1
|
Fernando L, Echesabal-Chen J, Miller M, Powell RR, Bruce T, Paul A, Poudyal N, Saliutama J, Parman K, Paul KS, Stamatikos A. Cholesterol Efflux Decreases TLR4-Target Gene Expression in Cultured Macrophages Exposed to T. brucei Ghosts. Microorganisms 2024; 12:1730. [PMID: 39203572 PMCID: PMC11357207 DOI: 10.3390/microorganisms12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Trypanosoma brucei causes African trypanosomiasis in humans. Infection with T. brucei elicits a potent pro-inflammatory immune response within infected human hosts, and this response is thought to at least be partially due to Toll-like receptor (TLR) activation. In response to stimulation by lipopolysaccharide and other pathogen antigens, TLR4 translocates to lipid rafts, which induces the expression of pro-inflammatory genes. However, cholesterol efflux is acknowledged as anti-inflammatory due to promoting lipid raft disruption. In this study, we wanted to assess the impact of T. brucei "ghosts", which are non-viable T. brucei essentially devoid of intracellular contents, in stimulating macrophage TLR4 translocation to lipid rafts, and whether promoting cholesterol efflux in macrophages incubated with T. brucei ghosts attenuates TLR4-target gene expression. When cultured macrophages were exposed to T. brucei ghosts, we observed an increase in lipid raft TLR4 protein content, which suggests certain surface molecules of T. brucei serve as ligands for TLR4. However, pretreating macrophages with cholesterol acceptors before T. brucei ghost exposure decreased lipid raft TLR4 protein content and the expression of pro-inflammatory TLR4-target genes. Taken together, these results imply that macrophage cholesterol efflux weakens pro-inflammatory responses which occur from T. brucei infection via increasing macrophage lipid raft disruption.
Collapse
Affiliation(s)
- Lawrence Fernando
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| | - Murphy Miller
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29605, USA;
| | - Rhonda Reigers Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA; (R.R.P.); (T.B.)
| | - Apurba Paul
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Nava Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Joshua Saliutama
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kristina Parman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; (N.P.); (K.S.P.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (L.F.); (J.E.-C.)
| |
Collapse
|
2
|
Bi L, Wacker BK, Komandur K, Sanford N, Dichek DA. Apolipoprotein A-I vascular gene therapy reduces vein-graft atherosclerosis. Mol Ther Methods Clin Dev 2023; 30:558-572. [PMID: 37693942 PMCID: PMC10482902 DOI: 10.1016/j.omtm.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Coronary artery venous bypass grafts typically fail because of atherosclerosis driven by lipid and macrophage accumulation. Therapy for vein-graft atherosclerosis is limited to statin drugs, which are only modestly effective. We hypothesized that transduction of vein-graft endothelium of fat-fed rabbits with a helper-dependent adenovirus expressing apolipoprotein AI (HDAdApoAI) would reduce lipid and macrophage accumulation. Fat-fed rabbits received bilateral external jugular vein-to-carotid artery interposition grafts. Four weeks later, one graft per rabbit (n = 23 rabbits) was infused with HDAdApoAI and the contralateral graft with HDAdNull. Grafts were harvested 12 weeks later. Paired analyses of grafts were performed, with vein graft cholesterol, intimal lipid, and macrophage content as the primary endpoints. HDAd genomes were detected in all grafts. APOAI mRNA was median 63-fold higher in HDAdApoAI grafts versus HDAdNull grafts (p < 0.001). HDAdApoAI grafts had a mean 15% lower total cholesterol (by mass spectrometry; p = 0.003); mean 19% lower intimal lipid (by oil red O staining; p = 0.02); and mean 13% lower expression of the macrophage marker CD68 (by reverse transcriptase-mediated quantitative PCR; p = 0.008). In vivo transduction of vein-graft endothelium achieves persistent APOAI expression and reduces vein-graft cholesterol, intimal lipid, and CD68 expression. Vascular gene therapy with APOAI has promise for preventing vein-graft failure caused by atherosclerosis.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Bradley K. Wacker
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kaushik Komandur
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Nicole Sanford
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - David A. Dichek
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
3
|
Huang K, Pitman M, Oladosu O, Echesabal-Chen J, Vojtech L, Esobi I, Larsen J, Jo H, Stamatikos A. The Impact of MiR-33a-5p Inhibition in Pro-Inflammatory Endothelial Cells. Diseases 2023; 11:88. [PMID: 37489440 PMCID: PMC10366879 DOI: 10.3390/diseases11030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
Evidence suggests cholesterol accumulation in pro-inflammatory endothelial cells (EC) contributes to triggering atherogenesis and driving atherosclerosis progression. Therefore, inhibiting miR-33a-5p within inflamed endothelium may prevent and treat atherosclerosis by enhancing apoAI-mediated cholesterol efflux by upregulating ABCA1. However, it is not entirely elucidated whether inhibition of miR-33a-5p in pro-inflammatory EC is capable of increasing ABCA1-dependent cholesterol efflux. In our study, we initially transfected LPS-challenged, immortalized mouse aortic EC (iMAEC) with either pAntimiR33a5p plasmid DNA or the control plasmid, pScr. We detected significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux in iMAEC transfected with pAntimiR33a5p when compared to iMAEC transfected with pScr. We subsequently used polymersomes targeting inflamed endothelium to deliver either pAntimiR33a5p or pScr to cultured iMAEC and showed that the polymersomes were selective in targeting pro-inflammatory iMAEC. Moreover, when we exposed LPS-challenged iMAEC to these polymersomes, we observed a significant decrease in miR-33a-5p expression in iMAEC incubated with polymersomes containing pAntimR33a5p versus control iMAEC. We also detected non-significant increases in both ABCA1 protein and apoAI-mediated cholesterol in iMAEC exposed to polymersomes containing pAntimR33a5p when compared to control iMAEC. Based on our results, inhibiting miR-33a-5p in pro-inflammatory EC exhibits atheroprotective effects, and so precisely delivering anti-miR-33a-5p to these cells is a promising anti-atherogenic strategy.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mark Pitman
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Olanrewaju Oladosu
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA 98109, USA
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Wacker BK, Bi L, Liu L, Sorci-Thomas MG, Ng P, Palmer DJ, Tang C, Dichek DA. N-terminal eGFP-tagging of rabbit apolipoprotein A-I decreases expression and impairs cholesterol-efflux activity. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159301. [PMID: 36858111 PMCID: PMC10127936 DOI: 10.1016/j.bbalip.2023.159301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Bradley K Wacker
- Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific St, 357710, Seattle, WA 98195, United States of America
| | - Lianxiang Bi
- Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific St, 357710, Seattle, WA 98195, United States of America
| | - Li Liu
- Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific St, 357710, Seattle, WA 98195, United States of America
| | - Mary G Sorci-Thomas
- Division of Endocrinology and Molecular Medicine, Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, United States of America
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America
| | - Chongren Tang
- Department of Medicine, University of Washington School of Medicine, UW Diabetes Institute, 750 Republican Street, 358062, Seattle, WA 98109, United States of America
| | - David A Dichek
- Department of Medicine, University of Washington School of Medicine, 1959 NE Pacific St, 357710, Seattle, WA 98195, United States of America.
| |
Collapse
|
5
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
6
|
Sethuraman M, Dronadula N, Bi L, Wacker BK, Knight E, De Bleser P, Dichek DA. Novel expression cassettes for increasing apolipoprotein AI transgene expression in vascular endothelial cells. Sci Rep 2022; 12:21079. [PMID: 36473901 PMCID: PMC9726828 DOI: 10.1038/s41598-022-25333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Transduction of endothelial cells (EC) with a vector that expresses apolipoprotein A-I (APOAI) reduces atherosclerosis in arteries of fat-fed rabbits. However, the effects on atherosclerosis are partial and might be enhanced if APOAI expression could be increased. With a goal of developing an expression cassette that generates higher levels of APOAI mRNA in EC, we tested 4 strategies, largely in vitro: addition of 2 types of enhancers, addition of computationally identified EC-specific cis-regulatory modules (CRM), and insertion of the rabbit APOAI gene at the transcription start site (TSS) of sequences cloned from genes that are highly expressed in cultured EC. Addition of a shear stress-responsive enhancer did not increase APOAI expression. Addition of 2 copies of a Mef2c enhancer increased APOAI expression from a moderately active promoter/enhancer but decreased APOAI expression from a highly active promoter/enhancer. Of the 11 CRMs, 3 increased APOAI expression from a moderately active promoter (2-7-fold; P < 0.05); none increased expression from a highly active promoter/enhancer. Insertion of the APOAI gene into the TSS of highly expressed EC genes did not increase expression above levels obtained with a moderately active promoter/enhancer. New strategies are needed to further increase APOAI transgene expression in EC.
Collapse
Affiliation(s)
- Meena Sethuraman
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bradley K Wacker
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Abstract
The lymphatic vessels play an essential role in maintaining immune and fluid homeostasis and in the transport of dietary lipids. The discovery of lymphatic endothelial cell-specific markers facilitated the visualization and mechanistic analysis of lymphatic vessels over the past two decades. As a result, lymphatic vessels have emerged as a crucial player in the pathogenesis of several cardiovascular diseases, as demonstrated by worsened disease progression caused by perturbations to lymphatic function. In this review, we discuss the major findings on the role of lymphatic vessels in cardiovascular diseases such as hypertension, obesity, atherosclerosis, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Dakshnapriya Balasubbramanian
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brett M Mitchell
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas 77807, USA
| |
Collapse
|
8
|
Lu Y, Cui X, Zhang L, Wang X, Xu Y, Qin Z, Liu G, Wang Q, Tian K, Lim KS, Charles CJ, Zhang J, Tang J. The Functional Role of Lipoproteins in Atherosclerosis: Novel Directions for Diagnosis and Targeting Therapy. Aging Dis 2022; 13:491-520. [PMID: 35371605 PMCID: PMC8947823 DOI: 10.14336/ad.2021.0929] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.
Collapse
Affiliation(s)
- Yongzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xiaolin Cui
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.,Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Li Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Xu Wang
- Department of Medical Record Management, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yanyan Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Zhen Qin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Gangqiong Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Qiguang Wang
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| | - Kang Tian
- Department of Bone and Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) group, Department of Orthopedic Surgery, University of Otago, Christchurch 8011, New Zealand.
| | - Chris J Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan, China.,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, China.,Correspondence should be addressed to: Dr. Junnan Tang, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
9
|
Hooshdaran B, Pressly BB, Alferiev IS, Smith JD, Zoltick PW, Tschabrunn CM, Wilensky RL, Gorman RC, Levy RJ, Fishbein I. Stent-based delivery of AAV2 vectors encoding oxidation-resistant apoA1. Sci Rep 2022; 12:5464. [PMID: 35361857 PMCID: PMC8971450 DOI: 10.1038/s41598-022-09524-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
In-stent restenosis (ISR) complicates revascularization in the coronary and peripheral arteries. Apolipoprotein A1 (apoA1), the principal protein component of HDL possesses inherent anti-atherosclerotic and anti-restenotic properties. These beneficial traits are lost when wild type apoA1(WT) is subjected to oxidative modifications. We investigated whether local delivery of adeno-associated viral (AAV) vectors expressing oxidation-resistant apoA1(4WF) preserves apoA1 functionality. The efflux of 3H-cholesterol from macrophages to the media conditioned by endogenously produced apoA1(4WF) was 2.1-fold higher than for apoA1(WT) conditioned media in the presence of hypochlorous acid emulating conditions of oxidative stress. The proliferation of apoA1(WT)- and apoA1(4FW)-transduced rat aortic smooth muscle cells (SMC) was inhibited by 66% ± 10% and 65% ± 11%, respectively, in comparison with non-transduced SMC (p < 0.001). Conversely, the proliferation of apoA1(4FW)-transduced, but not apoA1(WT)-transduced rat blood outgrowth endothelial cells (BOEC) was increased 41% ± 5% (p < 0.001). Both apoA1 transduction conditions similarly inhibited basal and TNFα-induced reactive oxygen species in rat aortic endothelial cells (RAEC) and resulted in the reduced rat monocyte attachment to the TNFα-activated endothelium. AAV2-eGFP vectors immobilized reversibly on stainless steel mesh surfaces through the protein G/anti-AAV2 antibody coupling, efficiently transduced cells in culture modeling stent-based delivery. In vivo studies in normal pigs, deploying AAV2 gene delivery stents (GDS) preloaded with AAV2-eGFP in the coronary arteries demonstrated transduction of the stented arteries. However, implantation of GDS formulated with AAV2-apoA1(4WF) failed to prevent in-stent restenosis in the atherosclerotic vasculature of hypercholesterolemic diabetic pigs. It is concluded that stent delivery of AAV2-4WF while feasible, is not effective for mitigation of restenosis in the presence of severe atherosclerotic disease.
Collapse
Affiliation(s)
- Bahman Hooshdaran
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Benjamin B Pressly
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Ivan S Alferiev
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, USA
| | - Philip W Zoltick
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
| | - Cory M Tschabrunn
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert L Wilensky
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Robert J Levy
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ilia Fishbein
- Division of Cardiology, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, CHOP, ARC, Room 702 C, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
10
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
11
|
Kalantar K, Manzano-Román R, Ghani E, Mansouri R, Hatam G, Nguewa P, Rashidi S. Leishmanial apolipoprotein A-I expression: a possible strategy used by the parasite to evade the host's immune response. Future Microbiol 2021; 16:607-613. [PMID: 33998267 DOI: 10.2217/fmb-2020-0303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apolipoprotein A-I (apo A-I) represents the main component of the Trypanosome lytic factor (TLF) which contributes to the host innate immunity against Trypanosoma and Leishmania. These parasites use complex and multiple strategies such as molecular mimicry to evade or subvert the host immune system. Previous studies have highlighted the adaptation mechanisms of TLF-resistant Trypanosoma species. These data might support the hypothesis that Leishmania parasites (amastigote forms in macrophages) might express apo A-I to bypass and escape from TLF action as a component of the host innate immune responses. The anti-inflammatory property of apo A-I is another mechanism that supports our idea that apo A-I may play a role in Leishmania parasites allowing them to bypass the host innate immune system.
Collapse
Affiliation(s)
- Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), Salamanca, 37007, Spain
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences & Health Services, Yazd, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- Department of Microbiology & Parasitology, University of Navarra, ISTUN Instituto de Salud Tropical, IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Sajad Rashidi
- Department of Parasitology & Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 2021; 476:3065-3078. [PMID: 33811580 DOI: 10.1007/s11010-020-04037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.
Collapse
|
13
|
Valanti EK, Dalakoura-Karagkouni K, Siasos G, Kardassis D, Eliopoulos AG, Sanoudou D. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 2021; 116:154461. [PMID: 33290761 DOI: 10.1016/j.metabol.2020.154461] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Atherosclerosis is a multifactorial disease influenced by genetics, lifestyle and environmental factors. Despite therapeutic advances that reduce the risk of cardiovascular events, atherosclerosis-related diseases remain the leading cause of mortality worldwide. Precise targeting of genes involved in lipoprotein metabolism is an emerging approach for atherosclerosis prevention and treatment. This article focuses on the latest developments, clinical potential and current challenges of monoclonal antibodies, vaccines and genome/transcriptome modification strategies, including antisense oligonucleotides, genome/base editing and gene therapy. Multiple lipid lowering biological therapies have already been approved by the FDA with impressive results to date, while many more promising targets are being pursued in clinical trials or pre-clinical animal models.
Collapse
Affiliation(s)
- Eftaxia-Konstantina Valanti
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Kardassis
- Laboratory of Biochemistry, University of Crete Medical School Heraklion, Greece; Division of Gene Regulation and Genomics, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece
| | - Aristides G Eliopoulos
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, 'Attikon' Hospital, Medical School, National and Kapodistrian University of Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
14
|
Yang W, Pan X, Ma A. The Potential of Exosomal RNAs in Atherosclerosis Diagnosis and Therapy. Front Neurol 2021; 11:572226. [PMID: 33643177 PMCID: PMC7905228 DOI: 10.3389/fneur.2020.572226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is an inflammatory disease that can lead to cardiovascular disorders and stroke. In the atherosclerosis microenvironment, exosomes secreted from various cells, especially macrophage-derived exosomes, play an important role in cell–cell communication and cellular biological functions. In this article, we review previous studies on exosomal RNAs and discuss their potential value in atherosclerosis diagnosis and therapy. Based on our research, we concluded that macrophage exosomes have potential value in atherosclerosis diagnosis and therapy. However, there is a need for future studies to further investigate methods of exosome isolation and targeting.
Collapse
Affiliation(s)
- Wenzhi Yang
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
High-level protein production in erythroid cells derived from in vivo transduced hematopoietic stem cells. Blood Adv 2020; 3:2883-2894. [PMID: 31585952 PMCID: PMC6784527 DOI: 10.1182/bloodadvances.2019000706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022] Open
Abstract
We developed an in vivo hematopoietic stem cell (HSC) transduction approach that involves HSC mobilization from the bone marrow into the peripheral bloodstream and the IV injection of an integrating, helper-dependent adenovirus (HDAd5/35++) vector system. HDAd5/35++ vectors target human CD46, a receptor that is abundantly expressed on primitive HSCs. Transgene integration is achieved by a hyperactive Sleeping Beauty transposase (SB100x) and transgene marking in peripheral blood cells can be increased by in vivo selection. Here we directed transgene expression to HSC-derived erythroid cells using β-globin regulatory elements. We hypothesized that the abundance and systemic distribution of erythroid cells can be harnessed for high-level production of therapeutic proteins. We first demonstrated that our approach allowed for sustained, erythroid-lineage specific GFP expression and accumulation of GFP protein in erythrocytes. Furthermore, after in vivo HSC transduction/selection in hCD46-transgenic mice, we demonstrated stable supraphysiological plasma concentrations of a bioengineered human factor VIII, termed ET3. High-level ET3 production in erythroid cells did not affect erythropoiesis. A phenotypic correction of bleeding was observed after in vivo HSC transduction of hCD46+/+/F8-/- hemophilia A mice despite high plasma anti-ET3 antibody titers. This suggests that ET3 levels were high enough to provide sufficient noninhibited ET3 systemically and/or locally (in blood clots) to control bleeding. In addition to its relevance for hemophilia A gene therapy, our approach has implications for the therapy of other inherited or acquired diseases that require high levels of therapeutic proteins in the blood circulation.
Collapse
|
16
|
Alasmari F, Alsanea S, Masood A, Alhazzani K, Alanazi IO, Musambil M, Alfadda AA, Alshammari MA, Alasmari AF, Benabdelkamel H. Serum proteomic profiling of patients with amphetamine use disorder. Drug Alcohol Depend 2020; 214:108157. [PMID: 32652378 DOI: 10.1016/j.drugalcdep.2020.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Amphetamine use disorder has been recently classified as an epidemic condition. Amphetamine use/abuse has been associated with several neurological and inflammatory effects. However, the exact mechanism involved in these effects warrants further investigation. The aim of this study was to determine any alterations in the serum proteome of individuals classified as patients with amphetamine use disorder compared to that of control subjects. METHODS An untargeted proteomic approach employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was used to identify the patterns of differentially expressed proteins. Serum samples were collected from 20 individuals (males) including 10 subjects with amphetamine use disorder and 10 healthy controls for the present study. RESULTS The analysis revealed 78 proteins with a significant difference in protein abundance between the amphetamine-addicted subjects and controls. Among them, 71 proteins were upregulated while 7 proteins remained downregulated in the amphetamine-addicted group. These proteins were further analyzed by ingenuity pathway analysis (IPA) to investigate their correlation with other biomarkers. IPA revealed the correlation of altered proteins with mitogen-activated protein kinase (MAP2K1/K2), p38MAPK, protein kinase-B (PKB; Akt), extracellular signal-regulated kinase (ERK1/2), and nuclear factor-κB signaling pathways. Importantly, these pathways are highly involved in neurological diseases, inflammatory responses, and cellular compromise. CONCLUSIONS Our data suggest that the changes in the levels of serum proteins between amphetamine and control groups might affect cellular compromise, inflammatory response, and neurological diseases.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim O Alanazi
- The National Center of Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
17
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
18
|
Karjalainen MK, Holmes MV, Wang Q, Anufrieva O, Kähönen M, Lehtimäki T, Havulinna AS, Kristiansson K, Salomaa V, Perola M, Viikari JS, Raitakari OT, Järvelin MR, Ala-Korpela M, Kettunen J. Apolipoprotein A-I concentrations and risk of coronary artery disease: A Mendelian randomization study. Atherosclerosis 2020; 299:56-63. [PMID: 32113648 DOI: 10.1016/j.atherosclerosis.2020.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/14/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein A-I (apoA-I) infusions represent a potential novel therapeutic approach for the prevention of coronary artery disease (CAD). Although circulating apoA-I concentrations inversely associate with risk of CAD, the evidence base of this representing a causal relationship is lacking. The aim was to assess the causal role of apoA-I using human genetics. METHODS We identified a variant (rs12225230) in APOA1 locus that associated with circulating apoA-I concentrations (p < 5 × 10-8) in 20,370 Finnish participants, and meta-analyzed our data with a previous GWAS of apoA-I. We obtained genetic estimates of CAD from UK Biobank and CARDIoGRAMplusC4D (totaling 122,733 CAD cases) and conducted a two-sample Mendelian randomization analysis. We compared our genetic findings to observational associations of apoA-I with risk of CAD in 918 incident CAD cases among 11,535 individuals from population-based prospective cohorts. RESULTS ApoA-I was associated with a lower risk of CAD in observational analyses (HR 0.81; 95%CI: 0.75, 0.88; per 1-SD higher apoA-I), with the association showing a dose-response relationship. Rs12225230 associated with apoA-I concentrations (per-C allele beta 0.076 SD; SE: 0.013; p = 1.5 × 10-9) but not with confounders. In Mendelian randomization analyses, apoA-I was not related to risk of CAD (OR 1.13; 95%CI: 0.98,1.30 per 1-SD higher apoA-I), which was different from the observational association. Similar findings were observed using an independent ABCA1 variant in sensitivity analysis. CONCLUSIONS Genetic evidence fails to support a cardioprotective role for apoA-I. This is in line with the cumulative evidence showing that HDL-related phenotypes are unlikely to have a protective role in CAD.
Collapse
Affiliation(s)
- Minna K Karjalainen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK; Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; National Institute for Health Research, Oxford Biomedical Research Centre, Oxford University Hospital, Oxford, UK; Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
| | - Qin Wang
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Olga Anufrieva
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratoriesand Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Aki S Havulinna
- National Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | | | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland; Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland; Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Jorma S Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland; Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Department of Life Sciences, College of Health and Life Sciences, Brunel University London, UK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, The Alfred Hospital, Monash University, Melbourne, VIC, Australia.
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland; National Institute for Health and Welfare, Helsinki, Finland.
| |
Collapse
|
19
|
Stamatikos A, Knight E, Vojtech L, Bi L, Wacker BK, Tang C, Dichek DA. Exosome-Mediated Transfer of Anti-miR-33a-5p from Transduced Endothelial Cells Enhances Macrophage and Vascular Smooth Muscle Cell Cholesterol Efflux. Hum Gene Ther 2020; 31:219-232. [PMID: 31842627 DOI: 10.1089/hum.2019.245] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis is a disease of large- and medium-sized arteries that is caused by cholesterol accumulation in arterial intimal cells, including macrophages and smooth muscle cells (SMC). Cholesterol accumulation in these cells can be prevented or reversed in preclinical models-and atherosclerosis reduced-by transgenesis that increases expression of molecules that control cholesterol efflux, including apolipoprotein AI (apoAI) and ATP-binding cassette subfamily A, member 1 (ABCA1). In a previous work, we showed that transduction of arterial endothelial cells (EC)-with a helper-dependent adenovirus (HDAd) expressing apoAI-enhanced EC cholesterol efflux in vitro and decreased atherosclerosis in vivo. Similarly, overexpression of ABCA1 in cultured EC increased cholesterol efflux and decreased inflammatory gene expression. These EC-targeted gene-therapy strategies might be improved by concurrent upregulation of cholesterol-efflux pathways in other intimal cell types. Here, we report modification of this strategy to enable delivery of therapeutic nucleic acids to cells of the sub-endothelium. We constructed an HDAd (HDAdXMoAntimiR33a5p) that expresses an antagomiR directed at miR-33a-5p (a microRNA that suppresses cholesterol efflux by silencing ABCA1). HDAdXMoAntimiR33a5p contains a sequence motif that enhances uptake of anti-miR-33a-5p into exosomes. Cultured EC release exosomes containing small RNA, including miR-33a-5p. After transduction with HDAdXMoAntimiR33a5p, EC-derived exosomes containing anti-miR-33a-5p accumulate in conditioned medium (CM). When this CM is added to macrophages or SMC, anti-miR-33a-5p is detected in these target cells. Exosome-mediated transfer of anti-miR-33a-5p reduces miR-33a-5p by ∼65-80%, increases ABCA1 protein by 1.6-2.2-fold, and increases apoAI-mediated cholesterol efflux by 1.4-1.6-fold (all p ≤ 0.01). These effects were absent in macrophages and SMC incubated in exosome-depleted CM. EC transduced with HDAdXMoAntimiR33a5p release exosomes that can transfer anti-miR-33a-5p to other intimal cell types, upregulating cholesterol efflux from these cells. This strategy provides a platform for genetic modification of intimal and medial cells, using a vector that transduces only EC.
Collapse
Affiliation(s)
- Alexis Stamatikos
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ethan Knight
- Department of Medicine, University of Washington, Seattle, Washington
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
| | - Lianxiang Bi
- Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
21
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Annual Report on Sex in Preclinical Studies: Arteriosclerosis, Thrombosis, and Vascular Biology Publications in 2018. Arterioscler Thromb Vasc Biol 2019; 40:e1-e9. [PMID: 31869272 DOI: 10.1161/atvbaha.119.313556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC (N.M.)
| | - Daniel J Rader
- Departments of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (D.J.R.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität (LMU) and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
22
|
Anti-ageing gene therapy: Not so far away? Ageing Res Rev 2019; 56:100977. [PMID: 31669577 DOI: 10.1016/j.arr.2019.100977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/31/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Improving healthspan is the main objective of anti-ageing research. Currently, innovative gene therapy-based approaches seem to be among the most promising for preventing and treating chronic polygenic pathologies, including age-related ones. The gene-based therapy allows to modulate the genome architecture using both direct (e.g., by gene editing) and indirect (e.g., by viral or non-viral vectors) approaches. Nevertheless, considering the extraordinary complexity of processes involved in ageing and ageing-related diseases, the effectiveness of these therapeutic options is often unsatisfactory and limited by their side-effects. Thus, clinical implementation of such applications is certainly a long-time process that will require many translation phases for addressing challenges. However, after overcoming these issues, their implementation in clinical practice may obviously provide new possibilities in anti-ageing medicine. Here, we review and discuss recent advances in this rapidly developing research field.
Collapse
|
23
|
Sirtori CR, Ruscica M, Calabresi L, Chiesa G, Giovannoni R, Badimon JJ. HDL therapy today: from atherosclerosis, to stent compatibility to heart failure. Ann Med 2019; 51:345-359. [PMID: 31729238 PMCID: PMC7877888 DOI: 10.1080/07853890.2019.1694695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health.Key messagesHigh-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries).Knowledge on the activity of high-density lipoproteins on health have however significantly widened.HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.
Collapse
Affiliation(s)
- C R Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - M Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L Calabresi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Chiesa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - R Giovannoni
- Department of Biology, University of Pisa, Pisa, Italy
| | - J J Badimon
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
24
|
Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo ZG. Chronic stress: a critical risk factor for atherosclerosis. J Int Med Res 2019; 47:1429-1440. [PMID: 30799666 PMCID: PMC6460614 DOI: 10.1177/0300060519826820] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic stress refers to the non-specific systemic reaction that occurs when the body is stimulated by various internal and external negative factors over a long time. The physiological response to chronic stress exposure has long been recognized as a potent modulator in the occurrence of atherosclerosis. Furthermore, research has confirmed the correlation between atherosclerosis and cardiovascular events. Chronic stress is pervasive during negative life events and may lead to the formation of plaque. Several epidemiological studies have shown that chronic stress is an independent risk factor for the development of vascular disease and for increased morbidity and mortality in patients with pre-existing coronary artery disease. One possible mechanism for this process is that chronic stress causes endothelial injury, directly activating macrophages, promoting foam cell formation and generating the formation of atherosclerotic plaque. This mechanism involves numerous variables, including inflammation, signal pathways, lipid metabolism and endothelial function. The mechanism of chronic stress in atherosclerosis should be further investigated to provide a theoretical basis for efforts to eliminate the effect of chronic stress on the cardiocerebral vascular system.
Collapse
Affiliation(s)
- Bo-Chen Yao
- 1 Graduate College, Tianjin Medical University, Tianjin, China.,2 Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| | - Ling-Bing Meng
- 3 Neurology Department, Beijing Hospital, National Center of Gerontology, Dong Dan, Beijing, P. R. China
| | - Meng-Lei Hao
- 4 Department of geriatric medicine, Qinghai University, Xining, Qinghai, China
| | - Yuan-Meng Zhang
- 5 Internal medicine, Jinzhou Medical University, Linghe District, Jinzhou City, Liaoning Province, China
| | - Tao Gong
- 1 Graduate College, Tianjin Medical University, Tianjin, China
| | - Zhi-Gang Guo
- 2 Department of Cardiac Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
25
|
Matsuura Y, Kanter JE, Bornfeldt KE. Highlighting Residual Atherosclerotic Cardiovascular Disease Risk. Arterioscler Thromb Vasc Biol 2019; 39:e1-e9. [PMID: 30586334 PMCID: PMC6310032 DOI: 10.1161/atvbaha.118.311999] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunosuke Matsuura
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Jenny E Kanter
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
| | - Karin E Bornfeldt
- From the Department of Medicine, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (Y.M., J.E.K., K.E.B.)
- Department of Pathology, University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle (K.E.B.)
| |
Collapse
|
26
|
Stamatikos A, Dronadula N, Ng P, Palmer D, Knight E, Wacker BK, Tang C, Kim F, Dichek DA. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum Gene Ther 2018; 30:236-248. [PMID: 30079772 DOI: 10.1089/hum.2018.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.
Collapse
Affiliation(s)
- Alexis Stamatikos
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nagadhara Dronadula
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Philip Ng
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ethan Knight
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Francis Kim
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|