1
|
Nair L, Asuzu P, Dagogo-Jack S. Ethnic Disparities in the Risk Factors, Morbidity, and Mortality of Cardiovascular Disease in People With Diabetes. J Endocr Soc 2024; 8:bvae116. [PMID: 38911352 PMCID: PMC11192623 DOI: 10.1210/jendso/bvae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 06/25/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in people with diabetes. Compared with European Americans, African Americans have more favorable lipid profiles, as indicated by higher high-density lipoprotein cholesterol, lower triglycerides, and less dense low-density lipoprotein particles. The less atherogenic lipid profile translates to lower incidence and prevalence of CVD in African Americans with diabetes, despite higher rates of hypertension and obesity. However, African Americans with CVD experience worse clinical outcomes, including higher mortality, compared with European Americans. This mini-review summarizes the epidemiology, pathophysiology, mechanisms, and management of CVD in people with diabetes, focusing on possible factors underlying the "African American CVD paradox" (lower CVD incidence/prevalence but worse outcomes). Although the reasons for the disparities in CVD outcomes remain to be fully elucidated, we present a critical appraisal of the roles of suboptimal control of risk factors, inequities in care delivery, several biological factors, and psychosocial stress. We identify gaps in current knowledge and propose areas for future investigation.
Collapse
Affiliation(s)
- Lekshmi Nair
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
2
|
Stanger L, Yamaguchi A, Yalavarthi P, Lambert S, Gilmore D, Rickenberg A, Luke C, Kumar K, Obi AT, White A, Bergh N, Dahlöf B, Holinstat M. The oxylipin analog CS585 prevents platelet activation and thrombosis through activation of the prostacyclin receptor. Blood 2023; 142:1556-1569. [PMID: 37624927 PMCID: PMC10656727 DOI: 10.1182/blood.2023020622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cardiovascular disease remains the primary cause of morbidity and mortality globally. Platelet activation is critical for maintaining hemostasis and preventing the leakage of blood cells from the vessel. There has been a paucity in the development of new drugs to target platelet reactivity. Recently, the oxylipin 12(S)-hydroxy-eicosatrienoic acid (12-HETrE), which is produced in platelets, was shown to limit platelet reactivity by activating the prostacyclin receptor. Here, we demonstrated the synthesis of a novel analog of 12-HETrE, known as CS585. Human blood and mouse models of hemostasis and thrombosis were assessed for the ability of CS585 to attenuate platelet activation and thrombosis without increasing the risk of bleeding. Human platelet activation was assessed using aggregometry, flow cytometry, western blot analysis, total thrombus formation analysis system, microfluidic perfusion chamber, and thromboelastography. Hemostasis, thrombosis, and bleeding assays were performed in mice. CS585 was shown to potently target the prostacyclin receptor on the human platelet, resulting in a highly selective and effective mechanism for the prevention of platelet activation. Furthermore, CS585 was shown to inhibit platelet function in human whole blood ex vivo, prevent thrombosis in both small and large vessels in mouse models, and exhibit long-lasting prevention of clot formation. Finally, CS585 was not observed to perturb coagulation or increase the risk of bleeding in the mouse model. Hence, CS585 represents a new validated target for the treatment of thrombotic diseases without the risk of bleeding or off-target activation observed with other prostaglandin receptor agonists.
Collapse
Affiliation(s)
- Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Pooja Yalavarthi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Sylviane Lambert
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Devin Gilmore
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew Rickenberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - Catherine Luke
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Kiran Kumar
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Andrea T. Obi
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Andrew White
- Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Niklas Bergh
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Cereno Scientific, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Dahlöf
- Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Cereno Scientific, Gothenburg, Sweden
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
3
|
Tran M, Stanger L, Narendra S, Holinstat M, Holman TR. Investigating the catalytic efficiency of C22-Fatty acids with LOX human isozymes and the platelet response of the C22-oxylipin products. Arch Biochem Biophys 2023; 747:109742. [PMID: 37696384 PMCID: PMC10821779 DOI: 10.1016/j.abb.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been extensively studied for their health benefits because they can be oxidized by lipoxygenases to form bioactive oxylipins. In this study, we investigated the impact of double bond placement on the kinetic properties and product profiles of human platelet 12-lipoxygenase (h12-LOX), human reticulocyte 15-lipoxygenase-1 (h15-LOX-1), and human endothelial 15-lipoxygenase-2 (h15-LOX-2) by using 22-carbon (C22) fatty acid substrates with differing double bond content. With respect to kcat/KM values, the loss of Δ4 and Δ19 led to an 18-fold loss of kinetic activity for h12-LOX, no change in kinetic capability for h15-LOX-1, but a 24-fold loss for h15-LOX-2 for both C22-FAs. With respect to the product profiles, h12-LOX produced mainly 14-oxylipins. For h15-LOX-1, the 14-oxylipin production increased with the loss of either Δ4 and Δ19, however, the 17-oxylipin became the major species upon loss of both Δ4 and Δ19. h15-LOX-2 produced mostly the 17-oxylipin products throughout the fatty acid series. This study also investigated the effects of various 17-oxylipins on platelet activation. The results revealed that both 17(S)-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-DHA (17-HDHA) and 17-hydroxy-4Z,7Z,10Z,13Z,15E-DPAn6 (17-HDPAn6) demonstrated anti-aggregation properties with thrombin or collagen stimulation. 17-hydroxy-7Z,10Z,13Z,15E,19Z-DPAn3 (17-HDPAn3) exhibited agonistic properties, and 17-hydroxy-7Z,10Z,13Z,15E-DTA (17-HDTA) showed biphasic effects, inhibiting collagen-induced aggregation at lower concentrationsbut promoting aggregation at higher concentrations. Both 17-hydroxy-13Z,15E,19Z-DTrA (17-HDTrA), and 17-hydroxy-13Z,15E-DDiA (17-HDDiA) induced platelet aggregation. In summary, the number and placement of the double bonds affect platelet activation, with the general trend being that more double bonds generally inhibit aggregation, while less double bonds promote aggregation. These findings provide insights into the potential role of specific fatty acids and their metabolizing LOX isozymes with respect to cardiovascular health.
Collapse
Affiliation(s)
- Michelle Tran
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Srihari Narendra
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
4
|
Renna SA, McKenzie SE, Michael JV. Species Differences in Platelet Protease-Activated Receptors. Int J Mol Sci 2023; 24:ijms24098298. [PMID: 37176005 PMCID: PMC10179473 DOI: 10.3390/ijms24098298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Protease-activated receptors (PARs) are a class of integral membrane proteins that are cleaved by a variety of proteases, most notably thrombin, to reveal a tethered ligand and promote activation. PARs are critical mediators of platelet function in hemostasis and thrombosis, and therefore are attractive targets for anti-platelet therapies. Animal models studying platelet PAR physiology have relied heavily on genetically modified mouse strains, which have provided ample insight but have some inherent limitations. The current review aims to summarize the notable PAR expression and functional differences between the mouse and human, in addition to highlighting some recently developed tools to further study human physiology in mouse models.
Collapse
Affiliation(s)
- Stephanie A Renna
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Steven E McKenzie
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James V Michael
- Department of Medicine, The Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Feng WH, Chang YC, Lin YH, Chen HL, Chen CY, Lin TH, Lin TC, Chang CT, Kuo HF, Chang HM, Chu CS. P2Y12 Inhibitor Monotherapy versus Conventional Dual Antiplatelet Therapy in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention: A Meta-Analysis. Pharmaceuticals (Basel) 2023; 16:232. [PMID: 37259380 PMCID: PMC9958698 DOI: 10.3390/ph16020232] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 08/08/2023] Open
Abstract
P2Y12 inhibitor monotherapy is a feasible alternative treatment for patients after percutaneous coronary intervention (PCI) in the modern era. Clinical trials have shown that it could lower the risk of bleeding complications without increased ischemic events as compared to standard dual antiplatelet therapy (DAPT). However, the efficacy and safety of this novel approach among patients with acute coronary syndrome (ACS) are controversial because they have a much higher risk for recurrent ischemic events. The purpose of this study is to evaluate the efficacy and safety of this novel approach among patients with ACS. We conducted a meta-analysis of randomized controlled trials that compared P2Y12 inhibitor monotherapy with 12-month DAPT in ACS patients who underwent PCI with stent implantation. PubMed, Embase, the Cochrane library database, ClinicalTrials.gov, and other three websites were searched for data from the earliest report to July 2022. The primary efficacy outcome was major adverse cardiovascular and cerebrovascular events (MACCE), a composite of all-cause mortality, myocardial infarction, stent thrombosis, or stroke. The primary safety outcome was major or minor bleeding events. The secondary endpoint was net adverse clinical events (NACE), defined as a composite of major bleeding and adverse cardiac and cerebrovascular events. Five randomized controlled trials with a total of 21,034 patients were included in our meta-analysis. The quantitative analysis showed a significant reduction in major or minor bleeding events in patients treated with P2Y12 inhibitor monotherapy as compared with standard DAPT(OR: 0.59, 95% CI: 0.46-0.75, p < 0.0001) without increasing the risk of MACCE (OR: 0.98, 95% CI: 0.86-1.13, p = 0.82). The NACE was favorable in the patients treated with P2Y12 inhibitor monotherapy (OR: 0.82, 95% CI: 0.73-0.93, p = 0.002). Of note, the overall clinical benefit of P2Y12 inhibitor monotherapy was quite different between ticagrelor and clopidogrel. The incidence of NACE was significantly lower in ticagrelor monotherapy as compared with DAPT (OR: 0.79, 95% CI: 0.68-0.91), but not in clopidogrel monotherapy (OR: 1.14, 95% CI: 0.79-1.63). Both clopidogrel and ticagrelor monotherapy showed a similar reduction in bleeding complications (OR: 0.46, 95% CI: 0.22-0.94; OR: 0.60, 95% CI: 0.44-0.83, respectively). Although statistically insignificant, the incidence of MACCE was numerically higher in clopidogrel monotherapy as compared with standard DAPT (OR: 1.50, 95% CI: 0.99-2.28, p = 0.06). Based on these findings, P2Y12 inhibitor monotherapy with ticagrelor would be a better choice of medical treatment for ACS patients after PCI with stent implantation in the current era.
Collapse
Affiliation(s)
- Wen-Han Feng
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yong-Chieh Chang
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yi-Hsiung Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiao-Ling Chen
- Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Yin Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Tsung-Han Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Tzu-Chieh Lin
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Ching-Tang Chang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Hsiu-Mei Chang
- Department of Pharmacy, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Chih-Sheng Chu
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| |
Collapse
|
6
|
Hadley JB, Kelher MR, Coleman JR, Kelly KK, Dumont LJ, Esparza O, Banerjee A, Cohen MJ, Jones K, Silliman CC. Hormones, age, and sex affect platelet responsiveness in vitro. Transfusion 2022; 62:1882-1893. [PMID: 35929193 PMCID: PMC9464702 DOI: 10.1111/trf.17054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Female sex confers a survival advantage following severe injury in the setting of trauma-induced coagulopathy, with female platelets having heightened responsiveness likely due to estrogen. The effects of testosterone on platelet biology are unknown, and platelets express both estradiol and androgen receptors on the plasma membrane. We hypothesize testosterone decreases platelet responses in vitro, and there are baseline differences in platelet function and metabolism stratified by sex/age. STUDY DESIGN AND METHODS Apheresis platelets were collected from: older males (OM) ≥45 years, younger males (YM) <45 years, older females (OF) ≥54 years, and younger females (YF) <54 years, and testosterone and estradiol were measured. Platelets were incubated with testosterone (5.31 ng/ml), estradiol (105 pg/ml) or vehicle and stimulated with buffer, adenosine diphosphate (20 μM), platelet activating factor (2 μM), or thrombin (0.3 U/ml). Aggregation, CD62P surface expression, fibrinogen receptor surface expression, and platelet mitochondrial metabolism were measured. RESULTS Testosterone significantly inhibited aggregation in OF and OM (p < .05), inhibited CD41a expression in YF, YM, and OM (p < .05), and affected a few of the baseline amounts of CD62P surface expression but not platelet activation to platelet-activating factor and adenosine diphosphate, and variably changed platelet metabolism. DISCUSSION Platelets have sex- and age-specific aggregation, receptor expression, and metabolism. Testosterone decreases platelet function dependent on the stimulus, age, and sex. Similarly, platelet metabolism has varying responses to sex hormones with baseline metabolic differences dependent upon sex and age.
Collapse
Affiliation(s)
- Jamie B Hadley
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Marguerite R Kelher
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Julia R Coleman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- The Department of Pathology School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Orlando Esparza
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Anirban Banerjee
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Mitchell J Cohen
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Biostatistics, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Christopher C Silliman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| |
Collapse
|
7
|
Tian Z, Fan D, Li K, Zhao D, Liang Y, Ji Q, Gao X, Ma X, Zhao Y, Mao Y, Meng H, Yang Y. Four-Week Supplementation of Water-Soluble Tomato Extract Attenuates Platelet Function in Chinese Healthy Middle-Aged and Older Individuals: A Randomized, Double-Blinded, and Crossover Clinical Trial. Front Nutr 2022; 9:891241. [PMID: 35719156 PMCID: PMC9199899 DOI: 10.3389/fnut.2022.891241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Platelets are linked to atherosclerotic development and pathological thrombosis. Single dose of water-soluble tomato extract (WTE) which is a natural extraction can exert anti-platelet effects after 3 or 7 h in British healthy people. However, the effects of WTE supplementation on platelet function in Chinese healthy middle-aged and older individuals have not been studied, and the effects or safety of 4-week WTE supplementation also remain unclear. The present study aims to determine the effects of WTE on platelet function, and explore the safety of 4-week WTE supplementation in Chinese healthy middle-aged and older individuals. Methods A randomized, double-blinded, and crossover clinical trial was conducted. Firstly, 105 individuals were randomly divided into two groups that received WTE (150 mg/day) or placebo for 4 weeks. Then, after a washout period of 2 weeks, two groups exchanged groups and continued for another 4-week intervention. Platelet aggregation, P-selectin, activated GPIIbIIIa, plasma platelet factor 4 (PF4), β-thromboglobulin (β-TG), and thromboxane B2 (TXB2) were tested at baseline, 4, 6, and 10 weeks. Results Compared with the placebo group, 150 mg/day WTE supplement for 4 weeks significantly reduced ADP-induced or collagen-induced platelet aggregation (−10.8 ± 1.8 or −3.9 ± 1.5%, P < 0.05), ADP-induced or collagen-induced platelet P-selectin expression (−6.9 ± 1.5 or −6.6 ± 1.3%, P < 0.05), ADP-induced or collagen-induced activated GPIIbIIIa (−6.2 ± 2.0 or −3.8 ± 2.0%, P < 0.05). Besides, 4-week intervention of 150 mg WTE per day also resulted in significant reductions in plasma PF4 (−120.6 ± 33.2 ng/mL, P < 0.05) and β-TG (−129.7 ± 27.5 ng/mL, P < 0.05) and TXB2 (−42.0 ± 4.0 ng/mL, P < 0.05), while had no effects on coagulation function and liver or renal function. Interestingly, 2-week washout period is enough to reverse the inhibitory effect of 4-week WTE supplementation on platelet function. Conclusion WTE supplementation for 4 weeks could moderately reduce platelet activation, aggregation, and granule secretion in Chinese healthy middle-aged and older individuals, and these effects are safe. After 2-week washout period, the inhibitory effect of 4-week WTE on platelet function can be eliminated. Clinical Trial Registration [http://www.chictr.org.cn/], identifier [ChiCTR-POR-17012927].
Collapse
Affiliation(s)
- Zezhong Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Die Fan
- Department of Clinical Nutrition, The General Hospital of Western Theater Command, Chengdu, China
| | - Kongyao Li
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Dan Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Ying Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Qiuhua Ji
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Xiaoli Gao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xilin Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Yimin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Yuheng Mao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
| | - Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
- *Correspondence: Huicui Meng,
| | - Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, China
- Guangdong Engineering Technology Center of Nutrition Transformation, Guangzhou, China
- Yan Yang,
| |
Collapse
|
8
|
Stoller ML, Basak I, Denorme F, Rowley JW, Alsobrooks J, Parsawar K, Nieman MT, Yost CC, Hamilton JR, Bray PF, Campbell RA. Neutrophil cathepsin G proteolysis of protease-activated receptor 4 generates a novel, functional tethered ligand. Blood Adv 2022; 6:2303-2308. [PMID: 34883511 PMCID: PMC9006282 DOI: 10.1182/bloodadvances.2021006133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/04/2022] Open
Abstract
Platelet-neutrophil interactions regulate ischemic vascular injury. Platelets are activated by serine proteases that cleave protease-activated receptor (PAR) amino termini, resulting in an activating tethered ligand. Neutrophils release cathepsin G (CatG) at sites of injury and inflammation, which activates PAR4 but not PAR1, although the molecular mechanism of CatG-induced PAR4 activation is unknown. We show that blockade of the canonical PAR4 thrombin cleavage site did not alter CatG-induced platelet aggregation, suggesting CatG cleaves a different site than thrombin. Mass spectrometry analysis using PAR4 N-terminus peptides revealed CatG cleavage at Ser67-Arg68. A synthetic peptide, RALLLGWVPTR, representing the tethered ligand resulting from CatG proteolyzed PAR4, induced PAR4-dependent calcium flux and greater platelet aggregation than the thrombin-generated GYPGQV peptide. Mutating PAR4 Ser67or Arg68 reduced CatG-induced calcium flux without affecting thrombin-induced calcium flux. Dog platelets, which contain a conserved CatG PAR4 Ser-Arg cleavage site, aggregated in response to human CatG and RALLLGWVPTR, while mouse (Ser-Gln) and rat (Ser-Glu) platelets were unresponsive. Thus, CatG amputates the PAR4 thrombin cleavage site by cleavage at Ser67-Arg68 and activates PAR4 by generating a new functional tethered ligand. These findings support PAR4 as an important CatG signaling receptor and suggest a novel therapeutic approach for blocking platelet-neutrophil-mediated pathophysiologies.
Collapse
Affiliation(s)
- Michelle L. Stoller
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Frederik Denorme
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
| | - Jesse W. Rowley
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - James Alsobrooks
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, University of Arizona, Tucson, AZ
| | - Marvin T. Nieman
- Department of Pharmacology, Case Western Reserve University, School of Medicine, Cleveland, OH
| | - Christian Con Yost
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Neonatology, Department of Pediatric Medicine, University of Utah, Salt Lake City, UT
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; and
| | - Paul F. Bray
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, and
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, University of Utah, Salt Lake City, UT
- Division of General Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
9
|
Sun SF, Hsu CW, Lin HS, Liou IH, Chou YC, Wu SY, Huang HY. A single intraarticular platelet-rich plasma improves pain and function for patients with early knee osteoarthritis: Analyses by radiographic severity and age. J Back Musculoskelet Rehabil 2022; 35:93-102. [PMID: 34092592 DOI: 10.3233/bmr-200193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Most studies use platelet-rich plasma (PRP) requiring multiple intraarticular injections for knee osteoarthritis (OA). OBJECTIVE To investigate the efficacy of a single intraarticular PRP injection for patients with early knee OA and consider subgroup analyses of radiographic severity and age, respectively. METHODS Forty-one patients with knee OA (Kellgren-Lawrence grade 1-2) received a single PRP injection into the target knee and were assessed at baseline and 1, 3, and 6 months postinjection. The primary outcome was the mean change from baseline in the visual analog scale (VAS) pain (0-100 mm) at 6 months postinjection. Secondary outcomes included the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Lequesne index, single leg stance test (SLS), use of rescue analgesics and patients' satisfaction. RESULTS Thirty-eight patients completed the study. The mean pain VAS decreased significantly from 45.6 ± 13.0 mm at baseline to 16.9 ± 13.4 mm, 14.0 ± 13.1 mm and 15.5 ± 14.0 mm at 1, 3 and 6-month follow-ups (p< 0.001 for all). Significant improvements in WOMAC, Lequesne index, SLS and consumption of analgesics from baseline (p< 0.001 for all) were noted at each follow-up. Patients' satisfaction was high. No serious adverse events occurred. Subgroup analyses revealed that patients with grade 1 OA showed significantly greater VAS pain reduction at 3 months (p= 0.006) and 6 months (p= 0.005) than patients with grade 2 OA. The older-age group (age > 60) showed significantly greater improvements in VAS pain, WOMAC function subscale scores and total scores at 6-month postinjection, compared with the younger age-group (age ≤ 60). The younger-age group reported better satisfaction at 1 and 3-month postinjection. CONCLUSIONS One injection of PRP improved pain and function for 6 months for patients with early knee OA. This study supports putting the one-injection regimen into clinical practice. Further research is needed for more definite conclusions.
Collapse
Affiliation(s)
- Shu-Fen Sun
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Wei Hsu
- National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | | | - I-Hsiu Liou
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Chou
- Department of Orthopaedic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shin-Yi Wu
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hung-Ya Huang
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Jiao X, Xing Y, Wang H, Jin X, Zhang T, Peng X, Li R, Liang L, Liu R, Han L, Li Z. A strategy based on gene sequencing and molecular docking for analysis and prediction of bioactive peptides in Shuxuetong injection. Biophys Chem 2021; 282:106749. [PMID: 34971853 DOI: 10.1016/j.bpc.2021.106749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
Peptides are a class of protein fragments with relatively high biological activity and intense specificity, which play crucial role in the treatment of Shuxuetong injection (SXT). However, the extraordinary complexity of Chinese medicinal formulates and the lack of systematic identification methods are primary challenges for study of pharmacodynamic peptides. In addition, infinitesimal peptides contents further hinder the identification and structural characterization of polypeptide by traditional means. In this paper, we described a strategy that LC-MS combined with molecular docking to systematically illustrate the peptide components of SXT. The key to this research was used of gene sequencing to establish a SXT protein database to further achieve the separation and enrichment of chemical methods. Moreover, the ADRA2A, PAR4 and DRD3 were precisely docked with the identified peptides. The result indicated that 12 compounds had stable binding ability and were speculated to be the latent bioactive monomers for the treatment of stroke. Additionally, 12 peptides were verified by cell-based experiment. The results showed that only YLKTT could indeed protect astrocytes from oxygen glucose deprivation/reoxygenation (OGD/R). The YLKTT showed higher activity than the others in vitro. It might be a completely new compound that has never been reported before, providing the basis for further research and a new paradigm for stroke.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Yanchao Xing
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309, China
| | - Tingting Zhang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Xingru Peng
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Rui Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Liuyi Liang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617, China.
| |
Collapse
|
11
|
Selvadurai MV, Riaz M, Xie S, Tonkin A, McNeil JJ, Lacaze P, Hamilton J. The PAR4 platelet thrombin receptor variant rs773902 does not impact the incidence of thrombotic or bleeding events in a healthy older population. Thromb Haemost 2021; 122:1130-1138. [PMID: 34852379 DOI: 10.1055/a-1711-1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is a platelet thrombin receptor important for thrombosis and a target of anti-platelet drug development. A frequently occurring single nucleotide polymorphism (SNP; rs773902) causes a PAR4 sequence variant (NC_000019.10:p.Ala120Thr) whereby platelets from Thr120-expressing individuals are hyper-responsive to PAR4 agonists versus platelets from Ala120-expressing individuals. However, whether this enhanced platelet responsiveness translates to increased thrombotic risk or decreased bleeding risk remains unknown. OBJECTIVES To examine the association of rs773902 with adjudicated cardiovascular events and aspirin use in a randomized trial population of healthy older individuals. PATIENTS/METHODS We analyzed 13,547 participants in the ASPirin in Reducing Events in the Elderly (ASPREE) trial. Participants had no previous cardiovascular events at enrollment and were randomized to either 100 mg daily aspirin or placebo for a median follow-up of 4.7 years. Total genotypes were 8,761 (65%) GG (Ala120 variant), 4,303 (32%) heterozygotes, and 483 (4%) AA (Thr120 variant). Cox proportional hazard regression tested the relationship between rs773902 and thrombotic events (major adverse cardiovascular events [MACE] and ischemic stroke [IS]) and bleeding (major hemorrhage [MHEM] and intracranial bleeding [ICB]). RESULTS No statistically significant association was observed overall or by treatment group between rs773902 and any thrombotic or bleeding event examined. Further, there was no significant interaction between rs773902 and treatment for any of MACE, IS, MHEM, or ICB. CONCLUSIONS This post-hoc analysis of a prospective cohort study suggests that, despite sensitizing platelet activation, the rs773902 PAR4 variant is not associated with thrombotic cardiovascular or bleeding events in a healthy older population.
Collapse
Affiliation(s)
- Maria V Selvadurai
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Moeen Riaz
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Sophia Xie
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | | | | | - Justin Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Garofano K, Park CS, Alarcon C, Avitia J, Barbour A, Diemert D, Fraser CM, Friedman PN, Horvath A, Rashid K, Shaazuddin M, Sidahmed A, O'Brien TJ, Perera MA, Lee NH. Differences in the Platelet mRNA Landscape Portend Racial Disparities in Platelet Function and Suggest Novel Therapeutic Targets. Clin Pharmacol Ther 2021; 110:702-713. [PMID: 34255863 DOI: 10.1002/cpt.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022]
Abstract
The African American (AA) population displays a 1.6 to 3-fold higher incidence of thrombosis and stroke mortality compared with European Americans (EAs). Current antiplatelet therapies target the ADP-mediated signaling pathway, which displays significant pharmacogenetic variation for platelet reactivity. The focus of this study was to define underlying population differences in platelet function in an effort to identify novel molecular targets for future antiplatelet therapy. We performed deep coverage RNA-Seq to compare gene expression levels in platelets derived from a cohort of healthy volunteers defined by ancestry determination. We identified > 13,000 expressed platelet genes of which 480 were significantly differentially expressed genes (DEGs) between AAs and EAs. DEGs encoding proteins known or predicted to modulate platelet aggregation, morphology, or platelet count were upregulated in AA platelets. Numerous G-protein coupled receptors, ion channels, and pro-inflammatory cytokines not previously associated with platelet function were likewise differentially expressed. Many of the signaling proteins represent potential pharmacologic targets of intervention. Notably, we confirmed the differential expression of cytokines IL32 and PROK2 in an independent cohort by quantitative real-time polymerase chain reaction, and provide functional validation of the opposing actions of these two cytokines on collagen-induced AA platelet aggregation. Using Genotype-Tissue Expression whole blood data, we identified 516 expression quantitative trait locuses with Fst values > 0.25, suggesting that population-differentiated alleles may contribute to differences in gene expression. This study identifies gene expression differences at the population level that may affect platelet function and serve as potential biomarkers to identify cardiovascular disease risk. Additionally, our analysis uncovers candidate novel druggable targets for future antiplatelet therapies.
Collapse
Affiliation(s)
- Kaitlin Garofano
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - C Sehwan Park
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cristina Alarcon
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Juan Avitia
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - April Barbour
- Department of Medicine, George Washington University, Washington, DC, USA
| | - David Diemert
- Department of Medicine, George Washington University, Washington, DC, USA
| | - Claire M Fraser
- Institute for Genome Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paula N Friedman
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, USA
| | - Kameron Rashid
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Mohammed Shaazuddin
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alfateh Sidahmed
- Department of Medicine, George Washington University, Washington, DC, USA
| | - Travis J O'Brien
- Department of Pharmacology and Physiology, George Washington University, Washington, DC, USA
| | - Minoli A Perera
- Department of Pharmacology and Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, GW Cancer Center, George Washington University, Washington, DC, USA
| |
Collapse
|
13
|
Grines CL, Klein AJ, Bauser-Heaton H, Alkhouli M, Katukuri N, Aggarwal V, Altin SE, Batchelor WB, Blankenship JC, Fakorede F, Hawkins B, Hernandez GA, Ijioma N, Keeshan B, Li J, Ligon RA, Pineda A, Sandoval Y, Young MN. Racial and ethnic disparities in coronary, vascular, structural, and congenital heart disease. Catheter Cardiovasc Interv 2021; 98:277-294. [PMID: 33909339 DOI: 10.1002/ccd.29745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in the United States. However, percutaneous interventional cardiovascular therapies are often underutilized in Blacks, Hispanics, and women and may contribute to excess morbidity and mortality in these vulnerable populations. The Society for Cardiovascular Angiography and Interventions (SCAI) is committed to reducing racial, ethnic, and sex-based treatment disparities in interventional cardiology patients. Accordingly, each of the SCAI Clinical Interest Councils (coronary, peripheral, structural, and congenital heart disease [CHD]) participated in the development of this whitepaper addressing disparities in diagnosis, treatment, and outcomes in underserved populations. The councils were charged with summarizing the available data on prevalence, treatment, and outcomes and elucidating potential reasons for any disparities. Given the huge changes in racial and ethnic composition by age in the United States (Figure 1), it was difficult to determine disparities in rates of diagnosis and we expected to find some racial differences in prevalence of disease. For example, since the average age of patients undergoing transcatheter aortic valve replacement (TAVR) is 80 years, one may expect 80% of TAVR patients to be non-Hispanic White. Conversely, only 50% of congenital heart interventions would be expected to be performed in non-Hispanic Whites. Finally, we identified opportunities for SCAI to advance clinical care and equity for our patients, regardless of sex, ethnicity, or race.
Collapse
Affiliation(s)
- Cindy L Grines
- Cardiology, Northside Hospital Cardiovascular Institute, Atlanta, Georgia, USA
| | - Andrew J Klein
- Cardiology, Piedmont Heart Institute, Atlanta, Georgia, USA
| | - Holly Bauser-Heaton
- Pediatric Cardiology, Sibley Heart Center of Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | | | - Neelima Katukuri
- Cardiology, Orlando VA Medical Center, University of Central Florida, Orlando, Florida, USA
| | - Varun Aggarwal
- Pediatric Cardiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - S Elissa Altin
- Cardiovascular Disease, Yale University, New Haven, Connecticut, USA
| | - Wayne B Batchelor
- Interventional Cardiology, Inova Heart and Vascular Institute, Fairfax, Virginia, USA
| | - James C Blankenship
- Internal Medicine, Cardiology Division, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Foluso Fakorede
- Interventional Cardiology, Cardiovascular Solutions of Central Mississippi, Cleveland, Mississippi, USA
| | - Beau Hawkins
- Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gabriel A Hernandez
- Cardiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Britton Keeshan
- Clinical Pediatrics, Yale New Haven Children's Hospital, New Haven, Connecticut, USA
| | - Jun Li
- Cardiology, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - R Allen Ligon
- Pediatric Cardiology, Joe DiMaggio Children's Hospital - Memorial Healthcare System, Hollywood, Florida, USA
| | - Andres Pineda
- Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | | | - Michael N Young
- Cardiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
14
|
Infeld M, Friede KA, San TR, Knickerbocker HJ, Ginsburg GS, Ortel TL, Voora D. Platelet reactivity in response to aspirin and ticagrelor in African-Americans and European-Americans. J Thromb Thrombolysis 2021; 51:249-259. [PMID: 33159252 PMCID: PMC7889728 DOI: 10.1007/s11239-020-02327-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Platelet gene polymorphisms are associated with variable on-treatment platelet reactivity and vary by race. Whether differences in platelet reactivity and aspirin or ticagrelor exist between African-American and European-Americans remains poorly understood. Biological samples from three prior prospective antiplatelet challenge studies at the Duke Clinical Research Unit were used to compare platelet reactivity between African-American and European-American subjects. Platelet reactivity at baseline, on-aspirin, on-ticagrelor, and the treatment effect of aspirin or ticagrelor were compared between groups using an adjusted mixed effects model. Compared with European-Americans (n = 282; 50% female; mean ± standard deviation age, 50 ± 16), African-Americans (n = 209; 67% female; age 48 ± 12) had lower baseline platelet reactivity with platelet function analyzer-100 (PFA-100) (p < 0.01) and with light transmission aggregometry (LTA) in response to arachidonic acid (AA), adenosine diphosphate (ADP), and epinephrine agonists (p < 0.05). African-Americans had lower platelet reactivity on aspirin in response to ADP, epinephrine, and collagen (p < 0.05) and on ticagrelor in response to AA, ADP, and collagen (p < 0.05). The treatment effect of aspirin was greater in European-Americans with an AA agonist (p = 0.002). Between-race differences with in vitro aspirin mirrored those seen in vivo. The treatment effect of ticagrelor was greater in European-Americans in response to ADP (p < 0.05) but with collagen, the treatment effect was greater for African-Americans (p < 0.05). Platelet reactivity was overall lower in African-Americans off-treatment, on aspirin, and on ticagrelor. European-Americans experienced greater platelet suppression on aspirin and on ticagrelor. The aspirin response difference in vivo and in vitro suggests a mechanism intrinsic to the platelet. Whether the absolute level of platelet reactivity or the degree of platelet suppression after treatment is more important for clinical outcomes is uncertain.
Collapse
Affiliation(s)
- Margaret Infeld
- Division of Cardiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kevin A Friede
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tan Ru San
- Department of Cardiology, National Heart Centre, Singapore, Singapore
| | - Holly J Knickerbocker
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Thomas L Ortel
- Division of Hematology, Duke University, Durham, NC, USA
| | - Deepak Voora
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA.
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
15
|
Inhibitory Effects of P2Y12 Receptor Antagonist on PAR1- and PAR4-AP-Induced Platelet Aggregation in Patients with Stroke or TIA. J Stroke Cerebrovasc Dis 2020; 30:105547. [PMID: 33360254 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-activating peptide (AP)-induced platelet aggregation have not been fully elucidated. The present study aimed to investigate the inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-AP-induced platelet aggregation using platelet-rich plasma (PRP) from individuals including patients with stroke or transient ischemic attack (TIA). MATERIALS AND METHODS PRP was given to 10 healthy individuals pretreated in vitro with cangrelor, then stimulated with adenosine diphosphate (ADP), PAR4-AP, or PAR1-AP. Moreover, 20 patients were enrolled from 148 consecutive patients with acute ischemic stroke or TIA admitted to our institute between December 2017 and April 2019. PRP obtained from each patient before and >7 days after initiation of clopidogrel was similarly stimulated with these agonists. Platelet aggregation was measured using an automatic coagulation analyzer in all participants. RESULTS In healthy individuals, ADP- and PAR4-AP-induced platelet aggregations were significantly inhibited depending on the cangrelor concentration in vitro, while PAR1-AP-induced platelet aggregation was slightly inhibited. In patients with stroke or TIA, clopidogrel inhibited ADP-induced platelet aggregation at all concentrations, and significantly inhibited PAR4-AP-induced platelet aggregation at 50 µmol/L of PAR4-AP (p<0.05), especially in 5 patients who showed high reactivity to PAR4-AP. PAR1-AP-induced platelet aggregation was also slightly inhibited. CONCLUSIONS We showed significant inhibitory effects on PAR4-AP-induced platelet aggregation by clopidogrel in patients with stroke or TIA who had high reactivity to PAR4-AP.
Collapse
|
16
|
Popping the lid on PAR4 activation. Blood 2020; 136:2101-2102. [DOI: 10.1182/blood.2020007334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Platelet and hemoglobin count at diagnosis are associated with survival in African American and Caucasian patients with colorectal cancer. Cancer Epidemiol 2020; 67:101746. [PMID: 32521488 DOI: 10.1016/j.canep.2020.101746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND African Americans (AAs) compared to Caucasian Americans (CAs) with colorectal cancer (CRC) have lower stage-specific survival. CRC patients often present with several hematopathologies (such as thrombocytosis, thrombocytopenia, anemia) at diagnosis, which is associated with poorer survival. However, whether these measures impact the racial disparity in survival is not known. METHODS The study population was composed of 581 histologically confirmed CRCs at the Medical University of South Carolina (393 CA, 188 AA) diagnosed between 01/01/2000 and 06/30/2013. We used Cox proportional hazards regression to estimate the association between thrombocytosis, thrombocytopenia, or anemia at diagnosis and risk of death by race. This analysis was adjusted for age, sex, stage and first-line treatment. RESULTS In all patients combined, thrombocytosis, thrombocytopenia, and anemia (vs. the normal ranges) were associated with significantly higher risks of death. In the race-specific analyses, AAs (HR 2.51 [95 % CI: 1.52-4.15]) vs. CAs (HR 1.15 [95 % CI: 0.75-1.75]) with thrombocytosis compared to normal had a higher risk of death (p for difference = 0.03). CONCLUSIONS Abnormal thrombocyte and hemoglobin levels at diagnosis were associated with poorer survival. AAs compared to CAs with elevated platelets at diagnosis had a higher risk of death. Our study is the first to examine the role of race, hematologic measures at diagnosis, and risk of death in colorectal cancer patients. These results suggest that the racial differences in the immune response may contribute to the racial disparity in survival.
Collapse
|
18
|
Ningtyas D, Thomson RJ, Tarlac V, Nagaraj SH, Hoy W, Mathews JD, Foote SJ, Gardiner EE, Hamilton JR, McMorran BJ. Analysis of the F2LR3 (PAR4) Single Nucleotide Polymorphism ( rs773902) in an Indigenous Australian Population. Front Genet 2020; 11:432. [PMID: 32425989 PMCID: PMC7204273 DOI: 10.3389/fgene.2020.00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/07/2020] [Indexed: 11/29/2022] Open
Abstract
The F2RL3 gene encoding protease activated receptor 4 (PAR4) contains a single nucleotide variant, rs773902, that is functional. The resulting PAR4 variants, Thr120, and Ala120, are known to differently affect platelet reactivity to thrombin. Significant population differences in the frequency of the allele indicate it may be an important determinant in the ethnic differences that exist in thrombosis and hemostasis, and for patient outcomes to PAR antagonist anti-platelet therapies. Here we determined the frequency of rs773902 in an Indigenous Australian group comprising 467 individuals from the Tiwi Islands. These people experience high rates of renal disease that may be related to platelet and PAR4 function and are potential recipients of PAR-antagonist treatments. The rs773902 minor allele frequency (Thr120) in the Tiwi Islanders was 0.32, which is similar to European and Asian groups and substantially lower than Melanesians and some African groups. Logistic regression and allele distortion testing revealed no significant associations between the variant and several markers of renal function, as well as blood glucose and blood pressure. These findings suggest that rs773902 is not an important determinant for renal disease in this Indigenous Australian group. However, the relationships between rs773902 genotype and platelet and drug responsiveness in the Tiwi, and the allele frequency in other Indigenous Australian groups should be evaluated.
Collapse
Affiliation(s)
- Dian Ningtyas
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Russell J Thomson
- Centre for Research in Mathematics and Data Science, School of Computer, Data and Mathematical Sciences, Western Sydney University, Parramatta, NSW, Australia
| | - Volga Tarlac
- Australian Center for Blood Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Wendy Hoy
- Centre for Chronic Disease, Faculty of Health, The University of Queensland, Brisbane, QLD, Australia
| | - John D Mathews
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Menzies School of Health Research, Darwin, NT, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E Gardiner
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Justin R Hamilton
- Australian Center for Blood Diseases, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
19
|
Driver B, Marks DC, van der Wal DE. Not all (N)SAID and done: Effects of nonsteroidal anti-inflammatory drugs and paracetamol intake on platelets. Res Pract Thromb Haemost 2020; 4:36-45. [PMID: 31989083 PMCID: PMC6971311 DOI: 10.1002/rth2.12283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/07/2019] [Accepted: 10/19/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are key mediators of hemostasis and thrombosis and can be inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs). As a result, platelet donors are temporarily deferred from donating if they have recently taken NSAIDs such as aspirin or ibuprofen. Despite these measures, a proportion of platelet donations show exposure to these drugs; however, little is known about the effect of NSAIDs and their metabolites on platelet quality in vivo and during storage. In this review, the effect of NSAIDs on platelet function is summarized, with a focus on the widely consumed over-the-counter (OTC) medications aspirin, ibuprofen, and the non-NSAID paracetamol. Aspirin and ibuprofen have well-defined antiplatelet effects. In comparison, studies regarding the effect of paracetamol on platelets report variable findings. The timing and order of NSAID intake is important, as concurrent NSAID use can inhibit or potentiate platelet activation depending on the drug taken. NSAID deferral periods and maximum platelet shelf-life is set by each country and are revised regularly. Reduced donor deferral periods and longer platelet storage times may affect the quality of platelet products, and it is therefore important to identify the possible impact of NSAID intake on platelet quality before and after storage.
Collapse
Affiliation(s)
- Ben Driver
- Research and DevelopmentAustralian Red Cross Blood ServiceSydneyNSWAustralia
| | - Denese C. Marks
- Research and DevelopmentAustralian Red Cross Blood ServiceSydneyNSWAustralia
- Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | | |
Collapse
|
20
|
Kochanek MA, McGill RL, Navuluri R, Shah V, Hammes M. Outcomes after Percutaneous Angioplasty of Arteriovenous Fistulas and Grafts in African American Patients. Can Assoc Radiol J 2019; 70:300-306. [DOI: 10.1016/j.carj.2019.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022] Open
Abstract
Purpose Arteriovenous fistulas and grafts, necessary for hemodialysis, may develop stenoses due to neointimal hyperplasia, which often require percutaneous transluminal angioplasty. Patient and lesion characteristics were evaluated prior to angioplasty and were correlated with 1- and 6-month outcomes. Materials and Methods This was an observational study of African American hemodialysis patients who presented for angioplasty of a dysfunctional fistula or graft. Clinical outcomes were ascertained from dialysis facilities 1 month and 6 months after angioplasty. One-month clinical success was defined as dialyzer blood flows of 450 mL/min without complications or interval shunt thrombosis, interventions, or loss of access, which was rarely achieved at 6 months. Logistic regression models were used to evaluate associations of clinical variables with outcomes. Results There were 150 stenoses treated during 99 procedures performed on 82 patients. The clinical success rate at one month was 67% with no complications as a result of the percutaneous transluminal angioplasty. Success at 1 month was positively associated with use of aspirin ( P = .005) and with referral for high venous pressures ( P = .004). Six-month data were available for 81 procedures, with 45.7% requiring repeat angioplasty and 12.3% suffering major complications (thrombectomy, revision surgery, or access abandonment). Major complications were seen predominantly in patients who were not receiving aspirin. Conclusions Aspirin use and high venous pressure were associated with 1-month clinical success and fewer major complications at 6 months. Future work should investigate biologic mechanisms of action of aspirin and long-term effects of use to maintain vascular access.
Collapse
Affiliation(s)
| | - Rita L. McGill
- Department of Internal Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Rakesh Navuluri
- Department of Interventional Radiology, University of Chicago Medical Center, Chicago, IL, USA
| | - Vipuj Shah
- Department of Internal Medicine, University of Chicago Medical Center, Chicago, IL, USA
| | - Mary Hammes
- Department of Internal Medicine, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Iantorno M, Weintraub WS, Garcia-Garcia HM, Attaran S, Gajanana D, Buchanan KD, Rogers T, Torguson R, Waksman R. Genetic and Nongenetic Implications of Racial Variation in Response to Antiplatelet Therapy. Am J Cardiol 2019; 123:1878-1883. [PMID: 30967284 DOI: 10.1016/j.amjcard.2019.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022]
Abstract
Race has been identified as an independent risk factor for poor prognosis and an independent predictor of survival in coronary artery disease. Race-related dissimilarities have been identified in cardiovascular patients in terms of age of presentation, co-morbidities, socioeconomic status, and treatment approach as well as genetically driven race-related disparities in responsiveness to medications. Antiplatelet therapy represents a fundamental component of therapy in cardiovascular patients, especially in patients presenting with acute coronary syndromes. It has been argued that the different level of platelet reactivity and varying response to antiplatelet therapy among races may account in part for worse outcomes in certain populations. The purpose of this review is to describe genotypic and phenotypic race-related differences in platelet reactivity and responsiveness to cardiovascular treatment, focusing on antiplatelet therapy to highlight the need establish a more effective and targeted antithrombotic strategy.
Collapse
Affiliation(s)
- Micaela Iantorno
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - William S Weintraub
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Saina Attaran
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Deepakraj Gajanana
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Kyle D Buchanan
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Toby Rogers
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia; Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Torguson
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, District of Columbia.
| |
Collapse
|
22
|
|
23
|
Taniguchi Y, Yoshioka T, Kanamori A, Aoto K, Sugaya H, Yamazaki M. Intra-articular platelet-rich plasma (PRP) injections for treating knee pain associated with osteoarthritis of the knee in the Japanese population: a phase I and IIa clinical trial. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 80:39-51. [PMID: 29581613 PMCID: PMC5857500 DOI: 10.18999/nagjms.80.1.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intra-articular platelet-rich plasma (PRP) injection has been found to be effective for treating osteoarthritis in patients from Western countries; however, the safety and efficacy of PRP have not been sufficiently investigated in Japanese patients. The present study aimed to evaluate the safety and feasibility of intra-articular PRP injection in Japanese patients with knee osteoarthritis. PRP without white blood cells was prepared using a single-spin centrifuge (PRGF-Endoret; BTI Biotechnology Institute, Vitoria, Spain). A 6-mL PRP volume was injected in the knee joint three times at 1 week intervals. All patients were prospectively evaluated before intervention and at 1, 3, and 6 months after the treatment. Adverse events, the Visual Analog Scale (VAS) pain score, Japanese Knee Osteoarthritis Measure (JKOM) score and Japanese Orthopedic Association score were evaluated. Ten patients (all women; average age, 60.6 years) were treated. Only minor adverse events after injection were noted, and symptoms resolved within 48 hours after the injection. The average VAS pain scores were 71.6 mm and 18.4 mm at baseline and the 6-month follow-up, respectively (P < 0.05). At the 6-month follow-up, 80% of patients had a decrease in the VAS pain score of 50% or more. The average JKOM scores were 35.2 and 14.3 at baseline and at the 1-month follow-up, respectively (P < 0.05). Intra-articular PRP injection likely represents a safe treatment option for Japanese patients with mild-to-moderate knee osteoarthritis, and has the potential to relieve pain for up to 6 months, but further study is needed to verify the efficacy.
Collapse
Affiliation(s)
- Yu Taniguchi
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomokazu Yoshioka
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Regenerative Medicine for Musculoskeletal System, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akihiro Kanamori
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Katsuya Aoto
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hisashi Sugaya
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Regenerative Medicine for Musculoskeletal System, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
24
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
25
|
Fisher MH, Di Paola J. Genomics and transcriptomics of megakaryocytes and platelets: Implications for health and disease. Res Pract Thromb Haemost 2018; 2:630-639. [PMID: 30349880 PMCID: PMC6178711 DOI: 10.1002/rth2.12129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/03/2018] [Indexed: 01/07/2023] Open
Abstract
The field of megakaryocyte and platelet biology has been transformed with the implementation of high throughput sequencing. The use of modern sequencing technologies has led to the discovery of causative mutations in congenital platelet disorders and has been a useful tool in uncovering many other mechanisms of altered platelet formation and function. Although the understanding of the presence of RNA in platelets is relatively novel, mRNA and miRNA expression profiles are being shown to play an increasingly important role in megakaryopoiesis and platelet function in normal physiology as well as in disease states. Understanding the genetic perturbations underlying platelet dysfunction provides insight into normal megakaryopoiesis and thrombopoiesis, as well as guiding the development of novel therapeutics.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| | - Jorge Di Paola
- Department of PediatricsUniversity of Colorado School of MedicineAuroraColorado
- Medical Scientist Training ProgramUniversity of Colorado School of MedicineAuroraColorado
| |
Collapse
|
26
|
Frequency of PAR4 Ala120Thr variant associated with platelet reactivity significantly varies across sub-Saharan African populations. Blood 2018; 132:2103-2106. [PMID: 30143503 DOI: 10.1182/blood-2018-05-852335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
|
27
|
Tricoci P, Neely M, Whitley MJ, Edelstein LC, Simon LM, Shaw C, Fortina P, Moliterno DJ, Armstrong PW, Aylward P, White H, Van de Werf F, Jennings LK, Wallentin L, Held C, Harrington RA, Mahaffey KW, Bray PF. Effects of genetic variation in protease activated receptor 4 after an acute coronary syndrome: Analysis from the TRACER trial. Blood Cells Mol Dis 2018; 72:37-43. [PMID: 30055940 DOI: 10.1016/j.bcmd.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Variation in platelet response to thrombin may affect the safety and efficacy of PAR antagonism. The Thr120 variant of the common single nucleotide polymorphism (SNP) rs773902 in the protease-activated receptor (PAR) 4 gene is associated with higher platelet aggregation compared to the Ala120 variant. We investigated the relationship between the rs773902 SNP with major bleeding and ischemic events, safety, and efficacy of PAR1 inhibition in 6177 NSTE ACS patients in the TRACER trial. There was a lower rate of GUSTO moderate/severe bleeding in patients with the Thr120 variant. The difference was driven by a lower rate in the smaller homozygous group (recessive model, HR 0.13 [0.02-0.92] P = 0.042). No significant differences were observed in the ischemic outcomes. The excess in bleeding observed with PAR1 inhibition was attenuated in patients with the Thr120 variant, but the interactions were not statistically significant. In summary, lower major bleeding rates were observed in the overall TRACER cohort with the hyperreactive PAR4 Thr120 variant. The increase in bleeding with vorapaxar was attenuated with the Thr120 variant, but we could not demonstrate an interaction with PAR1 inhibition. These findings warrant further exploration, including those of African ancestry where the A allele (Thr120) frequency is ~65%.
Collapse
Affiliation(s)
| | - Megan Neely
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Michael J Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Leonard C Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Lukas M Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chad Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Statistics, Rice University, Houston, TX, USA
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - David J Moliterno
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Philip Aylward
- Division of Medicine, Cardiac & Critical Care Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Frans Van de Werf
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lisa K Jennings
- CirQuest Labs, LLC, and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | - Claes Held
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | | | | | - Paul F Bray
- Division of Hematology and Hematologic Malignancies in the Department of Internal Medicine and the Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
28
|
Tourdot BE, Stoveken H, Trumbo D, Yeung J, Kanthi Y, Edelstein LC, Bray PF, Tall GG, Holinstat M. Genetic Variant in Human PAR (Protease-Activated Receptor) 4 Enhances Thrombus Formation Resulting in Resistance to Antiplatelet Therapeutics. Arterioscler Thromb Vasc Biol 2018; 38:1632-1643. [PMID: 29748334 PMCID: PMC6023764 DOI: 10.1161/atvbaha.118.311112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Platelet activation after stimulation of PAR (protease-activated receptor) 4 is heightened in platelets from blacks compared with those from whites. The difference in PAR4 signaling by race is partially explained by a single-nucleotide variant in PAR4 encoding for either an alanine or threonine at amino acid 120 in the second transmembrane domain. The current study sought to determine whether the difference in PAR4 signaling by this PAR4 variant is because of biased Gq signaling and whether the difference in PAR4 activity results in resistance to traditional antiplatelet intervention. APPROACH AND RESULTS Membranes expressing human PAR4-120 variants were reconstituted with either Gq or G13 to determine the kinetics of G protein activation. The kinetics of Gq and G13 activation were both increased in membranes expressing PAR4-Thr120 compared with those expressing PAR4-Ala120. Further, inhibiting PAR4-mediated platelet activation by targeting COX (cyclooxygenase) and P2Y12 receptor was less effective in platelets from subjects expressing PAR4-Thr120 compared with PAR4-Ala120. Additionally, ex vivo thrombus formation in whole blood was evaluated at high shear to determine the relationship between PAR4 variant expression and response to antiplatelet drugs. Ex vivo thrombus formation was enhanced in blood from subjects expressing PAR4-Thr120 in the presence or absence of antiplatelet therapy. CONCLUSIONS Together, these data support that the signaling difference by the PAR4-120 variant results in the enhancement of both Gq and G13 activation and an increase in thrombus formation resulting in a potential resistance to traditional antiplatelet therapies targeting COX-1 and the P2Y12 receptor.
Collapse
Affiliation(s)
- Benjamin E Tourdot
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Hannah Stoveken
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Derek Trumbo
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Jennifer Yeung
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Yogendra Kanthi
- Division of Cardiovascular Medicine, Department of Internal Medicine (Y.K., M.H.), University of Michigan, Ann Arbor.,Ann Arbor Veterans Affairs Health System, MI (Y.K.)
| | - Leonard C Edelstein
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA (L.C.E.)
| | - Paul F Bray
- Department of Internal Medicine, University of Utah, Salt Lake City (P.F.B.)
| | - Gregory G Tall
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.)
| | - Michael Holinstat
- From the Department of Pharmacology (B.E.T., H.S., D.T., J.Y., G.G.T., M.H.) .,Division of Cardiovascular Medicine, Department of Internal Medicine (Y.K., M.H.), University of Michigan, Ann Arbor
| |
Collapse
|
29
|
Choi JE, Di Nardo A. Skin neurogenic inflammation. Semin Immunopathol 2018; 40:249-259. [PMID: 29713744 DOI: 10.1007/s00281-018-0675-z] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/06/2018] [Indexed: 01/12/2023]
Abstract
The epidermis closely interacts with nerve endings, and both epidermis and nerves produce substances for mutual sustenance. Neuropeptides, like substance P (SP) and calcitonin gene-related protein (CGRP), are produced by sensory nerves in the dermis; they induce mast cells to release vasoactive amines that facilitate infiltration of neutrophils and T cells. Some receptors are more important than others in the generation of itch. The Mas-related G protein-coupled receptors (Mrgpr) family as well as transient receptor potential ankyrin 1 (TRPA1) and protease activated receptor 2(Par2) have important roles in itch and inflammation. The activation of MrgprX1 degranulates mast cells to communicate with sensory nerve and cutaneous cells for developing neurogenic inflammation. Mrgprs and transient receptor potential vanilloid 4 (TRPV4) are crucial for the generation of skin diseases like rosacea, while SP, CGRP, somatostatin, β-endorphin, vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating polypeptide (PACAP) can modulate the immune system during psoriasis development. The increased level of SP, in atopic dermatitis, induces the release of interferon (IFN)-γ, interleukin (IL)-4, tumor necrosis factor (TNF)-α, and IL-10 from the peripheral blood mononuclear leukocytes. We are finally starting to understand the intricate connections between the skin neurons and resident skin cells and how their interaction can be key to controlling inflammation and from there the pathogenesis of diseases like atopic dermatitis, psoriasis, and rosacea.
Collapse
Affiliation(s)
- Jae Eun Choi
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive #0869, La Jolla, CA, 92093, USA.
| |
Collapse
|
30
|
Rwibasira Rudinga G, Khan GJ, Kong Y. Protease-Activated Receptor 4 (PAR4): A Promising Target for Antiplatelet Therapy. Int J Mol Sci 2018; 19:E573. [PMID: 29443899 PMCID: PMC5855795 DOI: 10.3390/ijms19020573] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are currently among the leading causes of death worldwide. Platelet aggregation is a key cellular component of arterial thrombi and major cause of CVDs. Protease-activated receptors (PARs), including PAR1, PAR2, PAR3 and PAR4, fall within a subfamily of seven-transmembrane G-protein-coupled receptors (GPCR). Human platelets express PAR1 and PAR4, which contribute to the signaling transduction processes. In association with CVDs, PAR4 not only contributes to platelet activation but also is a modulator of cellular responses that serve as hallmarks of inflammation. Although several antiplatelet drugs are available on the market, they have many side effects that limit their use. Emerging evidence shows that PAR4 targeting is a safer strategy for preventing thrombosis and consequently may improve the overall cardiac safety profile. Our present review summarizes the PAR4 structural characteristics, activation mechanism, role in the pathophysiology of diseases and understanding the association of PAR4 targeting for improved cardiac protection. Conclusively, this review highlights the importance of PAR4 antagonists and its potential utility in different CVDs.
Collapse
Affiliation(s)
- Gamariel Rwibasira Rudinga
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| | - Ghulam Jilany Khan
- Jiangsu Center for Pharmacodynamics Research, Evaluation and Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, China.
| |
Collapse
|
31
|
Wong PC, Seiffert D, Bird JE, Watson CA, Bostwick JS, Giancarli M, Allegretto N, Hua J, Harden D, Guay J, Callejo M, Miller MM, Lawrence RM, Banville J, Guy J, Maxwell BD, Priestley ES, Marinier A, Wexler RR, Bouvier M, Gordon DA, Schumacher WA, Yang J. Blockade of protease-activated receptor-4 (PAR4) provides robust antithrombotic activity with low bleeding. Sci Transl Med 2018; 9:9/371/eaaf5294. [PMID: 28053157 DOI: 10.1126/scitranslmed.aaf5294] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
Antiplatelet agents are proven efficacious treatments for cardiovascular and cerebrovascular diseases. However, the existing drugs are compromised by unwanted and sometimes life-threatening bleeding that limits drug usage or dosage. There is a substantial unmet medical need for an antiplatelet drug with strong efficacy and low bleeding risk. Thrombin is a potent platelet agonist that directly induces platelet activation via the G protein (heterotrimeric guanine nucleotide-binding protein)-coupled protease-activated receptors PAR1 and PAR4. A PAR1 antagonist is approved for clinical use, but its use is limited by a substantial bleeding risk. Conversely, the potential of PAR4 as an antiplatelet target has not been well characterized. Using anti-PAR4 antibodies, we demonstrated a low bleeding risk and an effective antithrombotic profile with PAR4 inhibition in guinea pigs. Subsequently, high-throughput screening and an extensive medicinal chemistry effort resulted in the discovery of BMS-986120, an orally active, selective, and reversible PAR4 antagonist. In a cynomolgus monkey arterial thrombosis model, BMS-986120 demonstrated potent and highly efficacious antithrombotic activity. BMS-986120 also exhibited a low bleeding liability and a markedly wider therapeutic window compared to the standard antiplatelet agent clopidogrel tested in the same nonhuman primate model. These preclinical findings define the biological role of PAR4 in mediating platelet aggregation. In addition, they indicate that targeting PAR4 is an attractive antiplatelet strategy with the potential to treat patients at a high risk of atherothrombosis with superior safety compared with the current standard of care.
Collapse
Affiliation(s)
- Pancras C Wong
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | - Dietmar Seiffert
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - J Eileen Bird
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Carol A Watson
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jeffrey S Bostwick
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Mary Giancarli
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Nick Allegretto
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Ji Hua
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - David Harden
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jocelyne Guay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Mario Callejo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Michael M Miller
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | | | - Jacques Banville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Julia Guy
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Brad D Maxwell
- Bristol-Myers Squibb Company, Route 206 and Province Line Road, Princeton, NJ 08543, USA
| | - E Scott Priestley
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - Ruth R Wexler
- Bristol-Myers Squibb Company, 350 Carter Road, Hopewell, NJ 08540, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec H3C 3J7, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | - David A Gordon
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - William A Schumacher
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| | - Jing Yang
- Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA
| |
Collapse
|
32
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
33
|
Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15:1295-1306. [PMID: 28671345 DOI: 10.1111/jth.13720] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers.
Collapse
Affiliation(s)
- M G Best
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - A Vancura
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - T Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
- Brain Tumor Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
- Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
12-HETrE inhibits platelet reactivity and thrombosis in part through the prostacyclin receptor. Blood Adv 2017; 1:1124-1131. [PMID: 29296755 DOI: 10.1182/bloodadvances.2017006155] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/25/2017] [Indexed: 11/20/2022] Open
Abstract
The dihomo-γ-linolenic acid (DGLA)-derived metabolite of 12-lipoxygenase, 12-hydroxy-eicosatrienoic acid (12-HETrE), was recently shown to potently inhibit thrombus formation without prolonging bleeding in murine models. Although 12-HETrE was found to inhibit platelet activation via the Gαs signaling pathway, the Gαs-coupled receptor by which 12-HETrE mediates its antiplatelet effects has yet to be identified. Defining the receptor by which 12-HETrE exerts its effects is key to determining its therapeutic potential as an antiplatelet drug. Therefore, the goal of this study was to determine the Gαs-coupled platelet receptor through which 12-HETrE exerts its antiplatelet effects. In this study, we showed that pharmacological inhibition of the prostacyclin (IP) receptor in human platelets or genetic ablation of IP in murine platelets prevented 12-HETrE from blocking aggregation in vitro. Furthermore, the antithrombotic effects of 12-HETrE were significantly diminished in IP knockout mice in vivo. Together these data demonstrate that the antiplatelet effects of 12-HETrE are at least partially dependent on IP signaling. Importantly, this work identified 12-HETrE as a novel regulator of IP signaling that may aid in the rationale for design of novel therapeutics to inhibit platelet function. Additionally, this study provides further insight into the mechanism by which DGLA supplementation inhibits platelets function.
Collapse
|
35
|
Hamilton JR, Trejo J. Challenges and Opportunities in Protease-Activated Receptor Drug Development. Annu Rev Pharmacol Toxicol 2016; 57:349-373. [PMID: 27618736 DOI: 10.1146/annurev-pharmtox-011613-140016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G protein-coupled receptors (GPCRs) that transduce cellular responses to extracellular proteases. PARs have important functions in the vasculature, inflammation, and cancer and are important drug targets. A unique feature of PARs is their irreversible proteolytic mechanism of activation that results in the generation of a tethered ligand that cannot diffuse away. Despite the fact that GPCRs have proved to be the most successful class of druggable targets, the development of agents that target PARs specifically has been challenging. As a consequence, researchers have taken a remarkable diversity of approaches to develop pharmacological entities that modulate PAR function. Here, we present an overview of the diversity of therapeutic agents that have been developed against PARs. We further discuss PAR biased signaling and the influence of receptor compartmentalization, posttranslational modifications, and dimerization, which are important considerations for drug development.
Collapse
Affiliation(s)
- Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3004, Australia
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
36
|
Smith TH, Coronel LJ, Li JG, Dores MR, Nieman MT, Trejo J. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins. J Biol Chem 2016; 291:18453-64. [PMID: 27402844 DOI: 10.1074/jbc.m116.729285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation.
Collapse
Affiliation(s)
- Thomas H Smith
- From the Biomedical Sciences Graduate Program and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Luisa J Coronel
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Julia G Li
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, Department of Biology, Hofstra University, Hempstead, New York 11549, and
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44016
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
37
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
38
|
Leigh JA, Alvarez M, Rodriguez CJ. Ethnic Minorities and Coronary Heart Disease: an Update and Future Directions. Curr Atheroscler Rep 2016; 18:9. [PMID: 26792015 PMCID: PMC4828242 DOI: 10.1007/s11883-016-0559-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Heart disease remains the leading cause of death in the USA. Overall, heart disease accounts for about 1 in 4 deaths with coronary heart disease (CHD) being responsible for over 370,000 deaths per year. It has frequently and repeatedly been shown that some minority groups in the USA have higher rates of traditional CHD risk factors, different rates of treatment with revascularization procedures, and excess morbidity and mortality from CHD when compared to the non-Hispanic white population. Numerous investigations have been made into the causes of these disparities. This review aims to highlight the recent literature which examines CHD in ethnic minorities and future directions in research and care.
Collapse
Affiliation(s)
- J Adam Leigh
- Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Manrique Alvarez
- Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carlos J Rodriguez
- Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Division of Public Health Sciences, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
39
|
A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med 2015; 21:55-70. [PMID: 26662949 PMCID: PMC4771639 DOI: 10.1007/s12199-015-0498-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
Abstract
The cerebrovascular disorder moyamoya disease (MMD) was first described in 1957 in Japan, and is typically considered to be an Asian-specific disease. However, it is globally recognized as one of the major causes of childhood stroke. Although several monogenic diseases are known to be complicated by Moyamoya angiopathy, the ring finger protein 213 gene (RNF213) was identified as a susceptibility gene for MMD. RNF213 is unusual, because (1) it induces MMD with no other recognizable phenotypes, (2) the RNF213 p.R4810K variant is an Asian founder mutation common to Japanese, Korean and Chinese with carrier rates of 0.5–2 % of the general population but a low penetrance, and (3) it encodes a relatively largest proteins with a dual AAA+ ATPase and E3 Ligase activities. In this review, we focus on the genetics and genetic epidemiology of RNF213, the pathology of RNF213 R4810K, and the molecular functions of RNF213, and also address the public health contributions to current unresolved issues of MMD. We also emphasize the importance of a more updated definition for MMD, of qualified cohort studies based on genetic epidemiology and an awareness of the ethical issues associated with genetic testing of carriers.
Collapse
|
40
|
Holinstat M, Bray PF. Protease receptor antagonism to target blood platelet therapies. Clin Pharmacol Ther 2015; 99:72-81. [PMID: 26501993 DOI: 10.1002/cpt.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/24/2023]
Abstract
Platelet activation and thrombus formation play a central role in ischemic vascular disease. Thrombin, an especially potent physiologic agonist mediating in vivo activation of platelets, acts via a unique family of G-protein-coupled receptors called protease-activated receptors (PARs) with a broad tissue expression. This review focuses on current antiplatelet therapies as well as innovative approaches to targeting PARs in patients with atherothrombotic vascular disease.
Collapse
Affiliation(s)
- M Holinstat
- University of Michigan Medical School, Departments of Pharmacology and Internal Medicine, Ann Arbor, Michigan, USA
| | - P F Bray
- Thomas Jefferson University, The Cardeza Foundation for Hematologic Research and the Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
Gouin O, Lebonvallet N, L'Herondelle K, Le Gall-Ianotto C, Buhé V, Plée-Gautier E, Carré JL, Lefeuvre L, Misery L. Self-maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Exp Dermatol 2015; 24:723-6. [DOI: 10.1111/exd.12798] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Olivier Gouin
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
- Uriage Dermatological Laboratories; Courbevoie France
| | - Nicolas Lebonvallet
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | - Killian L'Herondelle
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | | | - Virginie Buhé
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | | | - Jean-Luc Carré
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| | - Luc Lefeuvre
- Uriage Dermatological Laboratories; Courbevoie France
| | - Laurent Misery
- University of Western Brittany; Laboratory of Neurosciences of Brest; Brest France
| |
Collapse
|
42
|
Guenther F, Melzig MF. Protease-activated receptors and their biological role - focused on skin inflammation. ACTA ACUST UNITED AC 2015; 67:1623-33. [PMID: 26709036 DOI: 10.1111/jphp.12447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/10/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES For several years, protease-activated receptors (PARs) are targets of science regarding to various diseases and platelet aggregation. In the past, a number of publications related to PARs have been published, which refer to a variety of aspects. An important point of view is the inflammation of the skin, which has not been reported in detail yet. This review will provide an overview of the current knowledge on PARs, and in particular, on the involvement of PARs in terms of skin inflammation. KEY FINDINGS Wound healing is an important step after skin injury and is connected with involvement of PARs and inflammation. An important point in skin inflammation is the coagulation-dependent skin inflammation. SUMMARY PARs are a special kind of receptors, being activated by proteolytic cleavage or chemical agonists. They may play an important role in various physiological processes. It is shown that the proteases are involved in many diseases for example Parkinson's disease and Alzheimer's disease. The fact, that proteases regulate the coagulation, and are involved in interleukin and cytokine release leads to the conclusion that they are involved in inflammation processes.
Collapse
Affiliation(s)
- Florian Guenther
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
43
|
Mumaw MM, Nieman MT. Race differences in platelet reactivity: is protease activated receptor 4 a predictor of response to therapy? Arterioscler Thromb Vasc Biol 2015; 34:2524-6. [PMID: 25411106 DOI: 10.1161/atvbaha.114.304727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michele M Mumaw
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Marvin T Nieman
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
44
|
Holinstat M, Reheman A. Dual antiplatelet therapy for PCI: Are we tailored to all? Thromb Res 2015; 135:1045-6. [PMID: 25900309 DOI: 10.1016/j.thromres.2015.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/03/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Michael Holinstat
- University of Michigan, Department of Pharmacology, Ann Arbor, MI; University of Michigan, Department of Internal Medicine, Ann Arbor, MI.
| | - Adili Reheman
- University of Michigan, Department of Pharmacology, Ann Arbor, MI
| |
Collapse
|
45
|
Mumaw MM, de la Fuente M, Arachiche A, Wahl JK, Nieman MT. Development and characterization of monoclonal antibodies against Protease Activated Receptor 4 (PAR4). Thromb Res 2015; 135:1165-71. [PMID: 25890453 DOI: 10.1016/j.thromres.2015.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/02/2015] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Protease activated receptor 4 (PAR4) is a G protein coupled receptor (GPCR) which is activated by proteolytic cleavage of its N-terminal exodomain. This generates a tethered ligand that activates the receptor and triggers downstream signaling events. With the current focus in the development of anti-platelet therapies shifted towards PARs, new reagents are needed for expanding the field's knowledge on PAR4. Currently, there are no PAR4 reagents which are able to detect activation of the receptor. METHODS Monoclonal PAR4 antibodies were purified from hybridomas producing antibody that were generated by fusing splenocytes with NS-1 cells. Immunoblotting, immunofluorescence, and flow cytometry were utilized to detect the epitope for each antibody and to evaluate the interaction of the antibodies with cells. RESULTS Here, we report the successful generation of three monoclonal antibodies to the N-terminal extracellular domain of PAR4: 14H6, 5F10, and 2D6. We mapped the epitope on PAR4 of 14H6, 5F10, and 2D6 antibodies to residues (48-53), (41-47), and (73-78), respectively. Two of the antibodies (14H6 and 5F10) interacted close to the thrombin cleavage and were sensitive to α-thrombin cleavage of PAR4. In addition, 5F10 was able to partially inhibit the cleavage of PAR4 expressed in HEK293 cells by α-thrombin. CONCLUSIONS These new antibodies provide a means to monitor endogenous PAR4 expression and activation by proteases on cells.
Collapse
Affiliation(s)
- Michele M Mumaw
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|