1
|
Scolari FL, Brahmbhatt D, Abelson S, Lee D, Kim RH, Pedarzadeh A, Sakhnini A, Adler A, Chan RH, Dick JE, Rakowski H, Billia F. Clonal haematopoiesis is associated with major adverse cardiovascular events in patients with hypertrophic cardiomyopathy. Eur J Heart Fail 2024; 26:2193-2202. [PMID: 39091134 DOI: 10.1002/ejhf.3408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
AIMS The heterogeneous phenotype of hypertrophic cardiomyopathy (HCM) is still not fully understood. Clonal haematopoiesis (CH) is emerging as a cardiovascular risk factor potentially associated with adverse clinical events. The prevalence, phenotype and outcomes related to CH in HCM patients were evaluated. METHODS AND RESULTS Patients with HCM and available biospecimens from the Peter Munk Cardiac Centre Cardiovascular Biobank were subjected to targeted sequencing for 35 myeloid genes associated with CH. CH prevalence, clinical characteristics, morphological phenotypes assessed by echocardiogram and cardiac magnetic resonance and outcomes were assessed. All patients were evaluated for a 71-plex cytokines/chemokines, troponin I and B-type natriuretic peptide analysis. Major adverse cardiovascular events (MACE) were defined as appropriate implantable cardioverter-defibrillator shock, stroke, cardiac arrest, orthotopic heart transplant and death. Among the 799 patients, CH was found in 183 (22.9%) HCM patients with sarcomeric germline mutations. HCM patients with CH were more symptomatic and with a higher burden of fibrosis than those without CH. CH was associated with MACE in those HCM patients with sarcomeric germline mutations (adjusted hazard ratio [HR] 6.89, 95% confidence interval [CI] 1.78-26.6; p = 0.005), with the highest risk among those that had DNMT3A, TET2 and ASXL1 mutations (adjusted HR 5.76, 95% CI 1.51-21.94; p = 0.010). Several cytokines (IL-1ra, IL-6, IL-17F, TGFα, CCL21, CCL1, CCL8, and CCL17), and troponin I were upregulated in gene-positive HCM patients with CH. CONCLUSIONS These results indicate that CH in patients with HCM is associated with worse clinical outcomes. In the absence of CH, gene-positive patients with HCM have lower rates of MACE.
Collapse
Affiliation(s)
- Fernando L Scolari
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Darshan Brahmbhatt
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Mount Sinai Hospital, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Deacon Lee
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Ali Pedarzadeh
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Ali Sakhnini
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Arnon Adler
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Raymond H Chan
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Institute for Clinical Evaluation Sciences, Toronto, ON, Canada
| | - John E Dick
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Harry Rakowski
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Filio Billia
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
2
|
Micaglio E, Tondi L, Benedetti S, Schiavo MA, Camporeale A, Disabato G, Attanasio A, Guida G, Carrafiello G, Piepoli M, Spagnolo P, Pappone C, Lombardi M. When Paying Attention Pays Back: Missense Mutation c.1006G>A p. (Val336Ile) in PRKAG2 Gene Causing Left Ventricular Hypertrophy and Conduction Abnormalities in a Caucasian Patient: Case Report and Literature Review. Int J Mol Sci 2024; 25:9171. [PMID: 39273120 PMCID: PMC11395525 DOI: 10.3390/ijms25179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
PRKAG2 cardiomyopathy is a rare genetic disorder that manifests early in life with an autosomal dominant inheritance pattern. It harbors left ventricular hypertrophy (LVH), ventricular pre-excitation and progressively worsening conduction system defects. Its estimated prevalence among patients with LVH ranges from 0.23 to about 1%, but it is likely an underdiagnosed condition. We report the association of the PRKAG2 missense variant c.1006G>A p. (Val336Ile) with LVH, conduction abnormalities (short PR interval and incomplete right bundle branch bock) and early-onset arterial hypertension (AH) in a 44-year-old Caucasian patient. While cardiac magnetic resonance (CMR) showed a mild hypertrophic phenotype with maximal wall thickness of 17 mm in absence of tissue alterations, the electric phenotype was relevant including brady-tachy syndrome and recurrent syncope. The same variant has been detected in the patient's sister and daughter, with LVH + early-onset AH and electrocardiographic (ECG) alterations + lipothymic episodes, respectively. Paying close attention to the coexistence of LVH and ECG alterations in the proband has been helpful in directing genetic tests to exclude primary cardiomyopathy. Hence, identifying the genetic basis in the patient allowed for familial screening as well as a proper follow-up and therapeutic management of the affected members. A review of the PRKAG2 cardiomyopathy literature is provided alongside the case report.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Lara Tondi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sara Benedetti
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Institute for Molecular and Translational Cardiology (IMTC), IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Maria Alessandra Schiavo
- Cardiology Unit IRCCS Azienda, Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna, 40138 Bologna, Italy
| | - Antonia Camporeale
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giandomenico Disabato
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Andrea Attanasio
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianluigi Guida
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Diagnostic and Interventional Radiology, Foundation IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Massimo Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Pietro Spagnolo
- Unit of Radiology, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy; (E.M.); (C.P.)
- Department of Cardiology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Lombardi
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Piazza E. Malan, San Donato Milanese, 20097 Milan, Italy (G.D.); (M.L.)
| |
Collapse
|
3
|
Bukaeva A, Myasnikov R, Kulikova O, Meshkov A, Kiseleva A, Petukhova A, Zotova E, Sparber P, Ershova A, Sotnikova E, Kudryavtseva M, Zharikova A, Koretskiy S, Mershina E, Ramensky V, Zaicenoka M, Vyatkin Y, Muraveva A, Abisheva A, Nikityuk T, Sinitsyn V, Divashuk M, Dadali E, Pokrovskaya M, Drapkina O. A Rare Coincidence of Three Inherited Diseases in a Family with Cardiomyopathy and Multiple Extracardiac Abnormalities. Int J Mol Sci 2024; 25:7556. [PMID: 39062799 PMCID: PMC11277405 DOI: 10.3390/ijms25147556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
A genetic diagnosis of primary cardiomyopathies can be a long-unmet need in patients with complex phenotypes. We investigated a three-generation family with cardiomyopathy and various extracardiac abnormalities that had long sought a precise diagnosis. The 41-year-old proband had hypertrophic cardiomyopathy (HCM), left ventricular noncompaction, myocardial fibrosis, arrhythmias, and a short stature. His sister showed HCM, myocardial hypertrabeculation and fibrosis, sensorineural deafness, and congenital genitourinary malformations. Their father had left ventricular hypertrophy (LVH). The proband's eldest daughter demonstrated developmental delay and seizures. We performed a clinical examination and whole-exome sequencing for all available family members. All patients with HCM/LVH shared a c.4411-2A>C variant in ALPK3, a recently known HCM-causative gene. Functional studies confirmed that this variant alters ALPK3 canonical splicing. Due to extracardiac symptoms in the female patients, we continued the search and found two additional single-gene disorders. The proband's sister had a p.Trp329Gly missense in GATA3, linked to hypoparathyroidism, sensorineural deafness, and renal dysplasia; his daughter had a p.Ser251del in WDR45, associated with beta-propeller protein-associated neurodegeneration. This unique case of three monogenic disorders in one family shows how a comprehensive approach with thorough phenotyping and extensive genetic testing of all symptomatic individuals provides precise diagnoses and appropriate follow-up, embodying the concept of personalized medicine. We also present the first example of a splicing functional study for ALPK3 and describe the genotype-phenotype correlations in cardiomyopathy.
Collapse
Affiliation(s)
- Anna Bukaeva
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Roman Myasnikov
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Olga Kulikova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Alexey Meshkov
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
- National Medical Research Center of Cardiology, 121552 Moscow, Russia
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (P.S.); (E.D.)
- Department of General and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anna Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Anna Petukhova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Evgenia Zotova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Peter Sparber
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (P.S.); (E.D.)
| | - Alexandra Ershova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Evgeniia Sotnikova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Maria Kudryavtseva
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Anastasia Zharikova
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey Koretskiy
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Elena Mershina
- Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.); (V.S.)
| | - Vasily Ramensky
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Yuri Vyatkin
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alisa Muraveva
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Alexandra Abisheva
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Tatiana Nikityuk
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Valentin Sinitsyn
- Medical Research and Educational Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.M.); (V.S.)
| | - Mikhail Divashuk
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Elena Dadali
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (P.S.); (E.D.)
| | - Maria Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| | - Oxana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia; (R.M.); (O.K.); (A.M.); (A.K.); (A.P.); (E.Z.); (A.E.); (E.S.); (M.K.); (A.Z.); (S.K.); (V.R.); (Y.V.); (A.M.); (A.A.); (T.N.); (M.D.); (M.P.); (O.D.)
| |
Collapse
|
4
|
Liu Y, Fan X, Qian K, Wu C, Zhang L, Yuan L, Man Z, Wu S, Li P, Wang X, Li W, Zhang Y, Sun S, Yu C. Deciphering the pathogenic role of rare RAF1 heterozygous missense mutation in the late-presenting DDH. Front Genet 2024; 15:1375736. [PMID: 38952713 PMCID: PMC11215071 DOI: 10.3389/fgene.2024.1375736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background Developmental Dysplasia of the Hip (DDH) is a skeletal disorder where late-presenting forms often escape early diagnosis, leading to limb and pain in adults. The genetic basis of DDH is not fully understood despite known genetic predispositions. Methods We employed Whole Genome Sequencing (WGS) to explore the genetic factors in late-presenting DDH in two unrelated families, supported by phenotypic analyses and in vitro validation. Results In both cases, a novel de novo heterozygous missense mutation in RAF1 (c.193A>G [p.Lys65Glu]) was identified. This mutation impacted RAF1 protein structure and function, altering downstream signaling in the Ras/ERK pathway, as demonstrated by bioinformatics, molecular dynamics simulations, and in vitro validations. Conclusion This study contributes to our understanding of the genetic factors involved in DDH by identifying a novel mutation in RAF1. The identification of the RAF1 mutation suggests a possible involvement of the Ras/ERK pathway in the pathogenesis of late-presenting DDH, indicating its potential role in skeletal development.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Kun Qian
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Laibo Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Yuan
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianquan Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Digital Health Laboratory, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Chen C, Liu Y, Yang S, Chen M, Liao J. A bibliometric and visual analysis of research trends and hotspots of familial hypertrophic cardiomyopathy: A review. Medicine (Baltimore) 2024; 103:e37969. [PMID: 38701258 PMCID: PMC11062727 DOI: 10.1097/md.0000000000037969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM) is an inherited cardiac disease caused by mutations of sarcomere proteins and can be the underlining substrate for major cardiovascular events. Early identification and diagnosis of FHCM are essential to reduce sudden cardiac death. So, this paper summarized the current knowledge on FHCM, and displayed the analysis via bibliometrics method. The relevant literature on FHCM were screened searched via the Web of Science Core Collection database from 2012 to 2022. The literatures were was summarized and analyzed via the bibliometrics method analyzed via CiteSpace and VOSviewer according to topic categories, distribution of spatiotemporal omics and authors, as well as references. Since 2012, there are 909 research articles and reviews related to FHCM. The number of publication for the past 10 years have shown that the development of FHCM research has been steady, with the largest amount of literature in 2012. The most published papers were from the United States, followed by the United Kingdom and Italy. The University of London (63 papers) was the institution that published the most research articles, followed by Harvard University (45 papers) and University College London (45 papers). Keywords formed 3 clusters, focused on the pathogenesis of FHCM, the diagnosis of FHCM, FHCM complications, respectively. The bibliometric analysis and visualization techniques employed herein highlight key trends and focal points in the field, predominantly centered around FHCM's pathogenesis, diagnostic approaches, and its complications. These insights are instrumental in steering future research directions in this area.
Collapse
Affiliation(s)
- Cong Chen
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Liu
- College of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ming Chen
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Liao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Fullenkamp DE, Jorgensen RM, Leach DF, Sinha A, Salamone IM, Johnston JR, Dellefave-Castillo LM, Choudhury L, McNally EM, Wilsbacher LD. Hypertrophic Cardiomyopathy Secondary to RAF1 Cysteine-Rich Domain Variants. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e004262. [PMID: 37905408 PMCID: PMC10841507 DOI: 10.1161/circgen.123.004262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Northwestern University, Chicago, IL
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
| | - Ryan M. Jorgensen
- Feinberg Cardiovascular and Renal Research Institute,Northwestern University, Chicago, IL
| | - Desiree F. Leach
- Feinberg Cardiovascular and Renal Research Institute,Northwestern University, Chicago, IL
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
| | | | | | - Lisa M. Dellefave-Castillo
- Center for Genetic Medicine, Northwestern University, Chicago, IL
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
| | - Lubna Choudhury
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
| | - Lisa D. Wilsbacher
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL
- Feinberg Cardiovascular and Renal Research Institute,Northwestern University, Chicago, IL
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
7
|
Dorian D, Scolari FL, Habib M, Brahmbhatt DH, Chow C, Bruchal-Garbicz B, Hoss S, Billia F, Chan R, Rakowski H, Adler A. Association of duration and intensity of exercise with phenotypic expression in hypertrophic cardiomyopathy. Int J Cardiol 2023; 392:131253. [PMID: 37579850 DOI: 10.1016/j.ijcard.2023.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES There is limited data regarding the impact of exercise on phenotypic expression in hypertrophic cardiomyopathy (HCM). We aimed to investigate whether such an association exists in a cohort of genotype-positive HCM patients. METHODS In this cross-sectional study of genotype-positive HCM families, we used structured questionnaires to obtain data regarding intensity and duration of exercise of participants starting at the age of 10, as well as data regarding exercise recommendations and their impact on quality of life (QOL). The association of cumulative metabolic-equivalent hours of exercise at different ages with different measures of phenotypic expression (maximal wall thickness, left atrial diameter, extent of late gadolinium enhancement) was analyzed. RESULTS The study included 109 patients from 55 families, including 43 male (39%) and 90 (83%) phenotype-positive. No association was identified between exercise duration or intensity with any of the phenotypic markers with the exception of greater cumulative exercise associated with younger age at presentation. Similar results were obtained when analysis was limited to exercise until the age of 20, until the age of 30 or only after 30. Among phenotype-positive patients, 89% recalled receiving recommendations regarding exercise restriction, 29% noted reduction in exercise level following such recommendations and 25% noted this having a significant impact on their QOL. CONCLUSION We found no association between exercise intensity or duration and phenotypic expression in genotype-positive HCM patients. These findings are important for physician-patient discussions and support the recent trend towards more permissive exercise restrictions in HCM.
Collapse
Affiliation(s)
- David Dorian
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Fernando L Scolari
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Manhal Habib
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Darshan H Brahmbhatt
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cindy Chow
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Beata Bruchal-Garbicz
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sara Hoss
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Filio Billia
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Raymond Chan
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Harry Rakowski
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arnon Adler
- From The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network and The Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Longoni M, Bhasin K, Ward A, Lee D, Nisson M, Bhatt S, Rodriguez F, Dash R. Real-world utilization of guideline-directed genetic testing in inherited cardiovascular diseases. Front Cardiovasc Med 2023; 10:1272433. [PMID: 37915745 PMCID: PMC10616303 DOI: 10.3389/fcvm.2023.1272433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Background Cardiovascular disease continues to be the leading cause of death globally. Clinical practice guidelines aimed at improving disease management and positively impacting major cardiac adverse events recommend genetic testing for inherited cardiovascular conditions such as dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), long QT syndrome (LQTS), hereditary amyloidosis, and familial hypercholesterolemia (FH); however, little is known about how consistently practitioners order genetic testing for these conditions in routine clinical practice. This study aimed to assess the adoption of guideline-directed genetic testing for patients diagnosed with DCM, HCM, LQTS, hereditary amyloidosis, or FH. Methods This retrospective cohort study captured real-world evidence of genetic testing from ICD-9-CM and ICD-10-CM codes, procedure codes, and structured text fields of de-identified patient records in the Veradigm Health Insights Ambulatory EHR Research Database linked with insurance claims data. Data analysis was conducted using an automated electronic health record analysis engine. Patient records in the Veradigm database were sourced from more than 250,000 clinicians serving over 170 million patients in outpatient primary care and specialty practice settings in the United States and linked insurance claims data from public and private insurance providers. The primary outcome measure was evidence of genetic testing within six months of condition diagnosis. Results Between January 1, 2017, and December 31, 2021, 224,641 patients were newly diagnosed with DCM, HCM, LQTS, hereditary amyloidosis, or FH and included in this study. Substantial genetic testing care gaps were identified. Only a small percentage of patients newly diagnosed with DCM (827/101,919; 0.8%), HCM (253/15,507; 1.6%), LQTS (650/56,539; 1.2%), hereditary amyloidosis (62/1,026; 6.0%), or FH (718/49,650; 1.5%) received genetic testing. Conclusions Genetic testing is underutilized across multiple inherited cardiovascular conditions. This real-world data analysis provides insights into the delivery of genomic healthcare in the United States and suggests genetic testing guidelines are rarely followed in practice.
Collapse
Affiliation(s)
- Mauro Longoni
- Global Medical Affairs Organization, Illumina, Inc., San Diego, CA, United States
| | | | | | | | | | - Sucheta Bhatt
- Global Medical Affairs Organization, Illumina, Inc., San Diego, CA, United States
| | - Fatima Rodriguez
- HealthPals Inc., Redwood, CA, United States
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Rajesh Dash
- HealthPals Inc., Redwood, CA, United States
- Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Chumakova OS, Baulina NM. Advanced searching for hypertrophic cardiomyopathy heritability in real practice tomorrow. Front Cardiovasc Med 2023; 10:1236539. [PMID: 37583586 PMCID: PMC10425241 DOI: 10.3389/fcvm.2023.1236539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease associated with morbidity and mortality at any age. As studies in recent decades have shown, the genetic architecture of HCM is quite complex both in the entire population and in each patient. In the rapidly advancing era of gene therapy, we have to provide a detailed molecular diagnosis to our patients to give them the chance for better and more personalized treatment. In addition to emphasizing the importance of genetic testing in routine practice, this review aims to discuss the possibility to go a step further and create an expanded genetic panel that contains not only variants in core genes but also new candidate genes, including those located in deep intron regions, as well as structural variations. It also highlights the benefits of calculating polygenic risk scores based on a combination of rare and common genetic variants for each patient and of using non-genetic HCM markers, such as microRNAs that can enhance stratification of risk for HCM in unselected populations alongside rare genetic variants and clinical factors. While this review is focusing on HCM, the discussed issues are relevant to other cardiomyopathies.
Collapse
Affiliation(s)
- Olga S. Chumakova
- Laboratory of Functional Genomics of Cardiovascular Diseases, National Medical Research Centre of Cardiology Named After E.I. Chazov, Moscow, Russia
| | | |
Collapse
|
10
|
Rashdan L, Hodovan J, Masri A. Imaging cardiac hypertrophy in hypertrophic cardiomyopathy and its differential diagnosis. Curr Opin Cardiol 2023:00001573-990000000-00084. [PMID: 37421401 DOI: 10.1097/hco.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to review imaging of myocardial hypertrophy in hypertrophic cardiomyopathy (HCM) and its phenocopies. The introduction of cardiac myosin inhibitors in HCM has emphasized the need for careful evaluation of the underlying cause of myocardial hypertrophy. RECENT FINDINGS Advances in imaging of myocardial hypertrophy have focused on improving precision, diagnosis, and predicting prognosis. From improved assessment of myocardial mass and function, to assessing myocardial fibrosis without the use of gadolinium, imaging continues to be the primary tool in understanding myocardial hypertrophy and its downstream effects. Advances in differentiating athlete's heart from HCM are noted, and the increasing rate of diagnosis in cardiac amyloidosis using noninvasive approaches is especially highlighted due to the implications on treatment approach. Finally, recent data on Fabry disease are shared as well as differentiating other phenocopies from HCM. SUMMARY Imaging hypertrophy in HCM and ruling out other phenocopies is central to the care of patients with HCM. This space will continue to rapidly evolve, as disease-modifying therapies are under investigation and being advanced to the clinic.
Collapse
Affiliation(s)
- Lana Rashdan
- Hypertrophic Cardiomyopathy Center, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA
| | | | | |
Collapse
|
11
|
Aiyer S, Kalutskaya E, Agdamag AC, Tang WHW. Genetic Evaluation and Screening in Cardiomyopathies: Opportunities and Challenges for Personalized Medicine. J Pers Med 2023; 13:887. [PMID: 37373876 PMCID: PMC10302702 DOI: 10.3390/jpm13060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy is a major cause of heart failure caused by abnormalities of the heart muscles that make it harder for it to fill or eject blood. With technological advances, it is important for patients and families to understand that there are potential monogenic etiologies of cardiomyopathy. A multidisciplinary approach to clinical genetic screening for cardiomyopathies involving genetic counseling and clinical genetic testing is beneficial for patients and families. With early identification of inherited cardiomyopathy, patients can initiate guideline-directed medical therapies earlier, resulting in a greater likelihood of improving prognoses and health outcomes. Identifying impactful genetic variants will also allow for cascade testing to determine at-risk family members through clinical (phenotype) screening and risk stratification. Addressing genetic variants of uncertain significance and causative variants that may change in pathogenicity is also important to consider. This review will dive into the clinical genetic testing approaches for the various cardiomyopathies, the significance of early detection and treatment, the value of family screening, the personalized treatment process associated with genetic evaluation, and current strategies for clinical genetic testing outreach.
Collapse
Affiliation(s)
- Sahana Aiyer
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Emilia Kalutskaya
- Boonshoft School of Medicine, Wright State University, Fairborn, OH 45435, USA
| | - Arianne C. Agdamag
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Masri A, Reza N. Genetic Testing for Cardiomyopathies in Japan: Embarking on a Journey of Discovery. J Card Fail 2023; 29:815-817. [PMID: 37169423 DOI: 10.1016/j.cardfail.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Affiliation(s)
- Ahmad Masri
- Division of Cardiovascular Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Litt MJ, Ali A, Reza N. Familial Hypertrophic Cardiomyopathy: Diagnosis and Management. Vasc Health Risk Manag 2023; 19:211-221. [PMID: 37050929 PMCID: PMC10084873 DOI: 10.2147/vhrm.s365001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is widely recognized as one of the most common inheritable cardiac disorders. Since its initial description over 60 years ago, advances in multimodality imaging and translational genetics have revolutionized our understanding of the disorder. The diagnosis and management of patients with HCM are optimized with a multidisciplinary approach. This, along with increased safety and efficacy of medical, percutaneous, and surgical therapies for HCM, has afforded more personalized care and improved outcomes for this patient population. In this review, we will discuss our modern understanding of the molecular pathophysiology that underlies HCM. We will describe the range of clinical presentations and discuss the role of genetic testing in diagnosis. Finally, we will summarize management strategies for the hemodynamic subtypes of HCM with specific emphasis on the rationale and evidence for the use of implantable cardioverter defibrillators, septal reduction therapy, and cardiac myosin inhibitors.
Collapse
MESH Headings
- Humans
- Cardiomyopathy, Hypertrophic, Familial/diagnosis
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/therapy
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/therapy
- Diagnostic Imaging
- Defibrillators, Implantable
Collapse
Affiliation(s)
- Michael J Litt
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ayan Ali
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Correspondence: Nosheen Reza, Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, 3400 Civic Center Boulevard, 11th Floor South Pavilion, Philadelphia, PA, 19104, USA, Tel +1 215 615 0044, Fax +1 215 615 1263, Email
| |
Collapse
|
14
|
El Hadi H, Freund A, Desch S, Thiele H, Majunke N. Hypertrophic, Dilated, and Arrhythmogenic Cardiomyopathy: Where Are We? Biomedicines 2023; 11:biomedicines11020524. [PMID: 36831060 PMCID: PMC9953324 DOI: 10.3390/biomedicines11020524] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of structural, mechanical, and electrical heart muscle disorders which often correlate with life-threatening arrhythmias and progressive heart failure accounting for significant cardiovascular morbidity and mortality. Currently, cardiomyopathies still represent a leading reason for heart transplantation worldwide. The last years have brought remarkable advances in the field of cardiomyopathies especially in terms of understanding the molecular basis as well as the diagnostic evaluation and management. Although most cardiomyopathy treatments had long focused on symptom management, much of the current research efforts aim to identify and act on the disease-driving mechanisms. Regarding risk assessment and primary prevention of sudden cardiac death, additional data are still pending in order to pave the way for a more refined and early patient selection for defibrillator implantation. This review summarizes the current knowledge of hypertrophic, dilated and arrhythmogenic cardiomyopathy with a particular emphasis on their pathophysiology, clinical features, and diagnostic approach. Furthermore, the relevant ongoing studies investigating novel management approaches and main gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Hamza El Hadi
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| | | | | | | | - Nicolas Majunke
- Correspondence: (H.E.H.); (N.M.); Tel.: +49-341-865-142 (H.E.H. & N.M.); Fax: +49-341-865-1461 (N.M.)
| |
Collapse
|
15
|
Kontorovich AR. Approaches to Genetic Screening in Cardiomyopathies: Practical Guidance for Clinicians. JACC. HEART FAILURE 2023; 11:133-142. [PMID: 36754525 DOI: 10.1016/j.jchf.2022.11.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 02/08/2023]
Abstract
Patients and families benefit when the genetic etiology of cardiomyopathy is elucidated through a multidisciplinary approach including genetic counseling and judicious use of genetic testing. The yield of genetic testing is optimized when performed on a proband with a clear phenotype, and interrogates genes that are validated in association with that specific form of cardiomyopathy. Variants of uncertain significance are frequently uncovered and should not be overinterpreted. Identifying an impactful genetic variant as the cause of a patient's cardiomyopathy can have important prognostic impact, and enable streamlined cascade testing to highlight at risk relatives. Certain genotypes are associated with unique potential cardiac and noncardiac risk factors and may dictate personalized approaches to treatment.
Collapse
Affiliation(s)
- Amy R Kontorovich
- Center for Inherited Cardiovascular Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
16
|
Smith HS, Sanchez CE, Maag R, Buentello A, Murdock DR, Metcalf GA, Hadley TD, Riconda DL, Boerwinkle E, Wehrens XH, Ballantyne CM, Gibbs RA, McGuire AL, Pereira S. Patient and Clinician Perceptions of Precision Cardiology Care: Findings From the HeartCare Study. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003605. [PMID: 36282588 PMCID: PMC10163837 DOI: 10.1161/circgen.121.003605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 08/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Routine genome-wide screening for cardiovascular disease risk may inform clinical decision-making. However, little is known about whether clinicians and patients would find such testing useful or acceptable within the context of a genomics-enabled learning health system. METHODS We conducted surveys with patients and their clinicians who were participating in the HeartCare Study, a precision cardiology care project that returned results from a next-generation sequencing panel of 158 genes associated with cardiovascular disease risk. Six weeks after return of results, we assessed patients' and clinicians' perceived utility and disutility of HeartCare, the effect of the test on clinical recommendations, and patients' attitudes toward integration of research and clinical care. RESULTS Among 666 HeartCare patients with a result returned during the survey study period, 42.0% completed a full or partial survey. Patient-participants who completed a full survey (n=224) generally had positive perceptions of HeartCare independent of whether they received a positive or negative result. Most patient-participants considered genetic testing for cardiovascular disease risk to have more benefit than risk (88.3%) and agreed that it provided information that they wanted to know (81.2%), while most disagreed that the test caused them to feel confused (77.7%) or overwhelmed (78.0%). For 122 of their patients with positive results, clinicians (n=13) reported making changes in clinical care for 66.4% of patients, recommending changes in health behaviors for 36.9% of patients, and recommending to 33.6% of patients that their family members have clinical testing. CONCLUSIONS Both patients and clinicians thought the HeartCare panel screen for cardiovascular disease risk provided information that was useful in terms of personal or health benefits to the patient and that informed clinical care without causing patients to be confused or overwhelmed. Further research is needed to assess perceptions of genome-wide screening among the US cardiology clinic population.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX
| | - Clarissa E. Sanchez
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX
| | - Ronald Maag
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
| | - Alexandria Buentello
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
| | - David R. Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ginger A. Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Trevor D. Hadley
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
| | - Daniel L. Riconda
- Dept of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX
- School of Health Professions, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Xander H.T. Wehrens
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX
- Dept of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX
| | - Christie M. Ballantyne
- Dept of Medicine, Section of Cardiology & Cardiovascular Research, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Amy L. McGuire
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX
| | - Stacey Pereira
- Center for Medical Ethics & Health Policy, Baylor College of Medicine, Houston, TX
| |
Collapse
|
17
|
Dellefave-Castillo LM, Cirino AL, Callis TE, Esplin ED, Garcia J, Hatchell KE, Johnson B, Morales A, Regalado E, Rojahn S, Vatta M, Nussbaum RL, McNally EM. Assessment of the Diagnostic Yield of Combined Cardiomyopathy and Arrhythmia Genetic Testing. JAMA Cardiol 2022; 7:966-974. [PMID: 35947370 PMCID: PMC9366660 DOI: 10.1001/jamacardio.2022.2455] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Genetic testing can guide management of both cardiomyopathies and arrhythmias, but cost, yield, and uncertain results can be barriers to its use. It is unknown whether combined disease testing can improve diagnostic yield and clinical utility for patients with a suspected genetic cardiomyopathy or arrhythmia. Objective To evaluate the diagnostic yield and clinical management implications of combined cardiomyopathy and arrhythmia genetic testing through a no-charge, sponsored program for patients with a suspected genetic cardiomyopathy or arrhythmia. Design, Setting, and Participants This cohort study involved a retrospective review of DNA sequencing results for cardiomyopathy- and arrhythmia-associated genes. The study included 4782 patients with a suspected genetic cardiomyopathy or arrhythmia who were referred for genetic testing by 1203 clinicians; all patients participated in a no-charge, sponsored genetic testing program for cases of suspected genetic cardiomyopathy and arrhythmia at a single testing site from July 12, 2019, through July 9, 2020. Main Outcomes and Measures Positive gene findings from combined cardiomyopathy and arrhythmia testing were compared with findings from smaller subtype-specific gene panels and clinician-provided diagnoses. Results Among 4782 patients (mean [SD] age, 40.5 [21.3] years; 2551 male [53.3%]) who received genetic testing, 39 patients (0.8%) were Ashkenazi Jewish, 113 (2.4%) were Asian, 571 (11.9%) were Black or African American, 375 (7.8%) were Hispanic, 2866 (59.9%) were White, 240 (5.0%) were of multiple races and/or ethnicities, 138 (2.9%) were of other races and/or ethnicities, and 440 (9.2%) were of unknown race and/or ethnicity. A positive result (molecular diagnosis) was confirmed in 954 of 4782 patients (19.9%). Of those, 630 patients with positive results (66.0%) had the potential to inform clinical management associated with adverse clinical outcomes, increased arrhythmia risk, or targeted therapies. Combined cardiomyopathy and arrhythmia gene panel testing identified clinically relevant variants for 1 in 5 patients suspected of having a genetic cardiomyopathy or arrhythmia. If only patients with a high suspicion of genetic cardiomyopathy or arrhythmia had been tested, at least 137 positive results (14.4%) would have been missed. If testing had been restricted to panels associated with the clinician-provided diagnostic indications, 75 of 689 positive results (10.9%) would have been missed; 27 of 75 findings (36.0%) gained through combined testing involved a cardiomyopathy indication with an arrhythmia genetic finding or vice versa. Cascade testing of family members yielded 402 of 958 positive results (42.0%). Overall, 2446 of 4782 patients (51.2%) had only variants of uncertain significance. Patients referred for arrhythmogenic cardiomyopathy had the lowest rate of variants of uncertain significance (81 of 176 patients [46.0%]), and patients referred for catecholaminergic polymorphic ventricular tachycardia had the highest rate (48 of 76 patients [63.2%]). Conclusions and Relevance In this study, comprehensive genetic testing for cardiomyopathies and arrhythmias revealed diagnoses that would have been missed by disease-specific testing. In addition, comprehensive testing provided diagnostic and prognostic information that could have potentially changed management and monitoring strategies for patients and their family members. These results suggest that this improved diagnostic yield may outweigh the burden of uncertain results.
Collapse
Affiliation(s)
- Lisa M Dellefave-Castillo
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Allison L Cirino
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts.,Institute of Health Professions, Massachusetts General Hospital, Boston
| | | | | | - John Garcia
- Invitae Corporation, San Francisco, California
| | | | | | - Ana Morales
- Invitae Corporation, San Francisco, California
| | | | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
18
|
Barbosa P, Ribeiro M, Carmo-Fonseca M, Fonseca A. Clinical significance of genetic variation in hypertrophic cardiomyopathy: comparison of computational tools to prioritize missense variants. Front Cardiovasc Med 2022; 9:975478. [PMID: 36061567 PMCID: PMC9433717 DOI: 10.3389/fcvm.2022.975478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease associated with sudden cardiac death. Early diagnosis is critical to identify patients who may benefit from implantable cardioverter defibrillator therapy. Although genetic testing is an integral part of the clinical evaluation and management of patients with HCM and their families, in many cases the genetic analysis fails to identify a disease-causing mutation. This is in part due to difficulties in classifying newly detected rare genetic variants as well as variants-of-unknown-significance (VUS). Multiple computational algorithms have been developed to predict the potential pathogenicity of genetic variants, but their relative performance in HCM has not been comprehensively assessed. Here, we compared the performance of 39 currently available prediction tools in distinguishing between high-confidence HCM-causing missense variants and benign variants, and we developed an easy-to-use-tool to perform variant prediction benchmarks based on annotated VCF files (VETA). Our results show that tool performance increases after HCM-specific calibration of thresholds. After excluding potential biases due to circularity type I issues, we identified ClinPred, MISTIC, FATHMM, MPC and MetaLR as the five best performer tools in discriminating HCM-associated variants. We propose combining these tools in order to prioritize unknown HCM missense variants that should be closely followed-up in the clinic.
Collapse
Affiliation(s)
- Pedro Barbosa
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Marta Ribeiro
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Alcides Fonseca
- LASIGE, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- GenoMed - Diagnósticos de Medicina Molecular, Lisboa, Portugal
| |
Collapse
|
19
|
Sammani A, Jansen M, de Vries NM, de Jonge N, Baas AF, te Riele ASJM, Asselbergs FW, Oerlemans MIFJ. Automatic Identification of Patients With Unexplained Left Ventricular Hypertrophy in Electronic Health Record Data to Improve Targeted Treatment and Family Screening. Front Cardiovasc Med 2022; 9:768847. [PMID: 35498038 PMCID: PMC9051030 DOI: 10.3389/fcvm.2022.768847] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Unexplained Left Ventricular Hypertrophy (ULVH) may be caused by genetic and non-genetic etiologies (e.g., sarcomere variants, cardiac amyloid, or Anderson-Fabry's disease). Identification of ULVH patients allows for early targeted treatment and family screening. Aim To automatically identify patients with ULVH in electronic health record (EHR) data using two computer methods: text-mining and machine learning (ML). Methods Adults with echocardiographic measurement of interventricular septum thickness (IVSt) were included. A text-mining algorithm was developed to identify patients with ULVH. An ML algorithm including a variety of clinical, ECG and echocardiographic data was trained and tested in an 80/20% split. Clinical diagnosis of ULVH was considered the gold standard. Misclassifications were reviewed by an experienced cardiologist. Sensitivity, specificity, positive, and negative likelihood ratios (LHR+ and LHR–) of both text-mining and ML were reported. Results In total, 26,954 subjects (median age 61 years, 55% male) were included. ULVH was diagnosed in 204/26,954 (0.8%) patients, of which 56 had amyloidosis and two Anderson-Fabry Disease. Text-mining flagged 8,192 patients with possible ULVH, of whom 159 were true positives (sensitivity, specificity, LHR+, and LHR– of 0.78, 0.67, 2.36, and 0.33). Machine learning resulted in a sensitivity, specificity, LHR+, and LHR– of 0.32, 0.99, 32, and 0.68, respectively. Pivotal variables included IVSt, systolic blood pressure, and age. Conclusions Automatic identification of patients with ULVH is possible with both Text-mining and ML. Text-mining may be a comprehensive scaffold but can be less specific than machine learning. Deployment of either method depends on existing infrastructures and clinical applications.
Collapse
Affiliation(s)
- Arjan Sammani
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Mark Jansen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nynke M. de Vries
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nicolaas de Jonge
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Annette F. Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Folkert W. Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Marish I. F. J. Oerlemans
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marish I. F. J. Oerlemans
| |
Collapse
|
20
|
Nguyen MB, Mital S, Mertens L, Jeewa A, Friedberg MK, Aguet J, Adler A, Lam CZ, Dragulescu A, Rakowski H, Villemain O. Pediatric Hypertrophic Cardiomyopathy: Exploring the Genotype-Phenotype Association. J Am Heart Assoc 2022; 11:e024220. [PMID: 35179047 PMCID: PMC9075072 DOI: 10.1161/jaha.121.024220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022]
Abstract
Pediatric hypertrophic cardiomyopathy (HCM) is the most common form of cardiomyopathy in children and a leading cause of sudden cardiac death. Yet, the association between genotype variation, phenotype expression, and adverse events in pediatric HCM has not been fully elucidated. Although the literature on this topic is evolving in adult HCM, the evidence in children is lacking. Solidifying our understanding of this relationship could improve risk stratification as well as improve our comprehension of the underlying pathophysiological characteristics of pediatric HCM. In this state-of-the-art review, we examine the current literature on genetic variations in HCM and their association with outcomes in children, discuss the current approaches to identifying cardiovascular phenotypes in pediatric HCM, and explore possible avenues that could improve sudden cardiac death risk assessment.
Collapse
Affiliation(s)
- Minh B. Nguyen
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Seema Mital
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Luc Mertens
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Aamir Jeewa
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Mark K. Friedberg
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Julien Aguet
- Department of Diagnostic ImagingHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Arnon Adler
- Division of CardiologyPeter Munk Cardiac CentreToronto General HospitalUniversity of TorontoOntarioCanada
| | - Christopher Z. Lam
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Andreea Dragulescu
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| | - Harry Rakowski
- Division of CardiologyPeter Munk Cardiac CentreToronto General HospitalUniversity of TorontoOntarioCanada
| | - Olivier Villemain
- Division of CardiologyLabatt Family Heart CentreHospital for Sick ChildrenUniversity of TorontoOntarioCanada
| |
Collapse
|
21
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
22
|
Parker LE, Landstrom AP. The clinical utility of pediatric cardiomyopathy genetic testing: From diagnosis to a precision medicine-based approach to care. PROGRESS IN PEDIATRIC CARDIOLOGY 2021; 62. [PMID: 34776723 DOI: 10.1016/j.ppedcard.2021.101413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Pediatric-onset cardiomyopathies are rare yet cause significant morbidity and mortality in affected children. Genetic testing has a major role in the clinical evaluation of pediatric-onset cardiomyopathies, and identification of a variant in an associated gene can be used to confirm the clinical diagnosis and exclude syndromic causes that may warrant different treatment strategies. Further, risk-predictive testing of first-degree relatives can assess who is at-risk of disease and requires continued clinical follow-up. Aim of Review In this review, we seek to describe the current role of genetic testing in the clinical diagnosis and management of patients and families with the five major cardiomyopathies. Further, we highlight the ongoing development of precision-based approaches to diagnosis, prognosis, and treatment. Key Scientific Concepts of Review Emerging application of genotype-phenotype correlations opens the door for genetics to guide a precision medicine-based approach to prognosis and potentially for therapies. Despite advances in our understanding of the genetic etiology of cardiomyopathy and increased accessibility of clinical genetic testing, not all pediatric cardiomyopathy patients have a clear genetic explanation for their disease. Expanded genomic studies are needed to understand the cause of disease in these patients, improve variant classification and genotype-driven prognostic predictions, and ultimately develop truly disease preventing treatment.
Collapse
Affiliation(s)
- Lauren E Parker
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Morita SX, Kusunose K, Haga A, Sata M, Hasegawa K, Raita Y, Reilly MP, Fifer MA, Maurer MS, Shimada YJ. Deep Learning Analysis of Echocardiographic Images to Predict Positive Genotype in Patients With Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2021; 8:669860. [PMID: 34513940 PMCID: PMC8429777 DOI: 10.3389/fcvm.2021.669860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022] Open
Abstract
Genetic testing provides valuable insights into family screening strategies, diagnosis, and prognosis in patients with hypertrophic cardiomyopathy (HCM). On the other hand, genetic testing carries socio-economical and psychological burdens. It is therefore important to identify patients with HCM who are more likely to have positive genotype. However, conventional prediction models based on clinical and echocardiographic parameters offer only modest accuracy and are subject to intra- and inter-observer variability. We therefore hypothesized that deep convolutional neural network (DCNN, a type of deep learning) analysis of echocardiographic images improves the predictive accuracy of positive genotype in patients with HCM. In each case, we obtained parasternal short- and long-axis as well as apical 2-, 3-, 4-, and 5-chamber views. We employed DCNN algorithm to predict positive genotype based on the input echocardiographic images. We performed 5-fold cross-validations. We used 2 reference models—the Mayo HCM Genotype Predictor score (Mayo score) and the Toronto HCM Genotype score (Toronto score). We compared the area under the receiver-operating-characteristic curve (AUC) between a combined model using the reference model plus DCNN-derived probability and the reference model. We calculated the p-value by performing 1,000 bootstrapping. We calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). In addition, we examined the net reclassification improvement. We included 99 adults with HCM who underwent genetic testing. Overall, 45 patients (45%) had positive genotype. The new model combining Mayo score and DCNN-derived probability significantly outperformed Mayo score (AUC 0.86 [95% CI 0.79–0.93] vs. 0.72 [0.61–0.82]; p < 0.001). Similarly, the new model combining Toronto score and DCNN-derived probability exhibited a higher AUC compared to Toronto score alone (AUC 0.84 [0.76–0.92] vs. 0.75 [0.65–0.85]; p = 0.03). An improvement in the sensitivity, specificity, PPV, and NPV was also achieved, along with significant net reclassification improvement. In conclusion, compared to the conventional models, our new model combining the conventional and DCNN-derived models demonstrated superior accuracy to predict positive genotype in patients with HCM.
Collapse
Affiliation(s)
- Sae X Morita
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University, Tokushima, Japan
| | - Akihiro Haga
- Department of Medical Image Informatics, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University, Tokushima, Japan
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, United States
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
24
|
Baudhuin LM. Hypertrophic Cardiomyopathy in the General Population: Leveraging the UK Biobank Database and Machine Learning Phenotyping. J Am Coll Cardiol 2021; 78:1111-1113. [PMID: 34503679 DOI: 10.1016/j.jacc.2021.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Linnea M Baudhuin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
25
|
Yigit G, Wollnik B. Cellular models and therapeutic perspectives in hypertrophic cardiomyopathy. MED GENET-BERLIN 2021; 33:235-243. [PMID: 38835701 PMCID: PMC11006313 DOI: 10.1515/medgen-2021-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/28/2021] [Indexed: 06/06/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is a clinically heterogeneous cardiac disease that is mainly characterized by left ventricular hypertrophy in the absence of any additional cardiac or systemic disease. HCM is genetically heterogeneous, inherited mainly in an autosomal dominant pattern, and so far pathogenic variants have been identified in more than 20 genes, mostly encoding proteins of the cardiac sarcomere. Based on its variable penetrance and expressivity, pathogenicity of newly identified variants often remains unsolved, underlining the importance of cellular and tissue-based models that help to uncover causative genetic alterations and, additionally, provide appropriate systems for the analysis of disease hallmarks as well as for the design and application of new therapeutic strategies like drug screenings and genome/base editing approaches. Here, we review the current state of cellular and tissue-engineered models and provide future perspectives for personalized therapeutic strategies of HCM.
Collapse
Affiliation(s)
- Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Hanneman K. Cardiac MRI in Danon Disease: Sex-specific Differences and Characteristic Imaging Findings. Radiology 2021; 299:311-312. [PMID: 33759581 DOI: 10.1148/radiol.2021210249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kate Hanneman
- From the Joint Department of Medical Imaging, Toronto General Hospital, 585 University Ave, University of Toronto, Toronto, ON, Canada M5G 2C4
| |
Collapse
|
27
|
Yogasundaram H, Alhumaid W, Dzwiniel T, Christian S, Oudit GY. Cardiomyopathies and Genetic Testing in Heart Failure: Role in Defining Phenotype-Targeted Approaches and Management. Can J Cardiol 2021; 37:547-559. [PMID: 33493662 DOI: 10.1016/j.cjca.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiomyopathies represent an important cause of heart failure, often affecting young individuals, and have important implications for relatives. Genetic testing for cardiomyopathies is an established care pathway in contemporary cardiology practice. The primary cardiomyopathies where genetic testing is indicated are hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathies, with left ventricular noncompaction as a variant phenotype. Early identification and initiation of therapies in patients with inherited cardiomyopathies allow for targeting asymptomatic and presymptomatic patients in stages A and B of the American College of Cardiology/American Heart Association classification of heart failure. The current approach for genetic testing uses gene panel-based testing with the ability to extend to whole-exome and whole-genome sequencing in rare instances. The central components of genetic testing include defining the genetic basis of the diagnosis, providing prognostic information, and the ability to screen and risk-stratify relatives. Genetic testing for cardiomyopathies should be coordinated by a multidisciplinary team including adult and pediatric cardiologists, genetic counsellors, and geneticists, with access to expertise in cardiac imaging and electrophysiology. A pragmatic approach for addressing genetic variants of uncertain significance is important. In this review, we highlight the indications for genetic testing in the various cardiomyopathies, the value of early diagnosis and treatment, family screening, and the care process involved in genetic counselling and testing.
Collapse
Affiliation(s)
- Haran Yogasundaram
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Waleed Alhumaid
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Tara Dzwiniel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Christian
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Department of Medicine, Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Stafford F, Thomson K, Butters A, Ingles J. Hypertrophic Cardiomyopathy: Genetic Testing and Risk Stratification. Curr Cardiol Rep 2021; 23:9. [PMID: 33433738 DOI: 10.1007/s11886-020-01437-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic basis and molecular pathogenesis of hypertrophic cardiomyopathy (HCM) continues to evolve. We describe the genetic basis of HCM, recent advances in genetic testing and the role of genetics in guiding risk stratification and management, both now and in the future. RECENT FINDINGS While initially thought to be an exclusively Mendelian disease, we now know there are important HCM sub-groups. A proportion will have sarcomere variants as the cause of their disease, while others will have genetic variants in genes that can give rise to conditions that can mimic HCM. The role of genetics is primarily for cascade genetic testing, though there is emerging evidence of a role for prognosis and patient management. Genetic testing is a useful addition to management. Genotype may play a greater role in risk stratification, management, treatment and prognosis in future, offering improved outcomes for patients and their families with HCM.
Collapse
Affiliation(s)
- Fergus Stafford
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
| | - Kate Thomson
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Butters
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
29
|
Ahluwalia M, Ho CY. Cardiovascular genetics: the role of genetic testing in diagnosis and management of patients with hypertrophic cardiomyopathy. Heart 2020; 107:183-189. [PMID: 33172912 DOI: 10.1136/heartjnl-2020-316798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
Genetic testing in hypertrophic cardiomyopathy (HCM) is a valuable tool to manage patients and their families. Genetic testing can help inform diagnosis and differentiate HCM from other disorders that also result in increased left ventricular wall thickness, thereby directly impacting treatment. Moreover, genetic testing can definitively identify at-risk relatives and focus family management. Pathogenic variants in sarcomere and sarcomere-related genes have been implicated in causing HCM, and targeted gene panel testing is recommended for patients once a clinical diagnosis has been established. If a pathogenic or likely pathogenic variant is identified in a patient with HCM, predictive genetic testing is recommended for their at-risk relatives to determine who is at risk and to guide longitudinal screening and risk stratification. However, there are important challenges and considerations to implementing genetic testing in clinical practice. Genetic testing results can have psychological and other implications for patients and their families, emphasising the importance of genetic counselling before and after genetic testing. Determining the clinical relevance of genetic testing results is also complex and requires expertise in understanding of human genetic variation and clinical manifestations of the disease. In this review, we discuss the genetics of HCM and how to integrate genetic testing in clinical practice.
Collapse
Affiliation(s)
- Monica Ahluwalia
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Butters A, Bagnall RD, Ingles J. Revisiting the Diagnostic Yield of Hypertrophic Cardiomyopathy Genetic Testing. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002930. [DOI: 10.1161/circgen.120.002930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexandra Butters
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia (A.B., R.D.B., J.I.)
- Faculty of Medicine and Health, The University of Sydney, Australia (A.B., R.D.B., J.I.)
| | - Richard D. Bagnall
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia (A.B., R.D.B., J.I.)
- Faculty of Medicine and Health, The University of Sydney, Australia (A.B., R.D.B., J.I.)
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia (A.B., R.D.B., J.I.)
- Faculty of Medicine and Health, The University of Sydney, Australia (A.B., R.D.B., J.I.)
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia (J.I.)
| |
Collapse
|