1
|
Sun Y, Hu Z, Han J, Li G. SP1-mediated transcriptional repression of SFRP5 is correlated with cardiac fibroblast activation and atrial myocyte apoptosis in the development of atrial fibrillation. Exp Cell Res 2024:114326. [PMID: 39536929 DOI: 10.1016/j.yexcr.2024.114326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Secreted frizzled related protein 5 (SFRP5) is a recognized cardioprotective protein with diminished expression in atrial fibrillation (AF). This study investigates SFRP5's function in AF-related cardiac fibrosis and cardiomyocyte apoptosis, exploring the underlying dysregulation causes. Utilizing C57BL/6 mice, mouse cardiac fibroblasts (CFs), and HC-1 mouse atrial myocyte cell line, AF models were induced by angiotensin Ⅱ (Ang Ⅱ). SFRP5 levels were consistently decreased in plasma samples from clinical patients, modeled mice, and CF culture supernatants. Treatment with recombinant SFRP5 restored its levels, mitigating Ang Ⅱ-induced AF in mice and ameliorating atrial tissue fibrosis and oxidative stress. In vitro, SFRP5 recombinant protein suppressed CF activation and fibrosis-related markers. The study identified Sp1 transcription factor (SP1) binding to the SFRP5 promoter, causing transcriptional repression. SP1 knockdown reinstated SFRP5 levels in mice and CFs, thus suppressing fibrosis. Additionally, SP1 knockdown attenuated Ang Ⅱ-induced apoptosis in HC-1 cells, but this effect was counteracted by concurrent SFRP5 knockdown. In conclusion, this investigation underscores that SP1 mediates SFRP5 loss during AF by transcriptional repression, contributing to fibrosis and myocyte apoptosis. These findings illuminate potential therapeutic interventions targeting the SFRP5-SP1 axis in AF-related cardiac complications.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou 450000, Henan, P.R. China.
| | - Zhenzhen Hu
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou 450000, Henan, P.R. China
| | - Jie Han
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou 450000, Henan, P.R. China
| | - Gang Li
- Department of Cardiology, Henan Provincial Chest Hospital, Zhengzhou 450000, Henan, P.R. China
| |
Collapse
|
2
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
5
|
Tsoyi K, Rosas IO. Fibroblast heterogeneity in pulmonary fibrosis: a new target for therapeutics development? Eur Respir J 2024; 63:2302188. [PMID: 38331439 DOI: 10.1183/13993003.02188-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Liu C, Zhou D, Zhang Q, Wei H, Lu Y, Li B, Zhan H, Cheng J, Wang C, Yang Y, Li S, Hu C, Liao X. Transcription factor EB (TFEB) improves ventricular remodeling after myocardial infarction by inhibiting Wnt/ β-catenin signaling pathway. PeerJ 2023; 11:e15841. [PMID: 37609444 PMCID: PMC10441526 DOI: 10.7717/peerj.15841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
Background Adverse left ventricular remodeling after myocardial infarction (MI) compromises cardiac function and increases heart failure risk. Until now, comprehension of the role transcription factor EB (TFEB) plays after MI is limited. Objectives The purpose of this study was to describe the effects of TFEB on fibroblasts differentiation and extracellular matrix expression after MI. Methods AAV9 (adeno-associated virus) mediated up- and down-regulated TFEB expressions were generated in C57BL/6 mice two weeks before the MI modeling. Echocardiography, Masson, Sirius red staining immunofluorescence, and wheat germ agglutinin staining were performed at 3 days, and 1, 2, and 4 weeks after MI modeling. Fibroblasts collected from SD neonatal rats were transfected by adenovirus and siRNA, and cell counting kit-8 (CCK8), immunofluorescence, wound healing and Transwell assay were conducted. Myocardial fibrosis-related proteins were identified by Western blot. PNU-74654 (100 ng/mL) was used for 12 hours to inhibit β-catenin-TCF/LEF1 complex. Results The up-regulation of TFEB resulted in reduced fibroblasts proliferation and its differentiation into myofibroblasts in vitro studies. A significant up-regulation of EF and down-regulation of myocyte area was shown in the AAV9-TFEB group. Meanwhile, decreased protein level of α-SMA and collagen I were observed in vitro study. TFEB didn't affect the concentration of β-catenin. Inhibition of TFEB, which promoted cell migration, proliferation and collagen I expression, was counteracted by PNU-74654. Conclusions TFEB demonstrated potential in restraining fibrosis after MI by inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong Liu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dawang Zhou
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qiang Zhang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingge Cheng
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chuyue Wang
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuhao Li
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Zhang L, Lin Y, Wang K, Han L, Zhang X, Gao X, Li Z, Zhang H, Zhou J, Yu H, Fu X. Multiple-model machine learning identifies potential functional genes in dilated cardiomyopathy. Front Cardiovasc Med 2023; 9:1044443. [PMID: 36712235 PMCID: PMC9874116 DOI: 10.3389/fcvm.2022.1044443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Machine learning (ML) has gained intensive popularity in various fields, such as disease diagnosis in healthcare. However, it has limitation for single algorithm to explore the diagnosing value of dilated cardiomyopathy (DCM). We aim to develop a novel overall normalized sum weight of multiple-model MLs to assess the diagnosing value in DCM. Methods Gene expression data were selected from previously published databases (six sets of eligible microarrays, 386 samples) with eligible criteria. Two sets of microarrays were used as training; the others were studied in the testing sets (ratio 5:1). Totally, we identified 20 differently expressed genes (DEGs) between DCM and control individuals (7 upregulated and 13 down-regulated). Results We developed six classification ML methods to identify potential candidate genes based on their overall weights. Three genes, serine proteinase inhibitor A3 (SERPINA3), frizzled-related proteins (FRPs) 3 (FRZB), and ficolin 3 (FCN3) were finally identified as the receiver operating characteristic (ROC). Interestingly, we found all three genes correlated considerably with plasma cells. Importantly, not only in training sets but also testing sets, the areas under the curve (AUCs) for SERPINA3, FRZB, and FCN3 were greater than 0.88. The ROC of SERPINA3 was significantly high (0.940 in training and 0.918 in testing sets), indicating it is a potentially functional gene in DCM. Especially, the plasma levels in DCM patients of SERPINA3, FCN, and FRZB were significant compared with healthy control. Discussion SERPINA3, FRZB, and FCN3 might be potential diagnosis targets for DCM, Further verification work could be implemented.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yexiang Lin
- Biomedical Engineering, Imperial College London, London, United Kingdom
| | - Kaiyue Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Jiashun Zhou
- Tianjin Jinghai District Hospital, Tianjin, China
| | - Heshui Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China,*Correspondence: Heshui Yu,
| | - Xuebin Fu
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States,Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States,Xuebin Fu,
| |
Collapse
|
8
|
García-García P, Reyes R, García-Sánchez D, Pérez-Campo FM, Rodríguez-Rey JC, Évora C, Díaz-Rodríguez P, Delgado A. Nanoparticle-mediated selective Sfrp-1 silencing enhances bone density in osteoporotic mice. J Nanobiotechnology 2022; 20:462. [PMID: 36309688 PMCID: PMC9618188 DOI: 10.1186/s12951-022-01674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoporosis (OP) is characterized by a loss in bone mass and mineral density. The stimulation of the canonical Wnt/β-catenin pathway has been reported to promote bone formation, this pathway is controlled by several regulators as secreted frizzled-related protein-1 (Sfrp-1), antagonist of the pathway. Thus, Sfrp-1 silencing therapies could be suitable for enhancing bone growth. However, the systemic stimulation of Wnt/β-catenin has been correlated with side effects. This work hypothesizes the administration of lipid-polymer NPs (LPNPs) functionalized with a MSC specific aptamer (Apt) and carrying a SFRP1 silencing GapmeR, could favor bone formation in OP with minimal undesired effects. Suitable SFRP1 GapmeR-loaded Apt-LPNPs (Apt-LPNPs-SFRP1) were administered in osteoporotic mice and their biodistribution, toxicity and bone induction capacity were evaluated. The aptamer functionalization of the NPs modified their biodistribution profile showing a four-fold increase in the bone accumulation and a ten-fold decrease in the hepatic accumulation compared to naked LPNPs. Moreover, the histological evaluation revealed evident changes in bone structure observing a more compact trabecular bone and a cortical bone thickness increase in the Apt-LPNPs-SFRP1 treated mice with no toxic effects. Therefore, these LPNPs showed suitable properties and biodistribution profiles leading to an enhancement on the bone density of osteoporotic mice.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
10
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
11
|
Secreted frizzled-related protein 4 exerts anti-atherosclerotic effects by reducing inflammation and oxidative stress. Eur J Pharmacol 2022; 923:174901. [PMID: 35364070 DOI: 10.1016/j.ejphar.2022.174901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Atherosclerosis and its sequelae, such as coronary artery disease (CAD), are the most common diseases worldwide and the leading causes of morbidity and mortality in most countries. Our previous studies have shown that circulating secreted frizzled-related protein 4 (SFRP4) levels are increased in patients with CAD. However, the role of SFRP4 in the development of atherosclerosis remains unclear; thus, the purpose of this study was to determine the effect of SFRP4 on high-fat diet (HFD)-induced atherosclerosis and explore the possible mechanisms. In this study, we found for the first time that administration of recombinant SFRP4 alleviates atherosclerosis in ApoE-/- mice by reducing inflammation and oxidative stress. In addition, the anti-atherosclerotic effect of SFRP4 was associated with inhibition of the Wnt/β-catenin signaling pathway, and Wnt1 overexpression abolished the anti-atherosclerotic effects of SFRP4. Taken together, our results highlight the potential beneficial effect of SFRP4 as a therapeutic agent for atherosclerosis and CAD.
Collapse
|
12
|
Yang Y, Liu P, Teng R, Liu F, Zhang C, Lu X, Ding Y. Integrative bioinformatics analysis of potential therapeutic targets and immune infiltration characteristics in dilated cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:348. [PMID: 35433958 PMCID: PMC9011224 DOI: 10.21037/atm-22-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
Background Dilated cardiomyopathy (DCM) is currently the major cause of systolic heart failure. This study explored potential therapeutic targets and investigated the role of immune cell infiltration in DCM. Methods Three DCM datasets (GSE3585, GSE9800, and GSE84796) from the Gene Expression Omnibus (GEO) database were merged into an integrated dataset, and batch effects were removed. Differentially expressed genes (DEGs) were screened and the associations between gene co-expression modules and clinical traits were assessed by weighted gene co-expression network analysis (WGCNA) in R software. Any DEGs from the integrated dataset overlapped with the significant module genes were defined as common genes (CGs). Enrichment analysis of the CGs was performed. The protein-protein interaction (PPI) network of the CGs was visualized and the hub gene was identified by using Cytoscape 3.8.2 software. The miRNA-transcription factor-mRNA (miRNA-TF-mRNA) network was constructed using Cytoscape to unveil the regulatory relationships in DCM. Finally, the CIBERSORT method (https://cibersort.stanford.edu/) was used to investigate immune cell infiltration in DCM. Results A total of 53 DEGs were identified, and 5 gene co-expression modules were detected by WGCNA of the DCM and control group samples of cardiac tissue. Genes such as FRZB, ASPN, and PHLDA1 were significantly upregulated, whereas IDH2 and ENDOG were significantly downregulated. Functional enrichment analysis showed that CGs were mainly enriched in the extracellular matrix (ECM) signaling pathway. ASPN was the hub gene in the PPI network. The miRNA-TF-mRNA network revealed that FRZB and ASPN were targeted by paired related homeobox 2 (Prrx2). We also found that miR-129-5p could regulate ASPN, PHLDA1, and IDH2 simultaneously. The immune infiltration analysis revealed higher levels of M1 macrophages in DCM samples than in the control samples. Conclusions In conclusion, we speculate that miR-129-5p might target ASPN in regulating DCM via the ECM signaling pathway. Macrophage infiltration may be involved in ECM remodeling and eventually lead to DCM.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ping Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruoling Teng
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fenfen Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuiping Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
13
|
Khan K, Makhoul G, Yu B, Jalani G, Derish I, Rutman AK, Cerruti M, Schwertani A, Cecere R. Amniotic stromal stem cell-loaded hydrogel repairs cardiac tissue in infarcted rat hearts via paracrine mediators. J Tissue Eng Regen Med 2021; 16:110-127. [PMID: 34726328 DOI: 10.1002/term.3262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/07/2022]
Abstract
The use of stem cells to repair the heart after a myocardial infarction (MI) remains promising, yet clinical trials over the past 20 years suggest that cells fail to integrate into the native tissue, resulting in limited improvements in cardiac function. Here, we demonstrate the cardioprotective potential of a composite inserting human amniotic stromal mesenchymal stem cells (ASMCs) in a chitosan and hyaluronic acid (C/HA) based hydrogel in a rat MI model. Mechanical characterization of the C/HA platform indicated a swift elastic conversion at 40°C and a rapid sol-gel transition time at 37°C. Cell viability assay presented active and proliferating AMSCs in the C/HA. The ASMCs + C/HA injected composite significantly increased left ventricular ejection fraction, fractional shortening, and neovessel formation. The encapsulated AMSCs were abundantly detected in the infarcted myocardium 6 weeks post-administration and co-expressed cardiac proteins and notably proliferative markers. Proteomic profiling revealed that extracellular vesicles released from hypoxia preconditioned ASMCs contained proteins involved in cytoprotection, angiogenesis, cardiac differentiation and non-canonical Wnt-signaling. Independent activation of non-canonical Wnt-signaling pathways in ASMCs induced cardiogenesis. Despite a low injected cellular density at baseline, the encapsulated AMSCs were abundantly retained and increased cardiac function. Furthermore, the C/HA hydrogel provided an active milieu for the AMSCs to proliferate, co-express cardiac proteins, and induce new vessel formation. Hence, this novel composite of AMSCs + C/HA scaffold is a conceivable candidate that could restore cardiac function and reduce remodeling.
Collapse
Affiliation(s)
- Kashif Khan
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Georges Makhoul
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bin Yu
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ghulam Jalani
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Ida Derish
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Alissa K Rutman
- Human Islet Transplant Laboratory, Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marta Cerruti
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Adel Schwertani
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Renzo Cecere
- Divisions of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, Quebec, Canada.,The Royal Victoria Hospital Montreal, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Liu J, Zheng X, Zhang C, Zhang C, Bu P. Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2021; 12:724147. [PMID: 34539406 PMCID: PMC8443774 DOI: 10.3389/fphar.2021.724147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Lcz696 (ARNI, angiotensin receptor–neprilysin inhibitor; sacubitril/valsartan) shows an inhibitory effect on fibrosis after myocardial infarction (MI). However, the underlying signaling mechanisms are poorly understood. The Wnt/β-catenin signaling pathway is activated after MI and participates in the process of myocardial fibrosis. Here, we aimed to assess the efficacy of ARNI for alleviating myocardial fibrosis after MI and hypothesized that ARNI alleviates myocardial fibrosis by inhibiting the Wnt/β-catenin signaling pathway and overexpressing sFRP-1, an inhibitor of the Wnt/β-catenin signaling pathway. Methods: Mice randomized at 1 week post-MI were administered lcz696 (60 mg/kg, n = 21), valsartan (30 mg/kg, n = 19), or corn oil (n = 13) orally for 4 weeks, while the sham-operated group received vehicle (corn oil, n = 19). Cardiac function and extent of myocardial fibrosis were measured. Western blotting and quantitative real-time polymerase chain reaction were used to detect the expression of Wnt/β-catenin pathway-related proteins. Furthermore, primary myocardial fibroblasts were stimulated with angiotensin II (Ang II) and cultured with lcz696 and the sFRP-1 inhibitor way316606 to detect the expression of Wnt/β-catenin pathway proteins. Results: Both lcz696 and valsartan alleviated myocardial fibrosis and improved cardiac function, but lcz696 had superior efficiency compared to valsartan. Furthermore, β-catenin expression was inhibited and sFRP-1 was overexpressed after drug treatment, which could be significantly improved by lcz696 in mice. In addition, lcz696 inhibited β-catenin expression in AngII-stimulated myocardial fibroblasts, and β-catenin expression increased after the inhibition of sFRP-1. Conclusion: ARNI alleviated cardiac fibrosis and cardiac remodeling by inhibiting the Wnt/β-catenin signaling pathway. In addition, ARNI can lead to overexpression of sFRP-1, which is an inhibitor of the Wnt/β-catenin signaling pathway. These results indicate a new therapeutic target of ARNI to improve myocardial fibrosis and prevent myocardial remodeling.
Collapse
Affiliation(s)
- Jing Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Heze Municipal Hospital, Heze, China
| | - Xuehui Zheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunmei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
15
|
Liu S, Tang L, Zhao X, Nguyen B, Heallen TR, Li M, Wang J, Wang J, Martin JF. Yap Promotes Noncanonical Wnt Signals From Cardiomyocytes for Heart Regeneration. Circ Res 2021; 129:782-797. [PMID: 34424032 DOI: 10.1161/circresaha.121.318966] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | - Li Tang
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Xiaolei Zhao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - Bao Nguyen
- Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| | - Todd R Heallen
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.)
| | | | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China (L.T., Jianxin Wang)
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston (X.Z., J.W.)
| | - James F Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston (S.L., T.R.H., J.F.M.).,Department of Molecular Physiology and Biophysics (L.T., B.N., J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX.,Cardiovascular Research Institute (J.F.M.), Baylor College of Medicine, One Baylor Plaza, Houston, TX
| |
Collapse
|
16
|
Jeffrey DA, Pires Da Silva J, Garcia AM, Jiang X, Karimpour-Fard A, Toni LS, Lanzicher T, Peña B, Miyano CA, Nunley K, Korst A, Sbaizero O, Taylor MR, Miyamoto SD, Stauffer BL, Sucharov CC. Serum circulating proteins from pediatric dilated cardiomyopathy patients cause pathologic remodeling and cardiomyocyte stiffness. JCI Insight 2021; 6:e148637. [PMID: 34383712 PMCID: PMC8525651 DOI: 10.1172/jci.insight.148637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/11/2021] [Indexed: 12/01/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remain limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with serum from nonfailing or DCM pediatric patients activates the fetal gene program (FGP). Here we show that serum treatment with proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating miRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is upregulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA-Seq, indicated extracellular matrix remodeling and focal adhesion pathways were upregulated in pediatric DCM serum and in DCM serum–treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum–treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled-related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM serum treatment. Our results show that serum circulating proteins promoted pathological changes in gene expression and cellular stiffness, and circulating miRNAs were protective against pathological changes.
Collapse
Affiliation(s)
- Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anastacia M Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Xuan Jiang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Anis Karimpour-Fard
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Lee S Toni
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Brisa Peña
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carissa A Miyano
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Karin Nunley
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Armin Korst
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Matthew Rg Taylor
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, United States of America
| |
Collapse
|
17
|
Scalise RFM, De Sarro R, Caracciolo A, Lauro R, Squadrito F, Carerj S, Bitto A, Micari A, Bella GD, Costa F, Irrera N. Fibrosis after Myocardial Infarction: An Overview on Cellular Processes, Molecular Pathways, Clinical Evaluation and Prognostic Value. Med Sci (Basel) 2021; 9:medsci9010016. [PMID: 33804308 PMCID: PMC7931027 DOI: 10.3390/medsci9010016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
The ischemic injury caused by myocardial infarction activates a complex healing process wherein a powerful inflammatory response and a reparative phase follow and balance each other. An intricate network of mediators finely orchestrate a large variety of cellular subtypes throughout molecular signaling pathways that determine the intensity and duration of each phase. At the end of this process, the necrotic tissue is replaced with a fibrotic scar whose quality strictly depends on the delicate balance resulting from the interaction between multiple actors involved in fibrogenesis. An inflammatory or reparative dysregulation, both in term of excess and deficiency, may cause ventricular dysfunction and life-threatening arrhythmias that heavily affect clinical outcome. This review discusses cellular process and molecular signaling pathways that determine fibrosis and the imaging technique that can characterize the clinical impact of this process in-vivo.
Collapse
Affiliation(s)
- Renato Francesco Maria Scalise
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rosalba De Sarro
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandro Caracciolo
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Rita Lauro
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Francesco Squadrito
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Alessandra Bitto
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy; (R.L.); (F.S.); (A.B.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinico “G. Martino”, 98100 Messina, Italy;
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
- Correspondence: ; Tel.: +39-090-221-23-41; Fax: +39-090-221-23-81
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Policlinic “G. Martino”, University of Messina, 98100 Messina, Italy; (R.F.M.S.); (R.D.S.); (A.C.); (S.C.); (G.D.B.); (N.I.)
| |
Collapse
|
18
|
Procopio MC, Lauro R, Nasso C, Carerj S, Squadrito F, Bitto A, Di Bella G, Micari A, Irrera N, Costa F. Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines 2021; 9:biomedicines9020204. [PMID: 33670488 PMCID: PMC7922652 DOI: 10.3390/biomedicines9020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a dramatic event often caused by atherosclerotic plaque erosion or rupture and subsequent thrombotic occlusion of a coronary vessel. The low supply of oxygen and nutrients in the infarcted area may result in cardiomyocytes necrosis, replacement of intact myocardium with non-contractile fibrous tissue and left ventricular (LV) function impairment if blood flow is not quickly restored. In this review, we summarized the possible correlation between adenosine system, purinergic system and Wnt/β-catenin pathway and their role in the pathogenesis of cardiac damage following MI. In this context, several pathways are involved and, in particular, the adenosine receptors system shows different interactions between its members and purinergic receptors: their modulation might be effective not only for a normal functional recovery but also for the treatment of heart diseases, thus avoiding fibrosis, reducing infarcted area and limiting scaring. Similarly, it has been shown that Wnt/β catenin pathway is activated following myocardial injury and its unbalanced activation might promote cardiac fibrosis and, consequently, LV systolic function impairment. In this regard, the therapeutic benefits of Wnt inhibitors use were highlighted, thus demonstrating that Wnt/β-catenin pathway might be considered as a therapeutic target to prevent adverse LV remodeling and heart failure following MI.
Collapse
Affiliation(s)
- Maria Cristina Procopio
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Chiara Nasso
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Gianluca Di Bella
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| | - Antonio Micari
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, A.O.U. Policlinic “G. Martino”, 98165 Messina, Italy;
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
- Correspondence: ; Tel.: +39-090-221-3093; Fax: +39-090-221-23-81
| | - Francesco Costa
- Department of Clinical and Experimental Medicine, University of Messina, 98165 Messina, Italy; (M.C.P.); (R.L.); (C.N.); (S.C.); (F.S.); (A.B.); (G.D.B.); (F.C.)
| |
Collapse
|
19
|
Hsueh YC, Hodgkinson CP, Gomez JA. The role of Sfrp and DKK proteins in cardiomyocyte development. Physiol Rep 2021; 9:e14678. [PMID: 33587322 PMCID: PMC7883806 DOI: 10.14814/phy2.14678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we summarize the role of Wnt proteins in cardiomyogenesis. More specifically, we focus on how the development of cardiomyocytes from precursor cells involves a complex interplay between Wnt canonical β-catenin signaling pathways and Wnt noncanonical signaling pathways involving PCP and JNK. We also describe recent literature which suggests that endogenous Wnt inhibitors such as the Sfrp and DKK proteins play important roles in regulating the cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Ying-Chang Hsueh
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, USA
| | - Jose A Gomez
- Department of Medicine, Clinical Pharmacology Division, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L. Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:712217. [PMID: 34489867 PMCID: PMC8417734 DOI: 10.3389/fendo.2021.712217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.
Collapse
Affiliation(s)
- Hua Guan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jin Zhang
- Department of Preventive Medicine, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jing Luan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhenghao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| | - Lixian Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| |
Collapse
|
21
|
Jia X, Sun C, Tang O, Gorlov I, Nambi V, Virani SS, Villareal DT, Taffet GE, Yu B, Bressler J, Boerwinkle E, Windham BG, de Lemos JA, Matsushita K, Selvin E, Michos ED, Hoogeveen RC, Ballantyne CM. Plasma Dehydroepiandrosterone Sulfate and Cardiovascular Disease Risk in Older Men and Women. J Clin Endocrinol Metab 2020; 105:dgaa518. [PMID: 32785663 PMCID: PMC7526732 DOI: 10.1210/clinem/dgaa518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/05/2020] [Indexed: 01/08/2023]
Abstract
CONTEXT Lower dehydroepiandrosterone-sulfate (DHEA-S) levels have been inconsistently associated with coronary heart disease (CHD) and mortality. Data are limited for heart failure (HF) and association between DHEA-S change and events. OBJECTIVE Assess associations between low DHEA-S/DHEA-S change and incident HF hospitalization, CHD, and mortality in older adults. DESIGN DHEA-S was measured in stored plasma from visits 4 (1996-1998) and 5 (2011-2013) of the Atherosclerosis Risk in Communities study. Follow-up for incident events: 18 years for DHEA-S level; 5.5 years for DHEA-S change. SETTING General community. PARTICIPANTS Individuals without prevalent cardiovascular disease (n = 8143, mean age 63 years). MAIN OUTCOME MEASURE Associations between DHEA-S and incident HF hospitalization, CHD, or mortality; associations between 15-year change in DHEA-S (n = 3706) and cardiovascular events. RESULTS DHEA-S below the 15th sex-specific percentile of the study population (men: 55.4 µg/dL; women: 27.4 µg/dL) was associated with increased HF hospitalization (men: hazard ratio [HR] 1.30, 95% confidence interval [CI], 1.07-1.58; women: HR 1.42, 95% CI, 1.13-1.79); DHEA-S below the 25th sex-specific percentile (men: 70.0 µg/dL; women: 37.1 µg/dL) was associated with increased death (men: HR 1.12, 95% CI, 1.01-1.25; women: HR 1.19, 95% CI, 1.03-1.37). In men, but not women, greater percentage decrease in DHEA-S was associated with increased HF hospitalization (HR 1.94, 95% CI, 1.11-3.39). Low DHEA-S and change in DHEA-S were not associated with incident CHD. CONCLUSIONS Low DHEA-S is associated with increased risk for HF and mortality but not CHD. Further investigation is warranted to evaluate mechanisms underlying these associations.
Collapse
Affiliation(s)
| | | | - Olive Tang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Vijay Nambi
- Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Salim S Virani
- Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | | | | | - Bing Yu
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Jan Bressler
- University of Texas Health Science Center at Houston, Houston, Texas
| | - Eric Boerwinkle
- University of Texas Health Science Center at Houston, Houston, Texas
| | - B Gwen Windham
- University of Mississippi School of Medicine, Jackson, Mississippi
| | | | | | - Elizabeth Selvin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Erin D Michos
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
22
|
Preston CC, Larsen TD, Eclov JA, Louwagie EJ, Gandy TCT, Faustino RS, Baack ML. Maternal High Fat Diet and Diabetes Disrupts Transcriptomic Pathways That Regulate Cardiac Metabolism and Cell Fate in Newborn Rat Hearts. Front Endocrinol (Lausanne) 2020; 11:570846. [PMID: 33042024 PMCID: PMC7527411 DOI: 10.3389/fendo.2020.570846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Children born to diabetic or obese mothers have a higher risk of heart disease at birth and later in life. Using chromatin immunoprecipitation sequencing, we previously demonstrated that late-gestation diabetes, maternal high fat (HF) diet, and the combination causes distinct fuel-mediated epigenetic reprogramming of rat cardiac tissue during fetal cardiogenesis. The objective of the present study was to investigate the overall transcriptional signature of newborn offspring exposed to maternal diabetes and maternal H diet. Methods: Microarray gene expression profiling of hearts from diabetes exposed, HF diet exposed, and combination exposed newborn rats was compared to controls. Functional annotation, pathway and network analysis of differentially expressed genes were performed in combination exposed and control newborn rat hearts. Further downstream metabolic assessments included measurement of total and phosphorylated AKT2 and GSK3β, as well as quantification of glycolytic capacity by extracellular flux analysis and glycogen staining. Results: Transcriptional analysis identified significant fuel-mediated changes in offspring cardiac gene expression. Specifically, functional pathways analysis identified two key signaling cascades that were functionally prioritized in combination exposed offspring hearts: (1) downregulation of fibroblast growth factor (FGF) activated PI3K/AKT pathway and (2) upregulation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC1α) mitochondrial biogenesis signaling. Functional metabolic and histochemical assays supported these transcriptome changes, corroborating diabetes- and diet-induced cardiac transcriptome remodeling and cardiac metabolism in offspring. Conclusion: This study provides the first data accounting for the compounding effects of maternal hyperglycemia and hyperlipidemia on the developmental cardiac transcriptome, and elucidates nuanced and novel features of maternal diabetes and diet on regulation of heart health.
Collapse
Affiliation(s)
- Claudia C. Preston
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
| | - Tricia D. Larsen
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Julie A. Eclov
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Eli J. Louwagie
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Tyler C. T. Gandy
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
| | - Randolph S. Faustino
- Genetics and Genomics Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, United States
| | - Michelle L. Baack
- Environmental Influences on Health and Disease Group, Sanford Research, Sioux Falls, SD, United States
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, United States
| |
Collapse
|
23
|
Hu YH, Liu J, Lu J, Wang PX, Chen JX, Guo Y, Han FH, Wang JJ, Li W, Liu PQ. sFRP1 protects H9c2 cardiac myoblasts from doxorubicin-induced apoptosis by inhibiting the Wnt/PCP-JNK pathway. Acta Pharmacol Sin 2020; 41:1150-1157. [PMID: 32238888 PMCID: PMC7608092 DOI: 10.1038/s41401-020-0364-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (Dox) is an effective chemotherapy drug against a wide range of cancers, including both hematological and solid tumors. However, the serious cardiotoxic effect restricted its clinical application. We previously have illuminated the protective role of canonical Wnt/β-catenin signaling in Dox-induced cardiotoxicity. Secreted frizzled-related protein 1 (sFRP1) is one of the endogenous inhibitors of both canonical and noncanonical Wnt signaling. In this study, we investigated the relationship between sFRP1 and noncanonical Wnt/PCP-JNK (Wnt/planar cell polarity-c-Jun N-terminal kinase) pathway in Dox-induced cardiotoxicity in vitro and in vivo. We showed that treatment of H9c2 cardiac myoblasts with Dox (1 μM) time-dependently suppressed cell viability accompanied by significantly decreased sFRP1 protein level and increased Wnt/PCP-JNK signaling. Pretreatment with SP600125, the Wnt/PCP-JNK signaling inhibitor, attenuated Dox-induced apoptosis of H9c2 cells. Overexpression of sFRP1 protected H9c2 cells from Dox-induced apoptosis by inhibiting the Wnt/PCP-JNK pathway. After intraperitoneal injection of a cumulative dose of 15 mg/kg Dox, rats displayed significant cardiac dysfunction; their heart showed inhibited Wnt/β-catenin signaling and activated Wnt/PCP-JNK signaling. These results suggest that sFRP1 may be a novel target for Dox-induced cardiotoxicity.
Collapse
|
24
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
|
25
|
Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H, Hamblin MR. TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Commun Signal 2020; 18:87. [PMID: 32517807 PMCID: PMC7281690 DOI: 10.1186/s12964-020-00555-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis describes the inappropriate proliferation of cardiac fibroblasts (CFs), leading to accumulation of extracellular matrix (ECM) proteins in the cardiac muscle, which is found in many pathophysiological heart conditions. A range of molecular components and cellular pathways, have been implicated in its pathogenesis. In this review, we focus on the TGF-β and WNT signaling pathways, and their mutual interaction, which have emerged as important factors involved in cardiac pathophysiology. The molecular and cellular processes involved in the initiation and progression of cardiac fibrosis are summarized. We focus on TGF-β and WNT signaling in cardiac fibrosis, ECM production, and myofibroblast transformation. Non-coding RNAs (ncRNAs) are one of the main players in the regulation of multiple pathways and cellular processes. MicroRNAs, long non-coding RNAs, and circular long non-coding RNAs can all interact with the TGF-β/WNT signaling axis to affect cardiac fibrosis. A better understanding of these processes may lead to new approaches for diagnosis and treatment of many cardiac conditions. Video Abstract.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Stem Cell and Development Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azin Nikoozadeh
- Pathology Department, School of Medicine,Mashhad Univesity of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA. .,Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
26
|
Eid RA, Khalil MA, Alkhateeb MA, Eleawa SM, Zaki MSA, El-Kott AF, Al-Shraim M, El-Sayed F, Eldeen MA, Bin-Meferij MM, Awaji KME, Shatoor AS. Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovasc Drugs Ther 2020; 35:1095-1110. [PMID: 32474680 DOI: 10.1007/s10557-020-07006-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway. METHODS Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation. RESULTS On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats. CONCLUSION Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β. Graphical Abstract A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9. Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/Thr41. After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3β by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.
Collapse
Affiliation(s)
- Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia.
| | - Mohammad Adnan Khalil
- Department of Basic Medical Sciences, Faculty of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mahmoud A Alkhateeb
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Samy M Eleawa
- Department of Applied Medical Sciences, College of Health Sciences, PAAET, Shuwaikh, Kuwait
| | - Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Histology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Fahmy El-Sayed
- Department of Pathology, College of Medicine, King Khalid University, P.O. 641, Abha, 61421, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Department of Biology, Physiology Section, Faculty of Science, Zagazig University, Zagazig, Egypt
| | | | - Khalid M E Awaji
- Clinical laboratories Department, Asser Central Hospital, Abha, Saudi Arabia
| | - Abdullah S Shatoor
- Department of Clinical Cardiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
27
|
Wang Y, Fan X, Lei N, He X, Wang X, Luo X, Zhang D, Pan W. A MicroRNA Derived From Schistosoma japonicum Promotes Schistosomiasis Hepatic Fibrosis by Targeting Host Secreted Frizzled-Related Protein 1. Front Cell Infect Microbiol 2020; 10:101. [PMID: 32232014 PMCID: PMC7082693 DOI: 10.3389/fcimb.2020.00101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis remains a serious parasitic disease, which is characterized by granulomatous inflammation and hepatic fibrosis. MicroRNAs derived from parasites can regulate host genes and cell phenotype. Here, we showed that a miRNA derived from S. japonicum (Sja-miR-1) exists in the hepatic stellate cells (HSCs) of mice infected with the parasite and up-regulates the expression of collagens and α-SMA by targeting secreted frizzled-related protein 1 (SFRP1). A vector-mediated delivery of Sja-miR-1 into naive mice led to hepatic fibrogenesis in the mice. Accordingly, inhibition of Sja-miR-1 in the infected mice led to reduction of the parasite-induced hepatic fibrosis. The mechanism behind the Sja-miR-1-mediated activation of HSC could be through targeting SFRP1 to regulate the Wnt/β-catenin pathway. These findings reveal that parasite-derived small non-coding RNAs are implicated in cross-species regulation of host pathological process and persistent inhibition of Sja-miR-1 may provide a therapeutic potential for the parasite diseases.
Collapse
Affiliation(s)
- Yange Wang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Xiaobin Fan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Nanhang Lei
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Xiaoxi Wang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Xufeng Luo
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Weiqing Pan
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
28
|
Enhancing α-secretase Processing for Alzheimer's Disease-A View on SFRP1. Brain Sci 2020; 10:brainsci10020122. [PMID: 32098349 PMCID: PMC7071437 DOI: 10.3390/brainsci10020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Amyloid β (Aβ) peptides generated via sequential β- and γ-secretase processing of the amyloid precursor protein (APP) are major etiopathological agents of Alzheimer's disease (AD). However, an initial APP cleavage by an α-secretase, such as the a disintegrin and metalloproteinase domain-containing protein ADAM10, precludes β-secretase cleavage and leads to APP processing that does not produce Aβ. The latter appears to underlie the disease symptom-attenuating effects of a multitude of experimental therapeutics in AD animal models. Recent work has indicated that an endogenous inhibitor of ADAM10, secreted-frizzled-related protein 1 (SFRP1), is elevated in human AD brains and associated with amyloid plaques in mouse AD models. Importantly, genetic or functional attenuation of SFRP1 lowered Aβ accumulation and improved AD-related histopathological and neurological traits. Given SFRP1's well-known activity in attenuating Wnt signaling, which is also commonly impaired in AD, SFRP1 appears to be a promising therapeutic target for AD. This idea, however, needs to be addressed with care because of cancer enhancement potentials resulting from a systemic loss of SFRP1 activity, as well as an upregulation of ADAM10 activity. In this focused review, I shall discuss α-secretase-effected APP processing in AD with a focus on SFRP1, and explore the contrasting perspectives arising from the recent findings.
Collapse
|
29
|
miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. Int J Mol Sci 2020; 21:ijms21031158. [PMID: 32050579 PMCID: PMC7038042 DOI: 10.3390/ijms21031158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent Nkx2.5 enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis. Knockdown in zebrafish revealed that only miR-128a affected cardiac development and function robustly. For a detailed analysis, loss-of-function and gain-of-function experiments were performed during in vitro differentiations of transgenic murine pluripotent stem cells. MiR-128a knockdown (1) increased Isl1, Sfrp5, and Hcn4 (cardiac transcription factors) but reduced Irx4 at the onset of cardiogenesis, (2) upregulated Isl1-positive CPCs, whereas NkxCE-positive CPCs were downregulated, and (3) increased the expression of the ventricular cardiomyocyte marker Myl2 accompanied by a reduced beating frequency of early cardiomyocytes. Overexpression of miR-128a (4) diminished the expression of Isl1, Sfrp5, Nkx2.5, and Mef2c, but increased Irx4, (5) enhanced NkxCE-positive CPCs, and (6) favored nodal-like cardiomyocytes (Tnnt2+, Myh6+, Shox2+) accompanied by increased beating frequencies. In summary, we demonstrated that miR-128a plays a so-far unknown role in early heart development by affecting the timing of CPC differentiation into various cardiomyocyte subtypes.
Collapse
|
30
|
Huang A, Huang Y. Role of Sfrps in cardiovascular disease. Ther Adv Chronic Dis 2020; 11:2040622320901990. [PMID: 32064070 PMCID: PMC6987486 DOI: 10.1177/2040622320901990] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Secreted frizzled-related proteins (Sfrps) are a family of secreted proteins that
bind extracellularly to Wnt ligands and frizzled receptors. This binding
modulates the Wnt signaling cascade, and Sfrps interact with their corresponding
receptors. Sfrps are thought to play an important role in the pathological
mechanism of cardiac disease such as myocardial infarction, cardiac remodeling,
and heart failure. However, the overall role of Sfrps in cardiac disease is
unknown. Some members of the Sfrps family modulate cellular apoptosis,
angiogenesis, differentiation, the inflammatory process, and cardiac remodeling.
In this review, we summarize the evidence of Sfrps association with cardiac
disease. We also discuss how multiple mechanisms may underlie Sfrps being
involved in such diverse pathologies.
Collapse
Affiliation(s)
- Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazhi Road, Lunjiao Town, Shunde District, Foshan, Guangdong 528300, China The George Institute for Global Health, NSW 2042, Australia
| |
Collapse
|
31
|
Henderson J, Brown M, Horsburgh S, Duffy L, Wilkinson S, Worrell J, Stratton R, O'Reilly S. Methyl cap binding protein 2: a key epigenetic protein in systemic sclerosis. Rheumatology (Oxford) 2020; 58:527-535. [PMID: 30462328 DOI: 10.1093/rheumatology/key327] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 09/30/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE SSc is an autoimmune connective tissue disease that results in skin fibrosis and currently has no effective treatment. Epigenetic modifications have been described and these may be key in initiating and driving fibroblast activation. Among these epigenetic modifications methylation may be of central importance. The aim of this study was to examine the role of methyl cap binding protein-2 (MeCP2) in SSc fibrosis. METHODS We used healthy and SSc dermal fibroblasts to examine the role of MeCP2, using both small interfering RNA silencing and lentiviral overexpression to determine its effects. We also examined the expression of MeCP2 in SSc fibroblasts by immunoblotting. miRNA132 was quantified by Taqman real time PCR. RESULTS We demonstrated that TGF-β1 induced the expression of MeCP2 in normal cells, and showed that SSc fibroblasts expressed high levels of MeCP2 under basal conditions. MeCP2 positively regulated the expression of extracellular matrix through epigenetic repression of the Wnt antagonist sFRP-1, leading to enhanced Wnt signalling. This mediated fibrosis through glycolysis, as the glycolysis inhibitor 2-deoxyglucose diminished the Wnt-mediated collagen expression. MiR132 expression was reduced in SSc fibroblasts. CONCLUSION The results suggest that an epigenetic loop exists mediating fibrosis. Targeting of MeCP2, as a key epigenetic regulator, may be a promising therapeutic approach, as would targeting the metabolic reprogramming that occurs through aerobic glycolysis.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Max Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven Horsburgh
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sarah Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Julie Worrell
- Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, Division of Medicine, University College London, London, UK
| | - Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
32
|
Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 2019; 8:43882. [PMID: 30912746 PMCID: PMC6459677 DOI: 10.7554/elife.43882] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Besides cardiomyocytes (CM), the heart contains numerous interstitial cell types which play key roles in heart repair, regeneration and disease, including fibroblast, vascular and immune cells. However, a comprehensive understanding of this interactive cell community is lacking. We performed single-cell RNA-sequencing of the total non-CM fraction and enriched (Pdgfra-GFP+) fibroblast lineage cells from murine hearts at days 3 and 7 post-sham or myocardial infarction (MI) surgery. Clustering of >30,000 single cells identified >30 populations representing nine cell lineages, including a previously undescribed fibroblast lineage trajectory present in both sham and MI hearts leading to a uniquely activated cell state defined in part by a strong anti-WNT transcriptome signature. We also uncovered novel myofibroblast subtypes expressing either pro-fibrotic or anti-fibrotic signatures. Our data highlight non-linear dynamics in myeloid and fibroblast lineages after cardiac injury, and provide an entry point for deeper analysis of cardiac homeostasis, inflammation, fibrosis, repair and regeneration. In our bodies, heart attacks lead to cell death and inflammation. This is then followed by a healing phase where the organ repairs itself. There are many types of heart cells, from muscle and pacemaker cells that help to create the beating motion, to so-called fibroblasts that act as a supporting network. Yet, it is still unclear how individual cells participate in the heart's response to injury. All cells possess the same genetic information, but they turn on or off different genes depending on the specific tasks that they need to perform. Spotting which genes are activated in individual cells can therefore provide clues about their exact roles in the body. Until recently, technological limitations meant that this information was difficult to access, because it was only possible to capture the global response of a group of cells in a sample. A new method called single-cell RNA sequencing is now allowing researchers to study the activities of many genes in thousands of individual cells at the same time. Here, Farbehi, Patrick et al. performed single-cell RNA sequencing on over 30,000 individual cells from healthy and injured mouse hearts. Computational approaches were then used to cluster cells into groups according to the activities of their genes. The experiments identified over 30 distinct sub-types of cell, including several that were previously unknown. For example, a group of fibroblasts that express a gene called Wif1 was discovered. Previous genetic studies have shown that Wif1 is essential for the heart's response to injury. Further experiments by Farbehi, Patrick et al. indicated that this new sub-type of cells may control the timing of the different aspects of heart repair after damage. Tens of millions of people around the world suffer from heart attacks and other heart diseases. Knowing how different types of heart cells participate in repair mechanisms may help to find new targets for drugs and other treatments.
Collapse
Affiliation(s)
- Nona Farbehi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia.,Graduate School of Biomedical Engineering, UNSW Sydney, Kensington, Australia
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | - Aude Dorison
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia
| | - Munira Xaymardan
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,School of Dentistry, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, Australia
| | - Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | | | - Joshua Wk Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, UNSW Sydney, Kensington, Australia
| | - Robert E Nordon
- Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,Graduate School of Biomedical Engineering, UNSW Sydney, Kensington, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria, Australia.,School of Biotechnology and Biomolecular Science, UNSW Sydney, Kensington, Australia
| |
Collapse
|
33
|
Hayes H, Patz J, Corbett J, Afzal MZ, Strande J, Kindel TL. Sleeve gastrectomy in obese Wistar rats improves diastolic function and promotes cardiac recovery independent of weight loss. Surg Obes Relat Dis 2019; 15:837-842. [PMID: 31101567 DOI: 10.1016/j.soard.2019.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/20/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction is the most common cause of heart failure and is characterized by impaired diastolic relaxation. Bariatric surgery significantly improves diastolic relaxation, but a mechanism beyond weight loss remains unknown. OBJECTIVES We tested the hypothesis that a sleeve gastrectomy (SG) will improve diastolic dysfunction independent of weight loss due to postoperative alterations in the enterocardiac axis. SETTING University research laboratory. METHODS Male Wistar rats were fed a high-fat diet (HFD) or low-fat diet (LFD) for 10 weeks and then divided into SG-HFD, pair-fed sham HFD, ad-lib sham HFD, or ad-lib sham LFD groups (n = 9-14 per group). At least 2 months postoperatively, cardiac function, meal tolerance, glucose tolerance, and cardiac gene expression were compared between groups. RESULTS Only the SG cohort showed significant improvements in postoperative diastolic relaxation (isovolumetric relaxation time pre-SG: 14.7 ± 2.3 msec, post-SG: 11.2 ± 1.8 msec, P < .001). SG significantly increased active glucagon-like peptide-1 (P = .03). Compared to pair-fed sham HFD rats, SG-HFD rats had significantly altered mRNA cardiac gene expression, including sarco/endoplasmic reticulum Ca2+-ATPase 2 a (SERCA2 a) (P < .001). CONCLUSIONS SG improves diastolic function independent of weight loss in a rat model of obesity with beneficial alterations in cardiac gene expression of multiple known targets related to cardiac failure, including SERCA2 a. These data support that a greater curve gastrectomy induces beneficial intracellular cardiac signaling for diastolic function mediated by the enterocardiac axis that is independent of weight loss. These findings could translate to offering metabolic surgery to patients with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Hailey Hayes
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Jacob Patz
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - John Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Tammy L Kindel
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
34
|
Zhou J, Yi Z, Fu Q. Dynamic decreased expression and hypermethylation of secreted frizzled-related protein 1 and 4 over the course of pulmonary fibrosis in mice. Life Sci 2019; 218:241-252. [PMID: 30586565 DOI: 10.1016/j.lfs.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
Abstract
Aberrantly activated Wnt signaling pathway and dysregulation of extracellular antagonists of Wnt signaling have been revealed in pulmonary fibrosis. In this study we evaluated the expression of secreted frizzled-related proteins (SFRPs) and their aberrant promoter methylation to investigate the involvement of epigenetic regulation in pulmonary fibrosis. The pulmonary fibrosis induced by intratracheal injection of bleomycin (BLM) into mice was adopted. The transcription and relative protein expression of SFRPs were detected at Day 7 (D7), D14, and D21. DNA methylation analysis was performed by methylation-specific polymerase chain reaction (MSP). A DNA methyltransferase (DNMT) inhibitor (5-aza-2'-deoxycytidine; 5-aza) was used for demethylation and the relative β-catenin expression levels were measured to assess overactivity of the canonical Wnt signaling pathway. The transcription and protein expression of SFRP1 significantly decreased at D14 and D21, whereas the transcription and protein expression of SFRP4 significantly decreased at D7 and stayed downregulated until D21. The significantly hypermethylated promoters of SFRP1 and SFRP4 resulted in impaired transcription and decreased expression during pulmonary fibrosis in mice. Besides, reactivation of SFRP1 and SFRP4 by 5-aza reduced β-catenin mRNA and protein expression in vivo and in vitro. Animal experiments confirmed that 5-aza could significantly alleviate bleomycin-induced pulmonary fibrosis in mice. Thus, changes of promoter hypermethylation might downregulate SFRP1 and SFRP4 at different stages of pulmonary fibrosis, and the finding supports the usefulness of DNMT inhibitors, which might effectively reverse activation of β-catenin and reduce pulmonary fibrosis in mice. These data provide a possible new direction in the research on pulmonary fibrosis treatments.
Collapse
Affiliation(s)
- Junfei Zhou
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China
| | - Zheng Yi
- Department of Rheumatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, PR China.
| | - Qiang Fu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, HengYang 421001, PR China
| |
Collapse
|
35
|
Singha SK, Muhammad I, Ibrahim MA, Wang M, Ashpole NM, Shariat-Madar Z. 4- O-Methylhonokiol Influences Normal Cardiovascular Development in Medaka Embryo. Molecules 2019; 24:molecules24030475. [PMID: 30699965 PMCID: PMC6384692 DOI: 10.3390/molecules24030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 11/21/2022] Open
Abstract
Although 4-O-Methylhonokiol (MH) effects on neuronal and immune cells have been established, it is still unclear whether MH can cause a change in the structure and function of the cardiovascular system. The overarching goal of this study was to evaluate the effects of MH, isolated from Magnolia grandiflora, on the development of the heart and vasculature in a Japanese medaka model in vivo to predict human health risks. We analyzed the toxicity of MH in different life-stages of medaka embryos. MH uptake into medaka embryos was quantified. The LC50 of two different exposure windows (stages 9–36 (0–6 days post fertilization (dpf)) and 25–36 (2–6 dpf)) were 5.3 ± 0.1 μM and 9.9 ± 0.2 μM. Survival, deformities, days to hatch, and larval locomotor response were quantified. Wnt 1 was overexpressed in MH-treated embryos indicating deregulation of the Wnt signaling pathway, which was associated with spinal and cardiac ventricle deformities. Overexpression of major proinflammatory mediators and biomarkers of the heart were detected. Our results indicated that the differential sensitivity of MH in the embryos was developmental stage-specific. Furthermore, this study demonstrated that certain molecules can serve as promising markers at the transcriptional and phenotypical levels, responding to absorption of MH in the developing embryo.
Collapse
Affiliation(s)
- Santu K Singha
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
| | - Ilias Muhammad
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Mohamed Ali Ibrahim
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Chemistry of Natural Compounds Department, National Research Centre, Dokki-Giza 12622, Egypt.
| | - Mei Wang
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Zia Shariat-Madar
- Department of Biomolecular Sciences, Division of Pharmacology, University of Mississippi, University, MS 38677, USA.
- The National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
- Light Microscopy Core, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
36
|
Ma ZG, Yuan YP, Wu HM, Zhang X, Tang QZ. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci 2018; 14:1645-1657. [PMID: 30416379 PMCID: PMC6216032 DOI: 10.7150/ijbs.28103] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is defined as the imbalance of extracellular matrix (ECM) production and degradation, thus contributing to cardiac dysfunction in many cardiac pathophysiologic conditions. This review discusses specific markers and origin of cardiac fibroblasts (CFs), and the underlying mechanism involved in the development of cardiac fibrosis. Currently, there are no CFs-specific molecular markers. Most studies use co-labelling with panels of antibodies that can recognize CFs. Origin of fibroblasts is heterogeneous. After fibrotic stimuli, the levels of myocardial pro-fibrotic growth factors and cytokines are increased. These pro-fibrotic growth factors and cytokines bind to its receptors and then trigger the activation of signaling pathway and transcriptional factors via Smad-dependent or Smad independent-manners. These fibrosis-related transcriptional factors regulate gene expression that are involved in the fibrosis to amplify the fibrotic response. Understanding the mechanisms responsible for initiation, progression, and amplification of cardiac fibrosis are of great clinical significance to find drugs that can prevent the progression of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Yu-Pei Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, RP China.,Cardiovascular Research Institute of Wuhan University, Wuhan 430060, RP China.,Hubei Key Laboratory of Cardiology, Wuhan 430060, RP China
| |
Collapse
|
37
|
Altara R, Zouein FA, Brandão RD, Bajestani SN, Cataliotti A, Booz GW. In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Front Cardiovasc Med 2018; 5:11. [PMID: 29556499 PMCID: PMC5850854 DOI: 10.3389/fcvm.2018.00011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 12/13/2022] Open
Abstract
Standard therapies for heart failure with preserved ejection fraction (HFpEF) have been unsuccessful, demonstrating that the contribution of the underlying diastolic dysfunction pathophysiology differs from that of systolic dysfunction in heart failure and currently is far from being understood. Complicating the investigation of HFpEF is the contribution of several comorbidities. Here, we selected three established rat models of diastolic dysfunction defined by three major risk factors associated with HFpEF and researched their commonalities and differences. The top differentially expressed genes in the left ventricle of Dahl salt sensitive (Dahl/SS), spontaneous hypertensive heart failure (SHHF), and diabetes 1 induced HFpEF models were derived from published data in Gene Expression Omnibus and used for a comprehensive interpretation of the underlying pathophysiological context of each model. The diversity of the underlying transcriptomic of the heart of each model is clearly observed by the different panel of top regulated genes: the diabetic model has 20 genes in common with the Dahl/SS and 15 with the SHHF models. Advanced analytics performed in Ingenuity Pathway Analysis (IPA®) revealed that Dahl/SS heart tissue transcripts triggered by upstream regulators lead to dilated cardiomyopathy, hypertrophy of heart, arrhythmia, and failure of heart. In the heart of SHHF, a total of 26 genes were closely linked to cardiovascular disease including cardiotoxicity, pericarditis, ST-elevated myocardial infarction, and dilated cardiomyopathy. IPA Upstream Regulator analyses revealed that protection of cardiomyocytes is hampered by inhibition of the ERBB2 plasma membrane-bound receptor tyrosine kinases. Cardioprotective markers such as natriuretic peptide A (NPPA), heat shock 27 kDa protein 1 (HSPB1), and angiogenin (ANG) were upregulated in the diabetes 1 induced model; however, the model showed a different underlying mechanism with a majority of the regulated genes involved in metabolic disorders. In conclusion, our findings suggest that multiple mechanisms may contribute to diastolic dysfunction and HFpEF, and thus drug therapies may need to be guided more by phenotypic characteristics of the cardiac remodeling events than by the underlying molecular processes.
Collapse
Affiliation(s)
- Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fouad A Zouein
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Rita Dias Brandão
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Saeed N Bajestani
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Ophthalmology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, Oslo, Norway
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
38
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The key role of proinflammatory cytokines, matrix proteins, RANKL/OPG and Wnt/β-catenin in bone healing of hip arthroplasty patients. Bone 2018; 107:66-77. [PMID: 29129760 DOI: 10.1016/j.bone.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
Abstract
INTRODUCTION We still lack understanding of why some implants fail while most remain stable after decades of use. Proinflammatory cytokines, matrix proteins and bone regulating cytokines of the RANKL/OPG (receptor activator of nuclear factor kappa B ligand/osteoprotegerin) and Wnt/β-catenin pathways are mandatory for normal bone repair but their spatial and temporal role in the healing of primary total hip arthroplasties (THA) has not been previously shown. MATERIALS AND METHODS Twenty-four osteoarthritis patients with one-sided well-fixed primary THA were prospectively monitored during 18years (18Y) with repeated blood samples, clinical variables and radiographs. Eighty-one healthy donors divided in three age- and gender-matched groups and twenty osteoarthritis patients awaiting THA and serving as control of the validity of stored plasma in THA patients, were included. Plasma was analyzed for C-reactive protein (CRP), interleukin (IL)-6, IL-8, IL-1β, tumor necrosis factor (TNF)-α, osteopontin (OPN), secreted protein acidic and rich in cysteine (SPARC/osteonectin), osteocalcin (OC), bone specific alkaline phosphatase (BALP), N-terminal propeptide of collagen type I (P1NP), RANKL, OPG, the Wnt agonistic ligands (Wnt)-1 and Wnt-3a, and the Wnt antagonists sclerostin, Dickkopf (Dkk)-1, Dkk-3, Dkk-4, secreted frizzled related protein (sFRP)-1, sFRP-3 and Wnt inhibitory factor-1 (Wif-1). RESULTS Inflammatory mediators in arthroplasty patients (CRP, IL-6, OPN) increased significantly on day one after surgery vs preoperative value (PR) and healthy subjects and returned to baseline at 6W. TNF-α did not change relative preoperative level or healthy subjects. SPARC and OC increased in a biphasic fashion with the primary phase beginning shortly after surgery and lasting 3M (SPARC) and 2Y (OC) while the secondary phase peaked at 1Y (SPARC) and 13Y (OC), with both returning to basal level at 15Y. BALP peaked at 3M after surgery with a return to basal level at 2Y followed by a continuous increase from 5Y until 18Y. P1NP increased immediately after surgery and returned to basal level at 6W followed by a new peak at 10Y returning to basal at 13Y. IL-8 and IL-1β peaked at 5Y post-THA and returned to basal level at 10Y. RANKL/OPG and Wnt/β-catenin remained at preoperative levels until 5Y post-THA when a sustained increase in OPG level, paralleled by a sustained decrease in sclerostin, started and lasted until 18Y. Despite a strong increase by RANKL at 13Y, the OPG/RANKL-ratio remained high between 5Y and 18Y. Dkk-1 and sFRP-1 remained at basal level until 5Y followed by a peak at 7Y and a return to basal level at 15Y. Similarly, RANKL increased after 5Y, peaked at 13Y and returned to basal levels at 18Y, thus coinciding with Wnt-1. In contrast, Wnt3a, Dkk-3, Dkk-4, sFRP-3 and Wif-1 did not differ from preoperative levels or healthy subjects during the course of the follow-up. CONCLUSION The primary peak of proinflammatory cytokines involved in the initiation of bone healing after trauma is in line with previous results. The primary phase of increased matrix proteins, P1NP and BALP paralleled by RANKL, OPG and Wnt/β-catenin remaining at preoperative level until 5Y, support a strong formation of mineralized matrix and to a lesser degree bone during this phase. The secondary proinflammatory peak at 5Y is likely a trigger of coupled bone remodeling and neosynthesis as it is followed by increased levels of the bone anabolic turnover marker, BALP, and mediators of the RANKL/OPG and Wnt/β-catenin pathways. A continuous increase by OPG level and the bone turnover marker, BALP, lasting from 5Y until 18Y and paralleled by a similar decrease in sclerostin level support their being key regulators of bone anabolism, whereas the transient and opposed activities of RANKL, Wnt-1, Dkk-1 and sFRP-1 serve as fine tuning tools during the coupled remodeling phase.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden; Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden.
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden; Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit, Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden; Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
39
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
40
|
Rajasekaran MR, Kanoo S, Fu J, Nguyen MUL, Bhargava V, Mittal RK. Age-related external anal sphincter muscle dysfunction and fibrosis: possible role of Wnt/β-catenin signaling pathways. Am J Physiol Gastrointest Liver Physiol 2017; 313:G581-G588. [PMID: 28838987 DOI: 10.1152/ajpgi.00209.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/31/2023]
Abstract
Studies show an age-related increase in the prevalence of anal incontinence and sphincter muscle atrophy. The Wnt/β-catenin signaling pathway has been recently recognized as the major molecular pathway involved in age-related skeletal muscle atrophy and fibrosis. The goals of our study were to 1) evaluate the impact of normal aging on external anal sphincter (EAS) muscle length-tension (L-T) function and morphology and 2) specifically examine the role of Wnt signaling pathways in anal sphincter muscle fibrosis. New Zealand White female rabbits [6 young (6 mo of age) and 6 old (36 mo of age)] were anesthetized, and anal canal pressure was measured to determine the L-T function of EAS. Animals were killed at the end of the study, and the anal canal was harvested and processed for histochemical studies (Masson trichrome stain for muscle/connective tissue) as well as for molecular markers for fibrosis and atrophy [collagen I, β-catenin, transforming growth factor-β (TGF-β), atrogin-1, and muscle-specific RING finger protein-1 (MuRF-1)]. The L-T was significantly impaired in older animals compared with young animals. Anal canal sections stained with trichrome showed a significant decrease in the muscle content (52% in old compared with 70% in young) and an increase in the connective tissue/collagen content in the old animals. An increased protein and mRNA expression of all the fibrosis markers was seen in the older animals. Aging EAS muscle exhibits impairment of function and increase in connective tissue. Upregulation of atrophy and profibrogenic proteins with aging may be the reason for the age-related decrease in anal sphincter muscle thickness and function.NEW & NOTEWORTHY Our studies using a female rabbit model show age-related alterations in the structure and function of the external anal sphincter (EAS) muscle. We used endoluminal ultrasound to measure age-related changes in EAS muscle thickness. We employed Western blot and quantitative PCR to demonstrate age-related changes in the levels of important fibrogenic as well as atrophy markers. Our findings may have significant clinical implications, i.e., use of specific antagonists to prevent age-related EAS muscle dysfunction.
Collapse
Affiliation(s)
- M Raj Rajasekaran
- Division of Gastroenterology, Department of Medicine, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California; .,Department of Urology, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California; and
| | - Sadhana Kanoo
- Division of Gastroenterology, Department of Medicine, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| | - Johnny Fu
- Division of Gastroenterology, Department of Medicine, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| | - My-Uyen Lilly Nguyen
- Division of Gastroenterology, Department of Medicine, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| | - Valmik Bhargava
- Division of Cardiology, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| | - Ravinder K Mittal
- Division of Gastroenterology, Department of Medicine, Veterans Affairs San Diego Healthcare System and University of California, San Diego, California
| |
Collapse
|
41
|
|
42
|
Rajasekaran MR, Kanoo S, Fu J, Bhargava V, Mittal RK. Wnt-β Catenin Signaling Pathway: A Major Player in the Injury Induced Fibrosis and Dysfunction of the External Anal Sphincter. Sci Rep 2017; 7:963. [PMID: 28424479 PMCID: PMC5430485 DOI: 10.1038/s41598-017-01131-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/23/2017] [Indexed: 12/19/2022] Open
Abstract
Wnt-β catenin is an important signaling pathway in the genesis of fibrosis in many organ systems. Our goal was to examine the role of Wnt pathway in the external anal sphincter (EAS) injury-related fibrosis and muscle dysfunction. New Zealand White female rabbits were subjected to surgical EAS myotomy and administered local injections of either a Wnt antagonist (sFRP-2; daily for 7 days) or saline. Anal canal pressure and EAS length-tension (L-T) were measured for 15 weeks after which the animals were sacrificed. Anal canal was harvested and processed for histochemical studies (Masson trichrome stain), molecular markers of fibrosis (collagen and transforming growth factor-β) and immunostaining for β catenin. Surgical myotomy of the EAS resulted in significant impairment in anal canal pressure and EAS muscle L-T function. Following myotomy, the EAS muscle was replaced with fibrous tissue. Immunostaining revealed β catenin activation and molecular studies revealed 1.5–2 fold increase in the levels of markers of fibrosis. Local injection of sFRP-2 attenuated the β catenin activation and fibrosis. EAS muscle content and function was significantly improved following sFRP-2 treatment. Our studies suggest that upregulation of Wnt signaling is an important molecular mechanism of injury related EAS muscle fibrosis and sphincter dysfunction.
Collapse
Affiliation(s)
- M Raj Rajasekaran
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA.
| | - Sadhana Kanoo
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| | - Johnny Fu
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| | - Valmik Bhargava
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| | - Ravinder K Mittal
- Department of Medicine, Division of Gastroenterology, San Diego VA Health Care System & University of California, San Diego, CA, USA
| |
Collapse
|
43
|
Le Dour C, Macquart C, Sera F, Homma S, Bonne G, Morrow JP, Worman HJ, Muchir A. Decreased WNT/β-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum Mol Genet 2017; 26:333-343. [PMID: 28069793 PMCID: PMC6075603 DOI: 10.1093/hmg/ddw389] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 12/22/2022] Open
Abstract
Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is characterized by cardiac conduction abnormalities and left ventricular systolic dysfunction predisposing to heart failure. Previous cardiac transcriptional profiling of LmnaH222P/H222P mouse, a small animal model of LMNA cardiomyopathy, suggested decreased WNT/β-catenin signalling. We confirmed decreased WNT/β-catenin signalling in the hearts of these mice by demonstrating decreased β-catenin and WNT proteins. This was correlated with increased expression of soluble Frizzled-related proteins that modulate the WNT/β-catenin signalling pathway. Hearts of LmnaH222P/H222P mice also demonstrated lowered expression of the gap junction connexin 43. Activation of WNT/β-catenin activity with 6-bromoindirubin-3'-oxime improved cardiac contractility and ameliorated intraventricular conduction defects in LmnaH222P/H222P mice, which was associated with increased expression of myocardial connexin 43. These results indicate that decreased WNT/β-catenin contributes to the pathophysiology of LMNA cardiomyopathy and that drugs activating β-catenin may be beneficial in affected individuals.
Collapse
Affiliation(s)
- Caroline Le Dour
- Department of Medicine, College of Physicians and Surgeons
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Coline Macquart
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - Fusako Sera
- Department of Medicine, College of Physicians and Surgeons
| | - Shunichi Homma
- Department of Medicine, College of Physicians and Surgeons
| | - Gisele Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| | - John P. Morrow
- Department of Medicine, College of Physicians and Surgeons
| | - Howard J. Worman
- Department of Medicine, College of Physicians and Surgeons
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Antoine Muchir
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Institut de Myologie, G.H. Pitié Salpêtrière, F-75651 Paris Cedex 13, France
| |
Collapse
|
44
|
Stylianidis V, Hermans KCM, Blankesteijn WM. Wnt Signaling in Cardiac Remodeling and Heart Failure. Handb Exp Pharmacol 2017; 243:371-393. [PMID: 27838851 DOI: 10.1007/164_2016_56] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wnt signaling plays an essential role during development, but is also activated in diseases as diverse as neurodegeneration, osteoporosis, and cancer. Accumulating evidence demonstrates that Wnt signaling is also activated during cardiac remodeling and heart failure. In this chapter, we will provide a brief overview of Wnt signaling in all its complexity. Then we will discuss the evidence for its involvement in the development of cardiac hypertrophy, the wound healing after myocardial infarction (MI) and heart failure. Finally, we will provide an overview of the drugs that are available to target Wnt signaling at different levels of the signaling cascade and the results of these pharmacological interventions in cardiac disease.
Collapse
Affiliation(s)
- Vasili Stylianidis
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in V̇o2peak from its lifetime apex. Physiol Genomics 2016; 49:53-66. [PMID: 27913688 DOI: 10.1152/physiolgenomics.00083.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk (n = 5-8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN (P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
46
|
Matteucci M, Casieri V, Gabisonia K, Aquaro GD, Agostini S, Pollio G, Diamanti D, Rossi M, Travagli M, Porcari V, Recchia FA, Lionetti V. Magnetic resonance imaging of infarct-induced canonical wingless/integrated (Wnt)/β-catenin/T-cell factor pathway activation, in vivo. Cardiovasc Res 2016; 112:645-655. [PMID: 27671803 DOI: 10.1093/cvr/cvw214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/16/2023] Open
Abstract
AIMS Combined magnetic resonance imaging (MRI) of molecular and morpho-functional changes might prove highly valuable for the elucidation of pathological processes involved in the development of cardiac diseases. Our aim was to test a novel MRI reporter gene for in vivo assessment of the canonical Wnt/β-catenin/TCF pathway activation, an important regulator of post-ischaemic cardiac remodelling. METHODS AND RESULTS We designed and developed a chimeric construct encoding for both of iron-binding human ferritin heavy chain (hFTH) controlled by the β-catenin-responsive TCF/lymphoid-enhancer binding factor (Lef) promoter and constitutively expressed green fluorescent protein (GFP). It was carried by adeno-associated virus serotype 9 (rAAV9) vectors and delivered to the peri-infarct myocardium of rats subjected to coronary ligation (n = 11). By 1.5 T MRI and a multiecho T2* gradient echo sequence, we detected iron accumulation only in the border zone of the transduced infarcted hearts. In the same cardiac area, post-mortem histological analysis confirmed the co-existence of iron accumulation and GFP. The iron signal was absent when rats (n = 6) were chronically treated with SEN195 (10 mg/kg/day), a small-molecular inhibitor of β-catenin/TCF-dependent gene transcription. Canonical Wnt pathway inhibition attenuated the post-ischaemic remodelling process, as demonstrated by the significant preservation of cardiac function, the 42 ± 1% increase of peri-infarct arteriolar density and 43 ± 3% reduction in infarct scar size compared with untreated animals. CONCLUSIONS The TCF/Lef promoter-hFTH construct is a novel and reliable MRI reporter gene for in vivo detection of the canonical Wnt/β-catenin/TCF activation state in response to cardiac injury and therapeutic interventions.
Collapse
Affiliation(s)
- Marco Matteucci
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Valentina Casieri
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | - Silvia Agostini
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy
| | | | | | - Marco Rossi
- Siena Biotech Medicine Research Centre, 53100 Siena, Italy
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 19140 Philadelphia, PA, USA
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via G. Moruzzi, 1, 56124 Pisa, Italy .,Fondazione Toscana 'G. Monasterio', 56124 Pisa, Italy
| |
Collapse
|
47
|
Tao H, Yang JJ, Shi KH, Li J. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism 2016; 65:30-40. [PMID: 26773927 DOI: 10.1016/j.metabol.2015.10.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Wnt signaling pathway significantly participates in cardiac fibrosis and CFs activation. Therefore, we reviewed current evidence on the new perspectives and biological association between Wnt signaling pathway and cardiac fibrosis. DESIGN AND METHODS A PubMed database search was performed for studies of Wnt signaling pathway in cardiac fibrosis and CFs activation. RESULTS Numerous studies have shown that the Wnt signaling pathway significantly participates in cardiac fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the Wnt signaling pathway significantly participating in cardiac fibrosis and CFs activation, and look ahead on new perspectives of Wnt signaling pathway research. Moreover, we will discuss the different insights that interact with the Wnt signaling pathway-regulated cardiac fibrosis. The Wnt proteins are glycoproteins that bind to the Fz receptors on the cell surface, which lead to several important biological functions, such as cell differentiation and proliferation. There are several signals among the characterized pathways of cardiac fibrosis, including Wnt/β-catenin signaling. In this review, new insight into the Wnt signaling pathway in cardiac fibrosis pathogenesis is discussed, with special emphasis on Wnt/β-catenin. CONCLUSION It seems reasonable to suggest the potential targets of Wnt signaling pathway and it can be developed as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601
| | - Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China 230601.
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China 230601; Cardiovascular Research Center, Anhui Medical University, Hefei, China 230601.
| | - Jun Li
- School of pharmacy, Anhui Medical University, Hefei, China 230032
| |
Collapse
|
48
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|
49
|
Gitau SC, Li X, Zhao D, Guo Z, Liang H, Qian M, Lv L, Li T, Xu B, Wang Z, Zhang Y, Xu C, Lu Y, Du Z, Shan H, Yang B. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front Med 2015; 9:444-56. [PMID: 26626190 DOI: 10.1007/s11684-015-0421-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/04/2015] [Indexed: 12/25/2022]
Abstract
Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.
Collapse
Affiliation(s)
- Samuel Chege Gitau
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.,Department of Pharmacy and Complementary Medicine, School of Health Sciences, Kenyatta University, P.O. BOX 43844-00100, Nairobi, Kenya
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Dandan Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Zhenfeng Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Ming Qian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Tianshi Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Bozhi Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Zhiguo Wang
- Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.,Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China
| | - Zhiming Du
- Institute of Clinical Pharmacy, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, 150081, China. .,Institute of Cardiovascular Research, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
50
|
Effect of siRNA on Wisp-1 gene expression, proliferation, migration and adhesion of mouse hepatocellular carcinoma cells. ASIAN PAC J TROP MED 2015; 8:821-8. [DOI: 10.1016/j.apjtm.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
|