenib. Mol Carcinog 2022; 61:764-775. [PMID: 35638711 DOI: 10.1002/mc.23416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide because of metastasis. An increasing number of studies have reported that cancer-associated fibroblasts (CAFs) have emerged as the largest component of the stroma and play a critical role in tumor-promoting processes. However, the effects of CAFs on cancer progression and the sensitivity of hepatoma cells to sorafenib are not well characterized. Here, we identified the proteome of CAF-derived exosomes, and unveiled that exosomal Gremlin-1 derived from CAFs contributes to epithelial-mesenchymal transition (EMT) of hepatoma cells and the decrease of the sorafenib sensitivity through regulating Wnt/β-catenin and BMP signaling pathways. Compared to control subjects, the level of plasma exosomal Gremlin-1 was significantly increased in HCC patients. Further studies indicated that plasma exosomal Gremlin-1 may predict sorafenib response in HCC patients. Collectively, our findings uncover CAFs-derived Gremlin-1-rich exosomes promote EMT and decrease the sensitivity of hepatoma cells to sorafenib by Wnt/β-catenin and BMP signaling.
Collapse
Affiliation(s)
- Wei Qin
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Tian
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaocai Wu
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuicui Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingming Fan
- Department of Surgery Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong Province Engineering Laboratory for Transplantation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Sena LA, Brennen WN, Isaacs JT. There are gremlins in prostate cancer. NATURE CANCER 2022; 3:530-531. [PMID: 35624340 PMCID: PMC9202482 DOI: 10.1038/s43018-022-00381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The lethality of prostate cancer (PCa) is driven by its progression to a castration-resistant state. A new study identifies Gremlin 1 (GREM1) as an agonist of fibroblast growth factor receptor 1 (FGFR1) that drives such progression when androgen receptor (AR) signaling is low. This nominates GREM1 as a novel target for metastatic castration-resistant PCa with low AR activity.
Collapse
Affiliation(s)
- Laura A Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
A molecular complex of Ca v1.2/CaMKK2/CaMK1a in caveolae is responsible for vascular remodeling via excitation-transcription coupling. Proc Natl Acad Sci U S A 2022; 119:e2117435119. [PMID: 35412911 PMCID: PMC9169798 DOI: 10.1073/pnas.2117435119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excitation–transcription (E-T) coupling can initiate and modulate essential physiological or pathological responses in cells, such as neurons and cardiac myocytes. Although vascular myocytes also exhibit E-T coupling in response to membrane depolarization, the underlying molecular mechanisms are unknown. Our study reveals that E-T coupling in vascular myocytes converts intracellular Ca2+ signals into selective gene transcription related to chemotaxis, leukocyte adhesion, and inflammation. Our discovery identifies a mechanism for vascular remodeling as an adaptation to increased circumferential stretch. Elevation of intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+/calmodulin-dependent kinases (CaMK) and promotes gene transcription. This signaling pathway is referred to as excitation–transcription (E-T) coupling. Although vascular myocytes can exhibit E-T coupling, the molecular mechanisms and physiological/pathological roles are unknown. Multiscale analysis spanning from single molecules to whole organisms has revealed essential steps in mouse vascular myocyte E-T coupling. Upon a depolarizing stimulus, Ca2+ influx through Cav1.2 voltage-dependent Ca2+ channels activates CaMKK2 and CaMK1a, resulting in intranuclear CREB phosphorylation. Within caveolae, the formation of a molecular complex of Cav1.2/CaMKK2/CaMK1a is promoted in vascular myocytes. Live imaging using a genetically encoded Ca2+ indicator revealed direct activation of CaMKK2 by Ca2+ influx through Cav1.2 localized to caveolae. CaMK1a is phosphorylated by CaMKK2 at caveolae and translocated to the nucleus upon membrane depolarization. In addition, sustained depolarization of a mesenteric artery preparation induced genes related to chemotaxis, leukocyte adhesion, and inflammation, and these changes were reversed by inhibitors of Cav1.2, CaMKK2, and CaMK, or disruption of caveolae. In the context of pathophysiology, when the mesenteric artery was loaded by high pressure in vivo, we observed CREB phosphorylation in myocytes, macrophage accumulation at adventitia, and an increase in thickness and cross-sectional area of the tunica media. These changes were reduced in caveolin1-knockout mice or in mice treated with the CaMKK2 inhibitor STO609. In summary, E-T coupling depends on Cav1.2/CaMKK2/CaMK1a localized to caveolae, and this complex converts [Ca2+]i changes into gene transcription. This ultimately leads to macrophage accumulation and media remodeling for adaptation to increased circumferential stretch.
Collapse
|
12
|
Elemam NM, Malek AI, Mahmoud EE, El-Huneidi W, Talaat IM. Insights into the Role of Gremlin-1, a Bone Morphogenic Protein Antagonist, in Cancer Initiation and Progression. Biomedicines 2022; 10:biomedicines10020301. [PMID: 35203511 PMCID: PMC8869528 DOI: 10.3390/biomedicines10020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
The bone morphogenic protein (BMP) antagonist Gremlin-1 is a biologically significant regulator known for its crucial role in tissue differentiation and embryonic development. Nevertheless, it has been reported that Gremlin-1 can exhibit its function through BMP dependent and independent pathways. Gremlin-1 has also been reported to be involved in organ fibrosis, which has been correlated to the development of other diseases, such as renal inflammation and diabetic nephropathy. Based on growing evidence, Gremlin-1 has recently been implicated in the initiation and progression of different types of cancers. Further, it contributes to the stemness state of cancer cells. Herein, we explore the recent findings on the role of Gremlin-1 in various cancer types, including breast, cervical, colorectal, and gastric cancers, as well as glioblastomas. Additionally, we highlighted the impact of Gremlin-1 on cellular processes and signaling pathways involved in carcinogenesis. Therefore, it was suggested that Gremlin-1 might be a promising prognostic biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdullah Imadeddin Malek
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Esraa Elaraby Mahmoud
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: (W.E.-H.); (I.M.T.)
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; (N.M.E.); (A.I.M.); (E.E.M.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (W.E.-H.); (I.M.T.)
| |
Collapse
|
13
|
Mitola S, Ravelli C, Corsini M, Gianoncelli A, Galvagni F, Ballmer-Hofer K, Presta M, Grillo E. Production and Biochemical Characterization of Dimeric Recombinant Gremlin-1. Int J Mol Sci 2022; 23:ijms23031151. [PMID: 35163075 PMCID: PMC8835488 DOI: 10.3390/ijms23031151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Gremlin-1 is a secreted cystine-knot protein that acts as an antagonist of bone morphogenetic proteins (BMPs), and as a ligand of heparin and the vascular endothelial growth factor receptor 2 (VEGFR2), thus regulating several physiological and pathological processes, including embryonic development, tissue fibrosis and cancer. Gremlin-1 exerts all these biological activities only in its homodimeric form. Here, we propose a multi-step approach for the expression and purification of homodimeric, fully active, histidine-tagged recombinant gremlin-1, using mammalian HEK293T cells. Ion metal affinity chromatography (IMAC) of crude supernatant followed by heparin-affinity chromatography enables obtaining a highly pure recombinant dimeric gremlin-1 protein, exhibiting both BMP antagonist and potent VEGFR2 agonist activities.
Collapse
Affiliation(s)
- Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
- Correspondence: (S.M.); (E.G.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Paul Scherrer Institute, 5232 Villigen, Switzerland;
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (C.R.); (M.C.); (A.G.); (M.P.)
- Correspondence: (S.M.); (E.G.)
| |
Collapse
|
14
|
Guan X, He Y, Li Y, Shi C, Wei Z, Zhao R, Han Y, Pan L, Yang J, Hou TZ. Gremlin aggravates periodontitis via activating the NF-κB signaling pathway. J Periodontol 2022; 93:1589-1602. [PMID: 34993960 DOI: 10.1002/jper.21-0474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Gremlin has been reported to regulate inflammation and osteogenesis. Periodontitis is a destructive disease degenerating periodontal tissues, therefore leads to alveolar bone resorption and tooth loss. Based on the importance of Gremlin's bio-activity, the aim of this study is to, in vivo and in vitro, unveil the function of Gremlin in regulating the development of periodontitis and its consequent effects on alveolar bone loss. METHODS Clinical specimens were used to determine the expression of Gremlin in periodontal tissues by immunohistochemical staining and western blot. Then utilizing the rat periodontitis model to investigate the function of gremlin-regulated nuclear factor-kappa B (NF-κB) pathway during the development of periodontal inflammation and the alveolar bone loss. Lastly, the regulation of the osteogenesis of human periodontal ligament stem cells (hPDLSCs) by Gremlin under inflamed condition was analyzed by alkaline phosphatase (ALP) and alizarin red staining (ARS). RESULTS We found clinically and experimentally that the expression of Gremlin is markedly increased in periodontitis tissues. Interestingly, we revealed that Gremlin regulated the progress of periodontitis via regulating the activities of NF-κB pathway and interleukin-1β (IL-1β). Notably, we observed that Gremlin influenced the osteogenesis of hPDLSCs. Thus, our present study identified Gremlin as a new key regulator for development of periodontitis. CONCLUSIONS Our current study illustrated that Gremlin acts as a crucial mediator and possibly serves as a potential diagnostic marker for periodontitis. Discovery of new factors involved in the pathophysiology of periodontitis could contribute to the development of novel therapeutic treatment for the disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Rui Zhao
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Yue Han
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Lifei Pan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tie Zhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Endodontics, Stomatological Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
15
|
Kan J, Fu B, Zhou R, Zhou D, Huang Y, Zhao H, Zhang Y, Rong Y, Dong J, Xia L, Liu S, Huang Q, Wang N, Ning N, Zhang B, Zhang E. He-Chan Pian inhibits the metastasis of non-small cell lung cancer via the miR-205-5p-mediated regulation of the GREM1/Rap1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153821. [PMID: 34752967 DOI: 10.1016/j.phymed.2021.153821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND He-Chan Pian (HCP), a traditional Chinese medicinal formula, shows promising efficacy for the treatment of lung cancer. PURPOSE Gremlin (GREM1) plays an important role in gastrointestinal tumor metastasis; however, little is known about its role in lung cancer. We determined the mechanism underlying the protective effect of HCP against metastasis in a mouse model of non-small cell lung cancer (NSCLC) and demonstrated the role of GREM1. METHODS Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) was used to analyze the herbal components and metabolites from the serum of HCP-treated mice. The tumor, liver, and kidney were examined histologically, and the antitumor effects and toxicity of HCP were evaluated. Levels of epithelial-mesenchymal transition (EMT)-associated transcription factors were measured using western blotting in tumors from five groups (i.e., model, HCP [L], HCP [M], HCP [H], and positive control [cisplatin, DDP]). Differentially expressed proteins and genes were identified using protein chip and sequencing analyzes, respectively. Short hairpin RNAs and overexpression plasmids were introduced into cells to evaluate the effects of GREM1. To evaluate proliferation, migration, and invasion, the expression levels of proteins involved in the Rap1 pathway and EMT were measured in vitro. Xenograft tumors with overexpression-GREM1 (OE-GREM1) in A549 cells were examined for cell proliferation. A dual-luciferase assay was performed to verify the direct interaction of GREM1 with miR-205-5p in lung cancer. RESULTS Thirty-six ingredients and bioactive constituents detected in the serum of HCP-treated mice were identified as the key compounds involved in the inhibition of tumor growth. Animal experiments revealed that HCP significantly decreased tumor volumes and had no adverse effects on the liver or kidney or side effects. GREM1 upregulation was closely related to tumor metastasis and was regulated by miR-205-5p, as confirmed using a dual-luciferase reporter assay. OE-GREM1 promoted A549 cell migration and invasion, promoted EMT, and increased the expression of Rap1 pathway intermediaries, whereas shGREM1 had the opposite effects. Furthermore, the effects of OE-GREM1 on proliferation in the A549 xenograft mouse model were attenuated, although HCP has an inhibitory effect on tumors. CONCLUSION Our results suggest that HCP contributes to the inhibition of NSCLC metastasis via the Gremlin/Rap1 signaling pathway regulated by miR-205-5p.
Collapse
Affiliation(s)
- Jun Kan
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Biqian Fu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Ruisheng Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Daihan Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yufang Huang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongwei Zhao
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuming Rong
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Jun Dong
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Liangping Xia
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shanshan Liu
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Nannan Wang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Co., Ltd, Guangzhou 510530, China.
| | - Bei Zhang
- Department of VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| | - Enxin Zhang
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China.
| |
Collapse
|
16
|
Pagano PJ, Cifuentes-Pagano E. The Enigmatic Vascular NOX: From Artifact to Double Agent of Change: Arthur C. Corcoran Memorial Lecture - 2019. Hypertension 2021; 77:275-283. [PMID: 33390049 DOI: 10.1161/hypertensionaha.120.13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NOXs (NADPH oxidases) comprise a family of proteins whose primary function is the production of reactive oxygen species, namely, superoxide anion and hydrogen peroxide. The prototype first being discovered and characterized in neutrophils, multiple NOXs are now known to be broadly expressed in cell and organ systems and whose phylogeny spans countless life forms beginning with prokaryotes. This long-enduring evolutionary conservation underscores the importance of fundamental NOX functions. This review chronicles a personal perspective of the field beginning with the discovery of NOXs in the vasculature and the advances achieved through the years as to our understanding of their mechanisms of action and role in oxidative stress and disease. Furthermore, applications of isoform-selective inhibitors to dissect the role of NOX isozymes in vascular biology, focusing on inflammation, pulmonary hypertension, and aging are described.
Collapse
Affiliation(s)
- Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| | - Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA
| |
Collapse
|
17
|
Saeidi A, Seifi-Ski-Shahr F, Soltani M, Daraei A, Shirvani H, Laher I, Hackney AC, Johnson KE, Basati G, Zouhal H. Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial. Arch Physiol Biochem 2020; 129:640-648. [PMID: 33370549 DOI: 10.1080/13813455.2020.1856142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to determine how different resistance training protocols affect gremlin 1, macrophage migration inhibitory factor (MIF), cardiometabolic, and anthropometric measures in obese men. METHODS Forty-four males with obesity (weight: 93.2 ± 2.2 kg, BMI: 32.9 ± 1.2 kg/m2, age: 27.5 ± 9.4 years) were randomly assigned to traditional resistance training (TRT, n = 11), circuit resistance training (CRT, n = 11), interval resistance training (IRT, n = 11) or control (C, n = 11) groups. TRT group performed ten exercises at 50% of 1RM with 14 repetitions for three sets and 30 seconds rest interval between exercises and 1.5 min rest between sets, the CRT protocol included three circuits of 10 exercises, at an intensity of 50% of 1-RM, 14 repetitions with a minimum rest (< 15 s) between exercises and 3 min rest between sets, and the IRT group performed two sets of the same exercises with 50% of 1 RM, and 14 repetitions were followed with active rest of 25% of 1RM and 14 repetitions. All resistance training groups performed 60 min per session resistance exercises, 3 days per week, for 12 weeks. Measurements were taken at baseline and after 12 weeks of exercise training. RESULTS Resistance training (TRT, CRT, and IRT) significantly decreased plasma levels of gremlin (TRT from 231.0 ± 5.8 to 210.0 ± 11.6 ng/ml, CRT from 226.0 ± 7.6 to 188.0 ± 7.7 ng/ml and, IRT from 227.0 ± 6.3 to 183.0 ± 9.0 ng/ml, effect size (ES): 0.50), MIF (TRT from 251.0 ± 7.4 to 260.0 ± 6.5 ng/ml, CRT from 248.0 ± 10.9 to 214.0 ± 9.0 ng/ml and, IRT from 247.0 ± 8.9 to 196.0 ± 6.9 ng/ml, ES: 0.55) and CRP (TRT from 28.4 ± 1.7 to 23.3 ± 2.1 nmol/l, CRT from 28.5 ± 2.2 to 21.1 ± 1.8 nmol/l, IRT from 28.1 ± 1.3 to 20.8 ± 1.3 nmol/l, ES: 0.49) compared to the control group (p < .05), but these reduction were greater in the CRT and IRT groups compared to the TRT group (p < .05). CONCLUSION The CRT and IRT protocols had more beneficial improvement in gremlin 1, MIF, body composition, and cardiometabolic risk factors compared to the beneficial changes produced by TRT protocol.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Farnaz Seifi-Ski-Shahr
- Department of Physical Education and Sport Sciences, Faculty of Education and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mohammad Soltani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kelly E Johnson
- Department Kinesiology, Coastal Carolina University, Conway SC, SC, USA
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) - EA 1274, Rennes, France
| |
Collapse
|
18
|
Corsini M, Moroni E, Ravelli C, Grillo E, Presta M, Mitola S. In Situ DNA/Protein Interaction Assay to Visualize Transcriptional Factor Activation. Methods Protoc 2020; 3:mps3040080. [PMID: 33233345 PMCID: PMC7720131 DOI: 10.3390/mps3040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
The chick embryo chorioallantoic membrane (CAM) represents a powerful in vivo model to study several physiological and pathological processes including inflammation and tumor progression. Nevertheless, the possibility of deepening the molecular processes in the CAM system is biased by the absence/scarcity of chemical and biological reagents, designed explicitly for avian species. This is particularly true for transcriptional factors, proteinaceous molecules that regulate various cellular responses, including proliferation, survival, and differentiation. Here, we propose a detailed antibody-independent protocol to visualize the activation and nuclear translocation of transcriptional factors in cells or in tissues of different animal species. As a proof of concept, DNA/cAMP response element-binding protein (CREB) interaction was characterized on the CAM tissue using oligonucleotides containing the palindromic binding sequence of CREB. Scrambled oligonucleotides were used as controls. In situ DNA/protein interaction protocol is a versatile method that is useful for the study of transcription factors in the cell and tissue of different origins.
Collapse
|
19
|
Down-regulation of Gremlin1 inhibits inflammatory response and vascular permeability in chronic idiopathic urticaria through suppression of TGF-β signaling pathway. Gene 2020; 756:144916. [PMID: 32580008 DOI: 10.1016/j.gene.2020.144916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/21/2020] [Accepted: 06/17/2020] [Indexed: 12/31/2022]
Abstract
Chronic idiopathic urticaria (CIU) is an unfavorable skin condition which could be maintained for six weeks or longer time. Gremlin1 (GREM1) was recently applied in treatments of many diseases. However, the possible regulatory mechanism of GREM1 in CIU remained unclear. This study aimed to explore the regulatory effects of GREM1 on the inflammatory response and vascular permeability mediated by mast cells of CIU via TGF-β signaling pathway. Initially, microarray analysis was used to identify CIU-related differentially expressed genes and the potential mechanism of this gene. A mouse model of CIU was established. To explore the functional role of GREM1 in CIU, the modeled mice were then injected with GREM1-siRNA, SRI-011381 (the activator of TGF-β signaling pathway), or both, followed by serum test, and immunoglobulin detection. The levels of inflammatory factors and tryptase, β-hexosaminase, histamine in the serum were detected. Besides, vascular endothelial cell permeability and the target relation between GREM1 and TGF-β were also examined. Mice injected with SRI-011381 exhibited higher levels of tryptase, β-hexosaminase, histamine, inflammation-related factors and increased vascular endothelial cell permeability, while GREM1-silenced mice yet expressed opposite tendency. Silencing of GREM1 was demonstrated to inhibit the TGF-β signaling pathway. Taken together, our results demonstrated that down-regulation of GREM1 could potentially impede inflammatory response and vascular permeability by suppressing TGF-β signaling pathway. GREM1 may promote the development of prognosis management and therapeutic treatment in CIU.
Collapse
|
20
|
Ouahoud S, Hardwick JC, Hawinkels LJ. Extracellular BMP Antagonists, Multifaceted Orchestrators in the Tumor and Its Microenvironment. Int J Mol Sci 2020; 21:ijms21113888. [PMID: 32486027 PMCID: PMC7313454 DOI: 10.3390/ijms21113888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023] Open
Abstract
The bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-β (TGF-β) superfamily, are involved in multiple biological processes such as embryonic development and maintenance of adult tissue homeostasis. The importance of a functional BMP pathway is underlined by various diseases, including cancer, which can arise as a consequence of dysregulated BMP signaling. Mutations in crucial elements of this signaling pathway, such as receptors, have been reported to disrupt BMP signaling. Next to that, aberrant expression of BMP antagonists could also contribute to abrogated signaling. In this review we set out to highlight how BMP antagonists affect not only the cancer cells, but also the other cells present in the microenvironment to influence cancer progression.
Collapse
|
21
|
Marquez-Exposito L, Cantero-Navarro E, R Rodrigues-Diez R, Orejudo M, Tejera-Muñoz A, Tejedor L, Rayego-Mateos S, Rández-Carbayo J, Santos-Sanchez L, Mezzano S, Lavoz C, Ruiz-Ortega M. Molecular Regulation of Notch Signaling by Gremlin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:81-94. [PMID: 32072500 DOI: 10.1007/978-3-030-36422-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gremlin is a member of the TGF-β superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Macarena Orejudo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Lucia Tejedor
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida IRBLleida, Lleida, Spain
| | - Javier Rández-Carbayo
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain. .,Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
22
|
Di Somma M, Schaafsma W, Grillo E, Vliora M, Dakou E, Corsini M, Ravelli C, Ronca R, Sakellariou P, Vanparijs J, Castro B, Mitola S. Natural Histogel-Based Bio-Scaffolds for Sustaining Angiogenesis in Beige Adipose Tissue. Cells 2019; 8:cells8111457. [PMID: 31752157 PMCID: PMC6912328 DOI: 10.3390/cells8111457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
In the treatment of obesity and its related disorders, one of the measures adopted is weight reduction by controlling nutrition and increasing physical activity. A valid alternative to restore the physiological function of the human body could be the increase of energy consumption by inducing the browning of adipose tissue. To this purpose, we tested the ability of Histogel, a natural mixture of glycosaminoglycans isolated from animal Wharton jelly, to sustain the differentiation of adipose derived mesenchymal cells (ADSCs) into brown-like cells expressing UCP-1. Differentiated cells show a higher energy metabolism compared to undifferentiated mesenchymal cells. Furthermore, Histogel acts as a pro-angiogenic matrix, induces endothelial cell proliferation and sprouting in a three-dimensional gel in vitro, and stimulates neovascularization when applied in vivo on top of the chicken embryo chorioallantoic membrane or injected subcutaneously in mice. In addition to the pro-angiogenic activity of Histogel, also the ADSC derived beige cells contribute to activating endothelial cells. These data led us to propose Histogel as a promising scaffold for the modulation of the thermogenic behavior of adipose tissue. Indeed, Histogel simultaneously supports the acquisition of brown tissue markers and activates the vasculature process necessary for the correct function of the thermogenic tissue. Thus, Histogel represents a valid candidate for the development of bioscaffolds to increase the amount of brown adipose tissue in patients with metabolic disorders.
Collapse
Affiliation(s)
- Margherita Di Somma
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Wandert Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Maria Vliora
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Eleni Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Jef Vanparijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Begona Castro
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- Correspondence:
| |
Collapse
|
23
|
Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, Martens JWM, Ten Dijke P. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res 2019; 21:109. [PMID: 31533776 PMCID: PMC6751614 DOI: 10.1186/s13058-019-1194-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
Background Bone morphogenetic proteins (BMPs) have been reported to maintain epithelial integrity and to antagonize the transforming growth factor β (TGFβ)-induced epithelial to mesenchymal transition. The expression of soluble BMP antagonists is dysregulated in cancers and interrupts proper BMP signaling in breast cancer. Methods In this study, we mined the prognostic role of BMP antagonists GREMLIN 1 (GREM1) in primary breast cancer tissues using in-house and publicly available datasets. We determined which cells express GREM1 RNA using in situ hybridization (ISH) on a breast cancer tissue microarray. The effects of Grem1 on the properties of breast cancer cells were assessed by measuring the mesenchymal/stem cell marker expression and functional cell-based assays for stemness and invasion. The role of Grem1 in breast cancer-associated fibroblast (CAF) activation was measured by analyzing the expression of fibroblast markers, phalloidin staining, and collagen contraction assays. The role of Grem1 in CAF-induced breast cancer cell intravasation and extravasation was studied by utilizing xenograft zebrafish breast cancer (co-) injection models. Results Expression analysis of clinical breast cancer datasets revealed that high expression of GREM1 in breast cancer stroma is correlated with a poor prognosis regardless of the molecular subtype. The large majority of human breast cancer cell lines did not express GREM1 in vitro, but breast CAFs did express GREM1 both in vitro and in vivo. Transforming growth factor β (TGFβ) secreted by breast cancer cells, and also inflammatory cytokines, stimulated GREM1 expression in CAFs. Grem1 abrogated bone morphogenetic protein (BMP)/SMAD signaling in breast cancer cells and promoted their mesenchymal phenotype, stemness, and invasion. Moreover, Grem1 production by CAFs strongly promoted the fibrogenic activation of CAFs and promoted breast cancer cell intravasation and extravasation in co-injection xenograft zebrafish models. Conclusions Our results demonstrated that Grem1 is a pivotal factor in the reciprocal interplay between breast cancer cells and CAFs, which promotes cancer cell invasion. Targeting Grem1 could be beneficial in the treatment of breast cancer patients with high Grem1 expression. Electronic supplementary material The online version of this article (10.1186/s13058-019-1194-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiang Ren
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Josephine Iaria
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Daniela C F Salvatori
- Central Laboratory Animal Facility, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans van Dam
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Hong Jian Zhu
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
24
|
Mezzano S, Droguett A, Lavoz C, Krall P, Egido J, Ruiz-Ortega M. Gremlin and renal diseases: ready to jump the fence to clinical utility? Nephrol Dial Transplant 2019; 33:735-741. [PMID: 28992340 DOI: 10.1093/ndt/gfx194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
The current therapeutic strategy for the treatment of chronic kidney diseases only ameliorates disease progression. During renal injury, developmental genes are re-expressed and could be potential therapeutic targets. Among those genes reactivated in the adult damaged kidney, Gremlin is of particular relevance since recent data suggest that it could be a mediator of diabetic nephropathy and other progressive renal diseases. Earlier studies have shown that Gremlin is upregulated in trans-differentiated renal proximal tubular cells and in several chronic kidney diseases associated with fibrosis. However, not much was known about the mechanisms by which Gremlin acts in renal pathophysiology. The role of Gremlin as a bone morphogenetic protein antagonist has clearly been demonstrated in organogenesis and in fibrotic-related disorders. Gremlin binds to vascular endothelial growth factor receptor 2 (VEGFR2) in endothelial and tubular epithelial cells. Activation of the Gremlin-VEGFR2 axis was found in several human nephropathies. We have recently described that Gremlin activates the VEGFR2 signaling pathway in the kidney, eliciting a downstream mechanism linked to renal inflammatory response. Gremlin deletion improves experimental renal damage, diminishing fibrosis. Overall, the available data identify the Gremlin-VEGFR2 axis as a novel therapeutic target for kidney inflammation and fibrosis and provide a rationale for unveiling new concepts to investigate in several clinical conditions.
Collapse
Affiliation(s)
- Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Paola Krall
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension, University Hospital, Fundación Jiménez Díaz-Universidad Autónoma, CIBERDEM, Instituto Renal Reina Sofía, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma Madrid, IIS-Fundación Jiménez Díaz, RedinRen, Madrid, Spain
| |
Collapse
|
25
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
26
|
Excessive mechanical loading promotes osteoarthritis through the gremlin-1-NF-κB pathway. Nat Commun 2019; 10:1442. [PMID: 30926814 PMCID: PMC6441020 DOI: 10.1038/s41467-019-09491-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Exposure of articular cartilage to excessive mechanical loading is deeply involved in the pathogenesis of osteoarthritis. Here, we identify gremlin-1 as a mechanical loading-inducible factor in chondrocytes, detected at high levels in middle and deep layers of cartilage after cyclic strain or hydrostatic pressure loading. Gremlin-1 activates nuclear factor-κB signalling, leading to subsequent induction of catabolic enzymes. In mice intra-articular administration of gremlin-1 antibody or chondrocyte-specific deletion of Gremlin-1 decelerates osteoarthritis development, while intra-articular administration of recombinant gremlin-1 exacerbates this process. Furthermore, ras-related C3 botulinum toxin substrate 1 activation induced by mechanical loading enhances reactive oxygen species (ROS) production. Amongst ROS-activating transcription factors, RelA/p65 induces Gremlin-1 transcription, which antagonizes induction of anabolic genes such as Sox9, Col2a1, and Acan by bone morphogenetic proteins. Thus, gremlin-1 plays essential roles in cartilage degeneration by excessive mechanical loading. Excessive mechanical stress promotes the development of osteoarthritis. Here Chang et al. identify gremlin-1 as a factor expressed in chondrocytes in response to mechanical stress, and contributing to osteoarthritis via activation of the NF-κB pathway.
Collapse
|
27
|
Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol 2019; 22:101138. [PMID: 30802716 PMCID: PMC6395885 DOI: 10.1016/j.redox.2019.101138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.
Collapse
|
28
|
Marquez-Exposito L, Lavoz C, Rodrigues-Diez RR, Rayego-Mateos S, Orejudo M, Cantero-Navarro E, Ortiz A, Egido J, Selgas R, Mezzano S, Ruiz-Ortega M. Gremlin Regulates Tubular Epithelial to Mesenchymal Transition via VEGFR2: Potential Role in Renal Fibrosis. Front Pharmacol 2018; 9:1195. [PMID: 30386246 PMCID: PMC6199372 DOI: 10.3389/fphar.2018.01195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Chronic kidney disease (CKD) is emerging as an important health problem due to the increase number of CKD patients and the absence of an effective curative treatment. Gremlin has been proposed as a novel therapeutic target for renal inflammatory diseases, acting via Vascular Endothelial Growth Factor Receptor-2 (VEGFR2). Although many evidences suggest that Gremlin could regulate renal fibrosis, the receptor involved has not been yet clarified. Gremlin, as other TGF-β superfamily members, regulates tubular epithelial to mesenchymal transition (EMT) and, therefore, could contribute to renal fibrosis. In cultured tubular epithelial cells Gremlin binding to VEGFR2 is linked to proinflammatory responses. Now, we have found out that in these cells VEGFR2 is also involved in the profibrotic actions of Gremlin. VEGFR2 blockade by a pharmacological kinase inhibitor or gene silencing diminished Gremlin-mediated gene upregulation of profibrotic factors and restored changes in EMT-related genes. Moreover, VEGFR2 inhibition blocked EMT phenotypic changes and dampened the rate of wound healing in response to Gremlin. The role of VEGFR2 in experimental fibrosis was evaluated in experimental unilateral ureteral obstruction. VEFGR2 inhibition diminished the upregulation of profibrotic genes and EMT changes, as well as the accumulation of extracellular matrix proteins, such as fibronectin and collagens in the obstructed kidneys. Notch pathway activation participates in renal damage progression by regulating cell growth/proliferation, regeneration and inflammation. In cultured tubular epithelial cells, Notch inhibition markedly downregulated Gremlin-induced EMT changes and wound healing speed. These results show that Gremlin regulates the EMT process via VEGFR2 and Notch pathway activation, suggesting that the Gremlin/VEGFR2 axis could be a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Raul R Rodrigues-Diez
- Red de Investigación Renal, Madrid, Spain.,Laboratory of Nephrology, Fundación para la Investigación Biomédica del Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal, Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomédica de Lleida, Lleida, Spain
| | - Macarena Orejudo
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Elena Cantero-Navarro
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Madrid, Spain.,Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Egido
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Madrid, Spain
| | - Rafael Selgas
- Red de Investigación Renal, Madrid, Spain.,Laboratory of Nephrology, Fundación para la Investigación Biomédica del Hospital Universitario la Paz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Madrid, Spain
| |
Collapse
|
29
|
Li C, Rezov V, Joensuu E, Vartiainen V, Rönty M, Yin M, Myllärniemi M, Koli K. Pirfenidone decreases mesothelioma cell proliferation and migration via inhibition of ERK and AKT and regulates mesothelioma tumor microenvironment in vivo. Sci Rep 2018; 8:10070. [PMID: 29968778 PMCID: PMC6030186 DOI: 10.1038/s41598-018-28297-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma is an aggressive cancer with poor prognosis. It is characterized by prominent extracellular matrix, mesenchymal tumor cell phenotypes and chemoresistance. In this study, the ability of pirfenidone to alter mesothelioma cell proliferation and migration as well as mesothelioma tumor microenvironment was evaluated. Pirfenidone is an anti-fibrotic drug used in the treatment of idiopathic pulmonary fibrosis and has also anti-proliferative activities. Mesothelioma cell proliferation was decreased by pirfenidone alone or in combination with cisplatin. Pirfenidone also decreased significantly Transwell migration/invasion and 3D collagen invasion. This was associated with increased BMP pathway activity, decreased GREM1 expression and downregulation of MAPK/ERK and AKT/mTOR signaling. The canonical Smad-mediated TGF-β signaling was not affected by pirfenidone. However, pirfenidone blocked TGF-β induced upregulation of ERK and AKT pathways. Treatment of mice harboring mesothelioma xenografts with pirfenidone alone did not reduce tumor proliferation in vivo. However, pirfenidone modified the tumor microenvironment by reducing the expression of extracellular matrix associated genes. In addition, GREM1 expression was downregulated by pirfenidone in vivo. By reducing two major upregulated pathways in mesothelioma and by targeting tumor cells and the microenvironment pirfenidone may present a novel anti-fibrotic and anti-cancer adjuvant therapy for mesothelioma.
Collapse
Affiliation(s)
- Chang Li
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Soochow, China
| | - Veronika Rezov
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Emmi Joensuu
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Ville Vartiainen
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.,University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Miao Yin
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center and HUH diagnostics, Pulmonary Medicine, Helsinki, Finland
| | - Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Grillo E, Ravelli C, Corsini M, Ballmer-Hofer K, Zammataro L, Oreste P, Zoppetti G, Tobia C, Ronca R, Presta M, Mitola S. Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist. Oncotarget 2018; 7:35353-68. [PMID: 27174917 PMCID: PMC5085234 DOI: 10.18632/oncotarget.9286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated. Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo. In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Cosetta Ravelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Michela Corsini
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Luca Zammataro
- Center of Genomics Science of IIT@SEMM, Milan, 20139, Italy
| | | | | | - Chiara Tobia
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marco Presta
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy.,Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
31
|
Velasco C, Otero-Rodiño C, Comesaña S, Míguez JM, Soengas JL. Hypothalamic mechanisms linking fatty acid sensing and food intake regulation in rainbow trout. J Mol Endocrinol 2017; 59:377-390. [PMID: 28951437 DOI: 10.1530/jme-17-0148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/15/2023]
Abstract
We assessed in rainbow trout hypothalamus the effects of oleate and octanoate on levels and phosphorylation status of two transcription factors, FoxO1 and CREB, possibly involved in linking activation of fatty acid sensing with modulation of food intake through the expression of brain neuropeptides. Moreover, we assessed changes in the phosphorylation status of three proteins possibly involved in modulation of these transcription factors such as Akt, AMPK and mTOR. In a first experiment, we evaluated, in pools of hypothalamus incubated for 3 h and 6 h at 15°C in a modified Hanks' medium containing 100 or 500 µM oleate or octanoate, the response of fatty acid sensing, neuropeptide expression and phosphorylation status of proteins of interest. The activation of fatty acid sensing and enhanced anorectic potential occurred in parallel with the activation of Akt and mTOR, and the inhibition of AMPK. The changes in these proteins would relate to a neuropeptide expression through changes in the phosphorylation status of transcription factors under their control, such as CREB and FoxO1, which displayed inhibitory (CREB) or activatory (FoxO1) responses when tissues were incubated with oleate or octanoate. In a second experiment, we incubated hypothalamus for 6 h with 500 µM oleate or octanoate alone or in the presence of specific inhibitors of Akt, AMPK, mTOR, CREB or FoxO1. The presence of inhibitors counteracted the effects of oleate or octanoate on the phosphorylation status of the proteins of interest. The results support, for the first time in fish, the involvement of these proteins in the regulation of food intake by fatty acids.
Collapse
Affiliation(s)
- Cristina Velasco
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Cristina Otero-Rodiño
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía AnimalDepartamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
32
|
LKB1 as a Tumor Suppressor in Uterine Cancer: Mouse Models and Translational Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:211-241. [PMID: 27910069 DOI: 10.1007/978-3-319-43139-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The LKB1 tumor suppressor was identified in 1998 as the gene mutated in the Peutz-Jeghers Syndrome (PJS), a hereditary cancer predisposition characterized by gastrointestinal polyposis and a high incidence of cancers, particularly carcinomas, at a variety of anatomic sites including the gastrointestinal tract, lung, and female reproductive tract. Women with PJS have a high incidence of carcinomas of the uterine corpus (endometrium) and cervix. The LKB1 gene is also somatically mutated in human cancers arising at these sites. Work in mouse models has highlighted the potency of LKB1 as an endometrial tumor suppressor and its distinctive roles in driving invasive and metastatic growth. These in vivo models represent tractable experimental systems for the discovery of underlying biological principles and molecular processes regulated by LKB1 in the context of tumorigenesis and also serve as useful preclinical model systems for experimental therapeutics. Here we review LKB1's known roles in mTOR signaling, metabolism, and cell polarity, with an emphasis on human pathology and mouse models relevant to uterine carcinogenesis, including cancers of the uterine corpus and cervix.
Collapse
|
33
|
Rezzola S, Corsini M, Chiodelli P, Cancarini A, Nawaz IM, Coltrini D, Mitola S, Ronca R, Belleri M, Lista L, Rusciano D, De Rosa M, Pavone V, Semeraro F, Presta M. Inflammation and N-formyl peptide receptors mediate the angiogenic activity of human vitreous humour in proliferative diabetic retinopathy. Diabetologia 2017; 60:719-728. [PMID: 28083635 DOI: 10.1007/s00125-016-4204-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Angiogenesis and inflammation characterise proliferative diabetic retinopathy (PDR), a major complication of diabetes mellitus. However, the impact of inflammation on the pathogenesis of PDR neovascularisation has not been elucidated. Here, we assessed the capacity of PDR vitreous fluid to induce pro-angiogenic/proinflammatory responses in endothelium and the contribution of the inflammation-related pattern recognition N-formyl peptide receptors (FPRs) in mediating these responses. METHODS Pooled and individual pars plana vitrectomy-derived PDR vitreous fluid ('PDR vitreous') samples were assessed in endothelial cell proliferation, motility, sprouting and morphogenesis assays, and for the capacity to induce proinflammatory transcription factor activation, reactive oxygen species production, intercellular junction disruption and leucocyte-adhesion molecule upregulation in these cells. In vivo, the pro-angiogenic/proinflammatory activity of PDR vitreous was tested in murine Matrigel plug and chick embryo chorioallantoic membrane (CAM) assays. Finally, the FPR inhibitors Boc-Phe-Leu-Phe-Leu-Phe (Boc-FLFLF) and Ac-L-Arg-Aib-L-Arg-L-Cα(Me)Phe-NH2 tetrapeptide (UPARANT) were evaluated for their capacity to affect the biological responses elicited by PDR vitreous. RESULTS PDR vitreous activates a pro-angiogenic/proinflammatory phenotype in endothelial cells. Accordingly, PDR vitreous triggers a potent angiogenic/inflammatory response in vivo. Notably, the different capacity of individual PDR vitreous samples to induce neovessel formation in the CAM correlates with their ability to recruit infiltrating CD45+ cells. Finally, the FPR inhibitor Boc-FLFLF and the novel FPR antagonist UPARANT inhibit neovessel formation and inflammatory responses triggered by PDR vitreous in the CAM assay. CONCLUSIONS/INTERPRETATION This study provides evidence that inflammation mediates the angiogenic activity of PDR vitreous and paves the way for the development of FPR-targeting anti-inflammatory/anti-angiogenic approaches for PDR therapy.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy.
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Paola Chiodelli
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy
| | - Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Daniela Coltrini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy
| | - Liliana Lista
- Department of Chemical Sciences, 'Federico II' University of Naples, Naples, Italy
| | | | - Mario De Rosa
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, 'Federico II' University of Naples, Naples, Italy
| | - Francesco Semeraro
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, Brescia, 25123, Italy.
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, Brescia, 25123, Italy.
| |
Collapse
|
34
|
Guo L, Harari E, Virmani R, Finn AV. Linking Hemorrhage, Angiogenesis, Macrophages, and Iron Metabolism in Atherosclerotic Vascular Diseases. Arterioscler Thromb Vasc Biol 2017; 37:e33-e39. [DOI: 10.1161/atvbaha.117.309045] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Liang Guo
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | | - Renu Virmani
- From the CVPath Institute, Inc, Gaithersburg, MD
| | | |
Collapse
|
35
|
Koli K, Sutinen E, Rönty M, Rantakari P, Fortino V, Pulkkinen V, Greco D, Sipilä P, Myllärniemi M. Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine. PLoS One 2016; 11:e0159010. [PMID: 27428020 PMCID: PMC4948891 DOI: 10.1371/journal.pone.0159010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.
Collapse
Affiliation(s)
- Katri Koli
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Eva Sutinen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Fimlab laboratories, Pathology, Tampere, Finland
| | - Pia Rantakari
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Vittorio Fortino
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Ville Pulkkinen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| | - Dario Greco
- Unit of Systems Toxicology and Nanosafety Centre, Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Petra Sipilä
- Department of Physiology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Marjukka Myllärniemi
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Department of Pulmonary Medicine, Helsinki, Finland
| |
Collapse
|
36
|
Gnutti A, Signoroni A, Leonardi R, Corsini M, Presta M, Mitola S. A tool for the quantification of radial neo-vessels in chick chorioallantoic membrane angiogenic assays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:763-6. [PMID: 26736374 DOI: 10.1109/embc.2015.7318474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Angiogenesis, the process of new blood vessels formation, plays a key role in different physiological and pathological conditions and it is considered a promising target for the development of new anti-inflammatory and anti-tumor therapies. Several assays have been developed to mimic the angiogenic process in vitro and in vivo. Here we propose a technique for the quantification of the pro-angiogenic or anti-angiogenic responses induced by different molecules when implanted in vivo on the chick embryo chorioallantoic membrane (CAM). At day 11 of development CAM is completely vascularized and neo-vessels induced by exogenous molecules converge radially to the implant. Our algorithm is an effective and rapid tool to characterize molecules endowed with proor anti-angiogenic effects by means of the quantification of the vessels present in the CAM macroscopic images. Based on conventional and dedicated image morphology tools, the proposed technique is able to discriminate radial from non-radial vessels, excluding the last ones from the count.
Collapse
|
37
|
Ravelli C, Grillo E, Corsini M, Coltrini D, Presta M, Mitola S. β3 Integrin Promotes Long-Lasting Activation and Polarization of Vascular Endothelial Growth Factor Receptor 2 by Immobilized Ligand. Arterioscler Thromb Vasc Biol 2015; 35:2161-71. [PMID: 26293466 PMCID: PMC4894810 DOI: 10.1161/atvbaha.115.306230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— During neovessel formation, angiogenic growth factors associate with the extracellular matrix. These immobilized factors represent a persistent stimulus for the otherwise quiescent endothelial cells (ECs), driving directional EC migration and proliferation and leading to new blood vessel growth. Vascular endothelial growth factor receptor 2 (VEGFR2) is the main mediator of angiogenesis. Although VEGFR2 signaling has been deeply characterized, little is known about its subcellular localization during neovessel formation. Aim of this study was the characterization and molecular determinants of activated VEGFR2 localization in ECs during neovessel formation in response to matrix-immobilized ligand. Approach and Results— Here we demonstrate that ECs stimulated by extracellular matrix–associated gremlin, a noncanonical VEGFR2 ligand, are polarized and relocate the receptor in close contact with the angiogenic factor–enriched matrix both in vitro and in vivo. GM1 (monosialotetrahexosylganglioside)-positive planar lipid rafts, β3 integrin receptors, and the intracellular signaling transducers focal adhesion kinase and RhoA (Ras homolog gene family, member A) cooperate to promote VEGFR2 long-term polarization and activation. Conclusions— A ligand anchored to the extracellular matrix induces VEGFR2 polarization in ECs. Long-lasting VEGFR2 relocation is closely dependent on lipid raft integrity and activation of β3 integrin pathway. The study of the endothelial responses to immobilized growth factors may offer insights into the angiogenic process in physiological and pathological conditions, including cancer, and for a better engineering of synthetic tissue scaffolds to blend with the host vasculature.
Collapse
Affiliation(s)
- Cosetta Ravelli
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Michela Corsini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Coltrini
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Presta
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Stefania Mitola
- From the Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
38
|
Marchant V, Droguett A, Valderrama G, Burgos ME, Carpio D, Kerr B, Ruiz-Ortega M, Egido J, Mezzano S. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. Am J Physiol Renal Physiol 2015; 309:F559-68. [PMID: 26155842 DOI: 10.1152/ajprenal.00023.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is currently a leading cause of end-stage renal failure worldwide. Gremlin was identified as a gene differentially expressed in mesangial cells exposed to high glucose and in experimental diabetic kidneys. We have described that Gremlin is highly expressed in biopsies from patients with diabetic nephropathy, predominantly in areas of tubulointerstitial fibrosis. In streptozotocin (STZ)-induced experimental diabetes, Gremlin deletion using Grem1 heterozygous knockout mice or by gene silencing, ameliorates renal damage. To study the in vivo role of Gremlin in renal damage, we developed a diabetic model induced by STZ in transgenic (TG) mice expressing human Gremlin in proximal tubular epithelial cells. The albuminuria/creatinuria ratio, determined at week 20 after treatment, was significantly increased in diabetic mice but with no significant differences between transgenic (TG/STZ) and wild-type mice (WT/STZ). To assess the level of renal damage, kidney tissue was analyzed by light microscopy (periodic acid-Schiff and Masson staining), electron microscopy, and quantitative PCR. TG/STZ mice had significantly greater thickening of the glomerular basement membrane, increased mesangial matrix, and podocytopenia vs. WT/STZ. At the tubulointerstitial level, TG/STZ showed increased cell infiltration and mild interstitial fibrosis. In addition, we observed a decreased expression of podocin and overexpression of monocyte chemoattractant protein-1 and fibrotic-related markers, including transforming growth factor-β1, Col1a1, and α-smooth muscle actin. Together, these results show that TG mice overexpressing Gremlin in renal tubules develop greater glomerular and tubulointerstitial injury in response to diabetic-mediated damage and support the involvement of Gremlin in diabetic nephropathy.
Collapse
Affiliation(s)
- Vanessa Marchant
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Graciela Valderrama
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - M Eugenia Burgos
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Daniel Carpio
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria (IIS)-Fundación Jimenez Diaz, Madrid, Spain; and
| | - Jesús Egido
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-UAM/Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto Reina Sofía de Investigación Nefrológica, Madrid, Spain
| | - Sergio Mezzano
- Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia, Chile;
| |
Collapse
|
39
|
Lavoz C, Alique M, Rodrigues-Diez R, Pato J, Keri G, Mezzano S, Egido J, Ruiz-Ortega M. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 2015; 236:407-20. [PMID: 25810250 DOI: 10.1002/path.4537] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/03/2023]
Abstract
Inflammation is a main feature of progressive kidney disease. Gremlin binds to bone morphogenetic proteins (BMPs), acting as an antagonist and regulating nephrogenesis and fibrosis among other processes. Gremlin also binds to vascular endothelial growth factor receptor-2 (VEGFR2) in endothelial cells to induce angiogenesis. In renal cells, gremlin regulates proliferation and fibrosis, but there are no data about inflammatory-related events. We have investigated the direct effects of gremlin in the kidney, evaluating whether VEGFR2 is a functional gremlin receptor. Administration of recombinant gremlin to murine kidneys induced rapid and sustained activation of VEGFR2 signalling, located in proximal tubular epithelial cells. Gremlin bound to VEGFR2 in these cells in vitro, activating this signalling pathway independently of its action as an antagonist of BMPs. In vivo, gremlin caused early renal damage, characterized by activation of the nuclear factor (NF)-κB pathway linked to up-regulation of pro-inflammatory factors and infiltration of immune inflammatory cells. VEGFR2 blockade diminished gremlin-induced renal inflammatory responses. The link between gremlin/VEGFR2 and NF-κB/inflammation was confirmed in vitro. Gremlin overexpression was associated with VEGFR2 activation in human renal disease and in the unilateral ureteral obstruction experimental model, where VEGFR2 kinase inhibition diminished renal inflammation. Our data show that a gremlin/VEGFR2 axis participates in renal inflammation and could be a novel target for kidney disease.
Collapse
Affiliation(s)
- Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Matilde Alique
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | - Raquel Rodrigues-Diez
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| | | | - Gyorgy Keri
- VichemChemie Ltd, Budapest, Hungary.,MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Jesús Egido
- Division of Nephrology and Hypertension. IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, CIBERDEM, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, REDINREN, Spain
| |
Collapse
|
40
|
Su Y, Qadri SM, Cayabyab FS, Wu L, Liu L. Regulation of methylglyoxal-elicited leukocyte recruitment by endothelial SGK1/GSK3 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2481-91. [PMID: 25003317 DOI: 10.1016/j.bbamcr.2014.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
Abstract
Excessive levels of the glycolysis metabolite methylglyoxal (MG) elicit enhanced expression of adhesion molecules which foster leukocyte-endothelial cell interactions. The signaling mechanisms involved remain elusive. To address this, we investigated the signal transduction of leukocyte- and endothelial-expressed phosphoinositide 3-kinase (PI3K) effector kinases glycogen synthase kinase 3 (GSK3) and serum- and glucocorticoid-inducible kinase 1 (SGK1) in the regulation of MG-elicited leukocyte recruitment. Using intravital microscopy of mouse cremasteric microvasculature, we demonstrate that GSK3 inhibitors lithium and SB216763 mitigate MG-elicited leukocyte recruitment and microvascular hyperpermeability. In SVEC4-10EE2 endothelial cells, but not in neutrophils, MG transiently activates GSK3 by reducing inhibitory phospho-GSK3α/β (Ser21/9) which parallels decrease of phospho-Akt at early time points (<30min). At later time points (≥1h), MG induces GSK3 deactivation which is dissipated by siRNA silencing of SGK. MG treatment potentiates endothelial SGK1 mRNA, total SGK1, phospho-SGK1 and phospho-NDRG1. The SGK1 inhibitor GSK650394 attenuates MG-elicited leukocyte recruitment. Pharmacological inhibition or silencing endothelial GSK3 or SGK attenuates MG-triggered nuclear factor (NF)-κB activity. Furthermore, silencing SGK blunts MG-triggered redox-sensitive phosphorylation of endothelial transcription factor CREB. Inhibition of SGK1 or GSK3 mitigates the expression of endothelial adhesion molecules P- and E-selectins and ICAM-1. Moreover, SGK1-dependent CREB activation participates in MG-elicited ICAM-1 upregulation. We conclude that temporal activation of endothelial SGK1 and GSK3 is decisive in MG-elicited upregulation of transcription factors, adhesion molecule expression, and leukocyte-vascular endothelium interactions. This novel signaling pathway may link excessive MG levels in vivo to inflammation, thus, unraveling potential therapeutic targets.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Syed M Qadri
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Francisco S Cayabyab
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, Ontario, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
41
|
|