1
|
Wei J, Lv Q, Luan F, Zhang X, Guo D, Zhai B, Chen S, Zou J, Shi Y. Exploration of potential mechanism of Sanhua Jiangzhi granules for the treatment of hyperlipidemia based on network pharmacology and experimental verification. Fitoterapia 2024; 179:106271. [PMID: 39461567 DOI: 10.1016/j.fitote.2024.106271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Sanhua Jiangzhi Granules (SJG) is a traditional Chinese patent medicine known for regulating lipid metabolism. In this study, we utilized UPLC-TOF-MS to analyze the components of SJG and, in conjunction with network pharmacology, identified 125 core chemical constituents. These components were individually queried and intersected with targets related to hyperlipidemia, resulting in the identification of 312 core targets. KEGG and GO analyses suggested that the mechanism of SJG in treating hyperlipidemia may primarily involve the PPAR signaling pathway. To further validate the efficacy and underlying signaling mechanisms of SJG, we conducted experiments using 60 rats. The results indicated that SJG significantly reduced body weight, lowered serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDLC) levels. Enzyme-linked immunosorbent assay (ELISA) results demonstrated that SJG decreased hepatic TC and TG levels and mitigated lipid accumulation in the liver. Hematoxylin and eosin (HE) staining indicated that SJG improved liver pathological morphology and reduced the risk of fatty liver disease. Western blot analyses showed that treatment with SJG down-regulated the expression of stearoyl-CoA desaturase (SCD), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), phospholipid transfer protein (PLTP), and fatty acid-binding protein 1 (FABP1), while up-regulating the expression of cholesterol 7α-hydroxylase (CYP7A1), carnitine palmitoyltransferase 1 (CPT-1), and PPARα by activating the PPAR signaling pathway. In conclusion, this study demonstrated that SJG activates the PPAR signaling pathway, leading to decreased body weight, lowered blood lipid levels, reduced hepatic TC and TG, and improved liver pathology in rats.
Collapse
Affiliation(s)
- Junfei Wei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Qian Lv
- Weinan Testing Institute, 714000, China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Bingtao Zhai
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shucun Chen
- Shangluo Hospital of Traditional Chinese Medicine, Shangluo 726000, China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
2
|
Heianza Y, Xue Q, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in bile acid subtypes and improvements in lipid metabolism and atherosclerotic cardiovascular disease risk: the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial. Am J Clin Nutr 2024; 119:1293-1300. [PMID: 38428740 PMCID: PMC11130658 DOI: 10.1016/j.ajcnut.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Distinct circulating bile acid (BA) subtypes may play roles in regulating lipid homeostasis and atherosclerosis. OBJECTIVES We investigated whether changes in circulating BA subtypes induced by weight-loss dietary interventions were associated with improved lipid profiles and atherosclerotic cardiovascular disease (ASCVD) risk estimates. METHODS This study included adults with overweight or obesity (n = 536) who participated in a randomized weight-loss dietary intervention trial. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 mo after the weight-loss diet intervention. The ASCVD risk estimates were calculated using the validated equations. RESULTS At baseline, higher concentrations of specific BA subtypes were related to higher concentrations of atherogenic very low-density lipoprotein lipid subtypes and ASCVD risk estimates. Weight-loss diet-induced decreases in primary BAs were related to larger reductions in triglycerides and total cholesterol [every 1 standard deviation (SD) decrease of glycocholate, glycochenodeoxycholate, or taurochenodeoxycholate was related to β (standard error) -3.3 (1.3), -3.4 (1.3), or -3.8 (1.3) mg/dL, respectively; PFDR < 0.05 for all]. Greater decreases in specific secondary BA subtypes were also associated with improved lipid metabolism at 6 mo; there was β -4.0 (1.1) mg/dL per 1-SD decrease of glycoursodeoxycholate (PFDR =0.003) for changes in low-density lipoprotein cholesterol. We found significant interactions (P-interaction < 0.05) between dietary fat intake and changes in BA subtypes on changes in ASCVD risk estimates; decreases in primary and secondary BAs (such as conjugated cholate or deoxycholate) were significantly associated with improved ASCVD risk after consuming a high-fat diet, but not after consuming a low-fat diet. CONCLUSIONS Decreases in distinct BA subtypes were associated with improved lipid profiles and ASCVD risk estimates, highlighting the importance of changes in circulating BA subtypes as significant factors linked to improved lipid metabolism and ASCVD risk estimates in response to weight-loss dietary interventions. Habitual dietary fat intake may modify the associations of changes in BAs with ASCVD risk. This trial was registered at clinicaltrials.gov as NCT00072995.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States.
| | - Qiaochu Xue
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
3
|
Yu Cai Lim M, Kiat Ho H. Pharmacological modulation of cholesterol 7α-hydroxylase (CYP7A1) as a therapeutic strategy for hypercholesterolemia. Biochem Pharmacol 2024; 220:115985. [PMID: 38154545 DOI: 10.1016/j.bcp.2023.115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
4
|
Zhang Q, Chen Y, Li J, Xia H, Tong Y, Liu Y. Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ. Curr Drug Metab 2024; 25:2-12. [PMID: 38409696 DOI: 10.2174/0113892002290055240212074758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.
Collapse
Affiliation(s)
- Qi Zhang
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yutong Chen
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jingqi Li
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Haishan Xia
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongbin Tong
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuyu Liu
- College of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Ern PTY, Quan TY, Yee FS, Yin ACY. Therapeutic properties of Inonotus obliquus (Chaga mushroom): A review. Mycology 2023; 15:144-161. [PMID: 38813471 PMCID: PMC11132974 DOI: 10.1080/21501203.2023.2260408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 05/31/2024] Open
Abstract
Inonotus obliquus, also known as Chaga, is a medicinal mushroom that has been used for therapeutic purposes since the sixteenth century. Collections of folk medicine record the application of Chaga for the treatment of diseases such as gastrointestinal cancer, diabetes, bacterial infection, and liver diseases. Modern research provides scientific evidence of the therapeutic properties of I. obliquus extracts, including anti-inflammatory, antioxidant, anticancer, anti-diabetic, anti-obesity, hepatoprotective, renoprotective, anti-fatigue, antibacterial, and antiviral activities. Various bioactive compounds, including polysaccharides, triterpenoids, polyphenols, and lignin metabolites have been found to be responsible for the health-benefiting properties of I. obliquus. Furthermore, some studies have elucidated the underlying mechanisms of the mushroom's medicinal effects, revealing the compounds' interactions with enzymes or proteins of important pathways. Thus, this review aims to explore available information on the therapeutic potentials of Inonotus obliquus for the development of an effective naturally sourced treatment option.
Collapse
Affiliation(s)
- Phoebe Tee Yon Ern
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Tang Yin Quan
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| | - Fung Shin Yee
- Department of Molecular Medicine, Faculty of Medicine Building, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeline Chia Yoke Yin
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
6
|
Sadee W, Wang D, Hartmann K, Toland AE. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev 2023; 75:789-814. [PMID: 36927888 PMCID: PMC10289244 DOI: 10.1124/pharmrev.122.000810] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Personalized medicine tailors therapies, disease prevention, and health maintenance to the individual, with pharmacogenomics serving as a key tool to improve outcomes and prevent adverse effects. Advances in genomics have transformed pharmacogenetics, traditionally focused on single gene-drug pairs, into pharmacogenomics, encompassing all "-omics" fields (e.g., proteomics, transcriptomics, metabolomics, and metagenomics). This review summarizes basic genomics principles relevant to translation into therapies, assessing pharmacogenomics' central role in converging diverse elements of personalized medicine. We discuss genetic variations in pharmacogenes (drug-metabolizing enzymes, drug transporters, and receptors), their clinical relevance as biomarkers, and the legacy of decades of research in pharmacogenetics. All types of therapies, including proteins, nucleic acids, viruses, cells, genes, and irradiation, can benefit from genomics, expanding the role of pharmacogenomics across medicine. Food and Drug Administration approvals of personalized therapeutics involving biomarkers increase rapidly, demonstrating the growing impact of pharmacogenomics. A beacon for all therapeutic approaches, molecularly targeted cancer therapies highlight trends in drug discovery and clinical applications. To account for human complexity, multicomponent biomarker panels encompassing genetic, personal, and environmental factors can guide diagnosis and therapies, increasingly involving artificial intelligence to cope with extreme data complexities. However, clinical application encounters substantial hurdles, such as unknown validity across ethnic groups, underlying bias in health care, and real-world validation. This review address the underlying science and technologies germane to pharmacogenomics and personalized medicine, integrated with economic, ethical, and regulatory issues, providing insights into the current status and future direction of health care. SIGNIFICANCE STATEMENT: Personalized medicine aims to optimize health care for the individual patients with use of predictive biomarkers to improve outcomes and prevent adverse effects. Pharmacogenomics drives biomarker discovery and guides the development of targeted therapeutics. This review addresses basic principles and current trends in pharmacogenomics, with large-scale data repositories accelerating medical advances. The impact of pharmacogenomics is discussed, along with hurdles impeding broad clinical implementation, in the context of clinical care, ethics, economics, and regulatory affairs.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Danxin Wang
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Katherine Hartmann
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus Ohio (W.S., A.E.T.); Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida (D.W.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (K.H.); Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California (W.S.); and Aether Therapeutics, Austin, Texas (W.S.)
| |
Collapse
|
7
|
Lim MYC, Tee JR, Yau WP, Ho HK. A meta-analysis of the pooled impact of CYP7A1 single nucleotide polymorphisms on serum lipid responses to statins. Front Genet 2023; 14:1199549. [PMID: 37377593 PMCID: PMC10292746 DOI: 10.3389/fgene.2023.1199549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Background and Aims: Various publications suggested that there is an association between CYP7A1 single nucleotide polymorphisms (SNP) and a reduced response to statin therapy, but the results were inconsistent. This study aimed to collectively review these publications to appraise the effect of statins on cholesterol control in carriers of CYP7A1 variant alleles. Methods: PUBMED, Cochrane and EMBASE were searched systematically to identify reported studies on the lipid responses to statin treatment between carriers of the variant allele versus the non-variant allele of CYP7A1 SNPs. The change from baseline in lipid responses for all included studies were calculated using weighted mean differences (WMD) (with 95% confidence interval (CI)). A meta-analysis was conducted to pool results using either the random-effects model or the fixed effects model. Results: A total of 6 publications comprising of 1,686 subjects for the assessment of total cholesterol, LDL-C and HDL-C and 1,156 subjects for the assessment of triglycerides were included in the meta-analyses. Subjects who were non-carriers of a CYP7A1 SNP (-204 A/C (rs3808607), -278 A/C (rs3808607) and rs8192875) had a greater reduction in total cholesterol (overall WMD -0.17, 95% CI -0.29, -0.06) and LDL-C levels (overall WMD -0.16, 95% CI -0.26, -0.05) as compared with subjects who borne the variant allele of CYP7A1 SNPs when administered a statin. Conclusion: The presence of variant allele of CYP7A1 SNPs may result in suboptimal control of total cholesterol and LDL-C levels as compared with individuals who do not carry the variant allele, when administered an equivalent dose of statin.
Collapse
Affiliation(s)
- Megan Yu Cai Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jia Rong Tee
- Department of Mathematics, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wai-Ping Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Heianza Y, Wang X, Rood J, Clish CB, Bray GA, Sacks FM, Qi L. Changes in circulating bile acid subtypes in response to weight-loss diets are associated with improvements in glycemic status and insulin resistance: The POUNDS Lost trial. Metabolism 2022; 136:155312. [PMID: 36122763 DOI: 10.1016/j.metabol.2022.155312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Various primary and secondary bile acids (BAs) may play pivotal roles in glucose/insulin metabolism. We investigated whether changes in specific BA subtypes were associated with long-term changes in glucose and insulin sensitivity. METHODS This study included 515 adults with overweight or obesity who participated in a 2-year intervention study of weight-loss diets with different macronutrient intakes. Circulating primary and secondary unconjugated BAs and their taurine-/glycine-conjugates were measured at baseline and 6 months after the interventions. We analyzed associations of changes in BA subtypes with two-year changes in fasting glucose, insulin, and insulin resistance (HOMA-IR). RESULTS Greater decreases in primary and secondary BA subtypes induced by the interventions were significantly associated with greater reductions of fasting insulin and HOMA-IR at 6 months, showing various effects across the BA subtypes. The reductions of specific BA subtypes (chenodeoxycholate [CDCA], taurocholate [TCA], taurochenodeoxycholate [TCDCA], and taurodeoxycholate [TDCA]) were significantly related to improved glucose levels at 6 months. The initial (6-month) decreases in primary and secondary BA subtypes (glycochenodeoxycholate [GCDCA], TCDCA, and glycoursodeoxycholate [GUDCA]) were also significantly associated with long-term improvements in glucose and insulin metabolism over 2 years. We found significant interactions between dietary fat intake and changes in the BA subtypes for changes in glucose metabolism (Pinteraction < 0.05). CONCLUSIONS Weight-loss diet-induced changes in distinct subtypes of circulating BAs were associated with improved glucose metabolism and insulin sensitivity in adults with overweight or obesity. Dietary fat intake may modify the associations of changes in BA metabolism with glucose metabolism.
Collapse
Affiliation(s)
- Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| | - Xuan Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Jennifer Rood
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Clary B Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - George A Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States of America
| | - Frank M Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
9
|
Collins JM, Nworu AC, Mohammad SJ, Li L, Li C, Li C, Schwendeman E, Cefalu M, Abdel‐Rasoul M, Sun JW, Smith SA, Wang D. Regulatory variants in a novel distal enhancer regulate the expression of CYP3A4 and CYP3A5. Clin Transl Sci 2022; 15:2720-2731. [PMID: 36045613 PMCID: PMC9652438 DOI: 10.1111/cts.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 01/26/2023] Open
Abstract
The cytochrome P450 3As (CYP3As) are abundantly expressed in the liver and metabolize many commonly prescribed medications. Their expression is highly variable between individuals with little known genetic cause. Despite extensive investigation, cis-acting genetic elements that control the expression of the CYP3As remain uncharacterized. Using chromatin conformation capture (4C assays), we detected reciprocal interaction between a distal regulatory region (DRR) and the CYP3A4 promoter. The DRR colocalizes with a variety of enhancer marks and was found to promote transcription in reporter assays. CRISPR-mediated deletion of the DRR decreased expression of CYP3A4, CYP3A5, and CYP3A7, supporting its role as a shared enhancer regulating the expression of three CYP3A genes. Using reporter gene assays, we identified two single-nucleotide polymorphisms (rs115025140 and rs776744/rs776742) that increased DRR-driven luciferase reporter expression. In a liver cohort (n = 246), rs115025140 was associated with increased expression of CYP3A4 mRNA (1.8-fold) and protein (1.6-fold) and rs776744/rs776742 was associated with 1.39-fold increased expression of CYP3A5 mRNA. The rs115025140 is unique to the African population and in a clinical cohort of African Americans taking statins for lipid control rs115025140 carriers showed a trend toward reduced statin-mediated lipid reduction. In addition, using a published cohort of Chinese patients who underwent renal transplantation taking tacrolimus, rs776744/rs776742 carriers were associated with reduced tacrolimus concentration after adjusting for CYP3A5*3. Our results elucidate a complex regulatory network controlling expression of three CYP3A genes and identify two novel regulatory variants with potential clinical relevance for predicting CYP3A4 and CYP3A5 expression.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Adaeze C. Nworu
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Somayya J. Mohammad
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Liang Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chengcheng Li
- Department of Medical Genetics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ethan Schwendeman
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mattew Cefalu
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Mahmoud Abdel‐Rasoul
- Center for Biostatistics, Department of Biomedical Informatics, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Jessie W. Sun
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA,School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Sakima A. Smith
- Department of Internal Medicine, Division of Cardiology, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, Center for Pharmacogenomics, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
10
|
Dixon PH, Levine AP, Cebola I, Chan MMY, Amin AS, Aich A, Mozere M, Maude H, Mitchell AL, Zhang J, Chambers J, Syngelaki A, Donnelly J, Cooley S, Geary M, Nicolaides K, Thorsell M, Hague WM, Estiu MC, Marschall HU, Gale DP, Williamson C. GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements. Nat Commun 2022; 13:4840. [PMID: 35977952 PMCID: PMC9385867 DOI: 10.1038/s41467-022-29931-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5-2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility.
Collapse
Affiliation(s)
- Peter H Dixon
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Adam P Levine
- Department of Renal Medicine, University College London, London, UK
- Research Department of Pathology, University College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Melanie M Y Chan
- Department of Renal Medicine, University College London, London, UK
| | - Aliya S Amin
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Anshul Aich
- Department of Renal Medicine, University College London, London, UK
| | - Monika Mozere
- Department of Renal Medicine, University College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alice L Mitchell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Jun Zhang
- Department of Renal Medicine, University College London, London, UK
- Division of Nephrology, Department of Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jenny Chambers
- ICP Support, 69 Mere Green Road, Sutton Coldfield, UK
- Women's Health Research Centre, Imperial College London, London, UK
| | - Argyro Syngelaki
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | | | | | | | - Kypros Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| | | | - William M Hague
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
| |
Collapse
|
11
|
Balesaria S, Pattni SS, Johnston IM, Nolan JD, Appleby RN, Walters JRF. Common Genetic Variants in the Bile Acid Synthesis Enzyme CYP7A1 Are Associated With Severe Primary Bile Acid Diarrhea. Gastroenterology 2022; 163:517-519.e2. [PMID: 35526572 DOI: 10.1053/j.gastro.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Sara Balesaria
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Sanjeev S Pattni
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Ian M Johnston
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jonathan D Nolan
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Richard N Appleby
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Julian R F Walters
- Department of Gastroenterology, Imperial College Healthcare NHS Trust, Division of Digestive Diseases, Imperial College London, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
12
|
Hartmann K, Seweryn M, Sadee W. Interpreting coronary artery disease GWAS results: A functional genomics approach assessing biological significance. PLoS One 2022; 17:e0244904. [PMID: 35192625 PMCID: PMC8863290 DOI: 10.1371/journal.pone.0244904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/01/2022] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies (GWAS) have implicated 58 loci in coronary artery disease (CAD). However, the biological basis for these associations, the relevant genes, and causative variants often remain uncertain. Since the vast majority of GWAS loci reside outside coding regions, most exert regulatory functions. Here we explore the complexity of each of these loci, using tissue specific RNA sequencing data from GTEx to identify genes that exhibit altered expression patterns in the context of GWAS-significant loci, expanding the list of candidate genes from the 75 currently annotated by GWAS to 245, with almost half of these transcripts being non-coding. Tissue specific allelic expression imbalance data, also from GTEx, allows us to uncover GWAS variants that mark functional variation in a locus, e.g., rs7528419 residing in the SORT1 locus, in liver specifically, and rs72689147 in the GUYC1A1 locus, across a variety of tissues. We consider the GWAS variant rs1412444 in the LIPA locus in more detail as an example, probing tissue and transcript specific effects of genetic variation in the region. By evaluating linkage disequilibrium (LD) between tissue specific eQTLs, we reveal evidence for multiple functional variants within loci. We identify 3 variants (rs1412444, rs1051338, rs2250781) that when considered together, each improve the ability to account for LIPA gene expression, suggesting multiple interacting factors. These results refine the assignment of 58 GWAS loci to likely causative variants in a handful of cases and for the remainder help to re-prioritize associated genes and RNA isoforms, suggesting that ncRNAs maybe a relevant transcript in almost half of CAD GWAS results. Our findings support a multi-factorial system where a single variant can influence multiple genes and each genes is regulated by multiple variants.
Collapse
Affiliation(s)
- Katherine Hartmann
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Michał Seweryn
- Biobank Lab, Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | - Wolfgang Sadee
- Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
13
|
Intestinal Population in Host with Metabolic Syndrome during Administration of Chitosan and Its Derivatives. Molecules 2020; 25:molecules25245857. [PMID: 33322383 PMCID: PMC7764266 DOI: 10.3390/molecules25245857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan and its derivatives can alleviate metabolic syndrome by different regulation mechanisms, phosphorylation of AMPK (AMP-activated kinase) and Akt (also known as protein kinase B), suppression of PPAR-γ (peroxisome proliferator-activated receptor-γ) and SREBP-1c (sterol regulatory element–binding proteins), and translocation of GLUT4 (glucose transporter-4), and also the downregulation of fatty-acid-transport proteins, fatty-acid-binding proteins, fatty acid synthetase (FAS), acetyl-CoA carboxylase (acetyl coenzyme A carboxylase), and HMG-CoA reductase (hydroxy methylglutaryl coenzyme A reductase). The improved microbial profiles in the gastrointestinal tract were positively correlated with the improved glucose and lipid profiles in hosts with metabolic syndrome. Hence, this review will summarize the current literature illustrating positive correlations between the alleviated conditions in metabolic syndrome hosts and the normalized gut microbiota in hosts with metabolic syndrome after treatment with chitosan and its derivatives, implying that the possibility of chitosan and its derivatives to serve as therapeutic application will be consolidated. Chitosan has been shown to modulate cardiometabolic symptoms (e.g., lipid and glycemic levels, blood pressure) as well as gut microbiota. However, the literature that summarizes the relationship between such metabolic modulation of chitosan and prebiotic-like effects is limited. This review will discuss the connection among their structures, biological properties, and prebiotic effects for the treatment of metabolic syndrome. Our hope is that future researchers will consider the prebiotic effects as significant contributors to the mitigation of metabolic syndrome.
Collapse
|
14
|
Kishore S, De Franco E, Cardenas-Diaz FL, Letourneau-Freiberg LR, Sanyoura M, Osorio-Quintero C, French DL, Greeley SAW, Hattersley AT, Gadue P. A Non-Coding Disease Modifier of Pancreatic Agenesis Identified by Genetic Correction in a Patient-Derived iPSC Line. Cell Stem Cell 2020; 27:137-146.e6. [PMID: 32442395 DOI: 10.1016/j.stem.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
GATA6 is a critical regulator of pancreatic development, with heterozygous mutations in this transcription factor being the most common cause of pancreatic agenesis. To study the variability in disease phenotype among individuals harboring these mutations, a patient-induced pluripotent stem cell model was used. Interestingly, GATA6 protein expression remained depressed in pancreatic progenitor cells even after correction of the coding mutation. Screening the regulatory regions of the GATA6 gene in these patient cells and 32 additional agenesis patients revealed a higher minor allele frequency of a SNP 3' of the GATA6 coding sequence. Introduction of this minor allele SNP by genome editing confirmed its functionality in depressing GATA6 expression and the efficiency of pancreas differentiation. This work highlights a possible genetic modifier contributing to pancreatic agenesis and demonstrates the usefulness of using patient-induced pluripotent stem cells for targeted discovery and validation of non-coding gene variants affecting gene expression and disease penetrance.
Collapse
Affiliation(s)
- Siddharth Kishore
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa R Letourneau-Freiberg
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - May Sanyoura
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Catherine Osorio-Quintero
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siri Atma W Greeley
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Abstract
The CYP3A4 enzyme is the most abundant drug-metabolizing enzyme in the liver, metabolizing ~50% of commonly used medications. CYP3A4 displays large interperson variability in expression and enzyme activity with unknown causes. This study aims to identify cis-acting regulatory elements controlling the transcription of CYP3A4, using chromatin conformation capture (4C and 3C assays), chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR), clustered regularly interspaced short palindromic repeats (CRISPR)-mediated deletions of genomic regions and reporter gene assays in primary culture human hepatocytes and hepatic cell lines. 4C assays identified four regions (R1-R4) interacting with the CYP3A4 promoter, one of which overlaps with the previously identified upstream enhancers CLEM4/XREM (R2) while the other three are novel. ChIP-qPCR, reporter gene assays and CRISPR-mediated deletion experiments indicate regulatory roles for both R2 and R4. Interestingly, the deletion of R4 increased CYP3A4 while decreasing CYP3A43 expression, possibly due to competitive domain-domain interactions within the CYP3A cluster, supported by deletion of R4 increasing interaction between the CYP3A4 promoter and R2. We also identified a single nucleotide polymorphism rs62471956 within R4, with the variant allele A having increased transcriptional activity in a reporter gene assay. The rs62471956 A allele is associated with higher CYP3A43 expression and lower CYP3A4 expression in a cohort of 136 liver samples, further supporting the opposing effects of R4 on CYP3A4 and CYP3A43. rs62471956 is in complete linkage disequilibrium with CYP3A4*22, potentially contributing to reduced expression of CYP3A4*22. These results validate previously identified enhancers (CLEM4 and XREM) of CYP3A4 and demonstrate additional regulatory mechanisms underlying CYP3A4 transcriptional control via competitive domain-domain interactions within the CYP3A cluster.
Collapse
|
16
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
17
|
Iwanicki T, Balcerzyk A, Niemiec P, Trautsolt W, Grzeszczak W, Ochalska-Tyka A, Krauze J, Nowak T, Żak I. The relationship between CYP7A1 polymorphisms, coronary artery disease & serum lipid markers. Biomark Med 2019; 13:1199-1208. [PMID: 31578885 DOI: 10.2217/bmm-2018-0462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymorphic variants of the CYP7A1 gene can increase the risk of atherosclerosis-based coronary artery disease (CAD) and modify serum lipid markers. Method: We studied haplotype-tagging single nucleotide polymorphisms of CYP7A1 in the Caucasian population and if they are associated with CAD, its symptoms, and any of its risk factors. Results: We did not find the genetic variants of CYP7A1 to be associated with an increased risk of CAD. However, we did find that the common rs3808607 variant is associated with modified concentrations of serum total cholesterol and LDL. We also found that the C allele and the CC genotype of the rs11786580 are more frequent in patients with myocardial infarction. This association was especially strong after the group differentiation by sex.
Collapse
Affiliation(s)
- Tomasz Iwanicki
- Department of Biochemistry & Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Anna Balcerzyk
- Department of Biochemistry & Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Paweł Niemiec
- Department of Biochemistry & Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Wanda Trautsolt
- Department of Internal Medicine, Diabetes & Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 3 Maja Street 13-18, 41-800 Zabrze, Poland
| | - Władysław Grzeszczak
- Department of Internal Medicine, Diabetes & Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 3 Maja Street 13-18, 41-800 Zabrze, Poland
| | - Anna Ochalska-Tyka
- Regional Centre of Blood Donation & Blood Treatment in Raciborz, Sienkiewicza Street 3, 47-400 Raciborz, Poland
| | - Jolanta Krauze
- 1st Department of Cardiac Surgery in Upper Silesian Center of Cardiology in Katowice, School of Medicine in Katowice, Medical University of Silesia, Ziolowa Street 47, 40-635 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry & Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| | - Iwona Żak
- Department of Biochemistry & Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Medykow Street 18, 40-752 Katowice, Poland
| |
Collapse
|