1
|
Zelko IN, Hussain A, Malovichko MV, Wickramasinghe N, Srivastava S. Benzene metabolites increase vascular permeability by activating heat shock proteins and Rho GTPases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626801. [PMID: 39677674 PMCID: PMC11643022 DOI: 10.1101/2024.12.04.626801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Benzene is a ubiquitous environmental and occupational pollutant abundant in household products, petrochemicals, and cigarette smoke. It is also a well-known carcinogen and hematopoietic toxin. Population-based studies indicate an increased risk of heart failure in subjects exposed to inhaled benzene, which coincides with the infiltration of immune cells into the myocardium. However, the mechanisms of benzene-induced cardiovascular disease remain unknown. Our data suggests that benzene metabolites trans,trans-muconaldehyde (MA), and hydroquinone (HQ) propagate endothelial activation and apoptosis analyzed by endothelial-specific microparticles in C57BL/6J mice plasma. Subcutaneous injections of MA and HQ increased vascular permeability by 1.54 fold and 1.27 fold correspondingly. In addition, the exposure of primary cardiac microvascular endothelial cells to MA increased vascular permeability detected by transendothelial monolayer resistance and by fluorescently labeled dextrans diffusion. The bulk RNA sequencing of endothelial cells exposed to MA for 2, 6, and 24 hours showed MA-dependent upregulation of heat shock-related pathways at 2 and 6 hours, dysregulation of GTPases at 6 hours, and altered cytoskeleton organization at 24 hours of exposure. We found that the HSP70 protein induced by MA in endothelial cells is colocalized with F-actin foci. HSP70 inhibitor 17AAG and HSP90 inhibitor JG98 attenuated MA-induced endothelial permeability, while HSP activator TRC enhanced endothelial leakage. Moreover, MA induced Rac1 GTPase activity, while Rho GTPase inhibitor Y-27632 attenuated MA-induced endothelial permeability. We showed that benzene metabolites compromised the endothelial barrier by altering HSP- and GTPase-related signaling pathways.
Collapse
Affiliation(s)
- Igor N. Zelko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Ahtesham Hussain
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V. Malovichko
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Nalinie Wickramasinghe
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center, University of Louisville, Louisville, KY 40202
- Envirome Institute, University of Louisville, Louisville, KY 40202
- Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
2
|
Gendy N, Brown L, Staunton MK, Garg K, Hernandez Garcilazo N, Qian L, Yamamoto Y, Ugwuowo U, Obeid W, Al-Qusairi L, Bostom A, Mansour SG. The Role of Angiopoietins in Cardiovascular Outcomes of Kidney Transplant Recipients: An Ancillary Study from the FAVORIT. Am J Nephrol 2024; 55:597-606. [PMID: 38735283 PMCID: PMC11444892 DOI: 10.1159/000538878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Kidney transplant recipients (KTRs) have increased risk of cardiovascular disease (CVD) mortality. We investigated vascular biomarkers, angiopoietin-1, and angiopoietin-2 (angpt-1, -2), in CVD development in KTRs. METHODS This ancillary study from the FAVORIT evaluates the associations of baseline plasma angpt-1, -2 levels in CVD development (primary outcome) and graft failure (GF) and death (secondary outcomes) in 2000 deceased donor KTRs. We used Cox regression to analyze the association of biomarker quartiles with outcomes. We adjusted for demographic; CVD- and transplant-related variables; medications; urine albumin-to-creatinine ratio; and randomization status. We calculated areas under the curves (AUCs) to predict CVD or death, and GF or death by incorporating biomarkers alongside clinical variables. RESULTS Participants' median age was 52 IQR [45, 59] years: with 37% women and 73% identifying as white. Median time from transplantation was 3.99 IQR [1.58, 7.93] years and to CVD development was 2.54 IQR [1.11-3.80] years. Quartiles of angpt-1 were not associated with outcomes. Whereas higher levels of angpt-2 (quartile 4) were associated with about 2 times the risk of CVD, GF, and death (aHR 1.85 [1.25-2.73], p < 0.01; 2.24 [1.36-3.70)], p < 0.01; 2.30 [1.48-3.58], p < 0.01, respectively) as compared to quartile 1. Adding angiopoietins to preexisting clinical variables improved prediction of CVD or death (AUC improved from 0.70 to 0.72, p = 0.005) and GF or death (AUC improved from 0.68 to 0.70, p = 0.005). Angpt-2 may partially explain the increased risk of future CVD in KTRs. Further research is needed to assess the utility of using angiopoietins in the clinical care of KTRs. CONCLUSION Angpt-2 may be a useful prognostic tool for future CVD in KTRs. Combining angiopoietins with clinical markers may tailor follow-up to mitigate CVD risk.
Collapse
Affiliation(s)
- Natalie Gendy
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA,
- Schulich School of Medicine, Western University, London, Ontario, Canada,
| | - Liam Brown
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Mary Kate Staunton
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Kanika Garg
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | | | - Long Qian
- Section of Nephrology, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Yu Yamamoto
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Ugochukwu Ugwuowo
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
| | - Wassim Obeid
- Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Andrew Bostom
- Department of Family Medicine, Brown University, Providence, Rhode Island, USA
| | - Sherry G Mansour
- Clinical and Translational Research Accelerator, New Haven, Connecticut, USA
- Section of Nephrology, Yale New Haven Hospital, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Su Q, Zhao Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. A Novel ARNT-Dependent HIF-2α Signaling as a Protective Mechanism for Cardiac Microvascular Barrier Integrity and Heart Function Post-Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.12.532316. [PMID: 36993497 PMCID: PMC10054928 DOI: 10.1101/2023.03.12.532316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) significantly compromises the integrity of the cardiac microvascular endothelial barrier, leading to enhanced leakage and inflammation that contribute to the progression of heart failure. While HIF2α is highly expressed in cardiac endothelial cells (ECs) under hypoxic conditions, its role in regulating microvascular endothelial barrier function during MI is not well understood. In this study, we utilized mice with a cardiac-specific deletion of HIF2α, generated through an inducible Cre (Cdh5Cre-ERT2) recombinase system. These mice exhibited no apparent phenotype under normal conditions. However, following left anterior descending (LAD) artery ligation-induced MI, they showed increased mortality associated with enhanced cardiac vascular leakage, inflammation, worsened cardiac function, and exacerbated heart remodeling. These outcomes suggest a protective role for endothelial HIF2α in response to cardiac ischemia. Parallel investigations in human cardiac microvascular endothelial cells (CMVECs) revealed that loss of ecHif2α led to diminished endothelial barrier function, characterized by reduced tight-junction protein levels and increased cell death, along with elevated expression of IL6 and other inflammatory markers. These effects were substantially reversed by overexpressing ARNT, a critical dimerization partner for HIF2α during hypoxia. Additionally, ARNT deletion also led to increased CMVEC permeability. Interestingly, ARNT, rather than HIF2α itself, directly binds to the IL6 promoter to suppress IL6 expression. Our findings demonstrate the critical role of endothelial HIF2α in response to MI and identify the HIF2α/ARNT axis as a transcriptional repressor, offering novel insights for developing therapeutic strategies against heart failure following MI.
Collapse
|
4
|
Jacques D, Bkaily G. Taurine Prevents Angiotensin II-Induced Human Endocardial Endothelium Morphological Remodeling and the Increase in Cytosolic and Nuclear Calcium and ROS. Nutrients 2024; 16:745. [PMID: 38474873 DOI: 10.3390/nu16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
5
|
Rouault P, Guimbal S, Cornuault L, Bourguignon C, Foussard N, Alzieu P, Choveau F, Benoist D, Chapouly C, Gadeau AP, Couffinhal T, Renault MA. Thrombosis in the Coronary Microvasculature Impairs Cardiac Relaxation and Induces Diastolic Dysfunction. Arterioscler Thromb Vasc Biol 2024; 44:e1-e18. [PMID: 38031839 DOI: 10.1161/atvbaha.123.320040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is proposed to be caused by endothelial dysfunction in cardiac microvessels. Our goal was to identify molecular and cellular mechanisms underlying the development of cardiac microvessel disease and diastolic dysfunction in the setting of type 2 diabetes. METHODS We used Leprdb/db (leptin receptor-deficient) female mice as a model of type 2 diabetes and heart failure with preserved ejection fraction and identified Hhipl1 (hedgehog interacting protein-like 1), which encodes for a decoy receptor for HH (hedgehog) ligands as a gene upregulated in the cardiac vascular fraction of diseased mice. RESULTS We then used Dhh (desert HH)-deficient mice to investigate the functional consequences of impaired HH signaling in the adult heart. We found that Dhh-deficient mice displayed increased end-diastolic pressure while left ventricular ejection fraction was comparable to that of control mice. This phenotype was associated with a reduced exercise tolerance in the treadmill test, suggesting that Dhh-deficient mice do present heart failure. At molecular and cellular levels, impaired cardiac relaxation in DhhECKO mice was associated with a significantly decreased PLN (phospholamban) phosphorylation on Thr17 (threonine 17) and an alteration of sarcomeric shortening ex vivo. Besides, as expected, Dhh-deficient mice exhibited phenotypic changes in their cardiac microvessels including a prominent prothrombotic phenotype. Importantly, aspirin therapy prevented the occurrence of both diastolic dysfunction and exercise intolerance in these mice. To confirm the critical role of thrombosis in the pathophysiology of diastolic dysfunction, we verified Leprdb/db also displays increased cardiac microvessel thrombosis. Moreover, consistently, with Dhh-deficient mice, we found that aspirin treatment decreased end-diastolic pressure and improved exercise tolerance in Leprdb/db mice. CONCLUSIONS Altogether, these results demonstrate that microvessel thrombosis may participate in the pathophysiology of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Paul Rouault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Sarah Guimbal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Lauriane Cornuault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Célia Bourguignon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Ninon Foussard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Philippe Alzieu
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Frank Choveau
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - David Benoist
- INSERM U1045, CRCTB (Centre de recherche cardio-thoracique de Bordeaux), IHU Liryc (Institut Hospitalo Universitaire des maladies du rythme cardiaque), University of Bordeaux, France (F.C., D.B.)
| | - Candice Chapouly
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Alain-Pierre Gadeau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Thierry Couffinhal
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| | - Marie-Ange Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1034, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France (P.R., S.G., L.C., C.B., N.F., P.A., C.C., A.-P.G., T.C., M.-A.R.)
| |
Collapse
|
6
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
7
|
Zalivina I, Barwari T, Yin X, Langley SR, Barallobre-Barreiro J, Wakimoto H, Zampetaki A, Mayr M, Avkiran M, Eminaga S. Inhibition of miR-199a-3p in a murine hypertrophic cardiomyopathy (HCM) model attenuates fibrotic remodeling. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100056. [PMID: 38143961 PMCID: PMC10739604 DOI: 10.1016/j.jmccpl.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Background Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.
Collapse
Affiliation(s)
- Irina Zalivina
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Temo Barwari
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Xiaoke Yin
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Sarah R. Langley
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Zampetaki
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Manuel Mayr
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Metin Avkiran
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Seda Eminaga
- King's College London, British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
8
|
Xu H, Wang Z, Wang Y, Pan S, Zhao W, Chen M, Chen X, Tao T, Ma L, Ni Y, Li W. GSTM2 alleviates heart failure by inhibiting DNA damage in cardiomyocytes. Cell Biosci 2023; 13:220. [PMID: 38037116 PMCID: PMC10688053 DOI: 10.1186/s13578-023-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms underlying HF are still not fully clear. RESULTS In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur during HF. We found substantial differences in protein expression changes between the atria and ventricles of myocardial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues. CONCLUSIONS Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the functional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Hongfei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Zhen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yalin Wang
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shaobo Pan
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenting Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Miao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Xiaofan Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Tingting Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| | - Weidong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
9
|
Duplàa C, Couffinhal T. [Accumulation of fluid in the myocardial extracellular space: a major cause of heart failure]. Med Sci (Paris) 2023; 39:293-295. [PMID: 36943129 DOI: 10.1051/medsci/2023022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Cécile Duplàa
- Inserm U1034, biologie des maladies cardiovasculaires, Pessac, France
| | | |
Collapse
|
10
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Cornuault L, Rouault P, Duplàa C, Couffinhal T, Renault MA. Endothelial Dysfunction in Heart Failure With Preserved Ejection Fraction: What are the Experimental Proofs? Front Physiol 2022; 13:906272. [PMID: 35874523 PMCID: PMC9304560 DOI: 10.3389/fphys.2022.906272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been recognized as the greatest single unmet need in cardiovascular medicine. Indeed, the morbi-mortality of HFpEF is high and as the population ages and the comorbidities increase, so considerably does the prevalence of HFpEF. However, HFpEF pathophysiology is still poorly understood and therapeutic targets are missing. An unifying, but untested, theory of the pathophysiology of HFpEF, proposed in 2013, suggests that cardiovascular risk factors lead to a systemic inflammation, which triggers endothelial cells (EC) and coronary microvascular dysfunction. This cardiac small vessel disease is proposed to be responsible for cardiac wall stiffening and diastolic dysfunction. This paradigm is based on the fact that microvascular dysfunction is highly prevalent in HFpEF patients. More specifically, HFpEF patients have been shown to have decreased cardiac microvascular density, systemic endothelial dysfunction and a lower mean coronary flow reserve. Importantly, impaired coronary microvascular function has been associated with the severity of HF. This review discusses evidence supporting the causal role of endothelial dysfunction in the pathophysiology of HFpEF in human and experimental models.
Collapse
|