1
|
Luo Y, He F, Zhang Y, Li S, Lu R, Wei X, Huang J. Transcription Factor 21: A Transcription Factor That Plays an Important Role in Cardiovascular Disease. Pharmacology 2024; 109:183-193. [PMID: 38493769 DOI: 10.1159/000536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND According to the World Health Organisation's Health Report 2019, approximately 17.18 million people die from cardiovascular disease each year, accounting for more than 30% of all global deaths. Therefore, the occurrence of cardiovascular disease is still a global concern. The transcription factor 21 (TCF21) plays an important role in cardiovascular diseases. This article reviews the regulation mechanism of TCF21 expression and activity and focuses on its important role in atherosclerosis in order to contribute to the development of diagnosis and treatment of cardiovascular diseases. SUMMARY TCF21 is involved in the phenotypic regulation of vascular smooth muscle cells (VSMCs), promotes the proliferation and migration of VSMCs, and participates in the activation of inflammatory sequences. Increased proliferation and migration of VSMCs can lead to neointimal hyperplasia after vascular injury. Abnormal hyperplasia of neointima and inflammation are one of the main features of atherosclerosis. Therefore, targeting TCF21 may become a potential treatment for relieving atherosclerosis. KEY MESSAGES TCF21 as a member of basic helix-loop-helix transcription factors regulates cell growth and differentiation by modulating gene expression during the development of different organs and plays an important role in cardiovascular development and disease. VSMCs and cells derived from VSMCs constitute the majority of plaques in atherosclerosis. TCF21 plays a key role in regulation of VSMCs' phenotype, thus accelerating atherogenesis in the early stage. However, TCF21 enhances plaque stability in late-stage atherosclerosis. The dual role of TCF21 should be considered in the translational medicine.
Collapse
Affiliation(s)
- Yaqian Luo
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China,
| | - Fangzhou He
- Department of Anaesthesia, Chuanshan College, University of South China, Hengyang, China
| | - Yifang Zhang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Shufan Li
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruirui Lu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Wei
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Ji Huang
- Department of Pathophysiology, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Gong X, Liu Y, Liu H, Cao N, Zeng L, Tian M, Zeng C, Hu Y, Zhang R, Chen Y, Wu G. Re-analysis of single-cell transcriptomics reveals a critical role of macrophage-like smooth muscle cells in advanced atherosclerotic plaque. Theranostics 2024; 14:1450-1463. [PMID: 38389849 PMCID: PMC10879858 DOI: 10.7150/thno.87201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024] Open
Abstract
Aims: Smooth muscle cell (SMC) remodeling poses a critical feature in the development and progression of atherosclerosis. Although fate mapping and in silicon approaches have expanded SMC phenotypes in atherosclerosis, it still remains elusive about the contributions of individual SMC phenotypes and molecular dynamics to advanced atherosclerotic plaque. Methods: Using single-cell transcriptome, we investigated cellular compositions of human carotid plaque laden with atherosclerotic core, followed by in vivo experiments utilizing SMC-lineage tracing technology, bulk RNA sequencing (RNA-seq) and both in vivo and in vitro validation of the underlying molecular mechanism. Results: 5 functionally distinct SMC subtypes were uncovered based on transcriptional features (described as contractile, fibroblast-like, osteogenic, synthetic and macrophage-like) within the niche. A proinflammatory, macrophage-like SMC subtype displaying an intermediary phenotype between SMC and macrophage, exhibits prominent potential in destabilizing plaque. At the molecular level, we explored cluster-specific master regulons by algorithm, and identified interferon regulatory factor-8 (IRF8) as a potential stimulator of SMC-to-macrophage transdifferentiation via activating nuclear factor-κB (NF-κB) signaling. Conclusions: Our study illustrates a comprehensive cell atlas and molecular landscape of advanced atherosclerotic lesion, which might renovate current understanding of SMC biology in atherosclerosis.
Collapse
Affiliation(s)
- Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- Department of Cardiology, No. 926 Hospital, Joint Logistics Support Force of PLA, P.R. China
| | - Yunchang Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Huiying Liu
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Nian Cao
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Liping Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yijie Hu
- Department of Cardiac Surgery, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
| | - Runjun Zhang
- Department of Cardiology, No. 926 Hospital, Joint Logistics Support Force of PLA, P.R. China
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, P.R. China
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), P.R. China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| |
Collapse
|
3
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
4
|
Gong Y, Liang Y, Liu J, Wei J, Zhang S, Chen F, Zhang Q, Wang L, Lan H, Wu L, Ge W, Li S, Wang L, Shan H, He H. DDX24 Is Essential for Cell Cycle Regulation in Vascular Smooth Muscle Cells During Vascular Development via Binding to FANCA mRNA. Arterioscler Thromb Vasc Biol 2023; 43:1653-1667. [PMID: 37470182 DOI: 10.1161/atvbaha.123.319505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The DEAD-box family is essential for tumorigenesis and embryogenesis. Previously, we linked the malfunction of DDX (DEAD-box RNA helicase)-24 to a special type of vascular malformation. Here, we aim to investigate the function of DDX24 in vascular smooth muscle cells (VSMCs) and embryonic vascular development. METHODS Cardiomyocyte (CMC) and VSMC-specific Ddx24 knockout mice were generated by crossing Tagln-Cre mice with Ddx24flox/flox transgenic mice. The development of blood vessels was explored by stereomicroscope photography and immunofluorescence staining. Flow cytometry and cell proliferation assays were used to verify the regulation of DDX24 on the function of VSMCs. RNA sequencing and RNA immunoprecipitation coupled with quantitative real-time polymerase chain reaction were combined to investigate DDX24 downstream regulatory molecules. RNA pull-down and RNA stability experiments were performed to explore the regulation mechanism of DDX24. RESULTS CMC/VSMC-specific Ddx24 knockout mice died before embryonic day 13.5 with defects in vessel formation and abnormal vascular remodeling in extraembryonic tissues. Ddx24 knockdown suppressed VSMC proliferation via cell cycle arrest, likely due to increased DNA damage. DDX24 protein bound to and stabilized the mRNA of FANCA (FA complementation group A) that responded to DNA damage. Consistent with the function of DDX24, depletion of FANCA also impacted cell cycle and DNA repair of VSMCs. Overexpression of FANCA was able to rescue the alterations caused by DDX24 deficiency. CONCLUSIONS Our study unveiled a critical role of DDX24 in VSMC-mediated vascular development, highlighting a potential therapeutic target for VSMC-related pathological conditions.
Collapse
Affiliation(s)
- Yujiao Gong
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Liang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaxing Wei
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shushan Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fangbin Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qianqian Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huimin Lan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lily Wu
- Departments of Molecular and Medical Pharmacology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Urology (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
- Pediatrics (L. Wu), Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China (W.G.)
| | - Shuai Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Perinatal Medical Center (Y.L., J.L., Li Wang), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Interventional Medicine and Center for Interventional Medicine (J.W., H.S.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging (Y.G., J.W., S.Z., F.C., Q.Z., Lijie Wang, H.L., S.L., H.S., H.H.), The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
5
|
Wong D, Auguste G, Cardenas CLL, Turner AW, Chen Y, Song Y, Ma L, Perry RN, Aherrahrou R, Kuppusamy M, Yang C, Mosquera JV, Dube CJ, Khan MD, Palmore M, Kalra JK, Kavousi M, Peyser PA, Matic L, Hedin U, Manichaikul A, Sonkusare SK, Civelek M, Kovacic JC, Björkegren JL, Malhotra R, Miller CL. FHL5 Controls Vascular Disease-Associated Gene Programs in Smooth Muscle Cells. Circ Res 2023; 132:1144-1161. [PMID: 37017084 PMCID: PMC10147587 DOI: 10.1161/circresaha.122.321692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.
Collapse
Affiliation(s)
- Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Christian L. Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam W. Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yixuan Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - R. Noah Perry
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Chaojie Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Collin J. Dube
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Meredith Palmore
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Jaspreet K. Kalra
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, The Netherlands
| | | | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ani Manichaikul
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Johan L.M. Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Clint L. Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Liu L, Jouve C, Henry J, Berrandou TE, Hulot JS, Georges A, Bouatia-Naji N. Genomic, Transcriptomic, and Proteomic Depiction of Induced Pluripotent Stem Cells-Derived Smooth Muscle Cells As Emerging Cellular Models for Arterial Diseases. Hypertension 2023; 80:740-753. [PMID: 36655574 DOI: 10.1161/hypertensionaha.122.19733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-β (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Charlène Jouve
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Joséphine Henry
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Jean-Sébastien Hulot
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Adrien Georges
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Nabila Bouatia-Naji
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| |
Collapse
|
7
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Integrative multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.09.23285622. [PMID: 36824883 PMCID: PMC9949190 DOI: 10.1101/2023.02.09.23285622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Genome-wide association studies (GWAS) have identified hundreds of genetic risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWAS and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotype information to identify quantitative trait loci (QTL) for gene expression and splicing in coronary arteries obtained from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary arteries and 19% exhibited cell-type-specific expression. Colocalization analysis with GWAS identified subgroups of eGenes unique to CAD and blood pressure. Fine-mapping highlighted additional eGenes of interest, including TBX20 and IL5 . Splicing (s)QTLs for 1,690 genes were also identified, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing events to accurately identify disease-relevant gene expression. Our work provides the first human coronary artery eQTL resource from a patient sample and exemplifies the necessity of diverse study populations and multi-omic approaches to characterize gene regulation in critical disease processes. Study Design Overview
Collapse
|
8
|
Zhang G, Liu Z, Deng J, Liu L, Li Y, Weng S, Guo C, Zhou Z, Zhang L, Wang X, Liu G, Guo J, Bai J, Wang Y, Du Y, Li TS, Tang J, Zhang J. Smooth muscle cell fate decisions decipher a high-resolution heterogeneity within atherosclerosis molecular subtypes. J Transl Med 2022; 20:568. [PMID: 36474294 PMCID: PMC9724432 DOI: 10.1186/s12967-022-03795-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mounting evidence has revealed the dynamic variations in the cellular status and phenotype of the smooth muscle cell (SMC) are vital for shaping the atherosclerotic plaque microenvironment and ultimately mapping onto heterogeneous clinical outcomes in coronary artery disease. Currently, the underlying clinical significance of SMC evolutions remains unexplored in atherosclerosis. METHODS The dissociated cells from diseased segments within the right coronary artery of four cardiac transplant recipients and 1070 bulk samples with atherosclerosis from six bulk cohorts were retrieved. Following the SMC fate trajectory reconstruction, the MOVICS algorithm integrating the nearest template prediction was used to develop a stable and robust molecular classification. Subsequently, multi-dimensional potential biological implications, molecular features, and cell landscape heterogeneity among distinct clusters were decoded. RESULTS We proposed an SMC cell fate decision signature (SCFDS)-based atherosclerosis stratification system and identified three SCFDS subtypes (C1-C3) with distinguishing features: (i) C1 (DNA-damage repair type), elevated base excision repair (BER), DNA replication, as well as oxidative phosphorylation status. (ii) C2 (immune-activated type), stronger immune activation, hyper-inflammatory state, the complex as well as varied lesion microenvironment, advanced stage, the most severe degree of coronary stenosis severity. (iii) C3 (stromal-rich type), abundant fibrous content, stronger ECM metabolism, immune-suppressed microenvironment. CONCLUSIONS This study uncovered atherosclerosis complex cellular heterogeneity and a differentiated hierarchy of cell populations underlying SMC. The novel high-resolution stratification system could improve clinical outcomes and facilitate individualized management.
Collapse
Affiliation(s)
- Ge Zhang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jinhai Deng
- grid.13097.3c0000 0001 2322 6764Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London, UK
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yu Li
- grid.260463.50000 0001 2182 8825Medical College, Nanchang University, Nanchang, 330006 Jiangxi China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan China
| | - Zhaokai Zhou
- grid.412633.10000 0004 1799 0733Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Li Zhang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Xiaofang Wang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Gangqiong Liu
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Jiacheng Guo
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Jing Bai
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Yunzhe Wang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Youyou Du
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Tao-Sheng Li
- grid.174567.60000 0000 8902 2273Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Nagasaki, 852-8523 Japan
| | - Junnan Tang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| | - Jinying Zhang
- grid.412633.10000 0004 1799 0733Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052 Henan China ,Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, 450052 Henan China ,Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
9
|
Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, Weeks EM, Wang M, Hindy G, Zhou W, Grace C, Roselli C, Marston NA, Kamanu FK, Surakka I, Venegas LM, Sherliker P, Koyama S, Ishigaki K, Åsvold BO, Brown MR, Brumpton B, de Vries PS, Giannakopoulou O, Giardoglou P, Gudbjartsson DF, Güldener U, Haider SMI, Helgadottir A, Ibrahim M, Kastrati A, Kessler T, Kyriakou T, Konopka T, Li L, Ma L, Meitinger T, Mucha S, Munz M, Murgia F, Nielsen JB, Nöthen MM, Pang S, Reinberger T, Schnitzler G, Smedley D, Thorleifsson G, von Scheidt M, Ulirsch JC, Arnar DO, Burtt NP, Costanzo MC, Flannick J, Ito K, Jang DK, Kamatani Y, Khera AV, Komuro I, Kullo IJ, Lotta LA, Nelson CP, Roberts R, Thorgeirsson G, Thorsteinsdottir U, Webb TR, Baras A, Björkegren JLM, Boerwinkle E, Dedoussis G, Holm H, Hveem K, Melander O, Morrison AC, Orho-Melander M, Rallidis LS, Ruusalepp A, Sabatine MS, Stefansson K, Zalloua P, Ellinor PT, Farrall M, Danesh J, Ruff CT, Finucane HK, Hopewell JC, Clarke R, Gupta RM, Erdmann J, Samani NJ, Schunkert H, Watkins H, Willer CJ, Deloukas P, Kathiresan S, Butterworth AS. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet 2022; 54:1803-1815. [PMID: 36474045 PMCID: PMC9729111 DOI: 10.1038/s41588-022-01233-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The discovery of genetic loci associated with complex diseases has outpaced the elucidation of mechanisms of disease pathogenesis. Here we conducted a genome-wide association study (GWAS) for coronary artery disease (CAD) comprising 181,522 cases among 1,165,690 participants of predominantly European ancestry. We detected 241 associations, including 30 new loci. Cross-ancestry meta-analysis with a Japanese GWAS yielded 38 additional new loci. We prioritized likely causal variants using functionally informed fine-mapping, yielding 42 associations with less than five variants in the 95% credible set. Similarity-based clustering suggested roles for early developmental processes, cell cycle signaling and vascular cell migration and proliferation in the pathogenesis of CAD. We prioritized 220 candidate causal genes, combining eight complementary approaches, including 123 supported by three or more approaches. Using CRISPR-Cas9, we experimentally validated the effect of an enhancer in MYO9B, which appears to mediate CAD risk by regulating vascular cell motility. Our analysis identifies and systematically characterizes >250 risk loci for CAD to inform experimental interrogation of putative causal mechanisms for CAD.
Collapse
Grants
- MR/L003120/1 Medical Research Council
- BRC-1215-20014 Department of Health
- R01 HL125863 NHLBI NIH HHS
- UL1 RR025005 NCRR NIH HHS
- R01 HL059367 NHLBI NIH HHS
- U01 HG004402 NHGRI NIH HHS
- RG/14/5/30893 British Heart Foundation
- SP/13/2/30111 British Heart Foundation
- SP/16/4/32697 British Heart Foundation
- HHSN268201700001I NHLBI NIH HHS
- FS/14/55/30806 British Heart Foundation
- R01 HL087641 NHLBI NIH HHS
- MC_PC_17228 Medical Research Council
- MR/S502443/1 Medical Research Council
- R01 HL109946 NHLBI NIH HHS
- UM1 DK105554 NIDDK NIH HHS
- KL2 TR002542 NCATS NIH HHS
- 203141/Z/16/Z Wellcome Trust
- Department of Health
- FS/14/66/3129 British Heart Foundation
- R01 HL086694 NHLBI NIH HHS
- R35 HL135824 NHLBI NIH HHS
- RG/18/13/33946 British Heart Foundation
- T32 HG000040 NHGRI NIH HHS
- R01 HL146860 NHLBI NIH HHS
- HHSN268201700002C NHLBI NIH HHS
- SP/19/2/34462 British Heart Foundation
- HHSN268201700004I NHLBI NIH HHS
- RE/13/1/30181 British Heart Foundation
- K08 HL153950 NHLBI NIH HHS
- HHSN268201700005C NHLBI NIH HHS
- HHSN268201700001C NHLBI NIH HHS
- HHSN268201700003C NHLBI NIH HHS
- HHSN268201700004C NHLBI NIH HHS
- Wellcome Trust
- HHSN268201700002I NHLBI NIH HHS
- HHSN268201700005I NHLBI NIH HHS
- K08 HL153937 NHLBI NIH HHS
- HHSN268201700003I NHLBI NIH HHS
- RG/13/13/30194 British Heart Foundation
- T32 HL007604 NHLBI NIH HHS
- SP/09/002 British Heart Foundation
- G0800270 Medical Research Council
- K08 HG010155 NHGRI NIH HHS
- MC_QA137853 Medical Research Council
- K.G.A. has received support from the American Heart Association Institute for Precision Cardiovascular Medicine (17IFUNP3384001), a KL2/Catalyst Medical Research Investigator Training (CMeRIT) award from the Harvard Catalyst (KL2 TR002542), and the NIH (1K08HL153937).
- B.N.W is supported by the National Science Foundation Graduate Research Program (DGE 1256260).
- I.S. is supported by a Precision Health Scholars Award from the University of Michigan Medical School.
- I.K., S.Ko., and K.It. are funded by the Japan Agency for Medical Research and Development, AMED, under Grant Numbers JP16ek0109070h0003, JP18kk0205008h0003, JP18kk0205001s0703, JP20km0405209, and JP20ek0109487. The BioBank Japan is supported by AMED under Grant Number JP20km0605001.
- J.L.M.B. acknowledges research support from NIH R01HL125863, American Heart Association (A14SFRN20840000), the Swedish Research Council (2018-02529) and Heart Lung Foundation (20170265) and the Foundation Leducq (PlaqueOmics: Novel Roles of Smooth Muscle and Other Matrix Producing Cells in Atherosclerotic Plaque Stability and Rupture, 18CVD02.
- P.S.dV was supported by American Heart Association grant number 18CDA34110116 and National Heart, Lung, and Blood Institute grant R01HL146860. The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services (contract numbers HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and HHSN268201700005I), R01HL087641, R01HL059367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research.
- O.G. has received funding from the British Heart Foundation (BHF) (FS/14/66/3129).
- T.K. is supported by the Corona-Foundation (Junior Research Group Translational Cardiovascular Genomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02).
- D.S.A. has received support from a training grant from the NIH (T32HL007604).
- N.P.B., M.C.C., J.F., and D.-K.J. have been funded by the National Institute of Diabetes and Digestive and Kidney Diseases (2UM1DK105554).
- A.V.K. has been funded by 1K08HG010155 from the National Human Genome Research Institute.
- C.P.N. and T.R.W received funding from the British Heart Foundation (SP/16/4/32697).
- The Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. The K.G. Jebsen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard Jebsen; Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology; and Central Norway Regional Health Authority. Whole genome sequencing for the HUNT study was funded by HL109946.
- O.M. was funded by the Swedish Heart- and Lung Foundation, the Swedish Research Council, the European Research Council ERC-AdG-2019-885003 and Lund University Infrastructure grant ”Malmö population-based cohorts” (STYR 2019/2046).
- This work was supported by the European Commission (HEALTH-F2–2013-601456) and the TriPartite Immunometabolism Consortium [TrIC]- NovoNordisk Foundation (NNF15CC0018486), VIAgenomics (SP/19/2/344612), the British Heart Foundation, a Wellcome Trust core award (M.F., H.W., 203141/Z/16/Z) and support from the NIHR Oxford Biomedical Research Centre. M.F. and H.W. are members of the Oxford BHF Centre of Research Excellence (RE/13/1/30181). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
- J.D. is a British Heart Foundation Professor, European Research Council Senior Investigator, and National Institute for Health Research (NIHR) Senior Investigator.
- J.C.H. acknowledges personal funding from the British Heart Foundation (FS/14/55/30806) and is a member of the Oxford BHF Centre of Research Excellence (RE/13/1/30181).
- R.C. has received funding from the British Heart Foundation and British Heart Foundation Centre of Research Excellence.
- This research was supported by BHF (SP/13/2/30111) and conducted using the UK Biobank Resource (application number 9922).
- The GerMIFs gratefully acknowledge the support of the Bavarian State Ministry of Health and Care, furthermore founded this work within its framework of DigiMed Bayern (grant No: DMB-1805-0001), the German Federal Ministry of Education and Research (BMBF) within the framework of ERA-NET on Cardiovascular Disease (Druggable-MI-genes: 01KL1802), within the scheme of target validation (BlockCAD: 16GW0198K), within the framework of the e:Med research and funding concept (AbCD-Net: 01ZX1706C), the British Heart Foundation (BHF)/German Centre of Cardiovascular Research (DZHK)-collaboration (VIAgenomics) and the German Research Foundation (DFG) as part of the Sonderforschungsbereich SFB 1123 (B02) and the Sonderforschungsbereich SFB TRR 267 (B05).
- C.J.W. is funded by NIH grant R35-HL135824.
- This work was supported by the British Heart Foundation (BHF) grant RG/14/5/30893 (P.D.) and forms part of the research themes contributing to the translational research portfolios of the Barts Biomedical Research Centre funded by the UK National Institute for Health Research (NIHR).
Collapse
Affiliation(s)
- Krishna G Aragam
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tao Jiang
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anuj Goel
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brooke N Wolford
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Deepak S Atri
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elle M Weeks
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minxian Wang
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George Hindy
- Department of Population Medicine, Qatar University College of Medicine, Doha, Qatar
| | - Wei Zhou
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher Grace
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicholas A Marston
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frederick K Kamanu
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Loreto Muñoz Venegas
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Paul Sherliker
- Medical Research Council Population Health Research Unit, CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Bjørn O Åsvold
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ben Brumpton
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Panagiota Giardoglou
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Ulrich Güldener
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Syed M Ijlal Haider
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | | | - Maysson Ibrahim
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Adnan Kastrati
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Tomasz Konopka
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ling Li
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Lijiang Ma
- Department of Genetics and Genomic Science, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Meitinger
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Klinikum Rechts der Isar, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Sören Mucha
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Matthias Munz
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Federico Murgia
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Markus M Nöthen
- School of Medicine and University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Shichao Pang
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Gavin Schnitzler
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Moritz von Scheidt
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jacob C Ulirsch
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - David O Arnar
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Noël P Burtt
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria C Costanzo
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason Flannick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Japan
| | - Dong-Keun Jang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Amit V Khera
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Robert Roberts
- Cardiovascular Genomics and Genetics, University of Arizona College of Medicin, Phoenix, AZ, USA
| | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-National University Hospital of Iceland, Hringbraut, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas R Webb
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
- Clinical Gene Networks AB, Stockholm, Sweden
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - George Dedoussis
- Department of Nutrition-Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Kristian Hveem
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
- HUNT Research Centre, Norwegian University of Science and Technology, Levanger, Norway
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Loukianos S Rallidis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital and Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Marc S Sabatine
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Pierre Zalloua
- Harvard T.H.Chan School of Public Health, Boston, MA, USA
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Farrall
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Danesh
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Human Genetics, Wellcome Sanger Institute, Saffron Walden, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Christian T Ruff
- TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jemma C Hopewell
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Robert Clarke
- CTSU-Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- German Research Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Nilesh J Samani
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany
- German Research Center for Cardiovascular Research (DZHK e.V.), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adam S Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge, UK.
- The National Institute for Health and Care Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
10
|
Elishaev M, Hodonsky CJ, Ghosh SKB, Finn AV, von Scheidt M, Wang Y. Opportunities and Challenges in Understanding Atherosclerosis by Human Biospecimen Studies. Front Cardiovasc Med 2022; 9:948492. [PMID: 35872917 PMCID: PMC9300954 DOI: 10.3389/fcvm.2022.948492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last few years, new high-throughput biotechnologies and bioinformatic methods are revolutionizing our way of deep profiling tissue specimens at the molecular levels. These recent innovations provide opportunities to advance our understanding of atherosclerosis using human lesions aborted during autopsies and cardiac surgeries. Studies on human lesions have been focusing on understanding the relationship between molecules in the lesions with tissue morphology, genetic risk of atherosclerosis, and future adverse cardiovascular events. This review will highlight ways to utilize human atherosclerotic lesions in translational research by work from large cardiovascular biobanks to tissue registries. We will also discuss the opportunities and challenges of working with human atherosclerotic lesions in the era of next-generation sequencing.
Collapse
Affiliation(s)
- Maria Elishaev
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Chani J. Hodonsky
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | | | - Aloke V. Finn
- Cardiovascular Pathology Institute, Gaithersburg, MD, United States
| | - Moritz von Scheidt
- Department of Cardiology, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Ying Wang
- Department of Pathology and Laboratory Medicine, Center for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Semaglutide treatment attenuates vessel remodelling in ApoE-/- mice following vascular injury and blood flow perturbation. ATHEROSCLEROSIS PLUS 2022; 49:32-41. [PMID: 36644202 PMCID: PMC9833261 DOI: 10.1016/j.athplu.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Randomized clinical studies have shown a reduction in cardiovascular outcomes with glucagon-like peptide 1 receptor agonist (GLP-1RA) treatment with the hypothesized mechanisms being an underlying effect on atherosclerosis. Here, we aimed to assess the pharmacological effects of semaglutide in an atheroprone murine model that recapitulates central mechanisms related to vascular smooth muscle cell (VSMC) phenotypic switching and endothelial dysfunction known to operate within the atherosclerotic plaque. Methods In study A, we employed an electrical current to the carotid artery in ApoE-/- mice to induce severe VSMC injury and death, after which the arteries were allowed to heal for 4 weeks. In study B, a constrictive cuff was added for 6 h at the site of the healed segment to induce a disturbance in blood flow. Results Compared to vehicle, semaglutide treatment reduced the intimal and medial area by ∼66% (p = 0.007) and ∼11% (p = 0.0002), respectively. Following cuff placement, expression of the pro-inflammatory marker osteopontin and macrophage marker Mac-2 was reduced (p < 0.05) in the semaglutide-treated group compared to vehicle. GLP-1R were not expressed in murine carotid artery and human coronary vessels with and without atherosclerotic plaques, and semaglutide treatment did not affect proliferation of cultured primary human VSMCs. Conclusions Semaglutide treatment reduced vessel remodelling following electrical injury and blood flow perturbation in an atheroprone mouse model. This effect appears to be driven by anti-inflammatory and -proliferative mechanisms independent of GLP-1 receptor-mediated signalling in the resident vascular cells. This mechanism of action may be important for cardiovascular protection.
Collapse
|
12
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
13
|
Wang H, Liu H, Zhao X, Chen X. Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription. Bioengineered 2022; 13:11469-11486. [PMID: 35535400 PMCID: PMC9276035 DOI: 10.1080/21655979.2022.2066754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coronary artery disease (CAD) represents a fatal public threat. The involvement of extracellular vesicles (EVs) in CAD has been documented. This study explored the regulation of embryonic stem cells (ESCs)-derived EVs-hnRNPU-actin complex in human coronary artery endothelial cell (HCAEC) growth. Firstly, in vitro HCAEC hypoxia models were established. EVs were extracted from ESCs by ultracentrifugation. HCAECs were treated with EVs and si-VEGF for 24 h under hypoxia, followed by assessment of cell proliferation, apoptosis, migration, and tube formation. Uptake of EVs by HCAECs was testified. Additionally, hnRNPU, VEGF, and RNA Pol II levels were determined using Western blotting and CHIP assays. Interaction between hnRNPU and actin was evaluated by Co-immunoprecipitation assay. HCAEC viability and proliferation were lowered, apoptosis was enhanced, wound fusion was decreased, and the number of tubular capillary structures was reduced under hypoxia, whereas ESC-EVs treatment counteracted these effects. Moreover, EVs transferred hnRNPU into HCAECs. EVs-hnRNPU-actin complex increased RNA Pol II level on the VEGF gene promoter and promoted VEGF expression in HCAECs. Inhibition of hnRNPU or VEGF both annulled the promotion of EVs on HCAEC growth. Collectively, ESC-EVs-hnRNPU-actin increased RNA Pol II phosphorylation and VEGF expression, thus promoting HCAEC growth.
Collapse
Affiliation(s)
- Han Wang
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hengdao Liu
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xi Zhao
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaowei Chen
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
14
|
Kosiński K, Malinowski D, Safranow K, Dziedziejko V, Pawlik A. PECAM1, COL4A2, PHACTR1, and LMOD1 Gene Polymorphisms in Patients with Unstable Angina. J Clin Med 2022; 11:jcm11020373. [PMID: 35054067 PMCID: PMC8778316 DOI: 10.3390/jcm11020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Coronary artery disease (CAD) is a syndrome resulting from myocardial ischaemia of heterogeneous pathomechanism. Environmental and genetic factors contribute to its development. Atherosclerotic plaques that significantly narrow the lumen of coronary arteries cause symptoms of myocardial ischaemia. Acute coronary incidents are most often associated with plaque rupture or erosion accompanied by local activation of the coagulation system with thrombus formation. Plaque formation and stability are influenced by endothelial function and vascular smooth muscle cell function. In this study, we investigated the association between polymorphisms in genes affecting endothelial and vascular smooth muscle cell (VSMC) function and the occurrence of unstable angina pectoris. The aim of this study was to evaluate the association between the PECAM1 (rs1867624), COL4A2 (rs4773144), PHACTR1 (rs9349379) and LMOD1 (rs2820315) gene polymorphisms and the risk of unstable angina. The study included 232 patients with unstable angina diagnosed on the basis of clinical symptoms and coronary angiography and 144 healthy subjects with no significant coronary lumen stenosis at coronary angiography. There were no statistically significant differences in the distribution of COL4A2 rs4773144 and PECAM1 rs1867624 gene polymorphisms between patients with unstable angina and control subjects. In patients with unstable angina, there was an increased frequency of PHACTR1 rs9349379 G allele carriers (GG and AG genotypes) (GG+AG vs. AA, OR 1.71; 95% CI 1.10-2.66, p = 0.017) and carriers of the LMOD1 rs2820315 T allele (TT and CT genotypes) (TT+CT vs. CC, OR 1.65; 95% CI 1.09-2.51, p = 0.019) compared to the control group. The association between these alleles and unstable angina was confirmed by multivariate logistic regression analysis, in which the number of G (PHACTR1 rs9349379) and T (LMOD1 rs2820315) alleles was an independent risk factor for unstable angina. The results suggest an association between PHACTR1 rs9349379 and LMOD1 rs2820315 polymorphisms and the risk of unstable angina.
Collapse
Affiliation(s)
- Krzysztof Kosiński
- Department of Cardiology, Hospital in Szczecin, Arkonska 4, 71-455 Szczecin, Poland;
| | - Damian Malinowski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.S.); (V.D.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Correspondence:
| |
Collapse
|
15
|
Zhou M, Wu J, Tan G. The relation of circulating cell division cycle 42 expression with Th1, Th2, and Th17 cells, adhesion molecules, and biochemical indexes in coronary heart disease patients. Ir J Med Sci 2021; 191:2085-2090. [PMID: 34811660 DOI: 10.1007/s11845-021-02836-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cell division cycle 42 (CDC42) regulates macrophage polarization, vascular inflammation, atherosclerosis progression, and modifies differentiation of T helper (Th) cells, while its potential as a biomarker in coronary heart disease (CHD) patients is still lacking. This study aimed to evaluate CDC42 expression, its correlation with Th1, Th2, and Th17 cells, adhesion molecules, and biochemical indexes in CHD patients. METHODS One hundred two CHD patients and 50 controls were enrolled. CDC42 expression in peripheral blood mononuclear cells was assessed by reverse transcription quantitative polymerase chain reaction in all participants. In CHD patients, Th1, Th2, and Th17 cells were detected by flow cytometric analysis; meanwhile, serum levels of inflammatory cytokines and adhesion molecules were detected by enzyme-linked immunosorbent assay. RESULTS CDC42 was lower in CHD patients (median (interquartile range (IQR)) = 0.431 (0.304-0.722)) than in controls (median (IQR) = 0.985 (0.572-1.760)) (p < 0.001). CDC42 was positively associated with Th2 cells (p = 0.016) and interleukin (IL)-10 (p = 0.034), but negatively correlated with Th17 cells (p < 0.001) and IL-17A (p < 0.001) in CHD patients. However, no association was found in CDC42 with Th1 cells (p = 0.199) or interferon-γ (p = 0.367) in CHD patients. Besides, CDC42 was negatively correlated with vascular cell adhesion molecule-1 (p = 0.013) and intercellular cell adhesion molecule-1 (p = 0.001) in CHD patients. Additionally, CDC42 negatively associated with C-reactive protein (p < 0.001), Gensini score (p < 0.001), total cholesterol (p = 0.039), and low-density lipoprotein cholesterol (p = 0.014), but not with other biochemical indexes (p > 0.05) in CHD patients. CONCLUSION CDC42 correlates with Th2 cells, Th17 cells, and adhesion molecules, also reflects inflammation, coronary stenosis degree, and cholesterol level in CHD patients.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Hubei, 430030, China
| | - Jian Wu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Hubei, 430030, China
| | - Gang Tan
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Hubei, 430030, China.
| |
Collapse
|
16
|
Grootaert MOJ, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res 2021; 117:2326-2339. [PMID: 33576407 PMCID: PMC8479803 DOI: 10.1093/cvr/cvab046] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are key participants in both early and late-stage atherosclerosis. VSMCs invade the early atherosclerotic lesion from the media, expanding lesions, but also forming a protective fibrous cap rich in extracellular matrix to cover the 'necrotic' core. Hence, VSMCs have been viewed as plaque-stabilizing, and decreased VSMC plaque content-often measured by expression of contractile markers-associated with increased plaque vulnerability. However, the emergence of lineage-tracing and transcriptomic studies has demonstrated that VSMCs comprise a much larger proportion of atherosclerotic plaques than originally thought, demonstrate multiple different phenotypes in vivo, and have roles that might be detrimental. VSMCs down-regulate contractile markers during atherosclerosis whilst adopting alternative phenotypes, including macrophage-like, foam cell-like, osteochondrogenic-like, myofibroblast-like, and mesenchymal stem cell-like. VSMC phenotypic switching can be studied in tissue culture, but also now in the media, fibrous cap and deep-core region, and markedly affects plaque formation and markers of stability. In this review, we describe the different VSMC plaque phenotypes and their presumed cellular and paracrine functions, the regulatory mechanisms that control VSMC plasticity, and their impact on atherogenesis and plaque stability.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrookes Hospital, CB2 0QQ Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, ACCI, Addenbrookes Hospital, CB2 0QQ Cambridge, UK
| |
Collapse
|
17
|
Affiliation(s)
- Ulf Hedin
- Departments of Vascular Surgery and Molecular Medicine and Surgery, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Plasma Small Extracellular Vesicle-Carried miRNA-501-5p Promotes Vascular Smooth Muscle Cell Phenotypic Modulation-Mediated In-Stent Restenosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6644970. [PMID: 33968296 PMCID: PMC8084657 DOI: 10.1155/2021/6644970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Vascular smooth muscle cell (VSMC) phenotypic modulation plays an important role in the occurrence and development of in-stent restenosis (ISR), the underlying mechanism of which remains a key issue needing to be urgently addressed. This study is designed to investigate the role of plasma small extracellular vesicles (sEV) in VSMC phenotypic modulation. sEV were isolated from the plasma of patients with ISR (ISR-sEV) or not (Ctl-sEV) 1 year after coronary stent implantation using differential ultracentrifugation. Plasma sEV in ISR patients are elevated markedly and decrease the expression of VSMC contractile markers α-SMA and calponin and increase VSMC proliferation. miRNA sequencing and qRT-PCR validation identified that miRNA-501-5p was the highest expressed miRNA in the plasma ISR-sEV compared with Ctl-sEV. Then, we found that sEV-carried miRNA-501-5p level was significantly higher in ISR patients, and the level of plasma sEV-carried miRNA-501-5p linearly correlated with the degree of restenosis (R2 = 0.62). Moreover, miRNA-501-5p inhibition significantly increased the expression of VSMC contractile markers α-SMA and calponin and suppressed VSMC proliferation and migration; in vivo inhibition of miRNA-501-5p could also blunt carotid artery balloon injury induced VSMC phenotypic modulation in rats. Mechanically, miRNA-501-5p promoted plasma sEV-induced VSMC proliferation by targeting Smad3. Notably, endothelial cells might be the major origins of miRNA-501-5p. Collectively, these findings showed that plasma sEV-carried miRNA-501-5p promotes VSMC phenotypic modulation-mediated ISR through targeting Smad3.
Collapse
|
19
|
Rakipovski G, Rolin B, Barascuk N, Lund HE, Bjørn Bonde MF, Djordjevic D, Wulff-Larsen PG, Petersen M, Kirk RK, Hultman K, Manfe V, Blume N, Zahn S, Lengquist M, Maegdefessel L, Hovingh GK, Conde-Knape K, Hedin U, Matic L, Nyberg M. A neutralizing antibody against DKK1 does not reduce plaque formation in classical murine models of atherosclerosis: Is the therapeutic potential lost in translation? Atherosclerosis 2020; 314:1-9. [PMID: 33129080 DOI: 10.1016/j.atherosclerosis.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Clinical interventions targeting nonlipid risk factors are needed given the high residual risk of atherothrombotic events despite effective control of dyslipidemia. Dickkopf-1 (DKK1) plays a lipid-independent role in vascular pathophysiology but its involvement in atherosclerosis development and its therapeutic attractiveness remain to be established. METHODS Patient data, in vitro studies and pharmacological intervention in murine models of atherosclerosis were utilized. RESULTS In patients' material (n = 127 late stage plaque specimens and n = 10 control vessels), DKK1 mRNA was found to be higher in atherosclerotic plaques versus control arteries. DKK1 protein was detected in the luminal intimal area and in the necrotic core of plaques. DKK1 was released from isolated primary human platelets (~12 - 21-fold) and endothelial cells (~1.4-2.5-fold) upon stimulation with different pathophysiological stimuli. In ApoE-/- and Ldlr-/- mice, plasma DKK1 concentrations were similar to those observed in humans, whereas DKK1 expression in different atheroprone arterial segments was very low/absent. Chronic treatment with a neutralizing DKK1 antibody effectively reduced plasma concentrations, however, plaque lesion area was not reduced in ApoE-/- and Ldlr-/- mice fed a western diet for 14 and 16 weeks. Anti-DKK1 treatment increased bone volume and bone mineral content. CONCLUSIONS Functional inhibition of DKK1 with an antibody does not alter atherosclerosis progression in classical murine models. This may reflect the absence of DKK1 expression in plaques and more advanced animal disease models could be needed to evaluate the role and therapeutic attractiveness of DKK1 in late stage complications such as plaque destabilization, calcification, rupture and thrombosis.
Collapse
Affiliation(s)
| | - Bidda Rolin
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | | | | | | | | | | | - Maj Petersen
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | | | - Karin Hultman
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Valentina Manfe
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Niels Blume
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Stefan Zahn
- Global Research Technologies, Novo Nordisk A/S, Maaloev, Denmark
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Lars Maegdefessel
- Department of Medicine, Karolinska Institute, Stockholm, Sweden; Technical University of Munich, Klinikum Rechts der Isar, Department for Vascular and Endovascular Surgery, Munich, Germany
| | - G Kees Hovingh
- Chief Medical Office, Novo Nordisk A/S, Soeborg, Denmark; Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands
| | | | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Michael Nyberg
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark.
| |
Collapse
|
20
|
Pan H, Xue C, Auerbach BJ, Fan J, Bashore AC, Cui J, Yang DY, Trignano SB, Liu W, Shi J, Ihuegbu CO, Bush EC, Worley J, Vlahos L, Laise P, Solomon RA, Connolly ES, Califano A, Sims PA, Zhang H, Li M, Reilly MP. Single-Cell Genomics Reveals a Novel Cell State During Smooth Muscle Cell Phenotypic Switching and Potential Therapeutic Targets for Atherosclerosis in Mouse and Human. Circulation 2020; 142:2060-2075. [PMID: 32962412 DOI: 10.1161/circulationaha.120.048378] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Smooth muscle cells (SMCs) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration, and transdifferentiation into other cell types. Yet how SMCs contribute to the pathophysiology of atherosclerosis remains elusive. METHODS To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques. We also performed cell biology experiments on isolated SMC-derived cells, conducted integrative human genomics, and used pharmacological studies targeting SMC-derived cells both in vivo and in vitro. RESULTS We found that SMCs transitioned to an intermediate cell state during atherosclerosis, which was also found in human atherosclerotic plaques of carotid and coronary arteries. SMC-derived intermediate cells, termed "SEM" cells (stem cell, endothelial cell, monocyte), were multipotent and could differentiate into macrophage-like and fibrochondrocyte-like cells, as well as return toward the SMC phenotype. Retinoic acid (RA) signaling was identified as a regulator of SMC to SEM cell transition, and RA signaling was dysregulated in symptomatic human atherosclerosis. Human genomics revealed enrichment of genome-wide association study signals for coronary artery disease in RA signaling target gene loci and correlation between coronary artery disease risk alleles and repressed expression of these genes. Activation of RA signaling by all-trans RA, an anticancer drug for acute promyelocytic leukemia, blocked SMC transition to SEM cells, reduced atherosclerotic burden, and promoted fibrous cap stability. CONCLUSIONS Integration of cell-specific fate mapping, single-cell genomics, and human genetics adds novel insights into the complexity of SMC biology and reveals regulatory pathways for therapeutic targeting of SMC transitions in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Benjamin J Auerbach
- Graduate Group in Genomics and Computational Biology (B.J.A.), University of Pennsylvania, Philadelphia
| | - Jiaxin Fan
- Department of Biostatistics, Epidemiology, and Informatics (J.F., M.L.), University of Pennsylvania, Philadelphia
| | - Alexander C Bashore
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Jian Cui
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Dina Y Yang
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Sarah B Trignano
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Wen Liu
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Jianting Shi
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Chinyere O Ihuegbu
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Erin C Bush
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Jeremy Worley
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Lukas Vlahos
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Pasquale Laise
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Robert A Solomon
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center (R.A.S., E.S.C.)
| | - Edward S Connolly
- Department of Neurologic Surgery, New York-Presbyterian Hospital/Columbia University Irving Medical Center (R.A.S., E.S.C.)
| | - Andrea Califano
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York.,Herbert Irving Comprehensive Cancer Center (A.C.), Columbia University Irving Medical Center, New York.,JP Sulzberger Columbia Genome Center (A.C.), Columbia University Irving Medical Center, New York.,Department of Biomedical Informatics (A.C.), Columbia University Irving Medical Center, New York.,Department of Biochemistry and Molecular Biophysics (A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Peter A Sims
- Department of Systems Biology (E.C.B., J.W., L.V., P.L. A.C., P.A.S.), Columbia University Irving Medical Center, New York.,Department of Biochemistry and Molecular Biophysics (A.C., P.A.S.), Columbia University Irving Medical Center, New York
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics (J.F., M.L.), University of Pennsylvania, Philadelphia
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine (H.P., C.X., A.C.B., J.C., D.Y.Y., S.B.T., W.L., J.S., C.O.I., H.Z., M.P.R.), Columbia University Irving Medical Center, New York.,Irving Institute for Clinical and Translational Research, Columbia University, New York (M.P.R.)
| |
Collapse
|
21
|
Hu H, Lin S, Wang S, Chen X. The Role of Transcription Factor 21 in Epicardial Cell Differentiation and the Development of Coronary Heart Disease. Front Cell Dev Biol 2020; 8:457. [PMID: 32582717 PMCID: PMC7290112 DOI: 10.3389/fcell.2020.00457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcription factor 21 (TCF21) is specific for mesoderm and is expressed in the embryos' mesenchymal derived tissues, such as the epicardium. It plays a vital role in regulating cell differentiation and cell fate specificity through epithelial-mesenchymal transformation during cardiac development. For instance, TCF21 could promote cardiac fibroblast development and inhibit vascular smooth muscle cells (VSMCs) differentiation of epicardial cells. Recent large-scale genome-wide association studies have identified a mass of loci associated with coronary heart disease (CHD). There is mounting evidence that TCF21 polymorphism might confer genetic susceptibility to CHD. However, the molecular mechanisms of TCF21 in heart development and CHD remain fundamentally problematic. In this review, we are committed to providing a detailed introduction of the biological roles of TCF21 in epicardial fate determination and the development of CHD.
Collapse
Affiliation(s)
- Haochang Hu
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | - Shaoyi Lin
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| | | | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, China.,Department of Cardiology, Ningbo City First Hospital, Ningbo, China
| |
Collapse
|
22
|
Abstract
TCF21 , a gene associated with coronary heart disease, promotes plaque stability and reduces clinical events by enhancing smooth muscle cell phenotype modulation into “fibromyocytes” in atherosclerosis.
Collapse
Affiliation(s)
- Huize Pan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA.
| |
Collapse
|