1
|
Xu J, Liu Z, Yang Q, Ma Q, Zhou Y, Cai Y, Zhao D, Zhao G, Lu T, Ouyang K, Hong M, Kim HW, Shi H, Zhang J, Fulton D, Miller C, Malhotra R, Weintraub NL, Huo Y. Adenosine kinase inhibition protects mice from abdominal aortic aneurysm via epigenetic modulation of VSMC inflammation. Cardiovasc Res 2024; 120:1202-1217. [PMID: 38722818 PMCID: PMC11368124 DOI: 10.1093/cvr/cvae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/26/2024] [Indexed: 09/03/2024] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of the intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing, and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The heterozygous deficiency of ADK protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of ADK in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization, and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. The metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis, and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation, and AAA formation. CONCLUSION Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Adenosine/metabolism
- Adenosine/analogs & derivatives
- Adenosine Kinase/antagonists & inhibitors
- Angiotensin II/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/genetics
- Aortitis/prevention & control
- Aortitis/enzymology
- Aortitis/pathology
- Aortitis/metabolism
- Aortitis/chemically induced
- Aortitis/genetics
- Calcium Chloride
- Cells, Cultured
- Disease Models, Animal
- DNA Methylation
- Epigenesis, Genetic
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Morpholines
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines
- Signal Transduction
Collapse
Affiliation(s)
- Jiean Xu
- Department of Physiology, Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, University Town, Guangzhou, 510006, China
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhiping Liu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Qiuhua Yang
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Qian Ma
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yaqi Zhou
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yongfeng Cai
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Dingwei Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tammy Lu
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
- Emory University, Atlanta, GA 30322, USA
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - David Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Clint Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
3
|
Liu Y, Sun X, Gou Z, Deng Z, Zhang Y, Zhao P, Sun W, Bai Y, Jing Y. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Front Cardiovasc Med 2024; 11:1394889. [PMID: 38895538 PMCID: PMC11183338 DOI: 10.3389/fcvm.2024.1394889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, involving multiple factors in its occurrence and development, ultimately leading to vessel rupture and severe bleeding. AAA has a high mortality rate, and there is a lack of targeted therapeutic drugs. Epigenetic regulation plays a crucial role in AAA, and the treatment of AAA in the epigenetic field may involve a series of related genes and pathways. Abnormal expression of these genes may be a key factor in the occurrence of the disease and could potentially serve as promising therapeutic targets. Understanding the epigenetic regulation of AAA is of significant importance in revealing the mechanisms underlying the disease and identifying new therapeutic targets. This knowledge can contribute to offering AAA patients better clinical treatment options beyond surgery. This review systematically explores various aspects of epigenetic regulation in AAA, including DNA methylation, histone modification, non-coding RNA, and RNA modification. The analysis of the roles of these regulatory mechanisms, along with the identification of relevant genes and pathways associated with AAA, is discussed comprehensively. Additionally, a comprehensive discussion is provided on existing treatment strategies and prospects for epigenetics-based treatments, offering insights for future clinical interventions.
Collapse
Affiliation(s)
- YuChen Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - XiaoYun Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen Gou
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - ZhenKun Deng
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YunRui Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - PingPing Zhao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yang Bai
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - YuChen Jing
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Wen Y, Liu Y, Li Q, Tan J, Fu X, Liang Y, Tuo Y, Liu L, Zhou X, LiuFu D, Fan X, Chen C, Chen Z, Wang Z, Fan S, Liu R, Pan L, Zhang Y, Tang WH. Spatiotemporal ATF3 Expression Determines VSMC Fate in Abdominal Aortic Aneurysm. Circ Res 2024; 134:1495-1511. [PMID: 38686580 DOI: 10.1161/circresaha.124.324323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. ATF3 (activating transcription factor 3) has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 in AAA development and progression remains elusive. METHODS Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adeno-associated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor β) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.
Collapse
MESH Headings
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice
- Male
- Mice, Inbred C57BL
- Apoptosis
- Cells, Cultured
- Angiotensin II
- Cell Proliferation
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ying Wen
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Yingying Liu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Qiang Li
- Department of Vascular Surgery (Q.L.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Jinlin Tan
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Xing Fu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Yiwen Liang
- Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, China (Y. Liang)
| | - Yonghua Tuo
- Department of Neurosurgery (Y.T.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Luhao Liu
- Department of Organ Transplantation (L.L., Z.C.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, School of Public Health, Southern Medical University, China (X.Z.)
| | - Dongkai LiuFu
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Xuejiao Fan
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Chaofei Chen
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Zheng Chen
- Department of Organ Transplantation (L.L., Z.C.), the Second Affiliated Hospital of Guangzhou Medical University, China
| | - Zhouping Wang
- Department of Cardiology (Z.W.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Shunyang Fan
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, China (S.F., W.H.T.)
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Sydney, Australia (R.L.)
| | - Lei Pan
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, China (L.P.)
| | - Yuan Zhang
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
| | - Wai Ho Tang
- Institute of Pediatrics (Y.W., Y. Liu, J.T., X.F., D.L., X.F., C.C., Y.Z., W.H.T.), Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, China
- Heart Center, The Third Affiliated Hospital of Zhengzhou University, China (S.F., W.H.T.)
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Kowloon, Hong Kong SAR, China (W.H.T.)
| |
Collapse
|
5
|
Wang J, Da X, Chen Y, Yuan A, Pu J. Glutamine Protects against Mouse Abdominal Aortic Aneurysm through Modulating VSMC Apoptosis and M1 Macrophage Activation. Int J Med Sci 2024; 21:1414-1427. [PMID: 38903916 PMCID: PMC11186418 DOI: 10.7150/ijms.96395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Glutamine (Gln), known as the most abundant free amino acid, is widely spread in human body. In this study, we demonstrated the protective effects of glutamine against mouse abdominal aortic aneurysm (AAA) induced by both angiotensin II (AngII) and calcium phosphate (Ca3(PO4)2) in vivo, which was characterized with lower incidence of mouse AAA. Moreover, histomorphological staining visually presented more intact elastic fiber and less collagen deposition in abdominal aortas of mice treated by glutamine. Further, we found glutamine inhibited the excessive production of reactive oxide species (ROS), activity of matrix metalloproteinase (MMP), M1 macrophage activation, and apoptosis of vascular smooth muscle cells (VSMCs) in suprarenal abdominal aortas of mice, what's more, the high expressions of MMP-2 protein, MMP-9 protein, pro-apoptotic proteins, and IL-6 as well as TNF-α in protein and mRNA levels in cells treated by AngII were down-regulated by glutamine. Collectively, these results revealed that glutamine protected against mouse AAA through inhibiting apoptosis of VSMCs, M1 macrophage activation, oxidative stress, and extracellular matrix degradation.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/metabolism
- Apoptosis/drug effects
- Mice
- Glutamine/pharmacology
- Angiotensin II/pharmacology
- Macrophage Activation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Humans
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidative Stress/drug effects
- Reactive Oxygen Species/metabolism
- Disease Models, Animal
- Male
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/immunology
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase 2/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Interleukin-6/metabolism
- Calcium Phosphates
Collapse
Affiliation(s)
| | | | | | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, China
| |
Collapse
|
6
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
7
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
8
|
Fang T, Wang X, Huangfu N. Superfamily II helicases: the potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1309491. [PMID: 38152606 PMCID: PMC10752008 DOI: 10.3389/fcvm.2023.1309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) still maintain high morbidity and mortality globally. Helicases, a unique class of enzymes, are extensively implicated in the processes of nucleic acid (NA) metabolism across various organisms. They play a pivotal role in gene expression, inflammatory response, lipid metabolism, and so forth. However, abnormal helicase expression has been associated with immune response, cancer, and intellectual disability in humans. Superfamily II (SFII) is one of the largest and most diverse of the helicase superfamilies. Increasing evidence has implicated SFⅡ helicases in the pathogenesis of multiple CVDs. In this review, we comprehensively review the regulation mechanism of SFⅡ helicases in CVDs including atherosclerosis, myocardial infarction, cardiomyopathies, and heart failure, which will contribute to the investigation of ideal therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Tianxiang Fang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Xizhi Wang
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Ning Huangfu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| |
Collapse
|
9
|
Mizrak D, Zhao Y, Feng H, Macaulay J, Tang Y, Sultan Z, Zhao G, Guo Y, Zhang J, Yang B, Eugene Chen Y. Single-Molecule Spatial Transcriptomics of Human Thoracic Aortic Aneurysms Uncovers Calcification-Related CARTPT-Expressing Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2023; 43:2285-2297. [PMID: 37823268 PMCID: PMC10842613 DOI: 10.1161/atvbaha.123.319329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples. METHODS Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls. In vitro studies and tissue staining were performed to examine human CART prepropeptide (CARTPT) regulation and function. RESULTS We captured thousands of cells per sample including a spatially distinct CARTPT-expressing SMC subtype enriched in male TAA samples. Immunoassays confirmed human CART (cocaine- and amphetamine-regulated transcript) protein enrichment in male TAA tissue and truncated CARTPT secretion into cell culture medium. Oxidized low-density lipoprotein, a cardiovascular risk factor, induced CARTPT expression, whereas CARTPT overexpression in human aortic SMCs increased the expression of key osteochondrogenic transcription factors and reduced contractile gene expression. Recombinant human CART treatment of human SMCs further confirmed this phenotype. Alizarin red staining revealed calcium deposition in male TAA samples showing similar localization with human CART staining. CONCLUSIONS Here, we demonstrate the feasibility of single-molecule imaging in uncovering rare SMC subtypes in the diseased human aorta, a difficult tissue to dissociate. We identified a spatially distinct CARTPT-expressing SMC subtype enriched in male human TAA samples. Our functional studies suggest that human CART promotes osteochondrogenic switch of aortic SMCs, potentially leading to medial calcification of the thoracic aorta.
Collapse
Affiliation(s)
- Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yang Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jane Macaulay
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Tang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Zain Sultan
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Guizhen Zhao
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yanhong Guo
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y. Eugene Chen
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Zhao Y, Liu Y, Zhao G, Lu H, Liu Y, Xue C, Chang Z, Liu H, Deng Y, Liang W, Wang H, Rom O, Garcia-Barrio MT, Zhu T, Guo Y, Chang L, Lin J, Chen YE, Zhang J. Myeloid BAF60a deficiency alters metabolic homeostasis and exacerbates atherosclerosis. Cell Rep 2023; 42:113171. [PMID: 37768825 PMCID: PMC10842557 DOI: 10.1016/j.celrep.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuhao Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71103, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Yodsanit N, Shirasu T, Huang Y, Yin L, Islam ZH, Gregg AC, Riccio AM, Tang R, Kent EW, Wang Y, Xie R, Zhao Y, Ye M, Zhu J, Huang Y, Hoyt N, Zhang M, Hossack JA, Salmon M, Kent KC, Guo LW, Gong S, Wang B. Targeted PERK inhibition with biomimetic nanoclusters confers preventative and interventional benefits to elastase-induced abdominal aortic aneurysms. Bioact Mater 2023; 26:52-63. [PMID: 36875050 PMCID: PMC9975632 DOI: 10.1016/j.bioactmat.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a progressive aortic dilatation, causing ∼80% mortality upon rupture. Currently, there is no approved drug therapy for AAA. Surgical repairs are invasive and risky and thus not recommended to patients with small AAAs which, however, account for ∼90% of the newly diagnosed cases. It is therefore a compelling unmet clinical need to discover effective non-invasive strategies to prevent or slow down AAA progression. We contend that the first AAA drug therapy will only arise through discoveries of both effective drug targets and innovative delivery methods. There is substantial evidence that degenerative smooth muscle cells (SMCs) orchestrate AAA pathogenesis and progression. In this study, we made an exciting finding that PERK, the endoplasmic reticulum (ER) stress Protein Kinase R-like ER Kinase, is a potent driver of SMC degeneration and hence a potential therapeutic target. Indeed, local knockdown of PERK in elastase-challenged aorta significantly attenuated AAA lesions in vivo. In parallel, we also conceived a biomimetic nanocluster (NC) design uniquely tailored to AAA-targeting drug delivery. This NC demonstrated excellent AAA homing via a platelet-derived biomembrane coating; and when loaded with a selective PERK inhibitor (PERKi, GSK2656157), the NC therapy conferred remarkable benefits in both preventing aneurysm development and halting the progression of pre-existing aneurysmal lesions in two distinct rodent models of AAA. In summary, our current study not only establishes a new intervention target for mitigating SMC degeneration and aneurysmal pathogenesis, but also provides a powerful tool to facilitate the development of effective drug therapy of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- The Biomedical Sciences Graduate Program (BIMS), School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Li Yin
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zain Husain Islam
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | | | - Alessandra Marie Riccio
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runze Tang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Eric William Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Zhao
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yi Huang
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas Hoyt
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA
| | - Mengxue Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - John A. Hossack
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - K. Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
13
|
Zhao Y, Zhao G, Chang Z, Zhu T, Zhao Y, Lu H, Xue C, Saunders TL, Guo Y, Chang L, Chen YE, Zhang J. Generating endogenous Myh11-driven Cre mice for sex-independent gene deletion in smooth muscle cells. JCI Insight 2023; 8:e171661. [PMID: 37289544 PMCID: PMC10443793 DOI: 10.1172/jci.insight.171661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Specific and efficient smooth muscle cell-targeted (SMC-targeted) gene deletion is typically achieved by pairing SMMHC-CreERT2-Tg mice with mice carrying the loxP-flanked gene. However, the transgene, CreERT2, is not controlled by the endogenous Myh11 gene promoter, and the codon-modified iCreERT2 exhibits significant tamoxifen-independent leakage. Furthermore, because the Cre-bearing bacterial artificial chromosome (BAC) is inserted onto the Y chromosome, the SMMHC-CreERT2-Tg mice strain can only exhibit gene deletions in male mice. Additionally, there is a lack of Myh11-driven constitutive Cre mice when tamoxifen usage is a concern. We used CRISPR/Cas9-mediated homologous recombination between a donor vector carrying the CreNLSP2A or CreERT2-P2A sequence and homologous arm surrounding the translation start site of the Myh11 gene to generate Cre-knockin mice. The P2A sequence enables the simultaneous translation of Cre and endogenous proteins. Using reporter mice, we assessed Cre-mediated recombination efficiency, specificity, tamoxifen-dependent controllability, and functionality in both sexes. Both constitutive (Myh11-CreNLSP2A) and inducible (Myh11-CreERT2-P2A) Cre mice demonstrated efficient, SMC-specific, sex-independent Cre recombinase activity without confounding endogenous gene expression. Combined with recently generated BAC transgenic Myh11-CreERT2-RAD mice and the Itga8-CreERT2 mouse models, our models will help expand the research toolbox, facilitating unbiased and comprehensive research in SMCs and SMC-dependent cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pharmacology and
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ying Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Chao Xue
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Wang Z, Zhao X, Zhao G, Guo Y, Lu H, Mu W, Zhong J, Garcia-Barrio M, Zhang J, Chen YE, Chang L. PRDM16 deficiency in vascular smooth muscle cells aggravates abdominal aortic aneurysm. JCI Insight 2023; 8:e167041. [PMID: 37079380 PMCID: PMC10393233 DOI: 10.1172/jci.insight.167041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/19/2023] [Indexed: 04/21/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is usually asymptomatic until life-threatening complications occur, predominantly involving aortic rupture. Currently, no drug-based treatments are available, primarily due to limited understanding of AAA pathogenesis. The transcriptional regulator PR domain-containing protein 16 (PRDM16) is highly expressed in the aorta, but its functions in the aorta are largely unknown. By RNA-seq analysis, we found that vascular smooth muscle cell-specific (VSMC-specific) Prdm16-knockout (Prdm16SMKO) mice already showed extensive changes in the expression of genes associated with extracellular matrix (ECM) remodeling and inflammation in the abdominal aorta under normal housing conditions without any pathological stimuli. Human AAA lesions displayed lower PRDM16 expression. Periadventitial elastase application to the suprarenal region of the abdominal aorta aggravated AAA formation in Prdm16SMKO mice. During AAA development, VSMCs undergo apoptosis because of both intrinsic and environmental changes, including inflammation and ECM remodeling. Prdm16 deficiency promoted inflammation and apoptosis in VSMCs. A disintegrin and metalloproteinase 12 (ADAM12) is a gelatinase that can degrade various ECMs. We found that ADAM12 is a target of transcriptional repression by PRDM16. Adam12 knockdown reversed VSMC apoptosis induced by Prdm16 deficiency. Our study demonstrated that PRDM16 deficiency in VSMCs promoted ADAM12 expression and aggravates AAA formation, which may provide potential targets for AAA treatment.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xiangjie Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Key Laboratory of Animal Cellular and Genetics, Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, P.R. China
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, P.R. China
| | - Wenjuan Mu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Juan Zhong
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Li Y, Tao L, Xu Y, Guo R. Taxifolin ameliorates abdominal aortic aneurysm by preventing inflammation and apoptosis and extracellular matrix degradation via inactivating TLR4/NF-κB axis. Int Immunopharmacol 2023; 119:110197. [PMID: 37098322 DOI: 10.1016/j.intimp.2023.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a serious aortic disease with high mortality. Vascular smooth muscle cells (VSMCs) loss is a prominent feature of AAA. Taxifolin (TXL) is a natural antioxidant polyphenol and possesses therapeutic functions in numerous human diseases. This study aimed to investigate TXL's impact on VSMC phenotype in AAA. METHODS In vitro and in vivo of VSMC injury model was induced by angiotensin II (Ang II). The potential function of TXL on AAA was determined using Cell Counting Kit-8, flow cytometry, Western blot, quantitative reverse transcription-PCR, and enzyme-linked immunosorbent assay. Meanwhile, TXL mechanism on AAA was checked by a series of molecular experiments. Also, TXL function on AAA in vivo was further evaluated using hematoxylin-eosin staining, TUNEL assay, Picric acid-Sirius red staining and immunofluorescence assay in C57BL/6 mice. RESULTS TXL alleviated Ang II-induced VSMC injury mainly by enhancing VSMC proliferation and weakening cell apoptosis, alleviating VSMC inflammation, and reducing extracellular matrix (ECM) degradation of VSMCs. Furthermore, mechanistic studies corroborated that TXL reversed the high levels of Toll-like receptor 4 (TLR4) and p-p65/p65 induced by Ang II. Also, TXL facilitated VSMC proliferation and reduced cell apoptosis, repressed inflammation, and ECM degradation of VSMCs, while these effects were reversed by TLR4 overexpression. In vivo studies further confirmed that TXL owned the function of alleviating AAA, such as alleviating collagen fiber hyperplasia and inflammatory cell infiltration in AAA mice, and repressing inflammation and ECM degradation. CONCLUSION TXL protected VSMCs against Ang II-induced injury through activating TLR4/noncanonical nuclear factor-kappaB(NF-κB).
Collapse
Affiliation(s)
- Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Lingyun Tao
- Shanghai Laboratory Animal Research Center, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China.
| |
Collapse
|
16
|
Dai M, Zhu X, Zeng S, Liu Q, Hu R, Huang L, Wang Y, Deng J, Yu Q. Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype switch and endothelial cell dysfunction. Cell Cycle 2023; 22:450-463. [PMID: 36196460 PMCID: PMC9879174 DOI: 10.1080/15384101.2022.2124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 09/10/2022] [Indexed: 01/29/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder greatly threatening life of the elderly population. Dexmedetomidine (DEX), an α2-adrenergic receptor agonist, has been shown to suppress AAA development. Nevertheless, the signaling pathways that might be mediated by DEX in AAA has not been clarified. Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) were treated with Angiotensin II (Ang II) to mimic AAA in vitro. BrdU, wound healing, and Transwell assays were utilized for measuring VSMC proliferation and migration. Western blotting was used for evaluating protein levels of contractile VSMC markers, collagens and matrix metalloproteinases (MMPs) in VSMCs as well as apoptosis- and HMGB1/TLR4/NF-κB signaling-related markers in ECs. Cell adhesion molecule expression and monocyte-endothelial adhesion were assessed by immunofluorescence staining and adhesion assays. Flow cytometry was implemented for analyzing EC apoptosis. Hematoxylin-eosin staining and ELISA were used to detect the effect of DEX in vivo. In this study, DEX inhibited Ang II-evoked VSMC phenotype switch and extracellular matrix degradation. DEX suppressed the inflammatory response and apoptosis of ECs induced by Ang II. DEX inhibited HMGB1/TLR4/NF-κB signaling pathway in Ang II-treated ECs. DEX attenuated Ang II-induced AAA and inflammation in mice. Overall, DEX ameliorates Ang II-induced VSMC phenotype switch, and inactivates HMGB1/TLR4/NF-κB signaling pathway to alleviate Ang II-induced EC dysfunction.
Collapse
Affiliation(s)
- Min Dai
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohong Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Simin Zeng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruilin Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lianghui Huang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Deng
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Yu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Katz AE, Yang ML, Levin MG, Tcheandjieu C, Mathis M, Hunker K, Blackburn S, Eliason JL, Coleman DM, Fendrikova-Mahlay N, Gornik HL, Karmakar M, Hill H, Xu C, Zawistowski M, Brummett CM, Zoellner S, Zhou X, O'Donnell CJ, Douglas JA, Assimes TL, Tsao PS, Li JZ, Damrauer SM, Stanley JC, Ganesh SK. Fibromuscular Dysplasia and Abdominal Aortic Aneurysms Are Dimorphic Sex-Specific Diseases With Shared Complex Genetic Architecture. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003496. [PMID: 36374587 PMCID: PMC9772208 DOI: 10.1161/circgen.121.003496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The risk of arterial diseases may be elevated among family members of individuals having multifocal fibromuscular dysplasia (FMD). We sought to investigate the risk of arterial diseases in families of individuals with FMD. METHODS Family histories for 73 probands with FMD were obtained, which included an analysis of 463 total first-degree relatives focusing on FMD and related arterial disorders. A polygenic risk score for FMD (PRSFMD) was constructed from prior genome-wide association findings of 584 FMD cases and 7139 controls and evaluated for association with an abdominal aortic aneurysm (AAA) in a cohort of 9693 AAA cases and 294 049 controls. A previously published PRSAAA was also assessed among the FMD cases and controls. RESULTS Of all first degree relatives of probands, 9.3% were diagnosed with FMD, aneurysms, and dissections. Aneurysmal disease occurred in 60.5% of affected relatives and 5.6% of all relatives. Among 227 female first-degree relatives of probands, 4.8% (11) had FMD, representing a relative risk (RR)FMD of 1.5 ([95% CI, 0.75-2.8]; P=0.19) compared with the estimated population prevalence of 3.3%, though not of statistical significance. Of all fathers of FMD probands, 11% had AAAs resulting in a RRAAA of 2.3 ([95% CI, 1.12-4.6]; P=0.014) compared with population estimates. The PRSFMD was found to be associated with an AAA (odds ratio, 1.03 [95% CI, 1.01-1.05]; P=2.6×10-3), and the PRSAAA was found to be associated with FMD (odds ratio, 1.53 [95% CI, 1.2-1.9]; P=9.0×10-5) as well. CONCLUSIONS FMD and AAAs seem to be sex-dimorphic manifestations of a heritable arterial disease with a partially shared complex genetic architecture. Excess risk of having an AAA according to a family history of FMD may justify screening in family members of individuals having FMD.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Medical Genomics & Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (A.E.K.)
| | - Min-Lee Yang
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
- Department of Computational Medicine and Bioinformatics (M.-L.Y.), University of Michigan, Ann Arbor
| | - Michael G Levin
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Division of Cardiovascular Medicine, Department of Medicine (M.G.L.)
| | - Catherine Tcheandjieu
- Gladstone Institute of data science and Biotechnology, Gladstone Institutes; and Department of epidemiology and biostatistics, University of California at San Francisco, CA. (C.T.)
| | - Michael Mathis
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Kristina Hunker
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Susan Blackburn
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Jonathan L Eliason
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Dawn M Coleman
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | | | - Heather L Gornik
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (H.L.G.)
| | - Monita Karmakar
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Hannah Hill
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Chang Xu
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Chad M Brummett
- Department of Anesthesiology, Michigan Medicine (M.M., C.M.B.), University of Michigan, Ann Arbor
| | - Sebastian Zoellner
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor (C.X., M.Z., S.Z., X.Z.)
| | - Christopher J O'Donnell
- VA Boston Healthcare System (C.O.)
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (C.O.)
| | - Julie A Douglas
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Themistocles L Assimes
- VA Palo Alto Health Care System (T.L.A., P.S.T.)
- Division of Cardiovascular Medicine, Department of Medicine (T.L.A.), Stanford University School of Medicine, CA
| | | | - Jun Z Li
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| | - Scott M Damrauer
- Corporal Michael J. Crescenz Philadelphia VA Medical Center (M.G.L., S.M.D.)
- Department of Surgery and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia (S.M.D.)
| | - James C Stanley
- Department of Surgery, Section of Vascular Surgery (S.B., J.L.E., D.M.C., M.K., J.C.S.), University of Michigan, Ann Arbor
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine (A.E.K., M.-L.Y., K.H., H.H., S.K.G.), University of Michigan, Ann Arbor
- Department of Human Genetics (A.E.K., M.-L.Y., K.H., H.H., J.A.D., J.Z.L., S.K.G.), University of Michigan, Ann Arbor
| |
Collapse
|
18
|
Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022; 132:e158309. [PMID: 36066968 PMCID: PMC9621131 DOI: 10.1172/jci158309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 09/01/2022] [Indexed: 01/19/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Haocheng Lu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ziyi Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Huilun Wang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Wenying Liang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yuhao Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Oren Rom
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Science Center–Shreveport, Shreveport, Louisiana, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Minerva T. Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Long Noncoding RNA SBF2-AS1 Promotes Abdominal Aortic Aneurysm Formation through the miRNA-520f-3p/SMARCD1 Axis. DISEASE MARKERS 2022; 2022:4782361. [PMID: 35968497 PMCID: PMC9374557 DOI: 10.1155/2022/4782361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic vascular inflammatory disease. The regulatory mechanisms during AAA formation remain unclear. Bone marrow stem cells (BMSCs) are pluripotent cells capable of regulating the progression of various diseases by delivering exosomes and exosomal lncRNAs. In this study, we investigated its function in AAA by isolating BMSC exosome-derived lncRNA SBF2-AS1. The results showed that BF2-AS1 could be transferred to vascular smooth muscle cells (VSMCs) and human aortic VSMCs (HASMCs) via BMSC-derived exosomes. Depletion of SBF2-AS1 enhanced the cell viability and proliferation of VSMCs. Conversely, SBF2-AS1 knockdown inhibited VSMC apoptosis. Caspase-3 activity was inhibited by depletion of SBF2-AS1, whereas overexpression of SBF2-AS1 in VSMC promoted Caspase-3 activity. SBF2-AS1 enhances SMARCD1 expression by forming miR-520f-3p in VSMC and HASMC. Overexpression of SMARCD1 or miR-520f-3p inhibitor reversed cell viability and caspase-3 activity mediated by SBF2-AS1 depletion in VSMC and HASMC. Therefore, BMSC exosome-derived SBF2-AS1 promotes AAA formation through the miRNA-520f-3p/SMARCD1 axis. Targeting SBF2-AS1 could serve as a promising therapeutic strategy for AAA.
Collapse
|
20
|
Li Z, Cong X, Kong W. Matricellular proteins: Potential biomarkers and mechanistic factors in aortic aneurysms. J Mol Cell Cardiol 2022; 169:41-56. [DOI: 10.1016/j.yjmcc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
21
|
Liang W, Lu H, Sun J, Zhao G, Wang H, Guo Y, Eitzman D, Chen YE, Fan Y, Zhang J. KLF11 Protects against Venous Thrombosis via Suppressing Tissue Factor Expression. Thromb Haemost 2022; 122:777-788. [PMID: 34428834 PMCID: PMC10468287 DOI: 10.1055/s-0041-1735191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Krüppel-like factors (KLFs) play essential roles in multiple biological functions, including maintaining vascular homeostasis. KLF11, a causative gene for maturity-onset diabetes of the young type 7, inhibits endothelial activation and protects against stroke. However, the role of KLF11 in venous thrombosis remains to be explored. Utilizing stasis-induced murine deep vein thrombosis (DVT) model and cultured endothelial cells (ECs), we identified an increase of KLF11 expression under prothrombotic conditions both in vivo and in vitro. The expression change of thrombosis-related genes was determined by utilizing gain- and loss-of-function approaches to alter KLF11 expression in ECs. Among these genes, KLF11 significantly downregulated tumor necrosis factor-α (TNF-α)-induced tissue factor (TF) gene transcription. Using reporter gene assay, chromatin immunoprecipitation assay, and co-immunoprecipitation, we revealed that KLF11 could reduce TNF-α-induced binding of early growth response 1 (EGR1) to TF gene promoter in ECs. In addition, we demonstrated that conventional Klf11 knockout mice were more susceptible to developing stasis-induced DVT. These results suggest that under prothrombotic conditions, KLF11 downregulates TF gene transcription via inhibition of EGR1 in ECs. In conclusion, KLF11 protects against venous thrombosis, constituting a potential molecular target for treating thrombosis.
Collapse
Affiliation(s)
- Wenying Liang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, Unites States
| | - Haocheng Lu
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Jinjian Sun
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Guizhen Zhao
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Huilun Wang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, Unites States
| | - Yanhong Guo
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Daniel Eitzman
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Y Eugene Chen
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| | - Yanbo Fan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, Unites States
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, Unites States
| | - Jifeng Zhang
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, United States
| |
Collapse
|
22
|
Establishment of a Combined Diagnostic Model of Abdominal Aortic Aneurysm with Random Forest and Artificial Neural Network. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7173972. [PMID: 35299890 PMCID: PMC8922147 DOI: 10.1155/2022/7173972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/22/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives. Abdominal aortic aneurysm (AAA), a disease with high mortality, is limited by the current diagnostic methods in the early screening. This study aimed to screen novel and significant biomarkers and construct a diagnostic model for AAA by using a novel machine learning method, i.e., an ensemble of the random forest (RF) algorithm and artificial neural network (ANN). Methods and Results. Through a search of the Gene Expression Omnibus (GEO) database, two large-sample gene expression datasets (GSE57691 and GSE47472) were downloaded and preprocessed. Differentially expressed genes (DEGs) in GSE57691 were identified by R software, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Essential metabolic pathways related to positive regulation of cell death and NAD binding were found. Then, RF was used to identify key genes from the DEGs, and an AAA diagnostic model was established by ANN. A transcription factor (TF) regulatory network of key genes related to angiogenesis and endothelial migration was constructed. Finally, a validation dataset was used to validate the model and the area under the receiver operating characteristic curve (AUC) value was high. Conclusion. Potential AAA-associated gene biomarkers were identified by RF, and a novel early diagnostic model of AAA was established by ANN. The AUC indicated that the diagnostic model had a highly satisfactory diagnostic performance. In conclusion, this study will provide a promising theoretical basis for further clinical and experimental studies.
Collapse
|
23
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
24
|
Zhang D, Lu D, Xu R, Zhai S, Zhang K. Inhibition of XIST attenuates abdominal aortic aneurysm in mice by regulating apoptosis of vascular smooth muscle cells through miR-762/MAP2K4 axis. Microvasc Res 2022; 140:104299. [PMID: 34942175 DOI: 10.1016/j.mvr.2021.104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common chronic aortic degenerative disease. Long non-coding RNA X-inactive specific transcript (XIST) is associated with the progression of AAA, while the underlying mechanism is still unclear. We investigated the functional role of XIST in AAA. AAA mouse model was established by administration of Angiotensin II (Ang II). Primary mouse vascular smooth muscle cells (VSMCs) were separated from the abdominal aorta of Ang II-induced AAA mice, and then treated with Ang II. XIST was highly expressed in Ang II-treated VSMCs. Cell proliferation ability was decreased and apoptosis was increased in VSMCs following Ang II treatment. XIST knockdown reversed the impact of Ang II on cell proliferation and apoptosis in VSMCs. XIST promoted mitogen-activated protein kinase kinase 4 (MAP2K4) expression by sponging miR-762. XIST overexpression suppressed cell proliferation and apoptosis of Ang II-treated VSMCs by regulating miR-762/MAP2K4 axis. Finally, Ang II-induced AAA mouse model was established to verify the function of XIST in AAA. Inhibition of XIST significantly attenuated the pathological changes of abdominal aorta tissues in Ang II-induced mice. The expression of miR-762 was inhibited, and MAP2K4 expression was enhanced by XIST knockdown in the abdominal aorta tissues of AAA mice. In conclusion, these data demonstrate that inhibition of XIST attenuates AAA in mice, which attributes to inhibit apoptosis of VSMCs by regulating miR-762/MAP2K4 axis. Thus, this study highlights a novel ceRNA circuitry involving key regulators in the pathogenesis of AAA.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Apoptosis
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Dongbin Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Danghui Lu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Rutao Xu
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Shuiting Zhai
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China
| | - Kewei Zhang
- Department of Vascular Surgery, Henan Provincial People's Hospital, China; Zhengzhou University People's Hospital, China; Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, Henan, China.
| |
Collapse
|
25
|
Chen Y, Zhao M, Zhang L, Shen D, Xu X, Yi Q, Tang L. SNF5, a core subunit of SWI/SNF complex, regulates melanoma cancer cell growth, metastasis, and immune escape in response to matrix stiffness. Transl Oncol 2022; 17:101335. [PMID: 34999540 PMCID: PMC8749166 DOI: 10.1016/j.tranon.2021.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Increased stiffness of the extracellular matrix is an important hallmark of melanoma development and progression, but its regulatory role and related mechanisms remain unclear. We adapted polydimethylsiloxane (PDMS)-micropillar-based matrix platform and investigated the effect of matrix stiffness on the proliferation, epithelial-mesenchymal transition (EMT), and immune escape of melanoma cells. We observed a stiff matrix enhanced cell proliferation, EMT, and immune escape of A375 cells. Furthermore, the expression of SNF5 on the stiffer matrix was higher than that on the softer matrix. Next, we investigated whether SNF5 is an important transducer in response to matrix stiffness. Our results revealed that knockdown of SNF5 significantly decreased stiff matrix-induced activation of cell proliferation, EMT and immune escape. Meanwhile, the overexpression of SNF5 showed its ability to increase cell proliferation, invasion and immune escape by activating the STAT-3 pathway in vitro. Furthermore, SNF5 deficiency elevated the level of tumor-infiltrating CD8+T cells and decreased the number of PD-L1 positive cells in vivo. Together, our findings suggested that stiffer substrate enhanced melanoma development by upregulating SNF5 expression, and SNF5 is a key mediator of stiffer matrix-induced immune evasion of melanoma cancer cells.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Meilian Zhao
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Lu Zhang
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Dongliang Shen
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministlry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
26
|
Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules 2022; 12:biom12020339. [PMID: 35204838 PMCID: PMC8869425 DOI: 10.3390/biom12020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Aortic aneurysms and dissections are life-threatening conditions that have a high risk for lethal bleeding and organ malperfusion. Many studies have investigated the molecular basis of these diseases using mouse models. In mice, ex vivo, in situ, and ultrasound imaging are major approaches to evaluate aortic diameters, a common parameter to determine the severity of aortic aneurysms. However, accurate evaluations of aortic dimensions by these imaging approaches could be challenging due to pathological features of aortic aneurysms. Currently, there is no standardized mode to assess aortic dissections in mice. It is important to understand the characteristics of each approach for reliable evaluation of aortic dilatations. In this review, we summarize imaging techniques used for aortic visualization in recent mouse studies and discuss their pros and cons. We also provide suggestions to facilitate the visualization of mouse aortas.
Collapse
|
27
|
Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194801. [PMID: 35217218 PMCID: PMC8948540 DOI: 10.1016/j.bbagrm.2022.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.
Collapse
|
28
|
Li Y, Lv M, Lu M, Guan H. miR-124a Involves in the Regulation of Wnt/ β-Catenin and P53 Pathways to Inhibit Abdominal Aortic Aneurysm via Targeting BRD4. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9241959. [PMID: 35096137 PMCID: PMC8799344 DOI: 10.1155/2022/9241959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) belongs to a progressive, gradual aortic rupture, which can lead to death without surgical intervention. The key factors regulating the occurrence and progress of AAA are not clear. Increasing studies have indicated that microRNA (miRNA) plays an important role in cancer development. miR-124a serves as a tumor suppressor in several neoplasms, and its upregulation can greatly inhibit the life activities such as malignant growth and migration of tumor cells. AIM The objective of this study is to explore the association of miR-124a with AAA and to uncover the regulated mechanism of miR-124a on AAA progression. METHODS The specimens from the AAA patients were used for observing the miR-124a expression, and human aortic endothelial cells (hAoECs) were treated with AngII to establish the AAA cell models. The quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), CCK-8, transwell assay, flow cytometry assay, and western blot were conducted to unearth the regulation mechanism of miR-124a on AAA, and the dual-luciferase reporter assay was employed to investigate the downstream target of miR-124a. RESULTS miR-124a was significantly downregulated in the whole blood of the patients, and the decreased miR-124a was also observed in AAA cell models. Overexpressing miR-124a could effectively inhibit the proliferation and migration and promote the apoptosis of the AAA cells. The dual-luciferase reporter assay confirmed that BRD4 was a downstream target of miR-124a, and BRD4 upregulation could obviously reverse the effects of miR-124a on the phenotype of AAA cells. Moreover, it was found that miR-124a could regulate the activities of Wnt/β-catenin and P53 pathways via targeting the BRD4. CONCLUSION Our data suggested that miR-124a could regulate the activities of Wnt/β-catenin and P53 to suppress the AAA progression via targeting the BRD4.
Collapse
Affiliation(s)
- Yunhui Li
- Department of Vascular Surgery, Jinan People's Hospital Affiliated to Shandong First Medical University, China
| | - Meifeng Lv
- Pharmacy Department of Jinan Second Maternal and Child Health Hospital, China
| | - Mingshu Lu
- Department of Vascular Surgery, Jinan People's Hospital Affiliated to Shandong First Medical University, China
| | - Hongliang Guan
- Department of Vascular Surgery, Shandong Shanxian Central Hospital, China
| |
Collapse
|
29
|
Wang P, Wang W, Peng X, Ruan F, Yang S. Protective effect of vasostatin-1 plasmid-like nanoparticles on aortic aneurysm and its mechanism. Bioengineered 2022; 13:544-559. [PMID: 34968165 PMCID: PMC8805933 DOI: 10.1080/21655979.2021.2009978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
Vasostatin 1 (VS-1) plays an important role in the regulation of various tissue injury and repair processes, but its role in aortic aneurysm remains unclear. The plasmid-like nanoparticles containing the vasostatin-1 gene Pul-PGEA-pCas-sgVs-1 were constructed, and their guarantee, safety, hemolysis, and particle size were analyzed. Eighty-four eight-week-old male ApoE-mice were randomly divided into blank group (without any treatment), model group (Ang II aortic aneurysm model + tail injection of PBS), control group (modeling + tail injection of Pul-PGEA-pCas9), and experimental group (modeling + tail injection of Pul-PGEA-pCas-sgVs-1), with 21 rats in each group. The incidence, mortality, and maximum diameter of abdominal aortic aneurysm (AAA) and the contents of high sensitivity C-reactive protein (HS-CRP), soluble intercellular adhesion molecule-1 (ICAM-1), soluble vascular cell adhesion molecule-1 (VCAM-1), and TNF-a in serum were compared in different groups of mice. The results showed that Pul-PGEA-pCas-sgVs-1 had good biosafety and transfection ability. The maximum diameter of abdominal aorta, incidence of abdominal aortic aneurysm, mortality, and the expression levels of HS-CRP, ICAM-1, VCAM-1, and TNF-a in the experimental group were lower than those in the model group (P< 0.05). These results indicated that the plasmid-like nanoparticles Pul-PGEA-pCas-sgVs-1 can inhibit the development of aorta by down-regulating the expression of inflammatory factors, which played a good protective role on the aorta.
Collapse
Affiliation(s)
- Pingshan Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Wei Wang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Xingxing Peng
- Department of Cardiovascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Fugui Ruan
- Department of Cardiovascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Shiyao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| |
Collapse
|
30
|
Lu H, Du W, Ren L, Hamblin MH, Becker RC, Chen YE, Fan Y. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J Am Heart Assoc 2021; 10:e023601. [PMID: 34796717 PMCID: PMC9075263 DOI: 10.1161/jaha.121.023601] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aortic aneurysm, including thoracic aortic aneurysm and abdominal aortic aneurysm, is the second most prevalent aortic disease following atherosclerosis, representing the ninth-leading cause of death globally. Open surgery and endovascular procedures are the major treatments for aortic aneurysm. Typically, thoracic aortic aneurysm has a more robust genetic background than abdominal aortic aneurysm. Abdominal aortic aneurysm shares many features with thoracic aortic aneurysm, including loss of vascular smooth muscle cells (VSMCs), extracellular matrix degradation and inflammation. Although there are limitations to perfectly recapitulating all features of human aortic aneurysm, experimental models provide valuable tools to understand the molecular mechanisms and test novel therapies before human clinical trials. Among the cell types involved in aortic aneurysm development, VSMC dysfunction correlates with loss of aortic wall structural integrity. Here, we discuss the role of VSMCs in aortic aneurysm development. The loss of VSMCs, VSMC phenotypic switching, secretion of inflammatory cytokines, increased matrix metalloproteinase activity, elevated reactive oxygen species, defective autophagy, and increased senescence contribute to aortic aneurysm development. Further studies on aortic aneurysm pathogenesis and elucidation of the underlying signaling pathways are necessary to identify more novel targets for treating this prevalent and clinical impactful disease.
Collapse
Affiliation(s)
- Haocheng Lu
- Department of Internal MedicineCardiovascular CenterUniversity of Michigan Medical CenterAnn ArborMI
| | - Wa Du
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Lu Ren
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Milton H. Hamblin
- Department of PharmacologyTulane University School of MedicineNew OrleansLA
| | - Richard C. Becker
- Division of Cardiovascular Health and DiseaseDepartment of Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Y. Eugene Chen
- Department of Internal MedicineCardiovascular CenterUniversity of Michigan Medical CenterAnn ArborMI
| | - Yanbo Fan
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnatiOH
- Division of Cardiovascular Health and DiseaseDepartment of Internal MedicineUniversity of Cincinnati College of MedicineCincinnatiOH
| |
Collapse
|
31
|
Huang Y, Ren L, Li J, Zou H. Long non-coding RNA PVT1/microRNA miR-3127-5p/NCK-associated protein 1-like axis participates in the pathogenesis of abdominal aortic aneurysm by regulating vascular smooth muscle cells. Bioengineered 2021; 12:12583-12596. [PMID: 34898354 PMCID: PMC8810122 DOI: 10.1080/21655979.2021.2010384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The long non-coding RNA plasmacytoma variant translocation 1 (lncRNA PVT1) has been implicated in the progression of abdominal aortic aneurysms (AAA). However, the detailed mechanism requires further analysis. Our study was aimed at interrogating the mechanism of PVT1 in an H2O2-induced AAA model in vitro. The expression of lncRNA PVT1, microRNA miR-3127-5p, and NCK-associated protein 1-like (NCKAP1L) was examined in AAA tissues and H2O2-treated vascular smooth muscle cells (VSMCs). Cell proliferation was assayed using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridine (BrdU) assays. Meanwhile, 5-Ethynyl-2'-deoxyuridine (EdU) staining was performed to assess cell apoptosis and caspase-3 activity. IL-1β and caspase-1 expression was also assessed using Western blotting to determine inflammasome activation in H2O2-treated VSMCs. Luciferase reporter assays addressed the possible interaction between miR-3127-5p and PVT1 or NCKAP1L, which was predicted by starBase analysis. PVT1 and NCKAP1L expression was elevated in AAA tissues and induced the AAA model in vitro, whereas miR-3127-5p showed the opposite trend. Functionally, PVT1 silencing promoted cell proliferation and reduced the apoptotic rate and inflammasome activation in H2O2-treated VSMCs. Mechanical investigation demonstrated that PVT1 acted as a sponge of miR-3127-5p to modulate NCKAP1L expression, resulting in suppression of VSMC proliferation, induction of apoptosis, and activation of inflammation. In conclusion, PVT1 participates in AAA progression through the miR-3127-5p/NCKAP1L axis and may be a promising biosignature and therapeutic target for AAA.
Collapse
Affiliation(s)
- Youjin Huang
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Li Ren
- Department of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Jiajia Li
- Intensive Care Unit, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Haibo Zou
- Department of Hepatobiliary Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Kumar S. SWI/SNF (BAF) complexes: From framework to a functional role in endothelial mechanotransduction. CURRENT TOPICS IN MEMBRANES 2021; 87:171-198. [PMID: 34696885 DOI: 10.1016/bs.ctm.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Endothelial cells (ECs) are constantly subjected to an array of mechanical cues, especially shear stress, due to their luminal placement in the blood vessels. Blood flow can regulate various aspects of endothelial biology and pathophysiology by regulating the endothelial processes at the transcriptomic, proteomic, miRNomic, metabolomics, and epigenomic levels. ECs sense, respond, and adapt to altered blood flow patterns and shear profiles by specialized mechanisms of mechanosensing and mechanotransduction, resulting in qualitative and quantitative differences in their gene expression. Chromatin-regulatory proteins can regulate transcriptional activation by modifying the organization of nucleosomes at promoters, enhancers, silencers, insulators, and locus control regions. Recent research efforts have illustrated that SWI/SNF (SWItch/Sucrose Non-Fermentable) or BRG1/BRM-associated factor (BAF) complex regulates DNA accessibility and chromatin structure. Since the discovery, the gene-regulatory mechanisms of the BAF complex associated with chromatin remodeling have been intensively studied to investigate its role in diverse disease phenotypes. Thus far, it is evident that (1) the SWI/SNF complex broadly regulates the activity of transcriptional enhancers to control lineage-specific differentiation and (2) mutations in the BAF complex proteins lead to developmental disorders and cancers. It is unclear if blood flow can modulate the activity of SWI/SNF complex to regulate EC differentiation and reprogramming. This review emphasizes the integrative role of SWI/SNF complex from a structural and functional standpoint with a special reference to cardiovascular diseases (CVDs). The review also highlights how regulation of this complex by blood flow can lead to the discovery of new therapeutic interventions for the treatment of endothelial dysfunction in vascular diseases.
Collapse
Affiliation(s)
- Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|