1
|
Scipione CA, Hyduk SJ, Polenz CK, Cybulsky MI. Unveiling the Hidden Landscape of Arterial Diseases at Single-Cell Resolution. Can J Cardiol 2023; 39:1781-1794. [PMID: 37716639 DOI: 10.1016/j.cjca.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023] Open
Abstract
High-resolution single-cell technologies have shed light on the pathogenesis of cardiovascular diseases by enabling the discovery of novel cellular and transcriptomic signatures associated with various conditions, and uncovering new contributions of inflammatory processes, immunity, metabolic stress, and risk factors. We review the information obtained from studies using single-cell technologies in tissues with atherosclerosis and aortic aneurysms. Insights are provided on the biology of endothelial, smooth muscle, and immune cells in the arterial intima and media. In addition to cellular diversity, numerous examples of plasticity and phenotype switching are highlighted and presented in the context of normal cell functions.
Collapse
Affiliation(s)
- Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Chen Z, Zhang SL. Endoplasmic Reticulum Stress: A Key Regulator of Cardiovascular Disease. DNA Cell Biol 2023. [PMID: 37140435 DOI: 10.1089/dna.2022.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Keylani K, Arbab Mojeni F, Khalaji A, Rasouli A, Aminzade D, Karimi MA, Sanaye PM, Khajevand N, Nemayandeh N, Poudineh M, Azizabadi Farahani M, Esfandiari MA, Haghshoar S, Kheirandish A, Amouei E, Abdi A, Azizinezhad A, Khani A, Deravi N. Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Front Pharmacol 2023; 13:1027633. [PMID: 36703744 PMCID: PMC9871646 DOI: 10.3389/fphar.2022.1027633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Flavonoids are found in natural health products and plant-based foods. The flavonoid molecules contain a 15-carbon skeleton with the particular structural construction of subclasses. The most flavonoid's critical subclasses with improved health properties are the catechins or flavonols (e.g., epigallocatechin 3-gallate from green tea), the flavones (e.g., apigenin from celery), the flavanones (e.g., naringenin from citrus), the flavanols (e.g., quercetin glycosides from berries, onion, and apples), the isoflavones (e.g., genistein from soya beans) and the anthocyanins (e.g., cyanidin-3-O-glucoside from berries). Scientific data conclusively demonstrates that frequent intake of efficient amounts of dietary flavonoids decreases chronic inflammation and the chance of oxidative stress expressing the pathogenesis of human diseases like cardiovascular diseases (CVDs). The endoplasmic reticulum (ER) is a critical organelle that plays a role in protein folding, post-transcriptional conversion, and transportation, which plays a critical part in maintaining cell homeostasis. Various stimuli can lead to the creation of unfolded or misfolded proteins in the endoplasmic reticulum and then arise in endoplasmic reticulum stress. Constant endoplasmic reticulum stress triggers unfolded protein response (UPR), which ultimately causes apoptosis. Research has shown that endoplasmic reticulum stress plays a critical part in the pathogenesis of several cardiovascular diseases, including diabetic cardiomyopathy, ischemic heart disease, heart failure, aortic aneurysm, and hypertension. Endoplasmic reticulum stress could be one of the crucial points in treating multiple cardiovascular diseases. In this review, we summarized findings on flavonoids' effects on the endoplasmic reticulum and their role in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Dlnya Aminzade
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nazanin Khajevand
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasrin Nemayandeh
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Ali Esfandiari
- Student Research Committee, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sepehr Haghshoar
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Erfan Amouei
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Khani
- Department of Cardiovascular Disease, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,*Correspondence: Niloofar Deravi,
| |
Collapse
|
4
|
Li W, Jin K, Luo J, Xu W, Wu Y, Zhou J, Wang Y, Xu R, Jiao L, Wang T, Yang G. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front Cardiovasc Med 2022; 9:988266. [PMID: 36204587 PMCID: PMC9530249 DOI: 10.3389/fcvm.2022.988266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis (AS) is a common cardiovascular disease with complex pathogenesis, in which multiple pathways and their interweaving regulatory mechanism remain unclear. The primary transcription factor NF-κB plays a critical role in AS via modulating the expression of a series of inflammatory mediators under various stimuli such as cytokines, microbial antigens, and intracellular stresses. Endoplasmic reticulum (ER) stress, caused by the disrupted synthesis and secretion of protein, links inflammation, metabolic signals, and other cellular processes via the unfolded protein response (UPR). Both NF-κB and ER stress share the intersection regarding their molecular regulation and function and are regarded as critical individual contributors to AS. In this review, we summarize the multiple interactions between NF-κB and ER stress activation, including the UPR, NLRP3 inflammasome, and reactive oxygen species (ROS) generation, which have been ignored in the pathogenesis of AS. Given the multiple links between NF-κB and ER stress, we speculate that the integrated network contributes to the understanding of molecular mechanisms of AS. This review aims to provide an insight into these interactions and their underlying roles in the progression of AS, highlighting potential pharmacological targets against the atherosclerotic inflammatory process.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jia Zhou
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Liqun Jiao,
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Tao Wang,
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Tao Wang,
| |
Collapse
|
5
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
6
|
Nguyen DT, Smith AF, Jiménez JM. Stent strut streamlining and thickness reduction promote endothelialization. J R Soc Interface 2021; 18:20210023. [PMID: 34404229 PMCID: PMC8371379 DOI: 10.1098/rsif.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander F. Smith
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
8
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-41019-40239-41565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 05/28/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
9
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-019-0239-5] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
10
|
Alevriadou BR, Shanmughapriya S, Patel A, Stathopulos PB, Madesh M. Mitochondrial Ca 2+ transport in the endothelium: regulation by ions, redox signalling and mechanical forces. J R Soc Interface 2017; 14:rsif.2017.0672. [PMID: 29237825 DOI: 10.1098/rsif.2017.0672] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
Calcium (Ca2+) transport by mitochondria is an important component of the cell Ca2+ homeostasis machinery in metazoans. Ca2+ uptake by mitochondria is a major determinant of bioenergetics and cell fate. Mitochondrial Ca2+ uptake occurs via the mitochondrial Ca2+ uniporter (MCU) complex, an inner mitochondrial membrane protein assembly consisting of the MCU Ca2+ channel, as its core component, and the MCU complex regulatory/auxiliary proteins. In this review, we summarize the current knowledge on the molecular nature of the MCU complex and its regulation by intra- and extramitochondrial levels of divalent ions and reactive oxygen species (ROS). Intracellular Ca2+ concentration ([Ca2+]i), mitochondrial Ca2+ concentration ([Ca2+]m) and mitochondrial ROS (mROS) are intricately coupled in regulating MCU activity. Here, we highlight the contribution of MCU activity to vascular endothelial cell (EC) function. Besides the ionic and oxidant regulation, ECs are continuously exposed to haemodynamic forces (either pulsatile or oscillatory fluid mechanical shear stresses, depending on the precise EC location within the arteries). Thus, we also propose an EC mechanotransduction-mediated regulation of MCU activity in the context of vascular physiology and atherosclerotic vascular disease.
Collapse
Affiliation(s)
- B Rita Alevriadou
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA .,Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Santhanam Shanmughapriya
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, USA.,Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Akshar Patel
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.,Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA.,Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5C1
| | - Muniswamy Madesh
- Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, PA 19140, USA .,Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Yu CK, Xu T, Assoian RK, Rader DJ. Mining the Stiffness-Sensitive Transcriptome in Human Vascular Smooth Muscle Cells Identifies Long Noncoding RNA Stiffness Regulators. Arterioscler Thromb Vasc Biol 2017; 38:164-173. [PMID: 29051139 DOI: 10.1161/atvbaha.117.310237] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Vascular extracellular matrix stiffening is a risk factor for aortic and coronary artery disease. How matrix stiffening regulates the transcriptome profile of human aortic and coronary vascular smooth muscle cells (VSMCs) is not well understood. Furthermore, the role of long noncoding RNAs (lncRNAs) in the cellular response to stiffening has never been explored. This study characterizes the stiffness-sensitive (SS) transcriptome of human aortic and coronary VSMCs and identifies potential key lncRNA regulators of stiffness-dependent VSMC functions. APPROACH AND RESULTS Aortic and coronary VSMCs were cultured on hydrogel substrates mimicking physiological and pathological extracellular matrix stiffness. Total RNAseq was performed to compare the SS transcriptome profiles of aortic and coronary VSMCs. We identified 3098 genes (2842 protein coding and 157 lncRNA) that were stiffness sensitive in both aortic and coronary VSMCs (false discovery rate <1%). Hierarchical clustering revealed that aortic and coronary VSMCs grouped by stiffness rather than cell origin. Conservation analyses also revealed that SS genes were more conserved than stiffness-insensitive genes. These VSMC SS genes were less tissue-type specific and expressed in more tissues than stiffness-insensitive genes. Using unbiased systems analyses, we identified MALAT1 as an SS lncRNA that regulates stiffness-dependent VSMC proliferation and migration in vitro and in vivo. CONCLUSIONS This study provides the transcriptomic landscape of human aortic and coronary VSMCs in response to extracellular matrix stiffness and identifies novel SS human lncRNAs. Our data suggest that the SS transcriptome is evolutionarily important to VSMCs function and that SS lncRNAs can act as regulators of stiffness-dependent phenotypes.
Collapse
MESH Headings
- Aorta/metabolism
- Aorta/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Cluster Analysis
- Computational Biology/methods
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Data Mining/methods
- Extracellular Matrix/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Humans
- Hydrogels
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Transcriptome
- Vascular Stiffness
Collapse
Affiliation(s)
- Christopher K Yu
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Tina Xu
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Richard K Assoian
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition
| | - Daniel J Rader
- From the Perelman School of Medicine (C.K.Y.), Department of Systems Pharmacology and Translational Therapeutics (T.X., R.K.A.), Program in Translational Biomechanics, Institute of Translational Medicine and Therapeutics (T.X., R.K.A.), and Departments of Genetics, Medicine, and Pediatrics, Perelman School of Medicine (D.J.R.), University of Pennsylvania, Philadelphia.
- This manuscript was sent to Zahi Fayad, Consulting Editor, for review by expert referees, editorial decision, and final disposition.
| |
Collapse
|
12
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
13
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
14
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 446] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
15
|
Lee YT, Laxton V, Lin HY, Chan YWF, Fitzgerald-Smith S, To TLO, Yan BP, Liu T, Tse G. Animal models of atherosclerosis. Biomed Rep 2017; 6:259-266. [PMID: 28451383 PMCID: PMC5403338 DOI: 10.3892/br.2017.843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a significant cause of morbidity and mortality globally. Many animal models have been developed to study atherosclerosis, and permit experimental conditions, diet and environmental risk factors to be carefully controlled. Pathophysiological changes can be produced using genetic or pharmacological means to study the harmful consequences of different interventions. Experiments using such models have elucidated its molecular and pathophysiological mechanisms, and provided platforms for pharmacological development. Different models have their own advantages and disadvantages, and can be used to answer different research questions. In the present review article, different species of atherosclerosis models are outlined, with discussions on the practicality of their use for experimentation.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Victoria Laxton
- Intensive Care Department, Royal Brompton and Harefield NHS Trust, London SW3 6NP, UK
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yin Wah Fiona Chan
- School of Biological Sciences, University of Cambridge, Cambridge CB2 1AG, UK
| | | | - Tsz Ling Olivia To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
16
|
Devaux Y. Transcriptome of blood cells as a reservoir of cardiovascular biomarkers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:209-216. [DOI: 10.1016/j.bbamcr.2016.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 02/07/2023]
|
17
|
McCormick ME, Manduchi E, Witschey WRT, Gorman RC, Gorman JH, Jiang YZ, Stoeckert CJ, Barker AJ, Yoon S, Markl M, Davies PF. Spatial phenotyping of the endocardial endothelium as a function of intracardiac hemodynamic shear stress. J Biomech 2016; 50:11-19. [PMID: 27916240 DOI: 10.1016/j.jbiomech.2016.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023]
Abstract
Despite substantial evidence for the central role of hemodynamic shear stress in the functional integrity of vascular endothelial cells, hemodynamic and molecular regulation of the endocardial endothelium lining the heart chambers remains understudied. We propose that regional differences in intracardiac hemodynamics influence differential endocardial gene expression leading to phenotypic heterogeneity of this cell layer. Measurement of intracardiac hemodynamics was performed using 4-dimensional flow MRI in healthy humans (n=8) and pigs (n=5). Local wall shear stress (WSS) and oscillatory shear indices (OSI) were calculated in three distinct regions of the LV - base, mid-ventricle (midV), and apex. In both the humans and pigs, WSS values were significantly lower in the apex and midV relative to the base. Additionally, both the apex and midV had greater oscillatory shear indices (OSI) than the base. To investigate regional phenotype, endocardial endothelial cells (EEC) were isolated from an additional 8 pigs and RNA sequencing was performed. A false discovery rate of 0.10 identified 1051 differentially expressed genes between the base and apex, and 321 between base and midV. Pathway analyses revealed apical upregulation of genes associated with translation initiation. Furthermore, tissue factor pathway inhibitor (TFPI; mean 50-fold) and prostacyclin synthase (PTGIS; 5-fold), genes prominently associated with antithrombotic protection, were consistently upregulated in LV apex. These spatio-temporal WSS values in defined regions of the left ventricle link local hemodynamics to regional heterogeneity in endocardial gene expression.
Collapse
Affiliation(s)
- Margaret E McCormick
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Elisabetta Manduchi
- Institute for Biomedical Informatics and Departments of, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph H Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Zhou Jiang
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian J Stoeckert
- Institute for Biomedical Informatics and Departments of, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex J Barker
- Departments of Radiology, Northwestern University, Chicago, IL, USA
| | - Samuel Yoon
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Markl
- Departments of Radiology, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Peter F Davies
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Biofluids, cell mechanics and epigenetics: Flow-induced epigenetic mechanisms of endothelial gene expression. J Biomech 2016; 50:3-10. [PMID: 27865480 DOI: 10.1016/j.jbiomech.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/26/2022]
Abstract
Epigenetics is the regulation of gene expression (transcription) in response to changes in the cell environment through genomic modifications that largely involve the non-coding fraction of the human genome and that cannot be attributed to modification of the primary DNA sequence. Epigenetics is dominant in establishing cell fate and positioning during programmed embryonic development. However the same pathways are used by mature postnatal and adult mammalian cells during normal physiology and are implicated in disease mechanisms. Recent research demonstrates that blood flow and pressure are cell environments that can influence transcription via epigenetic pathways. The principal epigenetic pathways are chemical modification of cytosine residues of DNA (DNA methylation) and of the amino tails of histone proteins associated with DNA in nucleosomes. They also encompass the post-transcriptional degradation of mRNA transcripts by non-coding RNAs (ncRNA). In vascular endothelium, epigenetic pathways respond to temporal and spatial variations of flow and pressure, particularly hemodynamic disturbed blood flow, with important consequences for gene expression. The biofluid environment is linked by mechanotransduction and solute transport to cardiovascular cell phenotypes via signaling pathways and epigenetic regulation for which there is an adequate interdisciplinary infrastructure with robust tools and methods available. Epigenetic mechanisms may be less familiar than acute genomic signaling to Investigators at the interface of biofluids, biomechanics and cardiovascular biology. Here we introduce a biofluids / cellular biomechanics readership to the principal epigenetic pathways and provide a contextual overview of endothelial epigenetic plasticity in the regulation of flow-responsive transcription.
Collapse
|
19
|
Serbanovic-Canic J, de Luca A, Warboys C, Ferreira PF, Luong LA, Hsiao S, Gauci I, Mahmoud M, Feng S, Souilhol C, Bowden N, Ashton JP, Walczak H, Firmin D, Krams R, Mason JC, Haskard DO, Sherwin S, Ridger V, Chico TJA, Evans PC. Zebrafish Model for Functional Screening of Flow-Responsive Genes. Arterioscler Thromb Vasc Biol 2016; 37:130-143. [PMID: 27834691 PMCID: PMC5172514 DOI: 10.1161/atvbaha.116.308502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.
Collapse
Affiliation(s)
- Jovana Serbanovic-Canic
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Amalia de Luca
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Christina Warboys
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Pedro F Ferreira
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Le A Luong
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Sarah Hsiao
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Ismael Gauci
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Marwa Mahmoud
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Shuang Feng
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Celine Souilhol
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Neil Bowden
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - John-Paul Ashton
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Henning Walczak
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - David Firmin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Rob Krams
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Justin C Mason
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Dorian O Haskard
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Spencer Sherwin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Victoria Ridger
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Timothy J A Chico
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Paul C Evans
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom.
| |
Collapse
|
20
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
21
|
Simmons RD, Kumar S, Thabet SR, Sur S, Jo H. Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:378-401. [PMID: 27341633 DOI: 10.1002/wsbm.1344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/16/2022]
Abstract
Atherosclerosis is a multifactorial disease that preferentially occurs in arterial regions exposed to d-flow can be used to indicate disturbed flow or disturbed blood flow. The mechanisms by which d-flow induces atherosclerosis involve changes in the transcriptome, methylome, proteome, and metabolome of multiple vascular cells, especially endothelial cells. Initially, we begin with the pathogenesis of atherosclerosis and the changes that occur at multiple levels owing to d-flow, especially in the endothelium. Also, there are a variety of strategies used for the global profiling of the genome, transcriptome, miRNA-ome, DNA methylome, and metabolome that are important to define the biological and pathophysiological mechanisms of endothelial dysfunction and atherosclerosis. Finally, systems biology can be used to integrate these 'omics' datasets, especially those that derive data based on a single animal model, in order to better understand the pathophysiology of atherosclerosis development in a holistic manner and how this integrative approach could be used to identify novel molecular diagnostics and therapeutic targets to prevent or treat atherosclerosis. WIREs Syst Biol Med 2016, 8:378-401. doi: 10.1002/wsbm.1344 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rachel D Simmons
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandeep Kumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Salim Raid Thabet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sanjoli Sur
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
22
|
McCormick ME, Tzima E. Pulling on my heartstrings: mechanotransduction in cardiac development and function. Curr Opin Hematol 2016; 23:235-42. [PMID: 26906028 PMCID: PMC4823169 DOI: 10.1097/moh.0000000000000240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Endothelial cells line the surface of the cardiovascular system and display a large degree of heterogeneity due to developmental origin and location. Despite this heterogeneity, all endothelial cells are exposed to wall shear stress (WSS) imparted by the frictional force of flowing blood, which plays an important role in determining the endothelial cell phenotype. Although the effects of WSS have been greatly studied in vascular endothelial cells, less is known about the role of WSS in regulating cardiac function and cardiac endothelial cells. RECENT FINDINGS Recent advances in genetic and imaging technologies have enabled a more thorough investigation of cardiac hemodynamics. Using developmental models, shear stress sensing by endocardial endothelial cells has been shown to play an integral role in proper cardiac development including morphogenesis and formation of the conduction system. In the adult, less is known about hemodynamics and endocardial endothelial cells, but a clear role for WSS in the development of coronary and valvular disease is increasingly appreciated. SUMMARY Future research will further elucidate a role for WSS in the developing and adult heart, and understanding this dynamic relationship may represent a potential therapeutic target for the treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Margaret E. McCormick
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ellie Tzima
- Division of Cardiovascular Medicine,Wellcome Trust Centre for Human Genetics, Oxford University, Oxford, UK
| |
Collapse
|
23
|
The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis. Int J Mol Sci 2016; 17:ijms17020193. [PMID: 26840309 PMCID: PMC4783927 DOI: 10.3390/ijms17020193] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 12/31/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Pathogenesis of atherosclerosis is a complex process involving several metabolic and signalling pathways. Accumulating evidence demonstrates that endoplasmic reticulum stress and associated apoptosis can be induced in the pathological conditions of atherosclerotic lesions and contribute to the disease progression. Notably, they may play a role in the development of vulnerable plaques that induce thrombosis and are therefore especially dangerous. Endoplasmic reticulum stress response is regulated by several signaling mechanisms that involve protein kinases and transcription factors. Some of these molecules can be regarded as potential therapeutic targets to improve treatment of atherosclerosis. In this review we will discuss the role of endoplasmic reticulum stress and apoptosis in atherosclerosis development in different cell types and summarize the current knowledge on potential therapeutic agents targeting molecules regulating these pathways and their possible use for anti-atherosclerotic therapy.
Collapse
|
24
|
The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 2015; 591:111-31. [PMID: 26686737 DOI: 10.1016/j.abb.2015.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
Atherosclerosis is the leading cause of morbidity and mortality in the U.S., and is a multifactorial disease that preferentially occurs in regions of the arterial tree exposed to disturbed blood flow. The detailed mechanisms by which d-flow induces atherosclerosis involve changes in the expression of genes, epigenetic patterns, and metabolites of multiple vascular cells, especially endothelial cells. This review presents an overview of endothelial mechanobiology and its relation to the pathogenesis of atherosclerosis with special reference to the anatomy of the artery and the underlying fluid mechanics, followed by a discussion of a variety of experimental models to study the role of fluid mechanics and atherosclerosis. Various in vitro and in vivo models to study the role of flow in endothelial biology and pathobiology are discussed in this review. Furthermore, strategies used for the global profiling of the genome, transcriptome, miR-nome, DNA methylome, and metabolome, as they are important to define the biological and pathophysiological mechanisms of atherosclerosis. These "omics" approaches, especially those which derive data based on a single animal model, provide unprecedented opportunities to not only better understand the pathophysiology of atherosclerosis development in a holistic and integrative manner, but also to identify novel molecular and diagnostic targets.
Collapse
|
25
|
Jiang YZ, Manduchi E, Stoeckert CJ, Davies PF. Arterial endothelial methylome: differential DNA methylation in athero-susceptible disturbed flow regions in vivo. BMC Genomics 2015; 16:506. [PMID: 26148682 PMCID: PMC4492093 DOI: 10.1186/s12864-015-1656-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis is a heterogeneously distributed disease of arteries in which the endothelium plays an important central role. Spatial transcriptome profiling of endothelium in pre-lesional arteries has demonstrated differential phenotypes primed for athero-susceptibility at hemodynamic sites associated with disturbed blood flow. DNA methylation is a powerful epigenetic regulator of endothelial transcription recently associated with flow characteristics. We investigated differential DNA methylation in flow region-specific aortic endothelial cells in vivo in adult domestic male and female swine. RESULTS Genome-wide DNA methylation was profiled in endothelial cells (EC) isolated from two robust locations of differing patho-susceptibility:--an athero-susceptible site located at the inner curvature of the aortic arch (AA) and an athero-protected region in the descending thoracic (DT) aorta. Complete methylated DNA immunoprecipitation sequencing (MeDIP-seq) identified over 5500 endothelial differentially methylated regions (DMRs). DMR density was significantly enriched in exons and 5'UTR sequences of annotated genes, 60 of which are linked to cardiovascular disease. The set of DMR-associated genes was enriched in transcriptional regulation, pattern specification HOX loci, oxidative stress and the ER stress adaptive pathway, all categories linked to athero-susceptible endothelium. Examination of the relationship between DMR and mRNA in HOXA genes demonstrated a significant inverse relationship between CpG island promoter methylation and gene expression. Methylation-specific PCR (MSP) confirmed differential CpG methylation of HOXA genes, the ER stress gene ATF4, inflammatory regulator microRNA-10a and ARHGAP25 that encodes a negative regulator of Rho GTPases involved in cytoskeleton remodeling. Gender-specific DMRs associated with ciliogenesis that may be linked to defects in cilia development were also identified in AA DMRs. CONCLUSIONS An endothelial methylome analysis identifies epigenetic DMR characteristics associated with transcriptional regulation in regions of atherosusceptibility in swine aorta in vivo. The data represent the first methylome blueprint for spatio-temporal analyses of lesion susceptibility predisposing to endothelial dysfunction in complex flow environments in vivo.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| | - Elisabetta Manduchi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Christian J Stoeckert
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peter F Davies
- Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering, Perelman School of Medicine, University of Pennsylvania, 1010 Vagelos Building, 3340 Smith Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
26
|
Wang Z, Guo D, Yang B, Wang J, Wang R, Wang X, Zhang Q. Integrated analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system. PLoS One 2014; 9:e110288. [PMID: 25333956 PMCID: PMC4201353 DOI: 10.1371/journal.pone.0110288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a typical complex multi-factorial disease and many molecules at different levels and pathways were involved in its development. Some studies have investigated the dysregulation in atherosclerosis at mRNA, miRNA or DNA methylation level, respectively. However, to our knowledge, the studies that integrated these data and revealed the abnormal networks of atherosclerosis have not been reported. Using microarray technology, we analyzed the omics data in atherosclerosis at mRNA, miRNA and DNA methylation levels. Our results demonstrated that the global DNA methylation and expression of miRNA/mRNA were significantly decreased in atherosclerotic plaque than in normal vascular tissue. The interaction network constructed using the integrative data revealed many genes, cellular processes and signaling pathways which were widely considered to play crucial roles in atherosclerosis and also revealed some genes, miRNAs or signaling pathways which have not been investigated in atherosclerosis until now (e.g. miR-519d and SNTB2). Moreover, the overall protein ubiquitination in atherosclerotic plaque was significantly increased. The proteasome activity was increased early but decreased in advanced atherosclerosis. Our study revealed many classic and novel genes and miRNAs involved in atherosclerosis and indicated the effects of ubiquitin-proteasome system on atherosclerosis might be closely related to the course of atherosclerosis. However, the efficacy of proteasome inhibitors in the treatment of atherosclerosis still needs more research.
Collapse
Affiliation(s)
- Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng, Taishan Medical University, Liaocheng, Shandong, China
| | - Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| | - Jian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Rong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
27
|
Davies PF, Manduchi E, Stoeckert CJ, Jiménez JM, Jiang YZ. Emerging topic: flow-related epigenetic regulation of endothelial phenotype through DNA methylation. Vascul Pharmacol 2014; 62:88-93. [PMID: 24874278 PMCID: PMC4116435 DOI: 10.1016/j.vph.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 11/21/2022]
Abstract
Atherosclerosis is a multi-focal disease; it is associated with arterial curvatures, asymmetries and branches/bifurcations where non-uniform arterial geometry generates patterns of blood flow that are considerably more complex than elsewhere, and are collectively referred to as disturbed flow. Such regions are predisposed to atherosclerosis and are the sites of 'athero-susceptible' endothelial cells that express regionally different cell phenotypes than endothelium in nearby athero-protected locations. The regulatory hierarchy of endothelial function includes control at the epigenetic level. MicroRNAs and histone modifications are established epigenetic regulators that respond to disturbed flow. However, very recent reports have linked transcriptional regulation by DNA methylation to endothelial gene expression in disturbed flow in vivo and in vitro. We outline these in the context of site-specific atherosusceptibility mediated by local hemodynamics.
Collapse
Affiliation(s)
- Peter F Davies
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Elisabetta Manduchi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian J Stoeckert
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan M Jiménez
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi-Zhou Jiang
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Jiang YZ, Jiménez JM, Ou K, McCormick ME, Zhang LD, Davies PF. Hemodynamic disturbed flow induces differential DNA methylation of endothelial Kruppel-Like Factor 4 promoter in vitro and in vivo. Circ Res 2014; 115:32-43. [PMID: 24755985 DOI: 10.1161/circresaha.115.303883] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Hemodynamic disturbed flow (DF) is associated with susceptibility to atherosclerosis. Endothelial Kruppel-Like Factor 4 (KLF4) is an important anti-inflammatory atheroprotective transcription factor that is suppressed in regions of DF. OBJECTIVE The plasticity of epigenomic KLF4 transcriptional regulation by flow-mediated DNA methylation was investigated in vitro and in arterial tissue. METHODS AND RESULTS To recapitulate dominant flow characteristics of atheroprotected and atherosusceptible arteries, human aortic endothelial cells were subjected to pulsatile undisturbed flow or oscillatory DF containing a flow-reversing phase. Differential CpG site methylation was measured by methylation-specific polymerase chain reaction, bisulfite pyrosequencing, and restriction enzyme-polymerase chain reaction. The methylation profiles of endothelium from disturbed and undisturbed flow sites of adult swine aortas were also investigated. In vitro, DF increased DNA methylation of CpG islands within the KLF4 promoter that significantly contributed to suppression of KLF4 transcription; the effects were mitigated by DNA methyltransferase (DNMT) inhibitors and knockdown of DNMT3A. Contributory mechanisms included DF-induced increase of DNMT3A protein (1.7-fold), DNMT3A enrichment (11-fold) on the KLF4 promoter, and competitive blocking of a myocyte enhancer factor-2 binding site in the KLF4 promoter near the transcription start site. DF also induced DNMT-sensitive propathological expression of downstream KLF4 transcription targets nitric oxide synthase 3, thrombomodulin, and monocyte chemoattractant protein-1. In support of the in vitro findings, swine aortic endothelium isolated from DF regions expressed significantly lower KLF4 and nitric oxide synthase 3, and bisulfite sequencing of KLF4 promoter identified a hypermethylated myocyte enhancer factor-2 binding site. CONCLUSIONS Hemodynamics influence endothelial KLF4 expression through DNMT enrichment/myocyte enhancer factor-2 inhibition mechanisms of KLF4 promoter CpG methylation with regional consequences for atherosusceptibility.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Juan M Jiménez
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kristy Ou
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Margaret E McCormick
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Ling-Di Zhang
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Peter F Davies
- From the Department of Pathology & Laboratory Medicine and Institute for Medicine & Engineering (Y.-Z.J., J.M.J., M.E.M., L.-D.Z., P.F.D.) and Pharmacology Graduate Group (K.O.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
29
|
Song P, Zou MH. Redox regulation of endothelial cell fate. Cell Mol Life Sci 2014; 71:3219-39. [PMID: 24633153 DOI: 10.1007/s00018-014-1598-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/26/2022]
Abstract
Endothelial cells (ECs) are present throughout blood vessels and have variable roles in both physiological and pathological settings. EC fate is altered and regulated by several key factors in physiological or pathological conditions. Reactive nitrogen species and reactive oxygen species derived from NAD(P)H oxidases, mitochondria, or nitric oxide-producing enzymes are not only cytotoxic but also compose a signaling network in the redox system. The formation, actions, key molecular interactions, and physiological and pathological relevance of redox signals in ECs remain unclear. We review the identities, sources, and biological actions of oxidants and reductants produced during EC function or dysfunction. Further, we discuss how ECs shape key redox sensors and examine the biological functions, transcriptional responses, and post-translational modifications evoked by the redox system in ECs. We summarize recent findings regarding the mechanisms by which redox signals regulate the fate of ECs and address the outcome of altered EC fate in health and disease. Future studies will examine if the redox biology of ECs can be targeted in pathophysiological conditions.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L Young Blvd., Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
30
|
Handy DE, Loscalzo J, Leopold JA. Systems analysis of oxidant stress in the vasculature. IUBMB Life 2013; 65:911-20. [PMID: 24265198 DOI: 10.1002/iub.1221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Systems biology and network analysis are emerging as valuable tools for the discovery of novel relationships, the identification of key regulatory factors, and the prediction of phenotypic changes in complex biological systems. Redox homeostasis in the vasculature is maintained by an intricate balance between oxidant-generating and antioxidant systems. When these systems are perturbed, conditions are permissive for oxidant stress, which, in turn, promotes vascular dysfunction and structural remodeling. Owing to the number of elements involved in redox regulation and the different vascular pathophenotypes associated with oxidant stress, vascular oxidant stress represents an ideal system to study by network analysis. Networks offer a method to organize experimentally derived factors, including proteins, metabolites, and DNA, that are represented as nodes into an unbiased comprehensive platform for study. Through analysis of the network, it is possible to determine essential or regulatory nodes, identify previously unknown connections between nodes, and locate modules, which are groups of nodes located within the same neighborhood that function together and have implications for phenotype. Investigators have only recently begun to construct oxidant stress-related networks to examine vascular structure and function; however, these early studies have provided mechanistic insight to further our understanding of this complicated biological system.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
31
|
Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur J Appl Physiol 2013; 114:531-44. [PMID: 23860841 DOI: 10.1007/s00421-013-2684-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium- to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream conduit artery shear stress patterns. First, we summarize the literature supporting the involvement of sympathetic nerve activity (SNA) and nitric oxide (NO) in the modulation of microvascular tone and arterial blood pressure. We then focus on the role of elevated blood pressure and shear stress profiles in modulating conduit artery endothelial cell phenotype. Last, we discuss findings from classic and emerging studies indicating that increased vascular resistance, as it occurs in the context of increased SNA and/or reduced NO bioavailability, is associated with greater oscillatory shear stress (e.g., increased retrograde shear) in upstream conduit arteries. The ideas put forth in this review set the stage for a new paradigm concerning the mechanistic link between increased microvascular tone and development of conduit artery endothelial dysfunction and thus increased risk for peripheral artery disease. Indeed, a vast amount of evidence supports the notion that excessive blood pressure and oscillatory shear stress are potent pro-atherogenic signals to the endothelium.
Collapse
|
32
|
Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res 2013; 28:47-52. [PMID: 24474963 PMCID: PMC3904174 DOI: 10.7555/jbr.27.20130055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclerosis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atherosclerotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
33
|
Frueh J, Maimari N, Homma T, Bovens SM, Pedrigi RM, Towhidi L, Krams R. Systems biology of the functional and dysfunctional endothelium. Cardiovasc Res 2013; 99:334-41. [PMID: 23650287 DOI: 10.1093/cvr/cvt108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This review provides an overview of the effect of blood flow on endothelial cell (EC) signalling pathways, applying microarray technologies to cultured cells, and in vivo studies of normal and atherosclerotic animals. It is found that in cultured ECs, 5-10% of genes are up- or down-regulated in response to fluid flow, whereas only 3-6% of genes are regulated by varying levels of fluid flow. Of all genes, 90% are regulated by the steady part of fluid flow and 10% by pulsatile components. The associated gene profiles show high variability from experiment to experiment depending on experimental conditions, and importantly, the bioinformatical methods used to analyse the data. Despite this high variability, the current data sets can be summarized with the concept of endothelial priming. In this concept, fluid flows confer protection by an up-regulation of anti-atherogenic, anti-thrombotic, and anti-inflammatory gene signatures. Consequently, predilection sites of atherosclerosis, which are associated with low-shear stress, confer low protection for atherosclerosis and are, therefore, more sensitive to high cholesterol levels. Recent studies in intact non-atherosclerotic animals confirmed these in vitro studies, and suggest that a spatial component might be present. Despite the large variability, a few signalling pathways were consistently present in the majority of studies. These were the MAPK, the nuclear factor-κB, and the endothelial nitric oxide synthase-NO pathways.
Collapse
Affiliation(s)
- Jennifer Frueh
- Department of Bioengineering, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Davies PF, Civelek M, Fang Y, Fleming I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res 2013; 99:315-27. [PMID: 23619421 DOI: 10.1093/cvr/cvt101] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Atherosclerosis initiates at predictable focal sites and develops to a spatially regional disease with limited distribution. There is compelling evidence that links haemodynamics to the localized origin of atherosclerotic lesions. Arterial flow in vivo is unsteady, dynamically complex, and regionally variable. Sites susceptible to atherosclerosis near arterial branches and curves are associated with regions of disturbed blood flow that contain repetitive phases of flow reversal resulting in steep multidirectional temporal and spatial gradients of wall shear stresses. Endothelium in atherosusceptible regions relative to protected sites shows activation of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), the altered expression of pro-inflammatory Nuclear Factor kappa B (NFκB) and oxidant/antioxidant pathways, and low expression of major protective factors, notably endothelial nitric oxide synthase and Kruppel-like Factors KLF2 and KLF4. At some atherosusceptible locations, reactive oxygen species levels are significantly elevated. Here we describe flow-related phenotypes identified in steady-state in vivo and outline some of the molecular mechanisms that may contribute to pre-lesional atherosusceptibility as deduced from complementary cell experiments in vitro. We conclude that disturbed flow is a significant local risk factor for atherosclerosis that induces a chronic low-level inflammatory state, an adaptive response to ensure continued function at the expense of increased susceptibility to atherogenesis. Surprisingly, when challenged by short-term hypercholesterolaemia in vivo, atherosusceptible endothelial phenotype was resistant to greater pro-inflammatory expression, suggesting that sustained hyperlipidaemia is required to overcome these protective characteristics.
Collapse
Affiliation(s)
- Peter F Davies
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
35
|
Padilla J, Jenkins NT, Lee S, Zhang H, Cui J, Zuidema MY, Zhang C, Hill MA, Perfield JW, Ibdah JA, Booth FW, Davis JW, Laughlin MH, Rector RS. Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiol Genomics 2013; 45:434-46. [PMID: 23592636 DOI: 10.1152/physiolgenomics.00038.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We adopted a transcriptome-wide microarray analysis approach to determine the extent to which vascular gene expression is altered as a result of juvenile obesity and identify obesity-responsive mRNAs. We examined transcriptional profiles in the left anterior descending coronary artery (LAD), perivascular fat adjacent to the LAD, and descending thoracic aorta between obese (n = 5) and lean (n = 6) juvenile Ossabaw pigs (age = 22 wk). Obesity was experimentally induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 16 wk. We found that expression of 189 vascular cell genes in the LAD and expression of 165 genes in the thoracic aorta were altered with juvenile obesity (false discovery rate ≤ 10%) with an overlap of only 28 genes between both arteries. Notably, a number of genes found to be markedly upregulated in the LAD of obese pigs are implicated in atherosclerosis, including ACP5, LYZ, CXCL14, APOE, PLA2G7, LGALS3, SPP1, ITGB2, CYBB, and P2RY12. Furthermore, pathway analysis revealed the induction of proinflammatory and pro-oxidant pathways with obesity primarily in the LAD. Gene expression in the LAD perivascular fat was minimally altered with juvenile obesity. Together, we provide new evidence that obesity produces artery-specific changes in pretranslational regulation with a clear upregulation of proatherogenic genes in the LAD. Our data may offer potential viable drug targets and mechanistic insights regarding the molecular precursors involved in the origins of overnutrition and obesity-associated vascular disease. In particular, our results suggest that the oxidized LDL/LOX-1/NF-κB signaling axis may be involved in the early initiation of a juvenile obesity-induced proatherogenic coronary artery phenotype.
Collapse
Affiliation(s)
- Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Multiple systemic factors and local stressors in the arterial wall can disturb the functions of endoplasmic reticulum (ER), causing ER stress in endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages during the initiation and progression of atherosclerosis. As a protective response to restore ER homeostasis, the unfolded protein response (UPR) is initiated by three major ER sensors: protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α), and activating transcription factor 6 (ATF6). The activation of the various UPR signaling pathways displays a temporal pattern of activation at different stages of the disease. The ATF6 and IRE1α pathways that promote the expression of protein chaperones in ER are activated in ECs in athero-susceptible regions of pre-lesional arteries and before the appearance of foam cells. The PERK pathway that reduces ER protein client load by blocking protein translation is activated in SMCs and macrophages in early lesions. The activation of these UPR signaling pathways aims to cope with the ER stress and plays a pro-survival role in the early stage of atherosclerosis. However, with the progression of atherosclerosis, the extended duration and increased intensity of ER stress in lesions lead to prolonged and enhanced UPR signaling. Under this circumstance, the PERK pathway induces expression of death effectors, and possibly IRE1α activates apoptosis signaling pathways, leading to apoptosis of macrophages and SMCs in advanced lesions. Importantly, UPR-mediated cell death is associated with plaque instability and the clinical progression of atherosclerosis. Moreover, UPR signaling is linked to inflammation and possibly to macrophage differentiation in lesions. Therapeutic approaches targeting the UPR may have promise in the prevention and/or regression of atherosclerosis. However, more progress is needed to fully understand all of the roles of the UPR in atherosclerosis and to harness this information for therapeutic advances.
Collapse
|
37
|
|
38
|
Azuaje FJ, Dewey FE, Brutsaert DL, Devaux Y, Ashley EA, Wagner DR. Systems-based approaches to cardiovascular biomarker discovery. ACTA ACUST UNITED AC 2012; 5:360-7. [PMID: 22715280 DOI: 10.1161/circgenetics.112.962977] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Francisco J Azuaje
- Department of Cardiovascular Diseases, Public Research Centre for Health, Luxembourg, Luxembourg.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The molecular pathways that govern human disease consist of molecular circuits that coalesce into complex, overlapping networks. These network pathways are presumably regulated in a coordinated fashion, but such regulation has been difficult to decipher using only reductionistic principles. The emerging paradigm of "network medicine" proposes to utilize insights garnered from network topology (eg, the static position of molecules in relation to their neighbors) as well as network dynamics (eg, the unique flux of information through the network) to understand better the pathogenic behavior of complex molecular interconnections that traditional methods fail to recognize. As methodologies evolve, network medicine has the potential to capture the molecular complexity of human disease while offering computational methods to discern how such complexity controls disease manifestations, prognosis, and therapy. This review introduces the fundamental concepts of network medicine and explores the feasibility and potential impact of network-based methods for predicting individual manifestations of human disease and designing rational therapies. Wherever possible, we emphasize the application of these principles to cardiovascular disease.
Collapse
Affiliation(s)
- Stephen Y Chan
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW This review introduces the fundamental concepts of network medicine and explores the feasibility and potential impact of network-based methods on predicting and ameliorating individual manifestations of human cardiovascular disease. RECENT FINDINGS Complex cardiovascular diseases rarely result from an abnormality in a single molecular effector, but, rather, nearly always are the net result of multiple pathobiological pathways that interact through an interconnected network. In the postgenomic era, a framework has emerged of the potential complexity of the interacting pathways that govern molecular actions in the human cell. As a result, network approaches have been developed to understand more comprehensively those interconnections that influence human disease. 'Network medicine' has already led to tangible discoveries of novel disease genes and pathways as well as improved mechanisms for rational drug development. SUMMARY As methodologies evolve, network medicine may better capture the complexity of human pathogenesis and, thus, re-define personalized disease classification and therapies.
Collapse
|
41
|
Otsuka F, Finn AV, Yazdani SK, Nakano M, Kolodgie FD, Virmani R. The importance of the endothelium in atherothrombosis and coronary stenting. Nat Rev Cardiol 2012; 9:439-53. [PMID: 22614618 DOI: 10.1038/nrcardio.2012.64] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deployment of drug-eluting stents instead of bare-metal stents has dramatically reduced restenosis rates, but rates of very late stent thrombosis (>1 year postimplantation) have increased. Vascular endothelial cells normally provide an efficient barrier against thrombosis, lipid uptake, and inflammation. However, endothelium that has regenerated after percutaneous coronary intervention is incompetent in terms of its integrity and function, with poorly formed cell junctions, reduced expression of antithrombotic molecules, and decreased nitric oxide production. Delayed arterial healing, characterized by poor endothelialization, is the primary cause of late (1 month-1 year postimplantation) and very late stent thrombosis following implantation of drug-eluting stents. Impairment of vasorelaxation in nonstented proximal and distal segments of stented coronary arteries is more severe with drug-eluting stents than bare-metal stents, and stent-induced flow disturbances resulting in complex spatiotemporal shear stress can also contribute to increased thrombogenicity and inflammation. The incompetent endothelium leads to late stent thrombosis and the development of in-stent neoatherosclerosis. The process of neoatherosclerosis occurs more rapidly, and more frequently, following deployment of drug-eluting stents than bare-metal stents. Improved understanding of vascular biology is crucial for all cardiologists, and particularly interventional cardiologists, as maintenance of a competently functioning endothelium is critical for long-term vascular health.
Collapse
Affiliation(s)
- Fumiyuki Otsuka
- CVPath Institute Inc., 19 Firstfield Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | |
Collapse
|
42
|
Frueh J, Maimari N, Lui Y, Kis Z, Mehta V, Pormehr N, Grant C, Chalkias E, Falck-Hansen M, Bovens S, Pedrigi R, Homma T, Coppola G, Krams R. Systems and synthetic biology of the vessel wall. FEBS Lett 2012; 586:2164-70. [DOI: 10.1016/j.febslet.2012.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/06/2023]
|
43
|
Abstract
Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics, and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits, and nonhuman primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. Although not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable.
Collapse
Affiliation(s)
- Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
44
|
Döring Y, Noels H, Weber C. The Use of High-Throughput Technologies to Investigate Vascular Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:182-95. [DOI: 10.1161/atvbaha.111.232686] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The greatest challenge of scientific research is to understand the causes and consequences of disease. In recent years, great efforts have been devoted to unraveling the basic mechanisms of atherosclerosis (the underlying pathology of cardiovascular disease), which remains a major cause of morbidity and mortality worldwide. Because of the complex and multifactorial pathophysiology of cardiovascular disease, different research techniques have increasingly been combined to unravel genetic aspects, molecular pathways, and cellular functions involved in atherogenesis, vascular inflammation, and dyslipidemia to gain a multifaceted picture addressing this complexity. Thanks to the rapid evolution of high-throughput technologies, we are now able to generate large-scale data on the DNA, RNA, and protein levels. With the help of sophisticated computational tools, these data sets are integrated to enhance information extraction and are being increasingly used in a systems biology approach to model biological processes as interconnected and regulated networks. This review exemplifies the use of high-throughput technologies—such as genomics, transcriptomics, proteomics, and epigenomics—and systems biology to explore pathomechanisms of vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Yvonne Döring
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., C.W.); Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule Aachen University, University Clinic Aachen, Aachen, Germany (H.N.); Munich Heart Alliance, Munich, Germany (C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.W.)
| | - Heidi Noels
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., C.W.); Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule Aachen University, University Clinic Aachen, Aachen, Germany (H.N.); Munich Heart Alliance, Munich, Germany (C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (Y.D., C.W.); Institute for Molecular Cardiovascular Research, Rheinisch-Westfälische Technische Hochschule Aachen University, University Clinic Aachen, Aachen, Germany (H.N.); Munich Heart Alliance, Munich, Germany (C.W.); Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.W.)
| |
Collapse
|
45
|
Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol 2012; 32:979-87. [PMID: 22267480 DOI: 10.1161/atvbaha.111.244053] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Endothelial transcription factors Krüppel-like factor 4 (KLF4) and KLF2 are implicated in protection against atherogenesis. Steady-state microRNA (miR) regulation of KLFs in vivo is accessible by screening region-specific endothelial miRs and their targets. METHODS AND RESULTS A subset of differentially expressed endothelial miRs was identified in atherosusceptible versus protected regions of normal swine aorta. In silico analyses predicted highly conserved binding sites in the 3'-untranslated region (3'UTR) of KLF4 for 5 miRs of the subset (miR-26a, -26b, -29a, -92a, and -103) and a single binding site for a miR-92a complex in the 3'UTR of KLF2. Of these, only miR-92a knockdown and knock-in resulted in responses of KLF4 and KLF2 expression in human arterial endothelial cells. Dual luciferase reporter assays demonstrated functional interactions of miR-92a with full-length 3'UTR sequences of both KLFs and with the specific binding elements therein. Two evolutionarily conserved miR-92a sites in KLF4 3'UTR and 1 site in KLF2 3'UTR were functionally validated. Knockdown of miR-92a in vitro resulted in partial rescue from cytokine-induced proinflammatory marker expression (monocyte chemotactic protein 1, vascular cell adhesion molecule-1, E-selectin, and endothelial nitric oxide synthase) that was attributable to enhanced KLF4 expression. Leukocyte-human arterial endothelial cell adhesion experiments supported this conclusion. In swine aortic arch endothelium, a site of atherosusceptibility where miR-92a expression was elevated, both KLFs were expressed at low levels relative to protected thoracic aorta. CONCLUSIONS miR-92a coregulates KLF4 and KLF2 expression in arterial endothelium and contributes to phenotype heterogeneity associated with regional atherosusceptibility and protection in vivo.
Collapse
Affiliation(s)
- Yun Fang
- Institute for Medicine and Engineering, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
46
|
Schnabel RB, Baccarelli A, Lin H, Ellinor PT, Benjamin EJ. Next steps in cardiovascular disease genomic research--sequencing, epigenetics, and transcriptomics. Clin Chem 2012; 58:113-26. [PMID: 22100807 PMCID: PMC3650722 DOI: 10.1373/clinchem.2011.170423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genomic research in cardiovascular disease (CVD) has progressed rapidly over the last 5 years. In most cases, however, these groundbreaking observations have not yet been accompanied by clinically applicable tools for risk prediction, diagnosis, or therapeutic interventions. CONTENT We reviewed the scientific literature published in English for novel methods and promising genomic targets that would permit large-scale screening and follow-up of recent genomic findings for CVD. We anticipate that advances in 3 key areas will be critical for the success of these projects. First, exome-centered and whole-genome next-generation sequencing will identify rare and novel genetic variants associated with CVD and its risk factors. Improvements in methods will also greatly advance the field of epigenetics and gene expression in humans. Second, research is increasingly acknowledging that static DNA sequence variation explains only a fraction of the inherited phenotype. Therefore, we expect that multiple epigenetic and gene expression signatures will be related to CVD in experimental and clinical settings. Leveraging existing large-scale consortia and clinical biobanks in combination with electronic health records holds promise for integrating epidemiological and clinical genomics data. Finally, a systems biology approach will be needed to integrate the accumulated multidimensional data. SUMMARY Novel methods in sequencing, epigenetics, and transcriptomics, plus unprecedented large-scale cooperative efforts, promise to generate insights into the complexity of CVD. The rapid accumulation and integration of knowledge will shed light on a considerable proportion of the missing heritability for CVD.
Collapse
Affiliation(s)
- Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
| | | | | | | | | |
Collapse
|