1
|
Wu J, Bala Tannan N, Vuong LT, Koca Y, Collu GM, Mlodzik M. Par3/bazooka binds NICD and promotes notch signaling during Drosophila development. Dev Biol 2024; 514:37-49. [PMID: 38885804 PMCID: PMC11287782 DOI: 10.1016/j.ydbio.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.
Collapse
Affiliation(s)
- Jun Wu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Neeta Bala Tannan
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Linh T Vuong
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Yildiz Koca
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Giovanna M Collu
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
2
|
DeCotiis-Mauro J, Han SM, Mello H, Goyeneche C, Marchesini-Tovar G, Jin L, Bellofatto V, Lukac DM. The cellular Notch1 protein promotes KSHV reactivation in an Rta-dependent manner. J Virol 2024; 98:e0078824. [PMID: 38975769 PMCID: PMC11334469 DOI: 10.1128/jvi.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The cellular Notch signal transduction pathway is intimately associated with infections by Kaposi's sarcoma-associated herpesvirus (KSHV) and other gamma-herpesviruses. RBP-Jk, the cellular DNA binding component of the canonical Notch pathway, is the key Notch downstream effector protein in virus-infected and uninfected animal cells. Reactivation of KSHV from latency requires the viral lytic switch protein, Rta, to form complexes with RBP-Jk on numerous sites within the viral DNA. Constitutive Notch activity is essential for KSHV pathophysiology in models of Kaposi's sarcoma (KS) and Primary Effusion Lymphoma (PEL), and we demonstrate that Notch1 is also constitutively active in infected Vero cells. Although the KSHV genome contains >100 RBP-Jk DNA motifs, we show that none of the four isoforms of activated Notch can productively reactivate the virus from latency in a highly quantitative trans-complementing reporter virus system. Nevertheless, Notch contributed positively to reactivation because broad inhibition of Notch1-4 with gamma-secretase inhibitor (GSI) or expression of dominant negative mastermind-like1 (dnMAML1) coactivators severely reduced production of infectious KSHV from Vero cells. Reduction of KSHV production is associated with gene-specific reduction of viral transcription in both Vero and PEL cells. Specific inhibition of Notch1 by siRNA partially reduces the production of infectious KSHV, and NICD1 forms promoter-specific complexes with viral DNA during reactivation. We conclude that constitutive Notch activity is required for the robust production of infectious KSHV, and our results implicate activated Notch1 as a pro-viral member of a MAML1/RBP-Jk/DNA complex during viral reactivation. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) manipulates the host cell oncogenic Notch signaling pathway for viral reactivation from latency and cell pathogenesis. KSHV reactivation requires that the viral protein Rta functionally interacts with RBP-Jk, the DNA-binding component of the Notch pathway, and with promoter DNA to drive transcription of productive cycle genes. We show that the Notch pathway is constitutively active during KSHV reactivation and is essential for robust production of infectious virus progeny. Inhibiting Notch during reactivation reduces the expression of specific viral genes yet does not affect the growth of the host cells. Although Notch cannot reactivate KSHV alone, the requisite expression of Rta reveals a previously unappreciated role for Notch in reactivation. We propose that activated Notch cooperates with Rta in a promoter-specific manner that is partially programmed by Rta's ability to redistribute RBP-Jk DNA binding to the virus during reactivation.
Collapse
Affiliation(s)
- Jennifer DeCotiis-Mauro
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Sun M. Han
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Helena Mello
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Corey Goyeneche
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Giuseppina Marchesini-Tovar
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Lianhua Jin
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - Vivian Bellofatto
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| | - David M. Lukac
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- School of Graduate Studies, Rutgers Biomedical and Health Sciences, Health Science Campus at Newark, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
3
|
Stanley KJ, Kalbfleisch KJ, Moran OM, Chaturvedi RR, Roifman M, Chen X, Manshaei R, Martin N, McDermott S, McNiven V, Myles-Reid D, Nield LE, Reuter MS, Schwartz MLB, Shannon P, Silver R, Somerville C, Teitelbaum R, Zahavich L, Bassett AS, Kim RH, Mital S, Chitayat D, Jobling RK. Expanding the phenotypic spectrum of NOTCH1 variants: clinical manifestations in families with congenital heart disease. Eur J Hum Genet 2024; 32:795-803. [PMID: 38778082 PMCID: PMC11219983 DOI: 10.1038/s41431-024-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic variants in NOTCH1 are associated with non-syndromic congenital heart disease (CHD) and Adams-Oliver syndrome (AOS). The clinical presentation of individuals with damaging NOTCH1 variants is characterized by variable expressivity and incomplete penetrance; however, data on systematic phenotypic characterization are limited. We report the genotype and phenotype of a cohort of 33 individuals (20 females, 13 males; median age 23.4 years, range 2.5-68.3 years) from 11 families with causative NOTCH1 variants (9 inherited, 2 de novo; 9 novel), ascertained from a proband with CHD. We describe the cardiac and extracardiac anomalies identified in these 33 individuals, only four of whom met criteria for AOS. The most common CHD identified was tetralogy of Fallot, though various left- and right-sided lesions and septal defects were also present. Extracardiac anomalies identified include cutis aplasia (5/33), cutaneous vascular anomalies (7/33), vascular anomalies of the central nervous system (2/10), Poland anomaly (1/33), pulmonary hypertension (2/33), and structural brain anomalies (3/14). Identification of these findings in a cardiac proband cohort supports NOTCH1-associated CHD and NOTCH1-associated AOS lying on a phenotypic continuum. Our findings also support (1) Broad indications for NOTCH1 molecular testing (any familial CHD, simplex tetralogy of Fallot or hypoplastic left heart); (2) Cascade testing in all at-risk relatives; and (3) A thorough physical exam, in addition to cardiac, brain (structural and vascular), abdominal, and ophthalmologic imaging, in all gene-positive individuals. This information is important for guiding the medical management of these individuals, particularly given the high prevalence of NOTCH1 variants in the CHD population.
Collapse
Affiliation(s)
- Kaitlin J Stanley
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey J Kalbfleisch
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Olivia M Moran
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rajiv R Chaturvedi
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maian Roifman
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Xin Chen
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Roozbeh Manshaei
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Simina McDermott
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Vanda McNiven
- Division of Genetics, Department of Pediatrics, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Diane Myles-Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marci L B Schwartz
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rachel Silver
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Cherith Somerville
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Laura Zahavich
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne S Bassett
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Dalglish Family 22q Clinic, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Raymond H Kim
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Rebekah K Jobling
- Ted Rogers Centre for Heart Research Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
4
|
Sachan N, Sharma V, Mutsuddi M, Mukherjee A. Notch signalling: multifaceted role in development and disease. FEBS J 2024; 291:3030-3059. [PMID: 37166442 DOI: 10.1111/febs.16815] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Notch pathway is an evolutionarily conserved signalling system that operates to influence an astonishing array of cell fate decisions in different developmental contexts. Notch signalling plays important roles in many developmental processes, making it difficult to name a tissue or a developing organ that does not depend on Notch function at one stage or another. Thus, dysregulation of Notch signalling is associated with many developmental defects and various pathological conditions, including cancer. Although many recent advances have been made to reveal different aspects of the Notch signalling mechanism and its intricate regulation, there are still many unanswered questions related to how the Notch signalling pathway functions in so many developmental events. The same pathway can be deployed in numerous cellular contexts to play varied and critical roles in an organism's development and this is only possible because of the complex regulatory mechanisms of the pathway. In this review, we provide an overview of the mechanism and regulation of the Notch signalling pathway along with its multifaceted functions in different aspects of development and disease.
Collapse
Affiliation(s)
- Nalani Sachan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Perrot A, Rickert-Sperling S. Human Genetics of Ventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:505-534. [PMID: 38884729 DOI: 10.1007/978-3-031-44087-8_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.
Collapse
Affiliation(s)
- Andreas Perrot
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
6
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
7
|
Blue EE, White JJ, Dush MK, Gordon WW, Wyatt BH, White P, Marvin CT, Helle E, Ojala T, Priest JR, Jenkins MM, Almli LM, Reefhuis J, Pangilinan F, Brody LC, McBride KL, Garg V, Shaw GM, Romitti PA, Nembhard WN, Browne ML, Werler MM, Kay DM, Mital S, Chong JX, Nascone-Yoder NM, Bamshad MJ. Rare variants in CAPN2 increase risk for isolated hypoplastic left heart syndrome. HGG ADVANCES 2023; 4:100232. [PMID: 37663545 PMCID: PMC10474499 DOI: 10.1016/j.xhgg.2023.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) characterized by hypoplasia of the left ventricle and aorta along with stenosis or atresia of the aortic and mitral valves. HLHS represents only ∼4%-8% of all CHDs but accounts for ∼25% of deaths. HLHS is an isolated defect (i.e., iHLHS) in 70% of families, the vast majority of which are simplex. Despite intense investigation, the genetic basis of iHLHS remains largely unknown. We performed exome sequencing on 331 families with iHLHS aggregated from four independent cohorts. A Mendelian-model-based analysis demonstrated that iHLHS was not due to single, large-effect alleles in genes previously reported to underlie iHLHS or CHD in >90% of families in this cohort. Gene-based association testing identified increased risk for iHLHS associated with variation in CAPN2 (p = 1.8 × 10-5), encoding a protein involved in functional adhesion. Functional validation studies in a vertebrate animal model (Xenopus laevis) confirmed CAPN2 is essential for cardiac ventricle morphogenesis and that in vivo loss of calpain function causes hypoplastic ventricle phenotypes and suggest that human CAPN2707C>T and CAPN21112C>T variants, each found in multiple individuals with iHLHS, are hypomorphic alleles. Collectively, our findings show that iHLHS is typically not a Mendelian condition, demonstrate that CAPN2 variants increase risk of iHLHS, and identify a novel pathway involved in HLHS pathogenesis.
Collapse
Affiliation(s)
- Elizabeth E. Blue
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Michael K. Dush
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - William W. Gordon
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brent H. Wyatt
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Peter White
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Colby T. Marvin
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Emmi Helle
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Ojala
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - James R. Priest
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
| | - Mary M. Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lynn M. Almli
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Faith Pangilinan
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence C. Brody
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kim L. McBride
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gary M. Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul A. Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
| | | | - Marilyn L. Browne
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Martha M. Werler
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Denise M. Kay
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - National Birth Defects Prevention Study
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Invitae, San Francisco, CA, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - University of Washington Center for Mendelian Genomics
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Invitae, San Francisco, CA, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Institute for Genomic Medicine, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- New Children’s Hospital and Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Stanford University School of Medicine, Lucile Packard Children’s Hospital, Stanford, CA, USA
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Genetics and Environment Interaction Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Center for Cardiovascular Research, Nationwide Children’s Hospital, and Division of Genetic and Genomic Medicine, Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology, College of Public Health, The University of Iowa, Iowa City, IA, USA
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Birth Defects Registry, New York State Department of Health, Albany, NY, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, Rensselaer, NY, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Seema Mital
- Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jessica X. Chong
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Chui MMC, Mak CCY, Yu MHC, Wong SYY, Lun KS, Yung TC, Kwong AKY, Chow PC, Chung BHY. Evaluating High-Confidence Genes in Conotruncal Cardiac Defects by Gene Burden Analyses. J Am Heart Assoc 2023; 12:e028226. [PMID: 36789878 PMCID: PMC10111484 DOI: 10.1161/jaha.122.028226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background In nonsyndromic conotruncal cardiac defects, the use of next-generation sequencing for clinical diagnosis is increasingly adopted, but gene-disease associations in research are only partially translated to diagnostic panels, suggesting a need for evidence-based consensus. Methods and Results In an exome data set of 245 patients with conotruncal cardiac defects, we performed burden analysis on a high-confidence congenital heart disease gene list (n=132) with rare (<0.01%) and ultrarare (absent in the Genome Aggregation Database) protein-altering variants. Overall, we confirmed an excess of rare variants compared with ethnicity-matched controls and identified 2 known genes (GATA6, NOTCH1) and 4 candidate genes supported by the literature (ANKRD11, DOCK6, NPHP4, and STRA6). Ultrarare variant analysis was performed in combination with 3 other published studies (n=1451) and identified 3 genes (FLT4, NOTCH1, TBX1) to be significant, whereas a subgroup analysis involving 391 Chinese subjects identified only GATA6 as significant. Conclusions We suggest that these significant genes in our rare and ultrarare burden analyses warrant prioritization for clinical testing implied for rare inherited and de novo variants. Additionally, associations on ClinVar for these genes were predominantly variants of uncertain significance. Therefore, a more stringent assessment of gene-disease associations in a larger and ethnically diverse cohort is required to be prudent for future curation of conotruncal cardiac defect genes.
Collapse
Affiliation(s)
- Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Mullin H C Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Sandra Y Y Wong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Kin-Shing Lun
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Tak-Cheung Yung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China
| | - Pak-Cheong Chow
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine The University of Hong Kong Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine The Hong Kong Children's Hospital Hong Kong SAR China.,Department of Paediatrics and Adolescent Medicine Queen Mary Hospital Hong Kong SAR China
| |
Collapse
|
9
|
Yang XF, Shi SW, Chen K. Case report: Recombinant human epidermal growth factor gel plus kangfuxin solution in the treatment of aplasia cutis congenita in a case with Adams-Oliver syndrome. Front Surg 2023; 9:1072021. [PMID: 36713669 PMCID: PMC9874222 DOI: 10.3389/fsurg.2022.1072021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Background Aplasia cutis congenita is a congenital disorder with the absence of skin, muscle and(or) bone. It usually affects the scalp. The presence of a large scalp defect can be potentially serious when complicated with hemorrhage and infection. Early healing of this condition is beneficial to improve the prognosis of infants. Study case A full-term newborn male was born with a round-shaped defect at the vertex of the scalp and skull (dimensions, 8 cm × 9 cm). The infant had a large deletion encompassing the 15.1 region of chromosome 15, including the DLL4 gene. Genetic testing was positive for Adams-Oliver syndrome (AOS). After two months of recombinant human epidermal growth factor gel combined with kangfuxin solution therapy, the skin defects of the scalp healed remarkably. The infant had regular follow-up appointments. At the age of 5 months, the defect became smaller, hairless, and showed good granulation tissue. At 2 years of age, the child's Gesell Developmental Schedules was 70. Conclusion Recombinant human epidermal growth factor gel combined with kangfuxin solution was a successful conservative treatment for an infant with a large scalp defect accompanied by AOS.
Collapse
Affiliation(s)
- Xiu-Fang Yang
- Department of Neonatology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China,Correspondence: Xiu-Fang Yang
| | - Shang-Wen Shi
- Department of Neonatology, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China
| | - Kang Chen
- Molecular Inspection Center, Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan, China
| |
Collapse
|
10
|
Adams-Oliver syndrome and associated complications: Report of a family in Colombia and review of the literature. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:554-561. [PMID: 36511670 PMCID: PMC9773924 DOI: 10.7705/biomedica.6524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 12/14/2022]
Abstract
The Adams-Oliver syndrome is a rare congenital disorder characterized by aplasia cutis congenita of the scalp, terminal transverse limb defects, and congenital telangiectatic cutis marmorata. It can occur through different inheritance patterns: autosomal dominant, autosomal recessive, or de novo dominant mutations.
Although the Adams-Oliver syndrome is a rare disease, it is essential to know its clinical characteristics and inheritance patterns, to establish a correct diagnosis and its possible complications during follow-up.
In the present study, we describe the case of an adolescent with Adams-Oliver syndrome with an autosomal dominant inheritance pattern, pulmonary hypertension and plastic bronchitis, and several compromised family members.
Collapse
|
11
|
Lukas M, Harald G, Sanz J, Trippel M, Sabina G, Jochen R. Cutaneous squamous cell carcinoma in an autosomal-recessive Adams-Oliver syndrome patient with a novel frameshift pathogenic variant in the EOGT gene. Am J Med Genet A 2022; 188:3318-3323. [PMID: 36059114 PMCID: PMC9826191 DOI: 10.1002/ajmg.a.62961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 01/31/2023]
Abstract
Aplasia cutis congenita (ACC) of the scalp and terminal transverse limb defects (TTLD) are the characteristic findings of Adams-Oliver syndrome (AOS). The variable clinical spectrum further includes cardiac, neurologic, renal, and ophthalmological findings. Associated genes in AOS are in the Notch and the CDC42/Rac1 signaling pathways. Both autosomal-dominant and autosomal-recessive inheritances have been reported, the latter with pathogenic variants in DOCK6 or EOGT. The EOGT-associated recessive type of AOS has been postulated to present a more favorable prognosis. We here report a 12-year-old girl from a refugee family of Iraq with consanguineous parents. She was born with a severe phenotype of AOS presenting a large ACC of the scalp with an underlying skull defect, which was often infected and inflamed. Afterward, additional ulceration developed. Furthermore, the girl showed microcephaly, TTLD on both hands and feet, and neurological findings: spastic paresis, epilepsy and suspicion of intellectual deficit. Molecular genetic analysis (next-generation sequencing) revealed a novel frameshift mutation in the EOGT gene in Exon 13 in homozygous constellation: c.1013dupA p.(Asn338Lysfs*24). A biopsy within an ulceration at the scalp ACC showed a cutaneous squamous cell carcinoma (cSCC) with local invasive growth into the dura, the meninges, and the cortex. Treatment including surgical resection and focal irradiation was not curative and the girl deceased 6 months after initial diagnosis. This report on a patient with AOS and an autosomal-recessive EOGT gene variant dying of a local aggressive cSCC at an ACC lesion shows that close monitoring of ACC is essential.
Collapse
Affiliation(s)
- Meyer‐Landolt Lukas
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| | - Gaspar Harald
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland,Present address:
Medical Genetics MainzMainzGermany
| | - Javier Sanz
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | | | - Gallati Sabina
- Department of Human Genetics, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Rössler Jochen
- Division of Pediatric Hematology & Oncology, Department of Pediatrics, InselspitalUniversity Hospital, University of BernBernSwitzerland
| |
Collapse
|
12
|
Tabansky I, Tanaka AJ, Wang J, Zhang G, Dujmovic I, Mader S, Jeganathan V, DeAngelis T, Funaro M, Harel A, Messina M, Shabbir M, Nursey V, DeGouvia W, Laurent M, Blitz K, Jindra P, Gudesblatt M, King A, Drulovic J, Yunis E, Brusic V, Shen Y, Keskin DB, Najjar S, Stern JNH. Rare variants and HLA haplotypes associated in patients with neuromyelitis optica spectrum disorders. Front Immunol 2022; 13:900605. [PMID: 36268024 PMCID: PMC9578444 DOI: 10.3389/fimmu.2022.900605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are rare, debilitating autoimmune diseases of the central nervous system. Many NMOSD patients have antibodies to Aquaporin-4 (AQP4). Prior studies show associations of NMOSD with individual Human Leukocyte Antigen (HLA) alleles and with mutations in the complement pathway and potassium channels. HLA allele associations with NMOSD are inconsistent between populations, suggesting complex relationships between the identified alleles and risk of disease. We used a retrospective case-control approach to identify contributing genetic variants in patients who met the diagnostic criteria for NMOSD and their unaffected family members. Potentially deleterious variants identified in NMOSD patients were compared to members of their families who do not have the disease and to existing databases of human genetic variation. HLA sequences from patients from Belgrade, Serbia, were compared to the frequency of HLA haplotypes in the general population in Belgrade. We analyzed exome sequencing on 40 NMOSD patients and identified rare inherited variants in the complement pathway and potassium channel genes. Haplotype analysis further detected two haplotypes, HLA-A*01, B*08, DRB1*03 and HLA-A*01, B*08, C*07, DRB1*03, DQB1*02, which were more prevalent in NMOSD patients than in unaffected individuals. In silico modeling indicates that HLA molecules within these haplotypes are predicted to bind AQP4 at several sites, potentially contributing to the development of autoimmunity. Our results point to possible autoimmune and neurodegenerative mechanisms that cause NMOSD, and can be used to investigate potential NMOSD drug targets.
Collapse
Affiliation(s)
- Inna Tabansky
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Akemi J. Tanaka
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jiayao Wang
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Guanglan Zhang
- Department of Computer Science, Boston University, Boston, MA, United States
| | - Irena Dujmovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Simone Mader
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | - Venkatesh Jeganathan
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Tracey DeAngelis
- Department of Neurology, Neurological Associates of Long Island, New Hyde Park, NY, United States
| | - Michael Funaro
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Asaff Harel
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Mark Messina
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Maya Shabbir
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Vishaan Nursey
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - William DeGouvia
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Micheline Laurent
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Karen Blitz
- Department of Neurology, South Shore Neurologic Associates, Patchogue, NY, United States
| | - Peter Jindra
- Division of Abdominal Transplantation, Baylor College of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark Gudesblatt
- Biomedical Center and University Hospitals, Ludwig Maximilian University Munich, Munich, Germany
| | | | - Alejandra King
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, United States
| | - Jelena Drulovic
- Clinical Center of Serbia University School of Medicine, Belgrade, Serbia
| | - Edmond Yunis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vladimir Brusic
- School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
| | - Yufeng Shen
- Department of Biomedical Informatics and Department of Systems Biology, Columbia University, New York, NY, United States
| | - Derin B. Keskin
- Department of Translational Immuno-Genomics for Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Souhel Najjar
- Department of Neurology, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Joel N. H. Stern
- Department of Neurology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Urology, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Molecular Medicine, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Department of Science Education, Donald and Barbra Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- *Correspondence: Joel N. H. Stern, ;
| |
Collapse
|
13
|
Taha F, Southgate L. Molecular genetics of pulmonary hypertension in children. Curr Opin Genet Dev 2022; 75:101936. [PMID: 35772304 PMCID: PMC9763127 DOI: 10.1016/j.gde.2022.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022]
Abstract
Until recently, the molecular aetiology of paediatric pulmonary hypertension (PH) was relatively poorly understood. While the TGF-β/BMP pathway was recognised as central to disease progression, genetic analyses in children were largely confined to targeted screening of risk genes in small cohorts, with clinical management extrapolated from adult data. In recent years, next-generation sequencing has highlighted notable differences in the genetic architecture underlying childhood-onset cases, with a higher genetic burden in children partly explained by comorbidities such as congenital heart disease. Here, we review recent genetic advances in paediatric PH and highlight important risk factors such as dysregulation of the transcription factors SOX17 and TBX4. Given the poorer prognosis in paediatric cases, molecular diagnosis offers a vital tool to enhance clinical care of children with PH.
Collapse
Affiliation(s)
- Fatima Taha
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK.
| |
Collapse
|
14
|
O'Hare M, Arboleda-Velasquez JF. Notch Signaling in Vascular Endothelial and Mural Cell Communications. Cold Spring Harb Perspect Med 2022; 12:a041159. [PMID: 35534207 PMCID: PMC9435572 DOI: 10.1101/cshperspect.a041159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Notch signaling pathway is a highly versatile and evolutionarily conserved mechanism with an important role in cell fate determination. Notch signaling plays a vital role in vascular development, regulating several fundamental processes such as angiogenesis, arterial/venous differentiation, and mural cell investment. Aberrant Notch signaling can result in severe vascular phenotypes as observed in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and Alagille syndrome. It is known that vascular endothelial cells and mural cells interact to regulate vessel formation, cell maturation, and stability of the vascular network. Defective endothelial-mural cell interactions are a common phenotype in diseases characterized by impaired vascular integrity. Further refinement of the role of Notch signaling in the vascular junctions will be critical to attempts to modulate Notch in the context of human vascular disease. In this review, we aim to consolidate and summarize our current understanding of Notch signaling in the vascular endothelial and mural cells during development and in the adult vasculature.
Collapse
Affiliation(s)
- Michael O'Hare
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| | - Joseph F Arboleda-Velasquez
- Department of Ophthalmology at Harvard Medical School, Schepens Eye Research Institute of Mass Eye and Ear, Boston, Massachusetts 02114, USA
| |
Collapse
|
15
|
Abstract
Notch signalling is an evolutionarily highly conserved signalling mechanism governing differentiation and regulating homeostasis in many tissues. In this review, we discuss recent advances in our understanding of the roles that Notch signalling plays in the vasculature. We describe how Notch signalling regulates different steps during the genesis and remodelling of blood vessels (vasculogenesis and angiogenesis), including critical roles in assigning arterial and venous identities to the emerging blood vessels and regulation of their branching. We then proceed to discuss how experimental perturbation of Notch signalling in the vasculature later in development affects vascular homeostasis. In this review, we also describe how dysregulated Notch signalling, as a consequence of direct mutations of genes in the Notch pathway or aberrant Notch signalling output, contributes to various types of vascular disease, including CADASIL, Snedden syndrome and pulmonary arterial hypertension. Finally, we point out some of the current knowledge gaps and identify remaining challenges in understanding the role of Notch in the vasculature, which need to be addressed to pave the way for Notch-based therapies to cure or ameliorate vascular disease.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden,Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
16
|
Lo PW, Okajima T. Eogt-catalyzed O-GlcNAcylation. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2033.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Institute for Glyco-core Research (iGCORE), Nagoya University
| |
Collapse
|
17
|
Affiliation(s)
- Pei-Wen Lo
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine
| |
Collapse
|
18
|
Wang S, Zhu G, Jiang D, Rhen J, Li X, Liu H, Lyu Y, Tsai P, Rose Y, Nguyen T, White RJ, Pryhuber GS, Mariani TJ, Li C, Mohan A, Xu Y, Pang J. Reduced Notch1 Cleavage Promotes the Development of Pulmonary Hypertension. Hypertension 2022; 79:79-92. [PMID: 34739767 PMCID: PMC8665100 DOI: 10.1161/hypertensionaha.120.16065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clinical trials of Dll4 (Delta-like 4) neutralizing antibodies (Dll4nAbs) in cancer patients are ongoing. Surprisingly, pulmonary hypertension (PH) occurs in 14% to 18% of patients treated with Dll4nAbs, but the mechanisms have not been studied. Here, PH progression was measured in mice treated with Dll4nAbs. We detected Notch signaling in lung tissues and analyzed pulmonary vascular permeability and inflammation. Notch target gene array was performed on adult human pulmonary microvascular endothelial cells (ECs) after inhibiting Notch cleavage. Similar mechanisms were studied in PH mouse models and pulmonary arterial hypertension patients. The rescue effects of constitutively activated Notch1 in vivo were also measured. We observed that Dll4nAbs induced PH in mice as indicated by significantly increased right ventricular systolic pressure, as well as pulmonary vascular and right ventricular remodeling. Mechanistically, Dll4nAbs inhibited Notch1 cleavage and subsequently impaired lung endothelial barrier function and increased immune cell infiltration in vessel walls. In vitro, Notch targeted genes' expression related to cell growth and inflammation was decreased in human pulmonary microvascular ECs after the Notch1 inactivation. In lungs of PH mouse models and pulmonary arterial hypertension patients, Notch1 cleavage was inhibited. Consistently, EC cell-cell junction was leaky, and immune cell infiltration increased in PH mouse models. Overexpression activated Notch1-attenuated progression of PH in mice. In conclusion, Dll4nAbs led to PH development in mice by impaired EC barrier function and increased immune cell infiltration through inhibition of Notch1 cleavage in lung ECs. Reduced Notch1 cleavage in lung ECs could be an underlying mechanism of PH pathogenesis.
Collapse
Affiliation(s)
- Shumin Wang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jordan Rhen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuyan Lyu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Patrick Tsai
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Yara Rose
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tiffany Nguyen
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - R. James White
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, NY, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J. Mariani
- Division of Neonatology, University of Rochester Medical Center, Rochester, NY, USA
- Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Li
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| | - Amy Mohan
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Wu Y, Liu J, Luo Q. Isolated aplasia cutis congenita: A report of two cases. Clin Case Rep 2021; 9:e04671. [PMID: 34430025 PMCID: PMC8365854 DOI: 10.1002/ccr3.4671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Congenital skin dysplasia, especially isolated scalp defects, is difficult to detect prenatally. The prognosis for isolated congenital scalp defects is good. Treatment options include conservative treatment and surgery. The choice of treatment depends on the patient's individual circumstances.
Collapse
Affiliation(s)
- Yan Wu
- Department of Obstetrics and GynecologyZhejiang University School of Medicine Women's HospitalHangzhou CityChina
- Department of Obstetrics and GynecologyWomen and Children's Hospital of Jiaxing UniversityJiaxingChina
| | - Jun Liu
- Pediatric Surgery DepartmentWomen and Children's Hospital of Jiaxing UniversityJiaxingChina
| | - Qiong Luo
- Department of Obstetrics and GynecologyZhejiang University School of Medicine Women's HospitalHangzhou CityChina
| |
Collapse
|
20
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
21
|
Roifman M, Chung BHY, Reid DM, Teitelbaum R, Martin N, Nield LE, Thompson M, Shannon P, Chitayat D. Heterozygous NOTCH1 deletion associated with variable congenital heart defects. Clin Genet 2021; 99:836-841. [PMID: 33630301 DOI: 10.1111/cge.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 01/03/2023]
Abstract
Pathogenic heterozygous variants in the NOTCH1 gene are known to be associated with both left and right-sided congenital cardiac anomalies with strikingly incomplete penetrance and variable phenotypic expressivity. De novo NOTCH1 whole gene deletion has been reported rarely in the literature and its association with cardiac defects is less well established. Here, we report four cases of NOTCH1 gene deletion from two families associated with a spectrum of congenital heart defects from bicuspid aortic valve to complex cardiac anomalies. This is the first description of a familial NOTCH1 deletion, showing apparently high penetrance, which may be unique to this mechanism of disease. Immunohistochemical staining of cardiac tissue demonstrated reduced levels of NOTCH1 expression in both the left and right ventricular outflow tracts. These cases suggest that haploinsufficiency caused by NOTCH1 gene deletion is associated with both mild and severe cardiac defects, similar to those caused by pathogenic variants in the gene, but with apparently higher, if not complete, penetrance.
Collapse
Affiliation(s)
- Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Brian Hon Yin Chung
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatrics and Adolescent Medicine LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Diane Myles Reid
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ronni Teitelbaum
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Martin
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lynne E Nield
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Megan Thompson
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Fetal Pathology, Kaiser Permanente Oakland Medical Center, Oakland, California, USA
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Shen W, Huang J, Wang Y. Biological Significance of NOTCH Signaling Strength. Front Cell Dev Biol 2021; 9:652273. [PMID: 33842479 PMCID: PMC8033010 DOI: 10.3389/fcell.2021.652273] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved NOTCH signaling displays pleotropic functions in almost every organ system with a simple signaling axis. Different from many other signaling pathways that can be amplified via kinase cascades, NOTCH signaling does not contain any intermediate to amplify signal. Thus, NOTCH signaling can be activated at distinct signaling strength levels, disruption of which leads to various developmental disorders. Here, we reviewed mechanisms establishing different NOTCH signaling strengths, developmental processes sensitive to NOTCH signaling strength perturbation, and transcriptional regulations influenced by NOTCH signaling strength changes. We hope this could add a new layer of diversity to explain the pleotropic functions of NOTCH signaling pathway.
Collapse
Affiliation(s)
- Wei Shen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Jiaxin Huang
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Ristori T, Sjöqvist M, Sahlgren CM. Ex Vivo Models to Decipher the Molecular Mechanisms of Genetic Notch Cardiovascular Disorders. Tissue Eng Part C Methods 2021; 27:167-176. [PMID: 33403934 PMCID: PMC7984653 DOI: 10.1089/ten.tec.2020.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Notch is an evolutionary, conserved, cell-cell signaling pathway that is central to several biological processes, from tissue morphogenesis to homeostasis. It is therefore not surprising that several genetic mutations of Notch components cause inherited human diseases, especially cardiovascular disorders. Despite numerous efforts, current in vivo models are still insufficient to unravel the underlying mechanisms of these pathologies, hindering the development of utmost needed medical therapies. In this perspective review, we discuss the limitations of current murine models and outline how the combination of microphysiological systems (MPSs) and targeted computational models can lead to breakthroughs in this field. In particular, while MPSs enable the experimentation on human cells in controlled and physiological environments, in silico models can provide a versatile tool to translate the in vitro findings to the more complex in vivo setting. As a showcase example, we focus on Notch-related cardiovascular diseases, such as Alagille syndrome, Adams-Oliver syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Impact statement In this review, a comprehensive overview of the limitations of current in vivo models of genetic Notch cardiovascular diseases is provided, followed by a discussion over the potential of microphysiological systems and computational models in overcoming these limitations and in potentiating drug testing and modeling of these pathologies.
Collapse
Affiliation(s)
- Tommaso Ristori
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| |
Collapse
|
24
|
Watanabe Y, Seya D, Ihara D, Ishii S, Uemoto T, Kubo A, Arai Y, Isomoto Y, Nakano A, Abe T, Shigeta M, Kawamura T, Saito Y, Ogura T, Nakagawa O. Importance of endothelial Hey1 expression for thoracic great vessel development and its distal enhancer for Notch-dependent endothelial transcription. J Biol Chem 2020; 295:17632-17645. [PMID: 33454003 PMCID: PMC7762959 DOI: 10.1074/jbc.ra120.015003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Thoracic great vessels such as the aorta and subclavian arteries are formed through dynamic remodeling of embryonic pharyngeal arch arteries (PAAs). Previous work has shown that loss of a basic helix-loop-helix transcription factor Hey1 in mice causes abnormal fourth PAA development and lethal great vessel anomalies resembling congenital malformations in humans. However, how Hey1 mediates vascular formation remains unclear. In this study, we revealed that Hey1 in vascular endothelial cells, but not in smooth muscle cells, played essential roles for PAA development and great vessel morphogenesis in mouse embryos. Tek-Cre-mediated Hey1 deletion in endothelial cells affected endothelial tube formation and smooth muscle differentiation in embryonic fourth PAAs and resulted in interruption of the aortic arch and other great vessel malformations. Cell specificity and signal responsiveness of Hey1 expression were controlled through multiple cis-regulatory regions. We found two distal genomic regions that had enhancer activity in endothelial cells and in the pharyngeal epithelium and somites, respectively. The novel endothelial enhancer was conserved across species and was specific to large-caliber arteries. Its transcriptional activity was regulated by Notch signaling in vitro and in vivo, but not by ALK1 signaling and other transcription factors implicated in endothelial cell specificity. The distal endothelial enhancer was not essential for basal Hey1 expression in mouse embryos but may likely serve for Notch-dependent transcriptional control in endothelial cells together with the proximal regulatory region. These findings help in understanding the significance and regulation of endothelial Hey1 as a mediator of multiple signaling pathways in embryonic vascular formation.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan.
| | - Daiki Seya
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Dai Ihara
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shuhei Ishii
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Taiki Uemoto
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan
| | - Atsushi Kubo
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Arai
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yoshie Isomoto
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Atsushi Nakano
- Laboratory of Animal Experiment and Medical Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell and Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yoshihiko Saito
- Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan; Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan; Graduate School of Medical Sciences, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
25
|
Lin C, Huang Z, Zhou R, Zhou Y, Shentu Y, Yu K, Zhang Y. Notch3 and its CADASIL mutants differentially regulate cellular phenotypes. Exp Ther Med 2020; 21:117. [PMID: 33335580 PMCID: PMC7739825 DOI: 10.3892/etm.2020.9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Notch3 is a member of the Notch family and its mutations are known to cause a hereditary human disorder called cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the specific function and signaling cascade initiated by CADASIL mutants remain unknown. To gain further insight into mechanism of action of CADASIL mutants, the present study conducted several experiments on the effects of Notch3 mutants in multiple cell lines. The protein levels of Notch3, fibronectin, collagen, inducible nitric oxide synthase and DNA (cytosine-5)-methyltransferase 1 (DNMT1) were determined by western blotting. The mRNA levels of IL-1β and TNF-α were measured by reverse transcription semi-quantitative PCR and DNMT1 mRNA levels were determined by quantitative PCR. Trypan blue staining was used for proliferation analysis and wound healing assays were performed to determine cell migration capability. The present study reported that R90C and R169C Notch3 mutants, and wild-type Notch3 had different effects on several cell lines. In T/GHA-VSMC cells, following the transfection of the two mutants, collagen and fibronectin expression increased, whereas expression decreased in IMR-90 cells. In BV2 cells, the two mutants resulted in decreased nitric oxide and iNOS production. In HeLa cells, proliferation and migration increased significantly following the transfection of the two mutants, whereas in the MCF-7 and HCC1937 cell lines, cell proliferation and migration decreased. In addition, the two mutants suppressed the expression of DNMT1 in HeLa and IMR-90 cells. Overall, the present study provided novel insights that further explored the underlying mechanisms of CADASIL.
Collapse
Affiliation(s)
- Chunjing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ziyang Huang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Riyong Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
26
|
Höving AL, Sielemann K, Greiner JFW, Kaltschmidt B, Knabbe C, Kaltschmidt C. Transcriptome Analysis Reveals High Similarities between Adult Human Cardiac Stem Cells and Neural Crest-Derived Stem Cells. BIOLOGY 2020; 9:biology9120435. [PMID: 33271866 PMCID: PMC7761507 DOI: 10.3390/biology9120435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
For the identification of a stem cell population, the comparison of transcriptome data enables the simultaneous analysis of tens of thousands of molecular markers and thus enables the precise distinction of even closely related populations. Here, we utilized global gene expression profiling to compare two adult human stem cell populations, namely neural crest-derived inferior turbinate stem cells (ITSCs) of the nasal cavity and human cardiac stem cells (hCSCs) from the heart auricle. We detected high similarities between the transcriptomes of both stem cell populations, particularly including a range of neural crest-associated genes. However, global gene expression likewise reflected differences between the stem cell populations with regard to their niches of origin. In a broader analysis, we further identified clear similarities between ITSCs, hCSCs and other adherent stem cell populations compared to non-adherent hematopoietic progenitor cells. In summary, our observations reveal high similarities between adult human cardiac stem cells and neural crest-derived stem cells from the nasal cavity, which include a shared relation to the neural crest. The analyses provided here may help to understand underlying molecular regulators determining differences between adult human stem cell populations.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence: (A.L.H.); (C.K.)
| | - Katharina Sielemann
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
- Graduate School DILS, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- AG Molecular Neurobiology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (J.F.W.G.); (B.K.)
- Correspondence: (A.L.H.); (C.K.)
| |
Collapse
|
27
|
Soret J, Debray D, Fontbrune FSD, Kiladjian JJ, Saadoun D, Latour RPD, Valla D, Hernandez-Gea V, Hillaire S, Dutheil D, Plessier A, Bureau C, De Raucourt E. Risk factors for vascular liver diseases: Vascular liver diseases: position papers from the francophone network for vascular liver diseases, the French Association for the Study of the Liver (AFEF), and ERN-rare liver. Clin Res Hepatol Gastroenterol 2020; 44:410-419. [PMID: 32651075 DOI: 10.1016/j.clinre.2020.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Juliette Soret
- Center of Clinical Investigation, Saint-Louis Hospital APHP, 1, avenue Claude Vellefaux, 75010 Paris, France; French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France.
| | - Dominique Debray
- Pediatric hepatology Unit, Necker Hospital APHP, 149, rue de Sèvres, 75015 Paris, France; French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Flore Sicre de Fontbrune
- Service d'hématologie, French referral centre for Aplastic anemia and PNH and filière de santé maladies rares immunohématologiques, Saint-Louis Hospital APHP, ERN eurobloodnet, 75010 Paris, France
| | - Jean-Jacques Kiladjian
- Center of Clinical Investigation, Saint-Louis Hospital APHP, 1, avenue Claude Vellefaux, 75010 Paris, France; French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - David Saadoun
- Departement of Internal Medecine, Médecine interne, La Pitié Salpêtrière Hospital APHP, CMR maladies auto_immunes systémiques rares ; CMR maladies auto inflammatoires et amylose, ERN RITA, 47-83, boulevard de l'Hôpital, 75651 Paris, France
| | - Régis Peffault de Latour
- Service d'hématologie, French referral centre for Aplastic anemia and PNH and filière de santé maladies rares immunohématologiques, Saint-Louis Hospital APHP, ERN eurobloodnet, 75010 Paris, France
| | - Dominique Valla
- French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France; Department of Hepatology, Beaujon Hospital AP-HP, 100, boulevard du Général Leclerc, 92118 Clichy, France; Reference center of vascular liver diseases, European Reference Network (ERN) Rare-Liver
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Unit, Liver Unit. IMDIM. CIBERehd, Hospital Clinic, Barcelona, Spain
| | - Sophie Hillaire
- Department of Internal Medicine, Foch Hospital, 40, rue Worth, 92150 Suresnes, France
| | - Danielle Dutheil
- French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France; Association of patients with vascular liver diseases (AMVF), Beaujon Hospital, Department of Hepatology, 100, boulevard du Général-Leclerc, 92118 Clichy, France
| | - Aurélie Plessier
- French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France; Department of Hepatology, Beaujon Hospital AP-HP, 100, boulevard du Général Leclerc, 92118 Clichy, France; Reference center of vascular liver diseases, European Reference Network (ERN) Rare-Liver
| | - Christophe Bureau
- French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France; Department of Gastroenterology and Hepatology, Rangueil Hospital, University Hospital of Toulouse, 1, avenue du Professeur Jean-Poulhès, 31400 Toulouse, France
| | - Emmanuelle De Raucourt
- Department of Laboratory Hematology, Beaujon Hospital AP-HP, 100, boulevard du Général Leclerc, 92118 Clichy, France; French Network for Rare Liver Diseases FILFOIE, Saint-Antoine Hospital AP-HP, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France; Reference center of vascular liver diseases, European Reference Network (ERN) Rare-Liver
| |
Collapse
|
28
|
Debiec R, Hamby SE, Jones PD, Coolman S, Asiani M, Kharodia S, Skinner GJ, Samani NJ, Webb TR, Bolger A. Novel loss of function mutation in NOTCH1 in a family with bicuspid aortic valve, ventricular septal defect, thoracic aortic aneurysm, and aortic valve stenosis. Mol Genet Genomic Med 2020; 8:e1437. [PMID: 32720365 PMCID: PMC7549557 DOI: 10.1002/mgg3.1437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Bicuspid aortic valve is the most common congenital valvular heart defect in the general population. BAV is associated with significant morbidity due to valve failure, formation of thoracic aortic aneurysm, and increased risk of infective endocarditis and aortic dissection. Loss of function mutations in NOTCH1 (OMIM 190198) has previously been associated with congenital heart disease involving the aortic valve, left ventricle outflow tract, and mitral valve that segregates in affected pedigrees as an autosomal dominant trait with variable expressivity. Methods We performed whole‐exome sequencing in four members of a three‐generational family (three affected and one unaffected subject) with clinical phenotypes including aortic valve stenosis, thoracic aortic aneurysm, and ventricular septal defect. Results We identified 16 potentially damaging genetic variants (one stop variant, one splice variant, and 14 missense variants) cosegregating with the phenotype. Of these variants, the nonsense mutation (p.Tyr291*) in NOTCH1 was the most deleterious variant identified and the most likely variant causing the disease. Conclusion Inactivating NOTCH1 mutations are a rare cause of familial heart disease involving predominantly left ventricular outflow tract lesions and characterized by the heterogeneity of clinical phenotype.
Collapse
Affiliation(s)
- Radoslaw Debiec
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen E Hamby
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Peter D Jones
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Sue Coolman
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Manish Asiani
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Shireen Kharodia
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Gregory J Skinner
- East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Aidan Bolger
- Department of Cardiovascular Sciences, University of Leicester, NIHR (National Institute for Health Research) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,East Midlands Congenital Heart Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
29
|
Gratton R, Tricarico PM, Moltrasio C, Lima Estevão de Oliveira AS, Brandão L, Marzano AV, Zupin L, Crovella S. Pleiotropic Role of Notch Signaling in Human Skin Diseases. Int J Mol Sci 2020; 21:E4214. [PMID: 32545758 PMCID: PMC7353046 DOI: 10.3390/ijms21124214] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Notch signaling orchestrates the regulation of cell proliferation, differentiation, migration and apoptosis of epidermal cells by strictly interacting with other cellular pathways. Any disruption of Notch signaling, either due to direct mutations or to an aberrant regulation of genes involved in the signaling route, might lead to both hyper- or hypo-activation of Notch signaling molecules and of target genes, ultimately inducing the onset of skin diseases. The mechanisms through which Notch contributes to the pathogenesis of skin diseases are multiple and still not fully understood. So far, Notch signaling alterations have been reported for five human skin diseases, suggesting the involvement of Notch in their pathogenesis: Hidradenitis Suppurativa, Dowling Degos Disease, Adams-Oliver Syndrome, Psoriasis and Atopic Dermatitis. In this review, we aim at describing the role of Notch signaling in the skin, particularly focusing on the principal consequences associated with its alterations in these five human skin diseases, in order to reorganize the current knowledge and to identify potential cellular mechanisms in common between these pathologies.
Collapse
Affiliation(s)
- Rossella Gratton
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Paola Maura Tricarico
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | | | - Lucas Brandão
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Luisa Zupin
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
| | - Sergio Crovella
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (R.G.); (L.Z.); (S.C.)
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
30
|
Alzahem T, Alsalamah AK, Mura M, Alsulaiman SM. A novel variant in DOCK6 gene associated with Adams-Oliver syndrome type 2. Ophthalmic Genet 2020; 41:377-380. [PMID: 32498638 DOI: 10.1080/13816810.2020.1776339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adams-Oliver syndrome (AOS) is a rare, inherited multi-systemic malformation syndrome characterized by a combination of aplasia cutis congenita and transverse terminal limb defects along with variable involvement of the central nervous system, eyes, and cardiovascular system. AOS can be inherited as both autosomal-dominant and recessive traits. Pathogenic variants in the DOCK6, ARHGAP31, EOGT, RBPJ, DLL4, and NOTCH1 genes have been associated with AOS. PURPOSE To report a novel homozygous variant in the DOCK6 gene associated with Adams-Oliver syndrome type 2. MATERIALS AND METHODS Case report. RESULTS We report a case of a 4-month-old male who presented with microcephaly, global developmental delay, truncal hypotonia, and limb reduction defects. Ophthalmic examination revealed bilateral nystagmus and retinal detachment with mild cataractous changes in addition to retrolental plaque in the left eye. Next generation sequencing analysis identified a novel homozygous frameshift likely pathogenic variant (c.1269_1285dup (p.Arg429Glnfs*32)) in the DOCK6 gene. The constellation of the clinical findings and the genetic mutation were consistent with a diagnosis of AOS type 2. CONCLUSION The discovery of this new likely pathogenic variant enriches the genotypic spectrum of DOCK6 gene and contributes to genetic diagnosis and counseling of families with AOS. Neurologic and ocular findings appear to be consistent with AOS type 2 for which multidisciplinary clinical evaluation is crucial.
Collapse
Affiliation(s)
- Tariq Alzahem
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia.,Ophthalmology Department, King Saud University , Riyadh, Saudi Arabia
| | - Abrar K Alsalamah
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia
| | - Marco Mura
- Vitreoretinal Division, King Khaled Eye Specialist Hospital , Riyadh, Saudi Arabia
| | | |
Collapse
|
31
|
Chapman G, Moreau JLM, I P E, Szot JO, Iyer KR, Shi H, Yam MX, O’Reilly VC, Enriquez A, Greasby JA, Alankarage D, Martin EMMA, Hanna BC, Edwards M, Monger S, Blue GM, Winlaw DS, Ritchie HE, Grieve SM, Giannoulatou E, Sparrow DB, Dunwoodie SL. Functional genomics and gene-environment interaction highlight the complexity of congenital heart disease caused by Notch pathway variants. Hum Mol Genet 2020; 29:566-579. [PMID: 31813956 PMCID: PMC7068028 DOI: 10.1093/hmg/ddz270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.
Collapse
Affiliation(s)
- Gavin Chapman
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julie L M Moreau
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Eddie I P
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Justin O Szot
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Kavitha R Iyer
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Hongjun Shi
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Institute for Basic Medical Sciences, Westlake University, Hangzhou, China
| | - Michelle X Yam
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Annabelle Enriquez
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Joelene A Greasby
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Matthew Edwards
- Hunter Genetics, John Hunter Hospital, Newcastle, NSW, 2298, Australia
- Department of Paediatrics, School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Steven Monger
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Gillian M Blue
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Kids Heart Research, Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - David S Winlaw
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Kids Heart Research, Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Helen E Ritchie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
32
|
Huang S, Yang L, Zhao L, Xu R, Wu Y. Novel In-Frame Deletion Mutation in NOTCH1 in a Chinese Sporadic Case of Adams-Oliver Syndrome. DNA Cell Biol 2020; 39:783-789. [PMID: 32129674 DOI: 10.1089/dna.2019.5200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adams-Oliver syndrome (AOS) is a rare hereditary disorder characterized by aplasia cutis congenita (ACC) and terminal transverse limb defects. The etiology of AOS has remained largely unknown, although mutations in the notch receptor 1 (NOTCH1) gene are most common genetic alteration associated with this disease. In this study, we aimed to identify the case of a 6-year-old boy, who presented with large ACC of the scalp and aortic valve stenosis, suggesting the possibility of AOS. Whole-exome sequencing identified a novel, de novo, in-frame deletion in the NOTCH1 gene (NOTCH1 c.1292_1294del, p.Asn431del) in the patient. The p.Asn431del variant was evaluated by several in silico analyses, which predicted that the mutant was likely to be pathogenic. In addition, molecular modeling with the PyMOL Molecular Graphics System suggested that the NOTCH1-N431del destabilizes calcium ion chelation, leading to decreased receptor-ligand binding efficiency. Quantitative reverse transcription PCR showed further significant downregulation of the Notch target genes, hes-related family bHLH transcription factor with YRPW motif 1 (HEY1) and hes family bHLH transcription factor 1 (HES1), suggesting that this mutation causes disease through dysregulation of the Notch signaling pathway. Our study provides evidence that the NOTCH1-N431del mutation is responsible for this case of AOS. To our knowledge, this is the first report of a patient with AOS caused by NOTCH1 mutation in Asia, and this information will be useful for providing the family with genetic counseling that can help to guide their future plans.
Collapse
Affiliation(s)
- Suqiu Huang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Ling Yang
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Liqing Zhao
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Rang Xu
- Scientific Research Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yurong Wu
- Department of Pediatric Cardiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
33
|
Reichrath J, Reichrath S. Notch Pathway and Inherited Diseases: Challenge and Promise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:159-187. [PMID: 32060876 DOI: 10.1007/978-3-030-34436-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolutionary highly conserved Notch pathway governs many cellular core processes including cell fate decisions. Although it is characterized by a simple molecular design, Notch signaling, which first developed in metazoans, represents one of the most important pathways that govern embryonic development. Consequently, a broad variety of independent inherited diseases linked to defective Notch signaling has now been identified, including Alagille, Adams-Oliver, and Hajdu-Cheney syndromes, CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), early-onset arteriopathy with cavitating leukodystrophy, lateral meningocele syndrome, and infantile myofibromatosis. In this review, we give a brief overview on molecular pathology and clinical findings in congenital diseases linked to the Notch pathway. Moreover, we discuss future developments in basic science and clinical practice that may emerge from recent progress in our understanding of the role of Notch in health and disease.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| |
Collapse
|
34
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque G, Eveleigh R, Dunwoodie SL, Winlaw DS, Bhattacharya S, Breckpot J, Devriendt K, Gewillig M, Brook JD, Setchfield KJ, Bu'Lock FA, O'Sullivan J, Stuart G, Bezzina CR, Mulder BJM, Postma AV, Bentham JR, Baron M, Bhaskar SS, Black GC, Newman WG, Hentges KE, Lathrop GM, Santibanez-Koref M, Keavney BD. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circ Res 2019; 124:553-563. [PMID: 30582441 DOI: 10.1161/circresaha.118.313250] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.
Collapse
Affiliation(s)
- Donna J Page
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Matthieu J Miossec
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.).,Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andrés Bello, Santiago, Chile (M.J.M.)
| | - Simon G Williams
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Richard M Monaghan
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Elisavet Fotiou
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | | | - Ana Topf
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | - Mathieu Bourgey
- Canadian Centre for Computational Genomics, Montréal, QC, Canada (M.B.).,McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Guillaume Bourque
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Robert Eveleigh
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Sally L Dunwoodie
- Chain Reaction Program in Congenital Heart Disease Research, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia (S.L.D.).,Faculties of Medicine and Science, University of New South Wales, Sydney (S.L.D.).,Heart Centre for Children, The Children's Hospital at Westmead, Sydney, NSW (S.L.D.)
| | - David S Winlaw
- School of Child and Adolescent Health, Sydney Medical School, University of Sydney (D.S.W.).,Victor Chang Cardiac Research Institute, NSW, Australia (D.S.W.).,RDM Cardiovascular Medicine, Wellcome Centre for Human Genetics, University of Oxford (D.S.W., S.B.)
| | - Shoumo Bhattacharya
- RDM Cardiovascular Medicine, Wellcome Centre for Human Genetics, University of Oxford (D.S.W., S.B.).,Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.)
| | - Jeroen Breckpot
- Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.).,Pediatric and Congenital Cardiology, UZ Leuven (J.B., M.G.)
| | - Koenraad Devriendt
- Center for Human Genetics, Catholic University Leuven, Belgium (S.B., J.B., K.D.)
| | - Marc Gewillig
- Pediatric and Congenital Cardiology, UZ Leuven (J.B., M.G.)
| | - J David Brook
- School of Life Sciences, University of Nottingham, Queen's Medical Centre (J.D.B., K.J.S.)
| | - Kerry J Setchfield
- School of Life Sciences, University of Nottingham, Queen's Medical Centre (J.D.B., K.J.S.)
| | - Frances A Bu'Lock
- Congenital and Paediatric Cardiology, East Midlands Congenital Heart Centre and University of Leicester, Glenfield Hospital (F.A.B.)
| | - John O'Sullivan
- Adult Congenital and Paediatric Cardiac Unit, Freeman Hospital, Newcastle upon Tyne (J.O.)
| | - Graham Stuart
- University Hospitals Bristol NHS Foundation Trust, Bristol (G.S.)
| | - Connie R Bezzina
- Heart Center, Department of Clinical and Experimental Cardiology (C.R.B.), Academic Medical Center, Amsterdam, the Netherlands
| | - Barbara J M Mulder
- Department of Medical Biology (B.J.M.M.), Academic Medical Center, Amsterdam, the Netherlands
| | - Alex V Postma
- Department of Clinical Genetics (A.V.P.), Academic Medical Center, Amsterdam, the Netherlands
| | - James R Bentham
- Department of Paediatric Cardiology, Yorkshire Heart Centre, Leeds (J.R.B.)
| | - Martin Baron
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester (M.B.)
| | - Sanjeev S Bhaskar
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford, Manchester (S.S.B., G.C.B.)
| | - Graeme C Black
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford, Manchester (S.S.B., G.C.B.)
| | - William G Newman
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford (W.G.N.); and Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | | | - G Mark Lathrop
- McGill Genome Center, Montréal, QC, Canada (M.B., G.B., R.E., G.M.L.)
| | - Mauro Santibanez-Koref
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (M.J.M., H.J.C., L.S., A.T., M.S.-K.)
| | - Bernard D Keavney
- From the Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, United Kingdom (D.J.P., S.G.W., R.M.M., E.F., B.D.K.)
| |
Collapse
|
36
|
Dudoignon B, Huber C, Michot C, Di Rocco F, Girard M, Lyonnet S, Rio M, Rabia SH, Daire VC, Baujat G. Expanding the phenotype in Adams-Oliver syndrome correlating with the genotype. Am J Med Genet A 2019; 182:29-37. [PMID: 31654484 DOI: 10.1002/ajmg.a.61364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
RATIONALE Adams-Oliver syndrome (AOS) is a genetic disorder characterized by the association of aplasia cutis congenita (ACC), terminal transverse limb defect (TTLD), congenital cardiac malformation (CCM), and minor features, such as cutaneous, neurological, and hepatic abnormalities (HAs). The aim of the study is to emphasize phenotype-genotype correlations in AOS. METHODS We studied 29 AOS patients. We recorded retrospectively detailed phenotype data, including clinical examination, biological analyses, and imaging. The molecular analysis was performed through whole exome sequencing (WES). RESULTS Twenty-nine patients (100%) presented with ACC, the principal inclusion criteria in the study. Seventeen of twenty-one (81%) had cutis marmorata telangiectasia congenita, 16/26 (62%) had TTLD, 14/23 (61%) had CCM, 7/20 (35%) had HAs, and 9/27 (33%) had neurological findings. WES was performed in 25 patients. Fourteen of twenty-five (56%) had alterations in the genes already described in AOS. CCM and HAs are particularly associated with the NOTCH1 genotype. TTLD is present in patients with DOCK6 and EOGT alterations. Neurological findings of variable degree were associated sometimes with DOCK6 and NOTCH1 rarely with EOGT. CONCLUSION AOS is characterized by a clinical and molecular variability. It appears that degrees of genotype-phenotype correlations exist for patients with identified pathogenic mutations, underlining the need to undertake a systematic but adjusted multidisciplinary assessment.
Collapse
Affiliation(s)
- Benjamin Dudoignon
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Celine Huber
- INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | - Caroline Michot
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | | | - Muriel Girard
- AP-HP, Liver Unit, National Reference Center for Biliary Atresia and Genetic Cholestasis, INSERM U1151/CNRS UMR 8253, Institut Necker-Enfants malades (INEM), Assistance Publique Hopitaux de Paris, Necker-Enfants malades Hospital, Paris, France
| | - Stanislas Lyonnet
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Marlène Rio
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France
| | - Smail Hadj Rabia
- AP-HP, Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), INSERM U1163, Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants malades University Hospital, Paris, France
| | - Valérie Cormier Daire
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| | - Geneviève Baujat
- AP-HP, Service de Génétique Clinique, Necker-Enfants malades University Hospital, Paris, France.,INSERM, UMR1163, Iimagine Institute, Paris, France.,AP-HP, Reference Center for Skeletal Dysplasia, Paris, France
| |
Collapse
|
37
|
Ceritinib-Induced Regression of an Insulin-Like Growth Factor-Driven Neuroepithelial Brain Tumor. Int J Mol Sci 2019; 20:ijms20174267. [PMID: 31480400 PMCID: PMC6747232 DOI: 10.3390/ijms20174267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/15/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
The insulin-like growth factor (IGF) pathway plays an important role in several brain tumor entities. However, the lack of inhibitors crossing the blood–brain barrier remains a significant obstacle for clinical translation. Here, we targeted the IGF pathway using ceritinib, an off-target inhibitor of the IGF1 receptor (IGF1R) and insulin receptor (INSR), in a pediatric patient with an unclassified brain tumor and a notch receptor 1 (NOTCH1) germline mutation. Pathway analysis of the tumor revealed activation of the sonic hedgehog (SHH), the wingless and integrated-1 (WNT), the IGF, and the Notch pathway. The proliferation of the patient tumor cells (225ZL) was inhibited by arsenic trioxide (ATO), which is an inhibitor of the SHH pathway, by linsitinib, which is an inhibitor of IGF1R and INSR, and by ceritinib. 225ZL expressed INSR but not IGF1R at the protein level, and ceritinib blocked the phosphorylation of INSR. Our first personalized treatment included ATO, but because of side effects, we switched to ceritinib. After 46 days, we achieved a concentration of 1.70 µM of ceritinib in the plasma, and after 58 days, MRI confirmed that there was a response to the treatment. Ceritinib accumulated in the tumor at a concentration of 2.72 µM. Our data suggest ceritinib as a promising drug for the treatment of IGF-driven brain tumors.
Collapse
|
38
|
Schröder KC, Duman D, Tekin M, Schanze D, Sukalo M, Meester J, Wuyts W, Zenker M. Adams–Oliver syndrome caused by mutations of the
EOGT
gene. Am J Med Genet A 2019; 179:2246-2251. [DOI: 10.1002/ajmg.a.61313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kim C. Schröder
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Duygu Duman
- Division of Pediatric Genetic Diseases, Department of PediatricsAnkara University Faculty of Medicine Ankara Turkey
- Department of AudiologyAnkara University Faculty of Health Sciences Ankara Turkey
| | - Mustafa Tekin
- Division of Pediatric Genetic Diseases, Department of PediatricsAnkara University Faculty of Medicine Ankara Turkey
- John P. Hussman Institute for Human Genomics and Dr. John T. Macdonald Foundation Department of Human Genetics, and Department of OtolaryngologyUniversity of Miami Miller School of Medicine Miami Florida
| | - Denny Schanze
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Maja Sukalo
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Wim Wuyts
- Faculty of Medicine and Health Sciences, Center of Medical GeneticsUniversity of Antwerp and Antwerp University Hospital Antwerp Belgium
| | - Martin Zenker
- Institute of Human GeneticsUniversity Hospital Magdeburg Magdeburg Germany
| |
Collapse
|
39
|
Digilio MC, Magliozzi M, Di Pede A, Valfrè L, Dentici ML, Auriti C, Marino B, Novelli A, Dallapiccola B. Familial aggregation of "apple peel" intestinal atresia and cardiac left-sided obstructive lesions: A possible causal relationship with NOTCH1 gene mutations. Am J Med Genet A 2019; 179:1570-1574. [PMID: 31111652 DOI: 10.1002/ajmg.a.61195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/20/2019] [Accepted: 04/28/2019] [Indexed: 01/17/2023]
Abstract
"Apple peel" intestinal atresia is a rare form of small bowel atresia, in which the duodenum or proximal jejunum ends in a blind pouch and the distal small bowel wraps around its vascular supply, in a spiral resembling an apple peel. The etiology of "apple peel" intestinal atresia is presently unknown, although a congenital or acquired intestinal vascular accident can have a role in the pathogenesis. We report a family in which the proband affected by "apple peel" intestinal atresia, had a sibling (an interrupted pregnancy), and a paternal cousin with cardiac left-sided obstructive lesions. Molecular testing for NOTCH1 gene was carried out in the proband, because pathogenic mutations in this gene have been associated with familial and sporadic cardiac left-sided obstructive lesions and vascular anomalies, both isolated or within the spectrum of the Adams-Oliver syndrome (AOS). The heterozygous c.2734C>T (p.Arg912Trp) NOTCH1 variant was found in the proband with "apple peel" intestinal atresia and in his father. This result argues for a possible causal relationship between NOTCH1 gene mutations and some forms of intestinal defects, through a vascular mechanism. The spectrum of NOTCH1-associated malformations is widened. Genetic counseling should take into account intrafamilial variable clinical expression and incomplete penetrance.
Collapse
Affiliation(s)
- M Cristina Digilio
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Monia Magliozzi
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Alessandra Di Pede
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Laura Valfrè
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Cinzia Auriti
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Marino
- Pediatric Cardiology, Department of Pediatrics, Sapienza University, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit, Medical Genetics Laboratory, Neonatal Surgery Unit, Neonatal Intensive Care Unit, Scientific Rectorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| |
Collapse
|
40
|
Challenges in the clinical interpretation of small de novo copy number variants in neurodevelopmental disorders. Gene 2019; 706:162-171. [PMID: 31085274 DOI: 10.1016/j.gene.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
In clinical genetics, the need to discriminate between benign and pathogenic variants identified in patients with neurodevelopmental disorders is an absolute necessity. Copy number variants (CNVs) of small size can enable the identification of genes that are critical for neurologic development. However, assigning a definite association with a specific disorder is a difficult task. Among 328 trios analyzed over seven years of activity in a single laboratory, we identified 19 unrelated patients (5.8%) who carried a small (<500 kb) de novo CNV. Four patients had an additional independent de novo CNV. Nine had a variant that could be assigned as definitely pathogenic, whereas the remaining CNVs were considered as variants of unknown significance (VUS). We report clinical and molecular findings of patients harboring VUS. We reviewed the medical literature available for genes impacted by CNVs, obtained the probability of truncating loss-of-function intolerance, and compared overlapping CNVs reported in databases. The classification of small non-recurrent CNVs remains difficult but, among our findings, we provide support for a role of SND1 in the susceptibility of autism, describe a new case of the rare 17p13.1 microduplication syndrome, and report an X-linked duplication involving KIF4A and DLG3 as a likely cause of epilepsy.
Collapse
|
41
|
Wang F, Yang Q, Wu F, Zhang Y, Sun S, Wang X, Gui Y, Li Q. Identification of a 42-bp heart-specific enhancer of the notch1b gene in zebrafish embryos. Dev Dyn 2019; 248:426-436. [PMID: 30919514 DOI: 10.1002/dvdy.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NOTCH1 plays a key role in the differentiation of ventricles, and mutations are strongly associated with both sporadic and familial bicuspid aortic valves. However, few heart-specific enhancers have been identified to date. RESULTS In this study, we investigated evolutionary conserved regions (ECRs) that might act as potential enhancers within the region approximately 150-kb upstream and downstream of the NOTCH1 gene. Functional validation revealed that one 127-bp ECR located ~85-kb downstream of the NOTCH1 gene drives green fluorescent protein expression in the zebrafish embryo heart. Transcription factor (TF) prediction and core TF distribution analyses were performed to identify the core region. Dissection of ECR3 was performed to identify the 42-bp sequence, which is sufficient for heart-specific expression. In situ hybridization experiments showed that notch1b is expressed in the heart. Overexpression experiments in cells indicated that NKX2-5 is critical for enhancer activity. Mutation of the NKX-5 binding site significantly decreased reporter gene expression. Next, compared with the commonly used myocardium-labeled zebrafish transgenic strain Tg(cmlc2: mCherry), this 42-bp enhancer-labeled stable line mediated a similar expression pattern but with a smaller core region. CONCLUSION This study identified a 42-bp heart-specific enhancer near the NOTCH1 gene and further verified its functional targeting by NKX2-5.
Collapse
Affiliation(s)
- Feng Wang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Yang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Shuna Sun
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghao Gui
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
42
|
Helle E, Córdova-Palomera A, Ojala T, Saha P, Potiny P, Gustafsson S, Ingelsson E, Bamshad M, Nickerson D, Chong JX, Ashley E, Priest JR. Loss of function, missense, and intronic variants in NOTCH1 confer different risks for left ventricular outflow tract obstructive heart defects in two European cohorts. Genet Epidemiol 2019; 43:215-226. [PMID: 30511478 PMCID: PMC6375786 DOI: 10.1002/gepi.22176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
Loss of function variants in NOTCH1 cause left ventricular outflow tract obstructive defects (LVOTO). However, the risk conferred by rare and noncoding variants in NOTCH1 for LVOTO remains largely uncharacterized. In a cohort of 49 families affected by hypoplastic left heart syndrome, a severe form of LVOTO, we discovered predicted loss of function NOTCH1 variants in 6% of individuals. Rare or low-frequency missense variants were found in 16% of families. To make a quantitative estimate of the genetic risk posed by variants in NOTCH1 for LVOTO, we studied associations of 400 coding and noncoding variants in NOTCH1 in 1,085 cases and 332,788 controls from the UK Biobank. Two rare intronic variants in strong linkage disequilibrium displayed significant association with risk for LVOTO amongst European-ancestry individuals. This result was replicated in an independent analysis of 210 cases and 68,762 controls of non-European and mixed ancestry. In conclusion, carrying rare predicted loss of function variants in NOTCH1 confer significant risk for LVOTO. In addition, the two intronic variants seem to be associated with an increased risk for these defects. Our approach demonstrates the utility of population-based data sets in quantifying the specific risk of individual variants for disease-related phenotypes.
Collapse
Affiliation(s)
- Emmi Helle
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki, Finland
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Aldo Córdova-Palomera
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Tiina Ojala
- Pediatric Research Center, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Priyanka Saha
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Praneetha Potiny
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Deborah Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Euan Ashley
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - James R Priest
- Division of Cardiovascular Medicine, Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
43
|
Ogawa M, Okajima T. Structure and function of extracellular O-GlcNAc. Curr Opin Struct Biol 2019; 56:72-77. [PMID: 30669087 DOI: 10.1016/j.sbi.2018.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/05/2018] [Indexed: 11/27/2022]
Abstract
Extracellular O-GlcNAc is a unique modification restricted to the epidermal growth factor (EGF) domain-containing glycoproteins. This O-GlcNAcylation is catalyzed by the EGF-domain specific O-GlcNAc transferase (EOGT), which is localized in the lumen of endoplasmic reticulum. In humans, EOGT is one of the causative genes of a congenital disease, Adams-Oliver syndrome. EOGT is highly expressed in endothelial cells and regulates vascular development and integrity by potentiating Delta-like ligand-mediated Notch signaling. In Drosophila, Eogt modifies Dumpy, an apical extracellular matrix glycoprotein, and affects Dumpy-dependent cell-matrix interaction. In this review, we summarize the current findings of the structure and functions of extracellular O-GlcNAc in animals.
Collapse
Affiliation(s)
- Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
44
|
Southgate L. Current opinion in the molecular genetics of Adams-Oliver syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2019.1559049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
- Department of Medical and Molecular Genetics, King’s College London, London, UK
| |
Collapse
|
45
|
Tashima Y, Okajima T. Congenital diseases caused by defective O-glycosylation of Notch receptors. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 80:299-307. [PMID: 30214079 PMCID: PMC6125653 DOI: 10.18999/nagjms.80.3.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch signaling pathway is highly conserved and essential for animal development. It is required for cell differentiation, survival, and proliferation. Regulation of Notch signaling is a crucial process for human health. Ligands initiate a signal cascade by binding to Notch receptors expressed on a neighboring cell. Notch receptors interact with ligands through their epidermal growth factor-like repeats (EGF repeats). Most EGF repeats are modified by O-glycosylation with residues such as O-linked N-acetylglucosamine (O-GlcNAc), O-fucose, and O-glucose. These O-glycan modifications are important for Notch function. Defects in O-glycosylation affect Notch-ligand interaction, trafficking of Notch receptors, and Notch stability on the cell surface. Although the roles of each modification are not fully understood, O-fucose is essential for binding of Notch receptors to their ligands. We reported an EGF domain-specific O-GlcNAc transferase (EOGT) localized in the endoplasmic reticulum. Mutations in genes encoding EOGT or NOTCH1 cause Adams-Oliver syndrome. Dysregulation of Notch signaling because of defects or mutations in Notch receptors or Notch signal-regulating proteins, such as glycosyltransferases, induce a variety of congenital disorders. In this review, we discuss O-glycosylation of Notch receptors and congenital human diseases caused by defects in O-glycans on Notch receptors.
Collapse
Affiliation(s)
- Yuko Tashima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
46
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
47
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
48
|
Alankarage D, Ip E, Szot JO, Munro J, Blue GM, Harrison K, Cuny H, Enriquez A, Troup M, Humphreys DT, Wilson M, Harvey RP, Sholler GF, Graham RM, Ho JWK, Kirk EP, Pachter N, Chapman G, Winlaw DS, Giannoulatou E, Dunwoodie SL. Identification of clinically actionable variants from genome sequencing of families with congenital heart disease. Genet Med 2018; 21:1111-1120. [DOI: 10.1038/s41436-018-0296-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
|
49
|
MiR-145 expression and rare NOTCH1 variants in bicuspid aortic valve-associated aortopathy. PLoS One 2018; 13:e0200205. [PMID: 30059548 PMCID: PMC6066209 DOI: 10.1371/journal.pone.0200205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) may serve as elegant tool to improve risk stratification in bicuspid aortic valve (BAV)-associated aortopathy. However, the exact pathogenetic pathway by which miRNAs impact aortopathy progression is unknown. Herewith, we aimed to analyze the association between circulating miRNAs and rare variants of aortopathy-related genes. 63 BAV patients (mean age 47.3±11.3 years, 92% male) with a root dilatation phenotype, who underwent aortic valve+/-proximal aortic surgery at a single institution (mean post-AVR follow-up 10.3±6.9 years) were analyzed. A custom-made HaloPlex HS panel including 20 aortopathy-related genes was used for the genetic testing. miRNAs were extracted from whole blood and miRNA analysis was performed using miRNA-specific assay. Study endpoint was the association between circulating miRNAs and rare genetic variants in the aortopathy gene panel. The study cohort was divided into a subgroup with rare variants vs. a subgroup without rare variants based on the presence of rare variants in the respective genes (i.e., at least one variant present). The genetic analysis yielded n = 6 potentially and likely pathogenic rare variants within the NOTCH1 gene as being the most common finding. Univariate analysis between blood miRNAs and NOTCH1 variants revealed a significantly lower expression of miR-145 in the subgroup of patients with NOTCH1 variants vs. those without NOTCH1 variants (i.e., delta Ct 4.95±0.74 vs. delta Ct 5.57±0.78, p = 0.04). Our preliminary data demonstrate a significant association between blood miR-145 expression and the presence of rare NOTCH1 variants. This association may be indicative of a specific pathogenetic pathway in the development of genetically-triggered bicuspid aortopathy.
Collapse
|
50
|
Giaimo BD, Borggrefe T. Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:3-30. [DOI: 10.1007/978-3-319-89512-3_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|