1
|
Beyzaei Z, Ezgu F, Geramizadeh B, Alborzi A, Shojazadeh A. Novel PRKAG2 variant presenting as liver cirrhosis: report of a family with 2 cases and review of literature. BMC Med Genomics 2021; 14:33. [PMID: 33509202 PMCID: PMC7845137 DOI: 10.1186/s12920-021-00879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mutations in the PRKAG2 gene encoding the 5' Adenosine Monophosphate-Activated Protein Kinase (AMPK), specifically in its γ2 regulatory subunit, lead to Glycogen storage disease of heart, fetal congenital disorder (PRKAG2 syndrome). These mutations are rare, and their functional roles have not been fully elucidated. PRKAG2 syndrome is autosomal dominant disorder inherited with full penetrance. It is characterized by the accumulation of glycogen in the heart tissue, which is clinically manifested as hypertrophic cardiomyopathy. There is little knowledge about the characteristics of this disease. This study reports a genetic defect in an Iranian family with liver problems using targeted-gene sequencing. CASE PRESENTATION A 4-year-old girl presented with short stature, hepatomegaly, and liver cirrhosis. As there was no specific diagnosis made based on the laboratory data and liver biopsy results, targeted-gene sequencing (TGS) was performed to detect the molecular basis of the disease. It was confirmed that this patient carried a novel heterozygous variant in the PRKAG2 gene. The echocardiography was a normal. CONCLUSION A novel heterozygous variant c.592A > T (p.Met198Leu) expands the mutational spectrum of the PRKAG2 gene in this family. Also, liver damage in patients with PRKAG2 syndrome has never been reported, which deserves further discussion.
Collapse
Affiliation(s)
- Zahra Beyzaei
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatih Ezgu
- Department of Pediatric Metabolism and Genetic, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bita Geramizadeh
- Shiraz Transplant Research Center (STRC), Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pathology, Shiraz University of Medical Sciences, Khalili St., Research Tower, Seventh Floor, Shiraz Transplant Research Center (STRC), Shiraz, Iran.
| | - Alireza Alborzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shojazadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, Calabrò P, Russo MG, Limongelli G. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr 2021; 9:632293. [PMID: 33718303 PMCID: PMC7947260 DOI: 10.3389/fped.2021.632293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Esposito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
3
|
Ko KY, Wang SY, Yen RF, Shiau YC, Hsu JC, Tsai HY, Lee CL, Chiu KM, Wu YW. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J Nucl Cardiol 2020; 27:269-279. [PMID: 30109593 DOI: 10.1007/s12350-018-1395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The aim of this study was to prospectively quantify the rate of myocardial glucose uptake (MRGlu) in myocardium with different perfusion-metabolism patterns and determine its prognostic value in patients with ischemic cardiomyopathy. METHODS AND RESULTS 79 patients with ischemic cardiomyopathy were prospectively enrolled for dynamic cardiac FDG PET, and then followed for at least 6 months. Perfusion-metabolism patterns were determined based on visual score analysis of 201Tl SPECT and FDG PET. MRGlu was analyzed using the Patlak kinetic model. The primary end-point was cardiovascular mortality. Significantly higher MRGlu was observed in viable compared with non-viable areas. Negative correlations were found between MRGlu in transmural match and a history of hyperlipidemia, statin usage, and triglyceride levels. Diabetic patients receiving dipeptidyl peptidase-4 inhibitors (DPP4i) had a significantly lower MRGlu in transmural match, mismatch, and reverse mismatch. Patients with MRGlu in transmural match ≥ 23.40 or reverse mismatch ≥ 36.90 had a worse outcome. CONCLUSIONS Myocardial glucose utilization was influenced by substrates and medications, including statins and DPP4i. MRGlu could discriminate between viable and non-viable myocardium, and MRGlu in transmural match and reverse mismatch may be prognostic predictors of cardiovascular death in patients with ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Kuan-Yin Ko
- Department of Nuclear Medicine, National Taiwan University Hospital, Yunlin Branch, Yunlin County, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shan-Ying Wang
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ruoh-Fang Yen
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chien Shiau
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jung-Cheng Hsu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hao-Yuan Tsai
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chien-Lin Lee
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yen-Wen Wu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Reza N, Chowns JL, Merrill SL, Marzolf A, Zado ES, Palmer MB, Deshpande C, Pryma DA, Rame JE, Marchlinski FE, Owens AT. Frameshifts in Code and in Care: The Importance of Timely Genetic Evaluation. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e002215. [PMID: 29748321 DOI: 10.1161/circgen.118.002215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nosheen Reza
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine (N.R., J.L.C., S.L.M., A.M., A.T.O.)
| | - Jessica L Chowns
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine (N.R., J.L.C., S.L.M., A.M., A.T.O.)
| | - Shana L Merrill
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine (N.R., J.L.C., S.L.M., A.M., A.T.O.)
| | - Amy Marzolf
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine (N.R., J.L.C., S.L.M., A.M., A.T.O.)
| | - Erica S Zado
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine (E.S.Z., F.E.M.)
| | - Matthew B Palmer
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia (M.B.P., C.D.)
| | - Charuhas Deshpande
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia (M.B.P., C.D.)
| | - Daniel A Pryma
- Division of Nuclear Medicine, Department of Radiology (D.A.P.)
| | - J Eduardo Rame
- Division of Cardiovascular Medicine (J.E.R.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Francis E Marchlinski
- Section of Cardiac Electrophysiology, Division of Cardiovascular Medicine (E.S.Z., F.E.M.)
| | - Anjali Tiku Owens
- Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine (N.R., J.L.C., S.L.M., A.M., A.T.O.)
| |
Collapse
|
5
|
Abstract
Background The Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma 2 (PRKAG2) cardiac syndrome is characterized by glycogen accumulation in the cardiac tissue. The disease presents clinically with hypertrophic cardiomyopathy (HCM), and it is often associated with conduction abnormalities. Case presentation A 23 year-old female with history of Wolff-Parkinson-White (WPW) and HCM presented for evaluation after an episode of Non-ST Elevation Myocardial Infarction (NSTEMI). The patient was found to have severe coronary bridging on angiography and underwent an unroofing of the left anterior descending artery (LAD). Due to the constellation of symptoms, the patient underwent genetic testing and a cardiac muscle biopsy. Genetic testing was significant for an Arg302Gln mutation in the PRKAG2 gene. Cardiac tissue biopsy revealed significant myocyte hypertrophy and large vacuoles with glycogen stores. Conclusion The pathologic and genetics findings of our patient are consistent with PRKAG2 syndrome. Patients presenting with conduction abnormalities and suspected HCM should be considered for genetic testing to identify possible underlying genetic etiologies.
Collapse
|
6
|
Nuclear Imaging for Assessment of Myocardial Perfusion, Metabolism, and Innervation in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016. [DOI: 10.1007/s12410-016-9379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Porto AG, Brun F, Severini GM, Losurdo P, Fabris E, Taylor MRG, Mestroni L, Sinagra G. Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythm Electrophysiol 2016; 9:e003121. [PMID: 26729852 DOI: 10.1161/circep.115.003121] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Andrea Giuseppe Porto
- Cardiovascular Department "Ospedali Riuniti and University of Trieste", IRCCS Burlo Garofolo, Trieste, Italy
| | - Francesca Brun
- Cardiovascular Department "Ospedali Riuniti and University of Trieste", IRCCS Burlo Garofolo, Trieste, Italy
| | - Giovanni Maria Severini
- Molecular Medicine Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Pasquale Losurdo
- Cardiovascular Department "Ospedali Riuniti and University of Trieste", IRCCS Burlo Garofolo, Trieste, Italy
| | - Enrico Fabris
- Cardiovascular Department "Ospedali Riuniti and University of Trieste", IRCCS Burlo Garofolo, Trieste, Italy
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics, Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Gianfranco Sinagra
- Cardiovascular Department "Ospedali Riuniti and University of Trieste", IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
8
|
|
9
|
Affiliation(s)
- Sherif F Nagueh
- From the Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX.
| |
Collapse
|
10
|
Thorn SL, deKemp RA, Dumouchel T, Klein R, Renaud JM, Wells RG, Gollob MH, Beanlands RS, DaSilva JN. Repeatable noninvasive measurement of mouse myocardial glucose uptake with 18F-FDG: evaluation of tracer kinetics in a type 1 diabetes model. J Nucl Med 2013; 54:1637-44. [PMID: 23940301 DOI: 10.2967/jnumed.112.110114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED A noninvasive and repeatable method for assessing mouse myocardial glucose uptake with (18)F-FDG PET and Patlak kinetic analysis was systematically assessed using the vena cava image-derived blood input function (IDIF). METHODS Contrast CT and computer modeling was used to determine the vena cava recovery coefficient. Vena cava IDIF (n = 7) was compared with the left ventricular cavity IDIF, with blood and liver activity measured ex vivo at 60 min. The test-retest repeatability (n = 9) of Patlak influx constant K(i) at 10-40 min was assessed quantitatively using Bland-Altman analysis. Myocardial glucose uptake rates (rMGU) using the vena cava IDIF were calculated at baseline (n = 8), after induction of type 1 diabetes (streptozotocin [50 mg/kg] intraperitoneally, 5 d), and after acute insulin stimulation (0.08 mU/kg of body weight intraperitoneally). These changes were analyzed with a standardized uptake value calculation at 20 and 40 min after injection to correlate to the Patlak time interval. RESULTS The proximal mouse vena cava diameter was 2.54 ± 0.30 mm. The estimated recovery coefficient, calculated using nonlinear image reconstruction, decreased from 0.76 initially (time 0 to peak activity) to 0.61 for the duration of the scan. There was a 17% difference in the image-derived vena cava blood activity at 60 min, compared with the ex vivo blood activity measured in the γ-counter. The coefficient of variability for Patlak K(i) values between mice was found to be 23% with the proposed method, compared with 51% when using the left ventricular cavity IDIF (P < 0.05). No significant bias in K(i) was found between repeated scans with a coefficient of repeatability of 0.16 mL/min/g. Calculated rMGU values were reduced by 60% in type 1 diabetic mice from baseline scans (P < 0.03, ANOVA), with a subsequent increase of 40% to a level not significantly different from baseline after acute insulin treatment. These results were confirmed with a standardized uptake value measured at 20 and 40 min. CONCLUSION The mouse vena cava IDIF provides repeatable assessment of the blood time-activity curve for Patlak kinetic modeling of rMGU. An expected significant reduction in myocardial glucose uptake was demonstrated in a type 1 diabetic mouse model, with significant recovery after acute insulin treatment, using a mouse vena cava IDIF approach.
Collapse
Affiliation(s)
- Stephanie L Thorn
- Division of Cardiology, National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Thorn SL, Gollob MH, Harper ME, Beanlands RS, Dekemp RA, Dasilva JN. Chronic AMPK activity dysregulation produces myocardial insulin resistance in the human Arg302Gln-PRKAG2 glycogen storage disease mouse model. EJNMMI Res 2013; 3:48. [PMID: 23829931 PMCID: PMC3707764 DOI: 10.1186/2191-219x-3-48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/27/2013] [Indexed: 11/22/2022] Open
Abstract
Background The cardiac PRKAG2 mutation in the γ2-subunit of adenosine monophosphate activated kinase (AMPK) is characterized by excessive glycogen deposition, hypertrophy, frequent arrhythmias, and progressive conduction system disease. We investigated whether myocardial glucose uptake (MGU) was augmented following insulin stimulation in a mouse model of the PRKAG2 cardiac syndrome. Methods Myocardial and skeletal muscle glucose uptake was assessed with 2-[18F]fluoro-2-deoxyglucose positron emission tomography imaging in n = 3 transgenic wildtype (TGwt) vs n = 7 PRKAG2 mutant (TGmut) mice at baseline and 1 week later, 30 min following acute insulin. Systolic function, cardiac glycogen stores, phospho-AMPK α, and insulin-receptor expression levels were analyzed to corroborate to the in vivo findings. Results TGmut Patlak Ki was reduced 56% at baseline compared to TGwt (0.3 ± 0.2 vs 0.7 ± 0.1, t test p = 0.01). MGU was augmented 71% in TGwt mice following acute insulin from baseline (0.7 ± 0.1 to 1.2 ± 0.2, t test p < 0.05). No change was observed in TGmut mice. As expected for this cardiac specific transgene, skeletal muscle was unaffected at baseline with a 33% to 38% increase (standard uptake values) for both genotypes following insulin stimulation. TGmut mice had a 47% reduction in systolic function with a fourfold increase in cardiac glycogen stores correlated with a 29% reduction in phospho-AMPK α levels. There was no difference in cardiac insulin receptor expression between mouse genotypes. Conclusions These results demonstrate a correlation between insulin resistance and AMPK activity and provide the basis for the use of this animal model for assessing metabolic therapy in the treatment of affected PRKAG2 patients.
Collapse
Affiliation(s)
- Stephanie L Thorn
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, Ontario K1Y 4W7, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Anselm DD, Anselm AH, Renaud J, Atkins HL, de Kemp R, Burwash IG, Williams KA, Guo A, Kelly C, Dasilva J, Beanlands RSB, Glover CA. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol 2011; 18:657-67. [PMID: 21567283 DOI: 10.1007/s12350-011-9389-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Reperfused myocardium post-acute myocardial infarction (AMI) may have altered metabolism with implications for therapy response and function recovery. We explored glucose utilization and the "reverse mismatch" (RMM) pattern (decreased F-18-fluorodeoxyglucose (FDG) uptake relative to perfusion) in patients who underwent mechanical reperfusion with percutaneous coronary intervention (PCI) for AMI. METHODS AND RESULTS Thirty-one patients with anterior wall AMI treated with acute reperfusion, with left ventricular ejection fraction ≤45%, underwent rest rubidium-82 (Rb-82) and FDG PET 2-10 days post-AMI. Resting echocardiograms were used to assess wall motion abnormalities. Significant RMM occurred in 15 (48%) patients and was associated with a shorter time to PCI of 2.9 hours (2.2, 13.3 hours) compared to patients without significant RMM: 11.4 hours (3.9, 22.4 hours) (P = .03). Within the peri-infarct regions, segments with significant RMM were more likely to have wall motion abnormalities (OR = 2.3 (1.1, 4.7), P = .02) compared to segments without significant RMM. CONCLUSIONS RMM is a common pattern on perfusion/FDG PET during the sub-acute phase following reperfusion of AMI and is associated with shorter times to PCI. Within the peri-infarct region, RMM occurs frequently and is more often associated with wall motion abnormalities than segments without RMM. Whether this represents a myocardial metabolic shift during the sub-acute phase of recovery warrants further study.
Collapse
Affiliation(s)
- Daniel D Anselm
- Division of Cardiology, Department of Medicine, and the Molecular Function and Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, Suite 3406, 40 Ruskin St., Ottawa, ON, K1Y 4WY, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, Geisinger Medical Center, Danville, PA 17822-2160, USA.
| | | |
Collapse
|
14
|
Fallavollita JA, Luisi AJ, Yun E, deKemp RA, Canty JM. An abbreviated hyperinsulinemic-euglycemic clamp results in similar myocardial glucose utilization in both diabetic and non-diabetic patients with ischemic cardiomyopathy. J Nucl Cardiol 2010; 17:637-45. [PMID: 20387134 PMCID: PMC5856237 DOI: 10.1007/s12350-010-9228-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 03/19/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Positron emission tomography (PET) with insulin-stimulated (18)F-2-deoxyglucose (FDG) uptake is the gold standard for myocardial viability. However, insulin stimulation is infrequently performed due to time and inconvenience. We therefore assessed the clinical applicability of an abbreviated hyperinsulinemic-euglycemic clamp. METHODS AND RESULTS Dynamic FDG PET was performed in 50 patients with ischemic cardiomyopathy (ejection fraction: .30 +/- .10) using an abbreviated hyperinsulinemic-euglycemic clamp with separate Non-Diabetic (n = 26) and Diabetic (n = 24) protocols (American Society of Nuclear Cardiology guidelines), and supplemental potassium. In regions with normal resting perfusion ((13)N-ammonia uptake >or=80% maximal segment), there were no differences in either maximal (Non-Diabetic: .60 +/- .20 vs Diabetic: .60 +/- .17 micromol/min/g, P = .93) or mean rates of myocardial glucose uptake (MGU) (Non-Diabetic: .52 +/- .18 vs Diabetic: .52 +/- .14 micromol/min/g, P = .63) between the protocols. Multivariate analysis showed that diastolic blood pressure alone (maximal MGU, r (2) = .20, P = .001) or with NYHA Heart Failure Class (mean MGU, r (2) = .25, P = .003) could account for some of the variability in normal-region MGU. Potassium supplementation safely attenuated the decline in plasma levels. CONCLUSIONS This abbreviated hyperinsulinemic-euglycemic clamp produced similar MGU values in normal resting myocardium in non-diabetic and diabetic subjects, which are no different than published rates with a standard insulin clamp. Thus, this abbreviated approach is sufficient to overcome myocardial insulin resistance.
Collapse
|
15
|
Gropler RJ, Beanlands RSB, Dilsizian V, Lewandowski ED, Villanueva FS, Ziadi MC. Imaging myocardial metabolic remodeling. J Nucl Med 2010; 51 Suppl 1:88S-101S. [PMID: 20457796 DOI: 10.2967/jnumed.109.068197] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myocardial metabolic remodeling is the process in which the heart loses its ability to utilize different substrates, becoming dependent primarily on the metabolism of a single substrate such as glucose or fatty acids for energy production. Myocardial metabolic remodeling is central to the pathogenesis of a variety of cardiac disease processes such as left ventricular hypertrophy, myocardial ischemia, and diabetic cardiomyopathy. As a consequence, there is a growing demand for accurate noninvasive imaging approaches of various aspects of myocardial substrate metabolism that can be performed in both humans and small-animal models of disease, facilitating the crosstalk between the bedside and the bench and leading to improved patient management paradigms. SPECT, PET, and MR spectroscopy are the most commonly used imaging techniques. Discussed in this review are the strengths and weaknesses of these various imaging methods and how they are furthering our understanding of the role of myocardial remodeling in cardiovascular disease. In addition, the role of ultrasound to detect the inflammatory response to myocardial ischemia will be discussed.
Collapse
Affiliation(s)
- Robert J Gropler
- Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|