1
|
Kukendrarajah K, Farmaki AE, Lambiase PD, Schilling R, Finan C, Floriaan Schmidt A, Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024; 105:105194. [PMID: 38941956 PMCID: PMC11260865 DOI: 10.1016/j.ebiom.2024.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.
Collapse
Affiliation(s)
- Kishore Kukendrarajah
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom.
| | - Aliki-Eleni Farmaki
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom
| | - Pier D Lambiase
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom; Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom
| | - Richard Schilling
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| | - Chris Finan
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Amand Floriaan Schmidt
- Institute of Cardiovascular Science, University College London, Gower Street, WC1E 6HX, United Kingdom; UCL British Heart Foundation Research Accelerator, United Kingdom; Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, the Netherlands
| | - Rui Providencia
- Institute of Health Informatics, University College London, 222 Euston Road, NW1 2DA, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, United Kingdom
| |
Collapse
|
2
|
Dykiert IA, Kraik K, Jurczenko L, Gać P, Poręba R, Poręba M. The Effect of Obesity on Repolarization and Other ECG Parameters. J Clin Med 2024; 13:3587. [PMID: 38930116 PMCID: PMC11205044 DOI: 10.3390/jcm13123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Overweight and obesity are important risk factors in the development of cardiovascular diseases. New repolarization markers, such as the Tpeak-Tend interval and JTpeak intervals, have not yet been profoundly studied in obese patients. The study aims to analyze whether, in patients with obesity and overweight, repolarization markers, including the Tpeak-Tend interval, are prolonged and simultaneously check the frequency of other ECG pathologies in a 12-lead ECG in this group of patients. Methods: A study group consisted of 181 adults (90 females and 91 males) with overweight and first-class obesity. The participants completed a questionnaire, and the ECG was performed and analyzed. Results: When analyzing the classic markers, only QT dispersion was significantly higher in obese people. The Tpeak-Tend parameter (97.08 ms ± 23.38 vs. 89.74 ms ± 12.88, respectively), its dispersion, and JTpeak-JTend parameters were statistically significantly longer in the obese group than in the controls. There were also substantial differences in P-wave, QRS duration, and P-wave dispersion, which were the highest in obese people. Tpeak-Tend was positively correlated with body mass and waist circumference, while JTpeak was with BMI, hip circumference, and WHR. Tpeak/JT was positively correlated with WHR and BMI. In backward stepwise multiple regression analysis for JTpeak-WHR, type 2 diabetes and smoking had the highest statistical significance. Conclusions: Only selected repolarization markers are significantly prolonged in patients with class 1 obesity and, additionally, in this group, we identified more pathologies of P wave as well as prolonged QRS duration.
Collapse
Affiliation(s)
- Irena A. Dykiert
- Department of Physiology and Pathophysiology, Division of Pathophysiology, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Krzysztof Kraik
- Students’ Scientific Association of Cardiovascular Diseases Prevention, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Lidia Jurczenko
- Students’ Scientific Association of Cardiovascular Diseases Prevention, Wroclaw Medical University, 50-368 Wrocław, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, 50-372 Wrocław, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, 51-617 Wrocław, Poland
| |
Collapse
|
3
|
Bajpai AK, Gu Q, Orgil BO, Alberson NR, Towbin JA, Martinez HR, Lu L, Purevjav E. Exploring the Regulation and Function of Rpl3l in the Development of Early-Onset Dilated Cardiomyopathy and Congestive Heart Failure Using Systems Genetics Approach. Genes (Basel) 2023; 15:53. [PMID: 38254943 PMCID: PMC10815855 DOI: 10.3390/genes15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cardiomyopathies, diseases affecting the myocardium, are common causes of congestive heart failure (CHF) and sudden cardiac death. Recently, biallelic variants in ribosomal protein L3-like (RPL3L) have been reported to be associated with severe neonatal dilated cardiomyopathy (DCM) and CHF. This study employs a systems genetics approach to gain understanding of the regulatory mechanisms underlying the role of RPL3L in DCM. METHODS Genetic correlation, expression quantitative trait loci (eQTL) mapping, differential expression analysis and comparative functional analysis were performed using cardiac gene expression data from the patients and murine genetic reference populations (GRPs) of BXD mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice). Additionally, immune infiltration analysis was performed to understand the relationship between DCM, immune cells and RPL3L expression. RESULTS Systems genetics analysis identified high expression of Rpl3l mRNA, which ranged from 11.31 to 12.16 across murine GRPs of BXD mice, with an ~1.8-fold difference. Pathways such as "diabetic cardiomyopathy", "focal adhesion", "oxidative phosphorylation" and "DCM" were significantly associated with Rpl3l. eQTL mapping suggested Myl4 (Chr 11) and Sdha (Chr 13) as the upstream regulators of Rpl3l. The mRNA expression of Rpl3l, Myl4 and Sdha was significantly correlated with multiple echocardiography traits in BXD mice. Immune infiltration analysis revealed a significant association of RPL3L and SDHA with seven immune cells (CD4, CD8-naive T cell, CD8 T cell, macrophages, cytotoxic T cell, gamma delta T cell and exhausted T cell) that were also differentially infiltrated between heart samples obtained from DCM patients and normal individuals. CONCLUSIONS RPL3L is highly expressed in the heart tissue of humans and mice. Expression of Rpl3l and its upstream regulators, Myl4 and Sdha, correlate with multiple cardiac function traits in murine GRPs of BXD mice, while RPL3L and SDHA correlate with immune cell infiltration in DCM patient hearts, suggesting important roles for RPL3L in DCM and CHF pathogenesis via immune inflammation, necessitating experimental validations of Myl4 and Sdha in Rpl3l regulation.
Collapse
Affiliation(s)
- Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Qingqing Gu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Buyan-Ochir Orgil
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Cardiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (A.K.B.); (Q.G.)
| | - Enkhsaikhan Purevjav
- The Heart Institute, Le Bonheur Children’s Hospital, University of Tennessee Health and Science Center, Memphis, TN 38103, USA; (B.-O.O.); (N.R.A.); (J.A.T.); (H.R.M.)
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
4
|
Marcoux E, Sosnowski D, Ninni S, Mackasey M, Cadrin-Tourigny J, Roberts JD, Olesen MS, Fatkin D, Nattel S. Genetic Atrial Cardiomyopathies: Common Features, Specific Differences, and Broader Relevance to Understanding Atrial Cardiomyopathy. Circ Arrhythm Electrophysiol 2023; 16:675-698. [PMID: 38018478 DOI: 10.1161/circep.123.003750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Atrial cardiomyopathy is a condition that causes electrical and contractile dysfunction of the atria, often along with structural and functional changes. Atrial cardiomyopathy most commonly occurs in conjunction with ventricular dysfunction, in which case it is difficult to discern the atrial features that are secondary to ventricular dysfunction from those that arise as a result of primary atrial abnormalities. Isolated atrial cardiomyopathy (atrial-selective cardiomyopathy [ASCM], with minimal or no ventricular function disturbance) is relatively uncommon and has most frequently been reported in association with deleterious rare genetic variants. The genes involved can affect proteins responsible for various biological functions, not necessarily limited to the heart but also involving extracardiac tissues. Atrial enlargement and atrial fibrillation are common complications of ASCM and are often the predominant clinical features. Despite progress in identifying disease-causing rare variants, an overarching understanding and approach to the molecular pathogenesis, phenotypic spectrum, and treatment of genetic ASCM is still lacking. In this review, we aim to analyze the literature relevant to genetic ASCM to understand the key features of this rather rare condition, as well as to identify distinct characteristics of ASCM and its arrhythmic complications that are related to specific genotypes. We outline the insights that have been gained using basic research models of genetic ASCM in vitro and in vivo and correlate these with patient outcomes. Finally, we provide suggestions for the future investigation of patients with genetic ASCM and improvements to basic scientific models and systems. Overall, a better understanding of the genetic underpinnings of ASCM will not only provide a better understanding of this condition but also promises to clarify our appreciation of the more commonly occurring forms of atrial cardiomyopathy associated with ventricular dysfunction.
Collapse
Affiliation(s)
- Edouard Marcoux
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Faculty of Pharmacy, Université de Montréal. (E.M.)
| | - Deanna Sosnowski
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Sandro Ninni
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, France (S. Ninni)
| | - Martin Mackasey
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal. (J.C.-T.)
| | - Jason D Roberts
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Canada (J.D.R.)
| | - Morten Salling Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Diane Fatkin
- Victor Chang Cardiac Research Institute, Darlinghurst (D.F.)
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington (D.F.)
- Department of Cardiology, St Vincent's Hospital, Darlinghurst, NSW, Australia (D.F.)
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal. (E.M., D.S., S. Ninni, M.M., S. Nattel)
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal. (S. Nattel.)
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada (D.S., M.M., S. Nattel)
- Institute of Pharmacology. West German Heart and Vascular Center, University Duisburg-Essen, Germany (S. Nattel)
- IHU LYRIC & Fondation Bordeaux Université de Bordeaux, France (S. Nattel)
| |
Collapse
|
5
|
Wang X, Khurshid S, Choi SH, Friedman S, Weng LC, Reeder C, Pirruccello JP, Singh P, Lau ES, Venn R, Diamant N, Di Achille P, Philippakis A, Anderson CD, Ho JE, Ellinor PT, Batra P, Lubitz SA. Genetic Susceptibility to Atrial Fibrillation Identified via Deep Learning of 12-Lead Electrocardiograms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:340-349. [PMID: 37278238 PMCID: PMC10524395 DOI: 10.1161/circgen.122.003808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 04/11/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Artificial intelligence (AI) models applied to 12-lead ECG waveforms can predict atrial fibrillation (AF), a heritable and morbid arrhythmia. However, the factors forming the basis of risk predictions from AI models are usually not well understood. We hypothesized that there might be a genetic basis for an AI algorithm for predicting the 5-year risk of new-onset AF using 12-lead ECGs (ECG-AI)-based risk estimates. METHODS We applied a validated ECG-AI model for predicting incident AF to ECGs from 39 986 UK Biobank participants without AF. We then performed a genome-wide association study (GWAS) of the predicted AF risk and compared it with an AF GWAS and a GWAS of risk estimates from a clinical variable model. RESULTS In the ECG-AI GWAS, we identified 3 signals (P<5×10-8) at established AF susceptibility loci marked by the sarcomeric gene TTN and sodium channel genes SCN5A and SCN10A. We also identified 2 novel loci near the genes VGLL2 and EXT1. In contrast, the clinical variable model prediction GWAS indicated a different genetic profile. In genetic correlation analysis, the prediction from the ECG-AI model was estimated to have a higher correlation with AF than that from the clinical variable model. CONCLUSIONS Predicted AF risk from an ECG-AI model is influenced by genetic variation implicating sarcomeric, ion channel and body height pathways. ECG-AI models may identify individuals at risk for disease via specific biological pathways.
Collapse
Affiliation(s)
- Xin Wang
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
| | - Shaan Khurshid
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
| | - Samuel Friedman
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
| | - Lu-Chen Weng
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
| | | | - James P. Pirruccello
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Pulkit Singh
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
| | - Emily S. Lau
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Rachael Venn
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Division of Cardiology, Massachusetts General Hospital, Boston
| | - Nate Diamant
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
| | - Paolo Di Achille
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
| | - Anthony Philippakis
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
- Eric & Wendy Schmidt Ctr, The Broad Institute of MIT & Harvard, Cambridge
| | - Christopher D. Anderson
- Dept of Neurology, Brigham and Women’s Hospital
- Ctr for Genomic Medicine, Massachusetts General Hospital, Boston
- Henry & Allison McCance Ctr for Brain Health, Massachusetts General Hospital, Boston
| | - Jennifer E. Ho
- CardioVascular Institute & Division of Cardiology, Dept of Medicine, Beth Israel Deaconess Medical Ctr, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
- Demoulas Ctr for Cardiac Arrhythmias, Massachusetts General Hospital, Boston
| | - Puneet Batra
- Data Sciences Platform, The Broad Institute of MIT & Harvard, Cambridge
| | - Steven A. Lubitz
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston
- Cardiovascular Disease Initiative, The Broad Institute of MIT & Harvard, Cambridge
- Demoulas Ctr for Cardiac Arrhythmias, Massachusetts General Hospital, Boston
| |
Collapse
|
6
|
Yang Q, Zhang Q, Qin Z, Zhang S, Yi S, Yi S, Zhang Q, Luo J. Novel compound heterozygous variants in the RPL3L gene causing dilated cardiomyopathy type-2D: a case report and literature review. BMC Med Genomics 2023; 16:127. [PMID: 37308880 DOI: 10.1186/s12920-023-01567-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy type-2D (CMD2D) is a rare heart disease causing a severe cardiomyopathy with neonatal onset and rapid progression to cardiac decompensation and death in untreated patients. CMD2D is an autosomal recessive disease resulting from variants in the RPL3L gene, which encodes the 60 S ribosomal protein exclusively expressed in skeletal and cardiac muscle and plays an essential role in myoblast growth and fusion. Previous reports have only associated CMD2D with a small duplication and seven nucleotide substitution in the RPL3L gene. CASE PRESENTATION In this study, we report the case of a 31 days old Chinese infant patient with severe dilated cardiomyopathy (DCM) and rapid decompensation along with other cardiac malformations. In addition to previously reported clinical features, the patient showed the previously unreported complication of occasional premature atrial contractions and a first-degree atrioventricular block. Whole-exome sequencing (WES) revealed compound heterozygous variants (c.80G > A (p.Gly27Asp) and c.1074dupA (p.Ala359fs*6)) in RPL3L (NM_005061.3). The latter novel variant may result in the absence of protein production with a significant decrease in mRNA level, suggesting it is a loss-of-function mutation. CONCLUSIONS This is the first case report of RPL3L-associated neonatal dilated cardiomyopathy in China. The molecular confirmation of the patient expands the genetic spectrum of CMD2D, and the clinical manifestation of CMD2D in the patient provides additional clinical information regarding this disease.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, No. 59, Xiangzhu Road, Nanning, China.
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Shiraishi C, Matsumoto A, Ichihara K, Yamamoto T, Yokoyama T, Mizoo T, Hatano A, Matsumoto M, Tanaka Y, Matsuura-Suzuki E, Iwasaki S, Matsushima S, Tsutsui H, Nakayama KI. RPL3L-containing ribosomes determine translation elongation dynamics required for cardiac function. Nat Commun 2023; 14:2131. [PMID: 37080962 PMCID: PMC10119107 DOI: 10.1038/s41467-023-37838-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Although several ribosomal protein paralogs are expressed in a tissue-specific manner, how these proteins affect translation and why they are required only in certain tissues have remained unclear. Here we show that RPL3L, a paralog of RPL3 specifically expressed in heart and skeletal muscle, influences translation elongation dynamics. Deficiency of RPL3L-containing ribosomes in RPL3L knockout male mice resulted in impaired cardiac contractility. Ribosome occupancy at mRNA codons was found to be altered in the RPL3L-deficient heart, and the changes were negatively correlated with those observed in myoblasts overexpressing RPL3L. RPL3L-containing ribosomes were less prone to collisions compared with RPL3-containing canonical ribosomes. Although the loss of RPL3L-containing ribosomes altered translation elongation dynamics for the entire transcriptome, its effects were most pronounced for transcripts related to cardiac muscle contraction and dilated cardiomyopathy, with the abundance of the encoded proteins being correspondingly decreased. Our results provide further insight into the mechanisms and physiological relevance of tissue-specific translational regulation.
Collapse
Affiliation(s)
- Chisa Shiraishi
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Akinobu Matsumoto
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| | - Kazuya Ichihara
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Taishi Yamamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Taisuke Mizoo
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, 951-8510, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Eriko Matsuura-Suzuki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Division of Cell Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Wang MF, Xue C, Shi SY, Yang L, Zhu ZY, Li JJ. Gene Polymorphism and Recurrent Atrial Fibrillation after Catheter Ablation: A Comprehensive Review. Rev Cardiovasc Med 2023; 24:119. [PMID: 39076272 PMCID: PMC11273024 DOI: 10.31083/j.rcm2404119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 08/15/2023] Open
Abstract
Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, but its pathogenesis is still poorly understood. Catheter ablation is one of the most effective treatments for AF, but recurrence after ablation remains a challenge. There has been much research into the association of AF recurrence with several factors, including genetics. Over the past decade or so, significant advances have been made in the genetic architecture of atrial fibrillation. Genome-wide association studies (GWAS) have identified over 100 loci for genetic variants associated with atrial fibrillation. However, there is relatively little information on the systematic assessment of the genes related to AF recurrence after ablation. In this review article, we highlight the value of genetic polymorphisms in atrial fibrillation recurrence after catheter ablation and their potential mechanisms in the recurrence process to enhance our understanding of atrial fibrillation recurrence and contribute to individualized treatment strategies for patients with AF.
Collapse
Affiliation(s)
- Meng-Fei Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Cong Xue
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Shun-Yi Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Zhen-Yan Zhu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, 213000 Changzhou, Jiangsu, China
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037 Beijing, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is the most common cardiac arrhythmia worldwide. There is considerable interest in better understanding the molecular genetics and biology of atrial fibrillation to inform the development of new therapies and improve clinical management. This review summarizes recent advances in our understanding of the genetic basis of atrial fibrillation and new efforts to utilize genetics to inform clinical management. RECENT FINDINGS Genome-wide association studies in diverse populations have increased the number of genetic loci associated with atrial fibrillation and its specific subtypes. Large-scale biobanks with deep phenotyping have provided invaluable data to study the impact of both common and rare variants on atrial fibrillation, susceptibility, and prognosis. Polygenic risk scores help improve individual atrial fibrillation risk stratification and prognostication. SUMMARY Our understanding of atrial fibrillation genetics is rapidly improving with larger and more diverse genome-wide association studies. Translating genetic discoveries into molecular pathways and new therapeutic targets remains a bottleneck in the development of new therapies for atrial fibrillation. Genetic risk scores have shown early promise in improving atrial fibrillation risk stratification; however, their broader utility for the general population remains unclear.
Collapse
Affiliation(s)
- David S M Lee
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center.,Department of Surgery.,Department of Genetics, University of Pennsylvania Perelman School of Medicine
| | - Michael G Levin
- Corporal Michael J. Crescenz VA Medical Center.,Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
11
|
Istolahti T, Eranti A, Huhtala H, Tynkkynen J, Lyytikäinen LP, Kähönen M, Lehtimäki T, Eskola M, Anttila I, Jula A, Nikus K, Hernesniemi J. Interatrial block and P terminal force in the general population – Longitudinal changes, risk factors and prognosis. J Electrocardiol 2022; 73:12-20. [DOI: 10.1016/j.jelectrocard.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
|
12
|
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Biomolecules 2022; 12:biom12030416. [PMID: 35327608 PMCID: PMC8946067 DOI: 10.3390/biom12030416] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed.
Collapse
|
13
|
Mone P, Pansini A, Calabrò F, De Gennaro S, Esposito M, Rinaldi P, Colin A, Minicucci F, Coppola A, Frullone S, Santulli G. Global cognitive function correlates with P-wave dispersion in frail hypertensive older adults. J Clin Hypertens (Greenwich) 2022; 24:638-643. [PMID: 35229449 PMCID: PMC9106080 DOI: 10.1111/jch.14439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
P‐Wave Dispersion (PWD) is an ECG parameter defined as the difference between the longest and the shortest P‐Wave duration. PWD has been associated with hypertension, a leading cause of age‐related cognitive decline. Moreover, hypertension is associated with vascular dementia and Alzheimer's Disease. Based on these considerations, we evaluated PWD and global cognitive function in frail hypertensive older adults with a previous diagnosis of cognitive decline. We evaluated consecutive frail hypertensive patients ≥65‐year‐old with a Mini‐Mental State Examination (MMSE) score <26. Patients with evidence of secondary hypertension, history of stroke, myocardial infarction, or therapy with beta‐blockers or acetylcholinesterase inhibitors were excluded. Beta‐blocker therapy causes a significant decrease in PWD; patients treated with acetylcholinesterase inhibitors were not included to avoid confounding effects on cognitive function. By examining 180 patients, we found that PWD significantly correlated with MMSE score. Strikingly, these effects were confirmed in a linear multivariate analysis with a regression model. To our knowledge, this is the first study showing that PWD correlates with global cognitive function in frail hypertensive older adults.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, USA.,University Campania "Luigi Vanvitelli", Naples, Italy.,ASL Avellino, Avellino, Italy
| | | | | | | | | | | | | | | | | | | | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, USA.,University of Naples "Federico II", Naples, Italy.,International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
| |
Collapse
|
14
|
Nannapaneni H, Ghaleb S, Arya S, Gajula V, Taylor MB, Das BB. Further Evidence of Autosomal Recessive Inheritance of RPL3L Pathogenic Variants with Rapidly Progressive Neonatal Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2022; 9:jcdd9030065. [PMID: 35323613 PMCID: PMC8955827 DOI: 10.3390/jcdd9030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is rare with high etiologic heterogeneity. Recently, biallelic, autosomal recessive, pathogenic variants in RPL3L (ribosomal protein L3-like) have been reported in the literature with severe early-onset DCM. In the present brief report, we identified two pathogenic RPL3L variants, each harbored in unaffected heterozygous parents: mother (RPL3L c.1076_1080delCCGTG (p.Ala359Glyfs*4)) and father (RPL3L c.80G > A (p.Gly27Asp)). Pathogenic variants were segregated as autosomal recessive to two offspring born with compound heterozygous RPL3L variants and affected by neonatal DCM. This is the second report in the literature to the best of our knowledge and our findings support the pathogenicity of biallelic RPL3L pathologic variants associated with rapidly progressive neonatal DCM and heart failure with a poor prognosis.
Collapse
Affiliation(s)
| | - Stephanie Ghaleb
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Sandeep Arya
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Viswanath Gajula
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Mary B. Taylor
- Department of Pediatrics, Division of Critical Care, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA; (S.A.); (V.G.); (M.B.T.)
| | - Bibhuti B. Das
- Department of Pediatrics, Division of Pediatric Cardiology, Children’s of Mississippi Heart Center, University of Mississippi Medical Center, Jackson, MS 39216, USA;
- Correspondence: ; Tel.: +1-601-984-5250; Fax: +1-601-984-5283
| |
Collapse
|
15
|
Musotto G, Monteleone A, Vella D, Di Leonardo S, Viola A, Pitarresi G, Zuccarello B, Pantano A, Cook A, Bosi GM, Burriesci G. The Role of Patient-Specific Morphological Features of the Left Atrial Appendage on the Thromboembolic Risk Under Atrial Fibrillation. Front Cardiovasc Med 2022; 9:894187. [PMID: 35911543 PMCID: PMC9329814 DOI: 10.3389/fcvm.2022.894187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Background A large majority of thrombi causing ischemic complications under atrial fibrillation (AF) originate in the left atrial appendage (LAA), an anatomical structure departing from the left atrium, characterized by a large morphological variability between individuals. This work analyses the hemodynamics simulated for different patient-specific models of LAA by means of computational fluid-structure interaction studies, modeling the effect of the changes in contractility and shape resulting from AF. Methods Three operating conditions were analyzed: sinus rhythm, acute atrial fibrillation, and chronic atrial fibrillation. These were simulated on four patient-specific LAA morphologies, each associated with one of the main morphological variants identified from the common classification: chicken wing, cactus, windsock, and cauliflower. Active contractility of the wall muscle was calibrated on the basis of clinical evaluations of the filling and emptying volumes, and boundary conditions were imposed on the fluid to replicate physiological and pathological atrial pressures, typical of the various operating conditions. Results The LAA volume and shear strain rates were analyzed over time and space for the different models. Globally, under AF conditions, all models were well aligned in terms of shear strain rate values and predicted levels of risk. Regions of low shear rate, typically associated with a higher risk of a clot, appeared to be promoted by sudden bends and focused at the trabecule and the lobes. These become substantially more pronounced and extended with AF, especially under acute conditions. Conclusion This work clarifies the role of active and passive contraction on the healthy hemodynamics in the LAA, analyzing the hemodynamic effect of AF that promotes clot formation. The study indicates that local LAA topological features are more directly associated with a thromboembolic risk than the global shape of the appendage, suggesting that more effective classification criteria should be identified.
Collapse
Affiliation(s)
- Giulio Musotto
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy.,Department of Engineering, University of Palermo, Palermo, Italy
| | | | - Danila Vella
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy
| | | | - Alessia Viola
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy.,Department of Engineering, University of Palermo, Palermo, Italy
| | | | | | - Antonio Pantano
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Andrew Cook
- UCL Institute of Cardiovascular Science and Great Ormond Street Hospital for Children, London, United Kingdom
| | - Giorgia M Bosi
- UCL Mechanical Engineering, University College London, London, United Kingdom
| | - Gaetano Burriesci
- Bioengineering Unit, Ri.MED Foundation, Palermo, Italy.,UCL Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
16
|
Linz D, Verheule S, Isaacs A, Schotten U. Considerations for the Assessment of Substrates, Genetics and Risk Factors in Patients with Atrial Fibrillation. Arrhythm Electrophysiol Rev 2021; 10:132-139. [PMID: 34777816 PMCID: PMC8576487 DOI: 10.15420/aer.2020.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Successful translation of research focussing on atrial arrhythmogenic mechanisms has potential to provide a mechanism-tailored classification and to support personalised treatment approaches in patients with AF. The clinical uptake and clinical implementation of new diagnostic techniques and treatment strategies require translational research approaches on various levels. Diagnostic translation involves the development of clinical diagnostic tools. Additionally, multidisciplinary teams are required for collaborative translation to describe genetic mechanisms, molecular pathways, electrophysiological characteristics and concomitant risk factors. In this article, current approaches for AF substrate characterisation, analysis of genes potentially involved in AF and strategies for AF risk factor assessment are summarised. The authors discuss challenges and obstacles to clinical translation and implementation into clinical practice.
Collapse
Affiliation(s)
- Dominik Linz
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University and Maastricht University Medical Center+, Maastricht, the Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Sander Verheule
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Aaron Isaacs
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
17
|
Huang Y, Chen XM, Barajas-Martinez H, Jiang H, Antzelevitch C, Hu D. Common variants in SCN10A gene associated with Brugada syndrome. Hum Mol Genet 2021; 31:157-165. [PMID: 34312669 DOI: 10.1093/hmg/ddab217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Genome-wide association studies indicate that SCN10A plays an important role in cardiac electrophysiology. Common and rare SCN10A variants are suggested to contribute to Brugada Syndrome (BrS), an inherited channelopathy resulting from genetic-determined loss-of-function in cardiac sodium channel. This study sought to characterize the role of SCN10A common variants in BrS. METHODS AND RESULTS Clinical and genetic analyses were performed in 197 patients diagnosed with BrS. Baseline ECG parameters were evaluated in patients carrying each of four common variants associated with BrS. Cellular electrophysiological study was performed in SCN5A-SCN10A co-transfected TSA201 cells to investigate the possible electrophysiological characteristics of the allele of rs6795970, which displayed the most significant association with BrS. Four SCN10A common variants (rs7630989, rs57326399, rs6795970, rs12632942) displayed significant association with BrS susceptibility. There were no evident associations between baseline ECG parameters in BrS patients and the different genotypes of the four variants. Rs6795970 (V1073) was strongly associated with a risk for BrS, which suggests the different electrophysiological characters between these two alleles. Functional study showed a positive shift in steady-state activation (V1/2: -62.2 ± 2.6 vs. -53.5 ± 1.6 for A1073 and V1073 group, respectively; P < 0.05) and slower recovery from inactivation in mutant SCN5A-SCN10A co-transfected cells with, which contribute to the slow conduction in BrS patients with rs6795970. CONCLUSIONS SCN10A common variants are associated with increased susceptibility to BrS. An allele rs6795970 (V1073) increases the risk for BrS. The electrophysiological changes in a positive shift in steady-state activation and slower recovery from inactivation by SCN10A-V1073 contribute to this variant associated BrS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| | - Xiao-Meng Chen
- Department of Cardiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, 266071, China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Hong Jiang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, Pennsylvania and Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430060, China
| |
Collapse
|