1
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
2
|
Fernandez-Aviles C, Gonzalez-Manzanares R, Ojeda S, Castillo JC, Robles-Mezcua A, Anguita M, Mesa D, Pan M. Diagnostic and Therapeutic Approaches for Heart Failure in Long-Term Survivors of Childhood Cancer. Biomedicines 2024; 12:1875. [PMID: 39200339 PMCID: PMC11351207 DOI: 10.3390/biomedicines12081875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The improvement in survival rates in pediatric malignancies has led to an increase in the number of cancer survivors who are at risk of developing cardiotoxicity and heart failure. Cardiac dysfunction in these patients can occur asymptomatically, and the diagnosis in a symptomatic phase is associated with reduced treatment response and worse prognosis. For this reason, it is essential to establish protocols to follow up on these patients and identify those at risk of cardiotoxicity in order to start early and effective therapies. This review aims to summarize the latest findings in the diagnosis and treatment of cancer therapy-related cardiac disease in long-term survivors of childhood cancer, with a focus on heart failure.
Collapse
Affiliation(s)
- Consuelo Fernandez-Aviles
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Rafael Gonzalez-Manzanares
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Soledad Ojeda
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba, 14004 Córdoba, Spain
| | - Juan C. Castillo
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Ainhoa Robles-Mezcua
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Cardiology Unit, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- IBIMA-Plataforma BIONAND, Universidad de Málaga, 29071 Málaga, Spain
| | - Manuel Anguita
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Dolores Mesa
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Manuel Pan
- Cardiology Unit, Reina Sofía University Hospital, 14004 Córdoba, Spain (M.P.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Departamento de Ciencias Médicas y Quirúrgicas, Universidad de Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
3
|
Gonciar D, Berciu AG, Dulf EH, Orzan RI, Mocan T, Danku AE, Lorenzovici N, Agoston-Coldea L. Computer-Assisted Algorithm for Quantification of Fibrosis by Native Cardiac CT: A Pilot Study. J Clin Med 2024; 13:4807. [PMID: 39200950 PMCID: PMC11355413 DOI: 10.3390/jcm13164807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Recent advances in artificial intelligence, particularly in cardiac imaging, can potentially enhance patients' diagnosis and prognosis and identify novel imaging markers. We propose an automated, computer-aided algorithm utilizing native cardiac computed tomography (CT) imaging to identify myocardial fibrosis. This study aims to evaluate its performance compared to CMR markers of fibrosis in a cohort of patients diagnosed with breast cancer. Methods: The study included patients diagnosed with early HER2+ breast cancer, who presented LV dysfunction (LVEF < 50%) and myocardial fibrosis detected on CMR at the time of diagnosis. The patients were also evaluated by cardiac CT, and the extracted images were processed for the implementation of the automatic, computer-assisted algorithm, which marked as fibrosis every pixel that fell within the range of 60-90 HU. The percentage of pixels with fibrosis was subsequently compared with CMR parameters. Results: A total of eight patients (n = 8) were included in the study. High positive correlations between the algorithm's result and the ECV fraction (r = 0.59, p = 0.126) and native T1 (r = 0.6, p = 0.112) were observed, and a very high positive correlation with LGE of the LV(g) and the LV-LGE/LV mass percentage (r = 0.77, p = 0.025; r = 0.81, p = 0.015). A very high negative correlation was found with GLS (r = -0.77, p = 0.026). The algorithm presented an intraclass correlation coefficient of 1 (95% CI 0.99-1), p < 0.001. Conclusions: The present pilot study proposes a novel promising imaging marker for myocardial fibrosis, generated by an automatic algorithm based on native cardiac CT images.
Collapse
Affiliation(s)
- Diana Gonciar
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Alexandru-George Berciu
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Eva-Henrietta Dulf
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
- Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| | - Rares Ilie Orzan
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| | - Teodora Mocan
- Physiology Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Nanomedicine, Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania
| | - Alex Ede Danku
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Noemi Lorenzovici
- Automation Department, Faculty of Automation and Computer Science, Energy Transition Research Center, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; (E.-H.D.); (A.E.D.); (N.L.)
| | - Lucia Agoston-Coldea
- 2nd Department of Internal Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (D.G.); (R.I.O.); (L.A.-C.)
| |
Collapse
|
4
|
Rosenfeld R, Riondino S, Cerocchi M, Luciano A, Idone G, Lecis D, Illuminato F, Tolomei A, Torino F, Chiocchi M, Roselli M. Extracellular volume measured by whole body CT scans predicts chronic cardiotoxicity in breast cancer patients treated with neoadjuvant therapies based on anthracyclines: A retrospective study. Breast 2024; 76:103755. [PMID: 38852211 PMCID: PMC11220522 DOI: 10.1016/j.breast.2024.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Neoadjuvant chemotherapies for breast cancer (BC) are effective but potentially cardiotoxic, and expose long survivors at risk of chemotherapy-related cardiac dysfunction (CTRCD). Unfortunately, early screening for CTRCD has actual diagnostic limits. Myocardial extracellular volume (mECV) is a radiological marker used in cardiac CT scans and cardiac magnetic resonance for diagnosis and follow-up of CTRCD. It can be measured in whole-body CT (WB-CT) scan, routinely performed in patients at high risk of relapse, to evaluate CTRCD occurrence during oncological follow-up. METHODS 82 WB-CT scans were examined at baseline (T0) and during oncological follow-up at first year (T1) and fifth year (T5) after the end of neoadjuvant treatment. mECV was measured at 1 min (PP) and 5 min (DP) after contrast injection. 31 echocardiograms were retrieved in T1 to perform a linear correlation between mECV and left ventricular ejection fraction (LVEF). RESULTS mECV values in T0 were similar between the two groups both in PP and in DP. Significant results were found for PP values in T1 (37.0 % vs 32 %, p = 0.0005) and in T5 (27.2 % vs 31.2 %, p = 0.025). A cut-off value of 35 % in PP proved significant in T1 (OR = 12.4, p = 0.004), while mECV was inversely correlated with LVEF both in PP (adj-S = -3.54, adj-p = 0.002) and in DP (adj-S = -2.51, adj-p = 0.0002), suggesting a synergistic action with the age at diagnosis (p < 0.0001, respectively). CONCLUSIONS WB-CT scans performed during oncological reassessment in patients at high-risk of recurrence could be used for CTRCD screening in cardiovascular low-risk patients, especially in aging patients with mECV values above 35 %.
Collapse
Affiliation(s)
- R Rosenfeld
- Medical Oncology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - S Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - M Cerocchi
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Luciano
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - G Idone
- Unit of Cardiology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - D Lecis
- Unit of Cardiology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Illuminato
- Unit of Cardiology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - A Tolomei
- Unit of Cardiology, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - F Torino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - M Chiocchi
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - M Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
5
|
Musella F, Librera M, Sibilio G, Boccalatte M, Tagliamonte G, Cavaglià E, Ferrara I, Puglia M, Dell'Aversana S, Ducci CB, Dellegrottaglie S, Savarese G, Scatteia A. Cardiovascular magnetic resonance parametric techniques to characterize myocardial effects of anthracycline therapy in adults with normal left ventricular ejection fraction: a systematic review and meta-analysis. Curr Probl Cardiol 2024; 49:102609. [PMID: 38697332 DOI: 10.1016/j.cpcardiol.2024.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND The cardiotoxic effects of anthracyclines therapy are well recognized, both in the short and long term. Echocardiography allows monitoring of cancer patients treated with this class of drugs by serial assessment of left ventricle ejection fraction (LVEF) as a surrogate of systolic function. However, changes in myocardial function may occur late in the process when cardiac damage is already established. Novel cardiac magnetic resonance (CMR) parametric techniques, like native T1 mapping and extra-cellular volume (ECV), may detect subclinical myocardial damage in these patients, recognizing early signs of cardiotoxicity before development of overt cancer therapy-related cardiac dysfunction (CTRCD) and prompting tailored therapeutic and follow-up strategies to improve outcome. METHODS AND RESULTS We conducted a systematic review and a meta-analysis to investigate the difference in CMR derived native T1 relaxation time and ECV values, respectively, in anthracyclines-treated cancer patients with preserved EF versus healthy controls. PubMed, Embase, Web of Science and Cochrane Central were searched for relevant studies. A total of 6 studies were retrieved from 1057 publications, of which, four studies with 547 patients were included in the systematic review on T1 mapping and five studies with 481 patients were included in the meta-analysis on ECV. Three out of the four included studies in the systematic review showed higher T1 mapping values in anthracyclines treated patients compared to healthy controls. The meta-analysis demonstrated no statistically significant difference in ECV values between the two groups in the main analysis (Hedges´s g =3.20, 95% CI -0.72-7.12, p =0.11, I2 =99%), while ECV was significantly higher in the anthracyclines-treated group when sensitivity analysis was performed. CONCLUSIONS Higher T1 mapping and ECV values in patients exposed to anthracyclines could represent early biomarkers of CTRCD, able to detect subclinical myocardial changes present before the development of overt myocardial dysfunction. Our results highlight the need for further studies to investigate the correlation between anthracyclines-based chemotherapy and changes in CMR mapping parameters that may guide future tailored follow-up strategies in this group of patients.
Collapse
Affiliation(s)
- Francesca Musella
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Cardiology Department, Santa Maria delle Grazie Hospital, Naples, Italy.
| | - Mariateresa Librera
- Cardiac Multi-Imaging Unit, Mediterranea Cardiocentro, Via Orazio 2, 80122 Naples, Italy
| | - Gerolamo Sibilio
- Cardiology Department, Santa Maria delle Grazie Hospital, Naples, Italy
| | - Marco Boccalatte
- Cardiology Department, Santa Maria delle Grazie Hospital, Naples, Italy
| | | | - Enrico Cavaglià
- Radiology Department, Santa Maria delle Grazie Hospital, Naples, Italy
| | - Ilaria Ferrara
- Radiology Department, Santa Maria delle Grazie Hospital, Naples, Italy
| | - Marta Puglia
- Radiology Department, Santa Maria delle Grazie Hospital, Naples, Italy
| | | | | | | | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Alessandra Scatteia
- Advanced Cardiovascular Imaging Unit, Clinica Villa dei Fiori Acerra, Naples, Italy
| |
Collapse
|
6
|
Lucas JT, Abramson ZR, Epstein K, Morin CE, Jaju A, Lee JW, Lee CL, Sitaram R, Voss SD, Hudson MM, Constine LS, Hua CH. Imaging Assessment of Radiation Therapy-Related Normal Tissue Injury in Children: A PENTEC Visionary Statement. Int J Radiat Oncol Biol Phys 2024; 119:669-680. [PMID: 38760116 DOI: 10.1016/j.ijrobp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
| | - Zachary R Abramson
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Katherine Epstein
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Cara E Morin
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Chang-Lung Lee
- Department of Radiation Oncology and; Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Ranganatha Sitaram
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephan D Voss
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
7
|
Mohamed AA, Elmancy LY, Abulola SM, Al-Qattan SA, Mohamed Ibrahim MI, Maayah ZH. Assessment of Native Myocardial T1 Mapping for Early Detection of Anthracycline-Induced Cardiotoxicity in Patients with Cancer: a Systematic Review and Meta-analysis. Cardiovasc Toxicol 2024; 24:563-575. [PMID: 38700665 PMCID: PMC11102375 DOI: 10.1007/s12012-024-09866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Anthracycline antibiotic is one of the most effective anti-tumor drugs used to manage certain types of breast cancers, lymphomas, and leukemias. However, anthracyclines induce a dose-dependent cardiotoxicity that may progress to heart failure. Thus, using a sensitive predictor of early cardiac dysfunction in patients treated with anthracyclines can help detect subclinical cardiac dysfunction early and help initiate interventions to protect these patients. Among parameters of myocardial measure, cardiac magnetic resonance (CMR)-measured native myocardial T1 mapping is considered a sensitive and accurate quantitative measure of early subclinical cardiac changes, particularly cardiac inflammation and fibrosis. However, to understand the quality and the validity of the current evidence supporting the use of these measures in patients treated with anthracyclines, we aimed to conduct a systematic review of clinical studies of this measure to detect early myocardial changes in cancer patients treated with anthracyclines. The primary outcome was the level of native T1 mapping. We performed fixed-effects meta-analyses and assessed certainty in effect estimates. Of the 1780 publications reviewed (till 2022), 23 were retrieved, and 9 articles met the inclusion criteria. Our study showed that exposure to anthracycline was associated with a significant elevation of native myocardial T1 mapping from baseline (95% CI 0.1121 to 0.5802; p = 0.0037) as well as compared to healthy control patients (95% CI 0.2925 to 0.7448; p < 0.0001). No significant publication bias was noted on the assessment of the funnel plot and Egger's test. According to the Q test, there was no significant heterogeneity in the included studies (I2 = 0.0000% versus healthy controls and I2 = 14.0666% versus baseline). Overall, our study suggests that native myocardial T1 mapping is useful for detecting anthracycline-induced cardiotoxicity in patients with cancer.
Collapse
Affiliation(s)
- Amira A Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Layla Y Elmancy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Sara M Abulola
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Sara A Al-Qattan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar
| | - Mohamed Izham Mohamed Ibrahim
- Clinical Pharmacy and Practice Department, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
8
|
Omidi A, Weiss E, Rosu-Bubulac M, Thomas G, Wilson JS. Quantitative Analysis of Radiation Therapy-Induced Cardiac and Aortic Sequelae in Patients With Lung Cancer via Magnetic Resonance Imaging: A Pilot Study. Int J Radiat Oncol Biol Phys 2024; 119:281-291. [PMID: 37951549 DOI: 10.1016/j.ijrobp.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The objective of this study was to quantify early radiation therapy (RT)-induced cardiac and aortic changes in patients with lung cancer using cardiac magnetic resonance imaging (MRI). METHODS AND MATERIALS Nine patients with lung cancer treated with RT completed MR scans at baseline (before RT) and at 3 and 6 months after RT completion. Cine, T1/T2, late gadolinium enhancement (LGE), and 4-dimensional flow MRIs were acquired to assess biological and mechanical cardiovascular changes globally (ie, over the entire left ventricle (LV) or aorta) and regionally (according to an American Heart Association model). RESULTS Regional metrics demonstrated multiple significant changes and dose-dependent responses. Notably, LGE showed changes at 3 and 6 months over septal and high-dose regions (P < .0458). Longitudinal strain changes were notable at septal and high-dose regions at 3 months and at septal regions at 6 months (P < .0469). Elevated T1/T2 signals (P < .0391) and changes in radial/circumferential strain at the septum (P < .0391) were observed at 3 months. Both T1/T2 signal and LGE were correlated with dose at 6 months (T1 signal also at 3 months), with significantly greater changes in regions receiving >50 Gy (P < .0331). LV dose was not correlated with LV strain changes (P > .1), but ascending aortic dose was correlated with strain changes at segments 1 and 2 of the LV (P < .0362). Global metrics identified only 2 significant responses: increase in LGE volume at 6 months and a reduction in ascending aortic circumferential strain at 3 months (P < .0356). CONCLUSIONS Early MR-based changes after RT occurred primarily in high-dose regions and the LV septal wall. Although several early signals resolved by 6 months, LGE and longitudinal strain changes persisted for at least 6 months. Dose-dependent responses/correlations were observed for T1/T2/LGE changes at 6 months, with the greatest effect in regions exposed to >50 Gy. Further investigations with larger cohorts and longer follow-up are warranted to confirm regional dose dependence and the association between aortic dose and LV strain observed in this pilot study.
Collapse
Affiliation(s)
- Alireza Omidi
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| | - Elisabeth Weiss
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Mihaela Rosu-Bubulac
- Department of Radiation Oncology, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Georgia Thomas
- Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, Virginia
| | - John S Wilson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia; Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| |
Collapse
|
9
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Jankauskas A, Bartnykaite A, Rinkuniene D, Strazdiene I, Lidziute E, Jankauskaite D, Gaidamavicius I, Bucius P, Lapinskas T, Gerbutavicius R, Juozaityte E, Vaskelyte JJ, Vaitiekus D, Sakalyte G. T1 Mapping in Cardiovascular Magnetic Resonance-A Marker of Diffuse Myocardial Fibrosis in Patients Undergoing Hematopoietic Stem Cell Transplantation. J Pers Med 2024; 14:412. [PMID: 38673039 PMCID: PMC11051481 DOI: 10.3390/jpm14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of cardiovascular diseases. In our study, we aimed to find subclinical changes in myocardial tissue after HSCT with the help of cardiovascular magnetic resonance (CMR) tissue imaging techniques. Methods: The data of 44 patients undergoing autologous and allogeneic HSCT in the Hospital of Lithuanian University of Health Sciences Kaunas Clinics from October 2021 to February 2023 were analyzed. Bioethics approval for the prospective study was obtained (No BE-2-96). CMR was performed two times: before enrolling for the HSCT procedure (before starting mobilization chemotherapy for autologous HSCT and before starting the conditioning regimen for allogeneic HSCT) and 12 ± 1 months after HSCT. LV end-diastolic volume, LV end-systolic volume, LV mass and values indexed to body surface area (BSA), and LV ejection fraction were calculated. T1 and T2 mapping values were measured. Results: There was a statistically significant change in T1 mapping values. Before HSCT, mean T1 mapping was 1226.13 ± 39.74 ms, and after HSCT, it was 1248.70 ± 41.07 ms (p = 0.01). The other parameters did not differ significantly. Conclusions: Increases in T1 mapping values following HSCT can show the progress of diffuse myocardial fibrosis and may reflect subclinical injury. T2 mapping values remain the same and do not show edema and active inflammation processes at 12 months after HSCT.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Igne Strazdiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emilija Lidziute
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Darija Jankauskaite
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Paulius Bucius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Tomas Lapinskas
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Elona Juozaityte
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
10
|
Folco G, Monti CB, Zanardo M, Silletta F, Capra D, Secchi F, Sardanelli F. MRI-derived extracellular volume as a biomarker of cancer therapy cardiotoxicity: systematic review and meta-analysis. Eur Radiol 2024; 34:2699-2710. [PMID: 37823922 PMCID: PMC10957707 DOI: 10.1007/s00330-023-10260-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/04/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES MRI-derived extracellular volume (ECV) allows characterization of myocardial changes before the onset of overt pathology, which may be caused by cancer therapy cardiotoxicity. Our purpose was to review studies exploring the role of MRI-derived ECV as an early cardiotoxicity biomarker to guide timely intervention. MATERIALS AND METHODS In April 2022, we performed a systematic search on EMBASE and PubMed for articles on MRI-derived ECV as a biomarker of cancer therapy cardiotoxicity. Two blinded researchers screened the retrieved articles, including those reporting ECV values at least 3 months from cardiotoxic treatment. Data extraction was performed for each article, including clinical and technical data, and ECV values. Pooled ECV was calculated using the random effects model and compared among different treatment regimens and among those who did or did not experience overt cardiac dysfunction. Meta-regression analyses were conducted to appraise which clinical or technical variables yielded a significant impact on ECV. RESULTS Overall, 19 studies were included. Study populations ranged from 9 to 236 patients, for a total of 1123 individuals, with an average age ranging from 12.5 to 74 years. Most studies included patients with breast or esophageal cancer, treated with anthracyclines and chest radiotherapy. Pooled ECV was 28.44% (95% confidence interval, CI, 26.85-30.03%) among subjects who had undergone cardiotoxic cancer therapy, versus 25.23% (95%CI 23.31-27.14%) among those who had not (p = .003). CONCLUSION A higher ECV in patients who underwent cardiotoxic treatment could imply subclinical changes in the myocardium, present even before overt cardiac pathology is detectable. CLINICAL RELEVANCE STATEMENT The ability to detect subclinical changes in the myocardium displayed by ECV suggests its use as an early biomarker of cancer therapy-related cardiotoxicity. KEY POINTS • Cardiotoxicity is a common adverse effect of cancer therapy; therefore, its prompt detection could improve patient outcomes. • Pooled MRI-derived myocardial extracellular volume was higher in patients who underwent cardiotoxic cancer therapy than in those who did not (28.44% versus 25.23%, p = .003). • MRI-derived myocardial extracellular volume represents a potential early biomarker of cancer therapy cardiotoxicity.
Collapse
Affiliation(s)
- Gianluca Folco
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Caterina B Monti
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy.
| | - Moreno Zanardo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Francesco Silletta
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Davide Capra
- Postgraduation School in Radiodiagnostics, University of Milan, Milan, Italy
| | - Francesco Secchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
11
|
Oikonomou EK, Sangha V, Dhingra LS, Aminorroaya A, Coppi A, Krumholz HM, Baldassarre LA, Khera R. Artificial intelligence-enhanced risk stratification of cancer therapeutics-related cardiac dysfunction using electrocardiographic images. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.12.24304047. [PMID: 38562897 PMCID: PMC10984033 DOI: 10.1101/2024.03.12.24304047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. Objectives To examine an artificial intelligence (AI)-enhanced electrocardiographic (AI-ECG) surrogate for imaging risk biomarkers, and its association with CTRCD. Methods Across a five-hospital U.S.-based health system (2013-2023), we identified patients with breast cancer or non-Hodgkin lymphoma (NHL) who received anthracyclines (AC) and/or trastuzumab (TZM), and a control cohort receiving immune checkpoint inhibitors (ICI). We deployed a validated AI model of left ventricular systolic dysfunction (LVSD) to ECG images (≥0.1, positive screen) and explored its association with i) global longitudinal strain (GLS) measured within 15 days (n=7,271 pairs); ii) future CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction [LVEF]<50%), and LVEF<40%. In the ICI cohort we correlated baseline AI-ECG-LVSD predictions with downstream myocarditis. Results Higher AI-ECG LVSD predictions were associated with worse GLS (-18% [IQR:-20 to -17%] for predictions<0.1, to -12% [IQR:-15 to -9%] for ≥0.5 (p<0.001)). In 1,308 patients receiving AC/TZM (age 59 [IQR:49-67] years, 999 [76.4%] women, 80 [IQR:42-115] follow-up months) a positive baseline AI-ECG LVSD screen was associated with ~2-fold and ~4.8-fold increase in the incidence of the composite CTRCD endpoint (adj.HR 2.22 [95%CI:1.63-3.02]), and LVEF<40% (adj.HR 4.76 [95%CI:2.62-8.66]), respectively. Among 2,056 patients receiving ICI (age 65 [IQR:57-73] years, 913 [44.4%] women, follow-up 63 [IQR:28-99] months) AI-ECG predictions were not associated with ICI myocarditis (adj.HR 1.36 [95%CI:0.47-3.93]). Conclusion AI applied to baseline ECG images can stratify the risk of CTRCD associated with anthracycline or trastuzumab exposure.
Collapse
Affiliation(s)
- Evangelos K. Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Veer Sangha
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Lovedeep S. Dhingra
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Lauren A. Baldassarre
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT
| |
Collapse
|
12
|
Nakata K, Kucukseymen S, Cai X, Yankama T, Rodriguez J, Sai E, Pierce P, Ngo L, Nakamori S, Tung N, Manning WJ, Nezafat R. Cardiovascular magnetic resonance characterization of myocardial tissue injury in a miniature swine model of cancer therapy-related cardiovascular toxicity. J Cardiovasc Magn Reson 2024; 26:101033. [PMID: 38460840 PMCID: PMC11126930 DOI: 10.1016/j.jocmr.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Left ventricular ejection fraction (LVEF) is the most commonly clinically used imaging parameter for assessing cancer therapy-related cardiac dysfunction (CTRCD). However, LVEF declines may occur late, after substantial injury. This study sought to investigate cardiovascular magnetic resonance (CMR) imaging markers of subclinical cardiac injury in a miniature swine model. METHODS Female Yucatan miniature swine (n = 14) received doxorubicin (2 mg/kg) every 3 weeks for 4 cycles. CMR, including cine, tissue characterization via T1 and T2 mapping, and late gadolinium enhancement (LGE) were performed on the same day as doxorubicin administration and 3 weeks after the final chemotherapy cycle. In addition, magnetic resonance spectroscopy (MRS) was performed during the 3 weeks after the final chemotherapy in 7 pigs. A single CMR and MRS exam were also performed in 3 Yucatan miniature swine that were age- and weight-matched to the final imaging exam of the doxorubicin-treated swine to serve as controls. CTRCD was defined as histological early morphologic changes, including cytoplasmic vacuolization and myofibrillar loss of myocytes, based on post-mortem analysis of humanely euthanized pigs after the final CMR exam. RESULTS Of 13 swine completing 5 serial CMR scans, 10 (77%) had histological evidence of CTRCD. Three animals had neither histological evidence nor changes in LVEF from baseline. No absolute LVEF <40% or LGE was observed. Native T1, extracellular volume (ECV), and T2 at 12 weeks were significantly higher in swine with CTRCD than those without CTRCD (1178 ms vs. 1134 ms, p = 0.002, 27.4% vs. 24.5%, p = 0.03, and 38.1 ms vs. 36.4 ms, p = 0.02, respectively). There were no significant changes in strain parameters. The temporal trajectories in native T1, ECV, and T2 in swine with CTRCD showed similar and statistically significant increases. At the same time, there were no differences in their temporal changes between those with and without CTRCD. MRS myocardial triglyceride content substantially differed among controls, swine with and without CTRCD (0.89%, 0.30%, 0.54%, respectively, analysis of variance, p = 0.01), and associated with the severity of histological findings and incidence of vacuolated cardiomyocytes. CONCLUSION Serial CMR imaging alone has a limited ability to detect histologic CTRCD beyond LVEF. Integrating MRS myocardial triglyceride content may be useful for detection of early potential CTRCD.
Collapse
MESH Headings
- Animals
- Female
- Swine, Miniature
- Doxorubicin
- Cardiotoxicity
- Myocardium/pathology
- Myocardium/metabolism
- Swine
- Disease Models, Animal
- Magnetic Resonance Imaging, Cine
- Ventricular Function, Left/drug effects
- Predictive Value of Tests
- Stroke Volume/drug effects
- Time Factors
- Magnetic Resonance Spectroscopy
- Antibiotics, Antineoplastic/adverse effects
- Contrast Media
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/metabolism
Collapse
Affiliation(s)
- Kei Nakata
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Siemens Medical Solutions USA, Inc., Boston, Massachusetts, USA
| | - Tuyen Yankama
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Eiryu Sai
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Shiro Nakamori
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Nadine Tung
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Warren J Manning
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Hong YJ, Han K, Lee HJ, Hur J, Kim YJ, Kim MJ, Choi BW. Assessment of Feasibility and Interscan Variability of Short-time Cardiac MRI for Cardiotoxicity Evaluation in Breast Cancer. Radiol Cardiothorac Imaging 2024; 6:e220229. [PMID: 38329404 PMCID: PMC10912882 DOI: 10.1148/ryct.220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024]
Abstract
Purpose To investigate the feasibility and interscan variability of short-time cardiac MRI protocol after chemotherapy in individuals with breast cancer. Materials and Methods A total of 13 healthy female controls (mean age, 52.4 years ± 13.2 [SD]) and 85 female participants with breast cancer (mean age, 51.8 years ± 9.9) undergoing chemotherapy prospectively underwent routine breast MRI and short-time cardiac MRI using a 3-T scanner with peripheral pulse gating in the prone position. Interscan, intercoil, and interobserver reproducibility and variability of native T1 and extracellular volume (ECV), as well as ventricular functional parameters, were measured using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), or coefficient of variation (CoV). Results Left ventricular functional parameters had excellent interscan reproducibility (ICC ≥ 0.80). Left ventricular ejection fraction showed low interscan variability in control and chemotherapy participants (SEM, 2.0 and 1.2; CoV, 3.1 and 1.9, respectively). Native T1 showed excellent interscan (ICC, 0.75) and intercoil (ICC, 0.81) reproducibility in the control group and good interscan reproducibility (ICC, 0.72 and 0.73, respectively) in the participants undergoing immediate and remote chemotherapy. Interscan reproducibility for ECV was excellent in the control group and in the remote chemotherapy group (ICC, 0.93 and 0.88, respectively) and fair in the immediate chemotherapy group (ICC, 0.52). In the regional analysis, interscan repeatability and variability of native T1 and ECV were superior in the anteroseptum or inferoseptum than in other segments in the immediate chemotherapy group. Native T1 and ECV had good to excellent interobserver agreement across all groups. Conclusion Short-time cardiac MRI showed excellent results for interscan, intercoil, and interobserver reproducibility and variability for ventricular functional or tissue characterization parameters, suggesting that this modality is feasible for routine surveillance of cardiotoxicity evaluation in individuals with breast cancer. Keywords: Cardiac MRI, Heart, Cardiomyopathy ClinicalTrials.gov registration no. NCT03301389 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Yoo Jin Hong
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Kyunghwa Han
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Hye-Jeong Lee
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Jin Hur
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Young Jin Kim
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Min Jung Kim
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| | - Byoung Wook Choi
- From the Department of Radiology and Research Institute of
Radiological Science, Severance Hospital, Yonsei University College of Medicine,
50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, South Korea
| |
Collapse
|
14
|
Sutton AL, Felix AS, Wahl S, Franco RL, Leicht Z, Williams KP, Hundley WG, Sheppard VB. Racial disparities in treatment-related cardiovascular toxicities amongst women with breast cancer: a scoping review. J Cancer Surviv 2023; 17:1596-1605. [PMID: 35420375 DOI: 10.1007/s11764-022-01210-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Black women often experience poorer breast cancer-related outcomes and higher mortality than white women. A contributor to this disparity may relate to the disproportionate burden of cancer treatment-related cardiovascular (CV) toxicities. The objective of this review is to identify studies that report racial differences in CV toxicity risk. METHODS Medline and Embase were searched for studies that assessed CV toxicities as the outcome(s) and included Black and White women with breast cancer. Studies were selected based on inclusion/exclusion criteria and through the use of multiple reviewers. RESULTS The review included 13 studies following a review of 409 citations and 49 full-text articles. All studies were retrospective and 8/13 utilized data from the Surveillance, Epidemiology, and End Results-Medicare linked database. Trastuzumab was the most frequently studied treatment. The proportion of Black women in these studies ranged from 5.5 to 63%. A majority of studies reported a higher risk of CV toxicity amongst Black women when compared to white women (93%). Black women had up to a two times higher risk of CV toxicity (HR, 2.73 (CI, 1.24 to 6.01)) compared to white women. Only one study evaluated the role of socioeconomic factors in explaining racial differences in CV toxicity; however, the disparity remained even after adjusting for these factors. CONCLUSIONS There is a critical need for more longitudinal studies that evaluate multilevel factors (e.g., psychosocial, biological) that may help to explain this disparity. IMPLICATIONS FOR CANCER SURVIVORS Black cancer survivors may require additional surveillance and mitigation strategies to decrease disproportionate burden of CV toxicities.
Collapse
Affiliation(s)
- Arnethea L Sutton
- Department of Health Behavior and Policy, School of Medicine, Virginia Commonwealth University, P.O. Box 980149, Richmond, VA, 23219, USA.
| | - Ashley S Felix
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Stacey Wahl
- Health Sciences Library, Virginia Commonwealth University, Richmond, VA, USA
| | - R Lee Franco
- Department of Kinesiology and Health Sciences, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Leicht
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesvile, VA, USA
| | | | - W Gregory Hundley
- Pauley Heart Center, Virginia Commonwealth University Health Sciences, Richmond, VA, USA
| | - Vanessa B Sheppard
- Department of Health Behavior and Policy, School of Medicine, Virginia Commonwealth University, P.O. Box 980149, Richmond, VA, 23219, USA
- Office of Health Equity and Disparities Research, Massey Cancer Center, Richmond, VA, USA
| |
Collapse
|
15
|
Mertens L, Singh G, Armenian S, Chen MH, Dorfman AL, Garg R, Husain N, Joshi V, Leger KJ, Lipshultz SE, Lopez-Mattei J, Narayan HK, Parthiban A, Pignatelli RH, Toro-Salazar O, Wasserman M, Wheatley J. Multimodality Imaging for Cardiac Surveillance of Cancer Treatment in Children: Recommendations From the American Society of Echocardiography. J Am Soc Echocardiogr 2023; 36:1227-1253. [PMID: 38043984 DOI: 10.1016/j.echo.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Luc Mertens
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gautam Singh
- Children's Hospital of Michigan, Detroit, Michigan; Central Michigan University School of Medicine, Saginaw, Michigan
| | - Saro Armenian
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ming-Hui Chen
- Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam L Dorfman
- University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Ruchira Garg
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Vijaya Joshi
- St. Jude Children's Research Hospital/University of Tennessee College of Medicine, Memphis, Tennessee
| | - Kasey J Leger
- University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - Steven E Lipshultz
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Oishei Children's Hospital, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Hari K Narayan
- University of California San Diego, Rady Children's Hospital San Diego, San Diego, California
| | - Anitha Parthiban
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | - Olga Toro-Salazar
- Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut
| | | | | |
Collapse
|
16
|
Addison D, Neilan TG, Barac A, Scherrer-Crosbie M, Okwuosa TM, Plana JC, Reding KW, Taqueti VR, Yang EH, Zaha VG. Cardiovascular Imaging in Contemporary Cardio-Oncology: A Scientific Statement From the American Heart Association. Circulation 2023; 148:1271-1286. [PMID: 37732422 DOI: 10.1161/cir.0000000000001174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Advances in cancer therapeutics have led to dramatic improvements in survival, now inclusive of nearly 20 million patients and rising. However, cardiovascular toxicities associated with specific cancer therapeutics adversely affect the outcomes of patients with cancer. Advances in cardiovascular imaging have solidified the critical role for robust methods for detecting, monitoring, and prognosticating cardiac risk among patients with cancer. However, decentralized evaluations have led to a lack of consensus on the optimal uses of imaging in contemporary cancer treatment (eg, immunotherapy, targeted, or biological therapy) settings. Similarly, available isolated preclinical and clinical studies have provided incomplete insights into the effectiveness of multiple modalities for cardiovascular imaging in cancer care. The aims of this scientific statement are to define the current state of evidence for cardiovascular imaging in the cancer treatment and survivorship settings and to propose novel methodological approaches to inform the optimal application of cardiovascular imaging in future clinical trials and registries. We also propose an evidence-based integrated approach to the use of cardiovascular imaging in routine clinical settings. This scientific statement summarizes and clarifies available evidence while providing guidance on the optimal uses of multimodality cardiovascular imaging in the era of emerging anticancer therapies.
Collapse
|
17
|
Naaktgeboren WR, Stuiver MM, van Harten WH, Aaronson NK, Scott JM, Sonke G, van der Wall E, Velthuis M, Leiner T, Teske AJ, May AM, Groen WG. Effects of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity. Open Heart 2023; 10:e002464. [PMID: 37903570 PMCID: PMC10619040 DOI: 10.1136/openhrt-2023-002464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Animal data suggest that exercise during chemotherapy is cardioprotective, but clinical evidence to support this is limited. This study evaluated the effect of exercise during chemotherapy for breast cancer on long-term cardiovascular toxicity. METHODS This is a follow-up study of two previously performed randomised trials in patients with breast cancer allocated to exercise during chemotherapy or non-exercise controls. Cardiac imaging parameters, including T1 mapping (native T1, extracellular volume fraction (ECV)), left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS), cardiorespiratory fitness, and physical activity levels, were acquired 8.5 years post-treatment. RESULTS In total, 185 breast cancer survivors were included (mean age 58.9±7.8 years), of whom 99% and 18% were treated with anthracyclines and trastuzumab, respectively. ECV and Native T1 were 25.3%±2.5% and 1026±51 ms in the control group, and 24.6%±2.8% and 1007±44 ms in the exercise group, respectively. LVEF was borderline normal in both groups, with an LVEF<50% prevalence of 22.5% (n=40/178) in all participants. Compared with control, native T1 was statistically significantly lower in the exercise group (β=-20.16, 95% CI -35.35 to -4.97). We found no effect of exercise on ECV (β=-0.69, 95% CI -1.62 to 0.25), LVEF (β=-1.36, 95% CI -3.45 to 0.73) or GLS (β=0.31, 95% CI -0.76 to 1.37). Higher self-reported physical activity levels during chemotherapy were significantly associated with better native T1 and ECV. CONCLUSIONS In long-term breast cancer survivors, exercise and being more physically active during chemotherapy were associated with better structural but not functional cardiac parameters. The high prevalence of cardiac dysfunction calls for additional research on cardioprotective measures, including alternative exercise regimens. TRIAL REGISTRATION NUMBER NTR7247.
Collapse
Affiliation(s)
- Willeke R Naaktgeboren
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Martijn M Stuiver
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Center for Quality of Life, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Faculty of Health, Amsterdam University of Applied Sciences, Amsterdam, The Netherlands
| | - Wim H van Harten
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Health Technology and Services Research, University of Twente, Enschede, Netherlands
- Rijnstate Hospital, Arnhem, Netherlands
| | - Neil K Aaronson
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jessica M Scott
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Gabe Sonke
- Medical Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Centre, Utrecht, The Netherlands
| | - Miranda Velthuis
- Netherlands Comprehensive Cancer Organisation, Nijmegen, The Netherlands
| | - Tim Leiner
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Radiology, UMC Utrecht, Utrecht, Netherlands
| | - Arco J Teske
- Cardiology, University Medical Centre, Utrecht, The Netherlands
| | - Anne M May
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wim G Groen
- Department of Medicine for Older People, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Aging & Later Life, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
- Amsterdam Movement Sciences, Ageing & Vitality, Rehabilitation & Development, Amstermdam, Netherlands
| |
Collapse
|
18
|
Hatayama Y, Kudo S, Ota R, Kuroki A, Tanaka M, Yotsuya C, Ichise K, Fujioka I, Sato M, Kawaguchi H, Aoki M. Investigation of the efficacy of the change ratio of brain natriuretic peptide for predicting the cardiac effects of chemoradiotherapy on esophageal cancer. Oncol Lett 2023; 26:439. [PMID: 37664653 PMCID: PMC10472025 DOI: 10.3892/ol.2023.14026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023] Open
Abstract
The aim of this study was to investigate the effectiveness of brain natriuretic peptide (BNP) as a predictor of radiological effects on the heart. A total of 41 patients with esophageal cancer who underwent chemoradiotherapy (CRT) were retrospectively investigated. The BNP levels were measured on the first day of CRT (pre-CRT) and the last day of CRT (post-CRT), and the median concentration of BNP and dosimetric parameters of the heart were calculated. The change ratio of BNP was calculated as follows: [(BNP post-CRT) - (BNP pre-CRT)]/(BNP pre-CRT). The comparison of BNP pre-CRT with post-CRT was performed using a Wilcoxon signed-rank test. The relationship between dosimetric parameters and change ratio was analyzed using Spearman's correlation coefficient. The median levels of BNP of pre-CRT and post-CRT were 10 and 22 pg/ml, respectively, and the difference was statistically significant (P<0.0001). Significant correlations (all P<0.05) were observed between the change ratio and mean dose, V5, V10, V20, and V30. Of the cohort, 14 patients developed acute-to-subacute cardiac events, such as pericardial effusion, cardiomegaly, acute exacerbation of chronic heart failure, and a decreased ejection fraction. The change ratios of BNP, V5, V10, V20, and V30 were significantly higher in patients who experienced cardiac events compared with those who did not. The results of this study showed that BNP measurement, particularly the change ratio of BNP pre- and post-CRT, may be a useful cardiac event predictor in addition to dosimetric parameters.
Collapse
Affiliation(s)
- Yoshiomi Hatayama
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Shiori Kudo
- Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Riko Ota
- Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Akane Kuroki
- Hirosaki University School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Mitsuki Tanaka
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Chihiro Yotsuya
- Department of Internal Medicine, Kodomari Clinic, Kitatsugaru-gun, Aomori 037-0512, Japan
| | - Koji Ichise
- Department of Radiation Oncology, Sumitomo Hospital, Osaka, Osaka 530-0005, Japan
| | - Ichitaro Fujioka
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Mariko Sato
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, Koriyama, Fukushima 963-8563, Japan
| | - Hideo Kawaguchi
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
19
|
Valzania C, Paccagnella A, Spadotto A, Ruotolo I, Bonfiglioli R, Fallani F, Fanti S, Galié N. Early detection of cancer therapy cardiotoxicity by radionuclide angiography: An update. J Nucl Cardiol 2023; 30:2104-2111. [PMID: 36855007 DOI: 10.1007/s12350-023-03202-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/06/2022] [Indexed: 03/02/2023]
Abstract
Cancer therapy-induced cardiotoxicity is an emerging clinical and healthcare issue. Myocardial dysfunction and heart failure are mostly responsible for increased cardiovascular mortality in cancer disease survivors. Several imaging surveillance techniques have been proposed for early diagnosis of cancer therapy-induced cardiac dysfunction. Our aim was to provide an update of radionuclide angiography applications in this field. Radionuclide angiography is widely used to assess left ventricular ejection fraction (LVEF) throughout cancer treatment, especially in patients with limited acoustic window. Additional prognostic data may be provided by phase analysis and diastolic function evaluation. Low LVEF and high approximate entropy at baseline seem to be predictors for cancer therapy-induced cardiac dysfunction. A decrease in peak filling rate and/or an increase in time to peak filling rate may be observed in patients undergoing anthracycline and/or trastuzumab administration. Diastolic function impairment may precede or not LVEF decrease. In conclusion, recent studies have provided novel insights into the possible role of radionuclide angiography in the early detection of cancer therapy cardiotoxicity. While interpreting the results of a radionuclide angiography examination, an integrated approach combining the evaluation of LVEF, LV diastolic function, and phase analysis may be useful to improve risk stratification of cancer patients treated with cardiotoxic agents.
Collapse
Affiliation(s)
- Cinzia Valzania
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy.
| | - Andrea Paccagnella
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
- Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Alberto Spadotto
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Irene Ruotolo
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Rachele Bonfiglioli
- Department of Nuclear Medicine, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Francesco Fallani
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Stefano Fanti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
- Department of Nuclear Medicine, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Nazzareno Galié
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Ye L, Wang DQ, Yang MX, Li QL, Luo H, Lin XJ, Li KM, Song L, Ma Y, Huang HQ, Zhong L, Yang L, Zhang JJ, Gong FM, Xu HY, Xie LJ, Yin RT, Guo YK. Chemotherapy effect on myocardial fibrosis markers in patients with gynecologic cancer and low cardiovascular risk. Front Oncol 2023; 13:1173838. [PMID: 37614506 PMCID: PMC10442931 DOI: 10.3389/fonc.2023.1173838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
Background Patients with gynecologic cancers experience side effects of chemotherapy cardiotoxicity. We aimed to quantify cardiac magnetic resonance (CMR) markers of myocardial fibrosis in patients with gynecologic cancer and low cardiovascular risk who undergo chemotherapy. Methods This study is part of a registered clinical research. CMR T1 mapping was performed in patients with gynecologic cancer and low cardiovascular risk undergoing chemotherapy. The results were compared with those of age-matched healthy control subjects. Results 68 patients (median age = 50 years) and 30 control subjects were included. The median number of chemotherapy cycles of patients was 9.0 (interquartile range [IQR] 3.3-17.0). Extracellular volume fraction (ECV) (27.2% ± 2.7% vs. 24.5% ± 1.7%, P < 0.001) and global longitudinal strain (-16.2% ± 2.8% vs. -17.4% ± 2.0%, P = 0.040) were higher in patients compared with controls. Patients with higher chemotherapy cycles (>6 cycles) (n=41) had significantly lower intracellular mass indexed (ICMi) compared with both patients with lower chemotherapy cycles (≤6 cycles) (n=27) (median 27.44 g/m2 [IQR 24.03-31.15 g/m2] vs. median 34.30 g/m2 [IQR 29.93-39.79 g/m2]; P = 0.002) and the control group (median 27.44 g/m2 [IQR 24.03-31.15 g/m2] vs. median 32.79 g/m2 [IQR 27.74-35.76 g/m2]; P = 0.002). Patients with two or more chemotherapy regimens had significantly lower ICMi compared with both patients with one chemotherapy regimen (27.45 ± 5.16 g/m2 vs. 33.32 ± 6.42 g/m2; P < 0.001) and the control group (27.45 ± 5.16 g/m2 vs. 33.02 ± 5.52 g/m2; P < 0.001). The number of chemotherapy cycles was associated with an increase in the ECV (Standard regression coefficient [β] = 0.383, P = 0.014) and a decrease in the ICMi (β = -0.349, P = 0.009). Conclusion Patients with gynecologic cancer and low cardiovascular risk who undergo chemotherapy have diffuse extracellular volume expansion, which is obvious with the increase of chemotherapy cycles. Myocyte loss may be part of the mechanism in patients with a higher chemotherapy load. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR-DDD-17013450.
Collapse
Affiliation(s)
- Lu Ye
- Department of Ultrasound, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan-qing Wang
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng-xi Yang
- Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing-li Li
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasound, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-juan Lin
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ke-min Li
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Song
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu Ma
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hui-qiong Huang
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lan Zhong
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian-jun Zhang
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Feng-ming Gong
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hua-yan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin-jun Xie
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ru-tie Yin
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying-kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Hill L, Delgado B, Lambrinou E, Mannion T, Harbinson M, McCune C. Risk and Management of Patients with Cancer and Heart Disease. Cardiol Ther 2023; 12:227-241. [PMID: 36757637 PMCID: PMC10209380 DOI: 10.1007/s40119-023-00305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and cardiovascular disease are two of the leading causes of global mortality and morbidity. Medical research has generated powerful lifesaving treatments for patients with cancer; however, such treatments may sometimes be at the expense of the patient's myocardium, leading to heart failure. Anti-cancer drugs, including anthracyclines, can result in deleterious cardiac effects, significantly impacting patients' functional capacity, mental well-being, and quality of life. Recognizing this, recent international guidelines and expert papers published recommendations on risk stratification and care delivery, including that of cardio-oncology services. This review will summarize key evidence with a focus on anthracycline therapy, providing clinical guidance for the non-oncology professional caring for a patient with cancer and heart failure.
Collapse
Affiliation(s)
- Loreena Hill
- School of Nursing and Midwifery, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- College of Nursing and Midwifery, Mohammed Bin Rashid University, Dubai, United Arab Emirates.
| | - Bruno Delgado
- Cardiology Department, University Hospital Centre of Oporto, Stº António Hospital, Oporto, Portugal
- Institute of Health Sciences, Portuguese Catholic University, Oporto, Portugal
| | | | - Tara Mannion
- Beaumont Hospital, Dublin, Ireland
- School of Nursing, Midwifery and Health Systems, University College Dublin, Dublin, Ireland
| | - Mark Harbinson
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Claire McCune
- School of Medicine Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
- Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
22
|
Thavendiranathan P, Shalmon T, Fan CPS, Houbois C, Amir E, Thevakumaran Y, Somerset E, Malowany JM, Urzua-Fresno C, Yip P, McIntosh C, Sussman MS, Brezden-Masley C, Yan AT, Koch CA, Spiller N, Abdel-Qadir H, Power C, Hanneman K, Wintersperger BJ. Comprehensive Cardiovascular Magnetic Resonance Tissue Characterization and Cardiotoxicity in Women With Breast Cancer. JAMA Cardiol 2023; 8:524-534. [PMID: 37043251 PMCID: PMC10099158 DOI: 10.1001/jamacardio.2023.0494] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/12/2023] [Indexed: 04/13/2023]
Abstract
Importance There is a growing interest in understanding whether cardiovascular magnetic resonance (CMR) myocardial tissue characterization helps identify risk of cancer therapy-related cardiac dysfunction (CTRCD). Objective To describe changes in CMR tissue biomarkers during breast cancer therapy and their association with CTRCD. Design, Setting, and Participants This was a prospective, multicenter, cohort study of women with ERBB2 (formerly HER2)-positive breast cancer (stages I-III) who were scheduled to receive anthracycline and trastuzumab therapy with/without adjuvant radiotherapy and surgery. From November 7, 2013, to January 16, 2019, participants were recruited from 3 University of Toronto-affiliated hospitals. Data were analyzed from July 2021 to June 2022. Exposures Sequential therapy with anthracyclines, trastuzumab, and radiation. Main Outcomes and Measures CMR, high-sensitivity cardiac troponin I (hs-cTnI), and B-type natriuretic peptide (BNP) measurements were performed before anthracycline treatment, after anthracycline and before trastuzumab treatment, and at 3-month intervals during trastuzumab therapy. CMR included left ventricular (LV) volumes, LV ejection fraction (EF), myocardial strain, early gadolinium enhancement imaging to assess hyperemia (inflammation marker), native/postcontrast T1 mapping (with extracellular volume fraction [ECV]) to assess edema and/or fibrosis, T2 mapping to assess edema, and late gadolinium enhancement (LGE) to assess replacement fibrosis. CTRCD was defined using the Cardiac Review and Evaluation Committee criteria. Fixed-effects models or generalized estimating equations were used in analyses. Results Of 136 women (mean [SD] age, 51.1 [9.2] years) recruited from 2013 to 2019, 37 (27%) developed CTRCD. Compared with baseline, tissue biomarkers of myocardial hyperemia and edema peaked after anthracycline therapy or 3 months after trastuzumab initiation as demonstrated by an increase in mean (SD) relative myocardial enhancement (baseline, 46.3% [16.8%] to peak, 56.2% [18.6%]), native T1 (1012 [26] milliseconds to 1035 [28] milliseconds), T2 (51.4 [2.2] milliseconds to 52.6 [2.2] milliseconds), and ECV (25.2% [2.4%] to 26.8% [2.7%]), with P <.001 for the entire follow-up. The observed values were mostly within the normal range, and the changes were small and recovered during follow-up. No new replacement fibrosis developed. Increase in T1, T2, and/or ECV was associated with increased ventricular volumes and BNP but not hs-cTnI level. None of the CMR tissue biomarkers were associated with changes in LVEF or myocardial strain. Change in ECV was associated with concurrent and subsequent CTRCD, but there was significant overlap between patients with and without CTRCD. Conclusions and Relevance In women with ERBB2-positive breast cancer receiving sequential anthracycline and trastuzumab therapy, CMR tissue biomarkers suggest inflammation and edema peaking early during therapy and were associated with ventricular remodeling and BNP elevation. However, the increases in CMR biomarkers were transient, were not associated with LVEF or myocardial strain, and were not useful in identifying traditional CTRCD risk.
Collapse
Affiliation(s)
- Paaladinesh Thavendiranathan
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tamar Shalmon
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Chun-Po Steve Fan
- Ted Rogers Computational Program, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, UHN, Toronto, Ontario, Canada
| | - Christian Houbois
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Eitan Amir
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yobiga Thevakumaran
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Emily Somerset
- Ted Rogers Computational Program, Ted Rogers Centre for Heart Research, Peter Munk Cardiac Centre, UHN, Toronto, Ontario, Canada
| | - Julia M. Malowany
- Peter Munk Cardiac Center, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Camila Urzua-Fresno
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Paul Yip
- Division of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Ontario, Canada
| | - Chris McIntosh
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, University of Toronto, Toronto, Ontario, Canada
| | - Marshall S. Sussman
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Christine Brezden-Masley
- Department of Medicine, Division of Medical Oncology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T. Yan
- Keenan Research Centre, Li Ka Shing Knowledge Institute, Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - C. Anne Koch
- Radiation Medicine Program, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Neil Spiller
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Husam Abdel-Qadir
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Women’s College Hospital, Toronto, Ontario, Canada
| | - Coleen Power
- Department of Medicine, Division of Cardiology, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kate Hanneman
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Bernd J. Wintersperger
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Dozic S, Howden EJ, Bell JR, Mellor KM, Delbridge LMD, Weeks KL. Cellular Mechanisms Mediating Exercise-Induced Protection against Cardiotoxic Anthracycline Cancer Therapy. Cells 2023; 12:cells12091312. [PMID: 37174712 PMCID: PMC10177216 DOI: 10.3390/cells12091312] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracyclines such as doxorubicin are widely used chemotherapy drugs. A common side effect of anthracycline therapy is cardiotoxicity, which can compromise heart function and lead to dilated cardiomyopathy and heart failure. Dexrazoxane and heart failure medications (i.e., beta blockers and drugs targeting the renin-angiotensin system) are prescribed for the primary prevention of cancer therapy-related cardiotoxicity and for the management of cardiac dysfunction and symptoms if they arise during chemotherapy. However, there is a clear need for new therapies to combat the cardiotoxic effects of cancer drugs. Exercise is a cardioprotective stimulus that has recently been shown to improve heart function and prevent functional disability in breast cancer patients undergoing anthracycline chemotherapy. Evidence from preclinical studies supports the use of exercise training to prevent or attenuate the damaging effects of anthracyclines on the cardiovascular system. In this review, we summarise findings from experimental models which provide insight into cellular mechanisms by which exercise may protect the heart from anthracycline-mediated damage, and identify knowledge gaps that require further investigation. Improved understanding of the mechanisms by which exercise protects the heart from anthracyclines may lead to the development of novel therapies to treat cancer therapy-related cardiotoxicity.
Collapse
Affiliation(s)
- Sanela Dozic
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Erin J Howden
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - James R Bell
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland 1023, New Zealand
| | - Lea M D Delbridge
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Weeks
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
24
|
Cannizzaro MT, Inserra MC, Passaniti G, Celona A, D'Angelo T, Romeo P, Basile A. Role of advanced cardiovascular imaging in chemotherapy-induced cardiotoxicity. Heliyon 2023; 9:e15226. [PMID: 37095987 PMCID: PMC10121465 DOI: 10.1016/j.heliyon.2023.e15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
The development of cardiotoxicity induced by cancer treatments has emerged as a significant clinical problem, both in the short run, as it may influence drug administration in chemotherapeutic protocols, and in the long run, because it may determine adverse cardiovascular outcomes in survivors of various malignant diseases. Therefore, early detection of anticancer drug-related cardiotoxicity is an important clinical target to improve prevention of adverse effects and patient care. Today, echocardiography is the first-line cardiac imaging techniques used for identifying cardiotoxicity. Cardiac dysfunction, clinical and subclinical, is generally diagnosed by the reduction of left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS). However, myocardial injury detected by echocardiography is preceded by other alterations, such as myocardial perfusion and mitochondrial and metabolic dysfunction, that can only be recognized by second-level imaging techniques, like cardiac magnetic resonance (CMR) and nuclear imaging, which, using targeted radiotracers, may help to provide information on the specific mechanisms of cardiotoxicity. In this review, we focus on the current and emerging role of CMR, as a critical diagnostic tool of cardiotoxicity in the very early phase, due to its availability and because it allows the contemporary detection of functional alterations, tissue alterations (mainly performed using T1, T2 mapping with the evaluation of extracellular volume-ECV) and perfusional alteration (evaluated with rest-stress perfusion) and, in the next future, even metabolic changes. Moreover, in the subsequent future, the use of Artificial Intelligence and big data on imaging parameters (CT, CMR) and oncoming molecular imaging datasets, including differences for gender and countries, may help predict cardiovascular toxicity at its earliest stages, avoiding its progression, with precise tailoring of patients' diagnostic and therapeutic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Ospital “Policlinico G. Martino”, Messina, Italy
| | - Placido Romeo
- Radiology Department of AO “San Marco”, A.U.O. Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- University of Catania, Department of Surgical and Medical Sciences and Advanced Technologies ‘G.F. Ingrassia’, Italy
| |
Collapse
|
25
|
Camilli M, Skinner R, Iannaccone G, La Vecchia G, Montone RA, Lanza GA, Natale L, Crea F, Cameli M, Del Buono MG, Lombardo A, Minotti G. Cardiac Imaging in Childhood Cancer Survivors: A State-of-the-Art Review. Curr Probl Cardiol 2023; 48:101544. [PMID: 36529231 DOI: 10.1016/j.cpcardiol.2022.101544] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Childhood cancer survival has improved significantly in the past few decades, reaching rates of 80% or more at 5 years. However, with improved survival, early- and late-occurring complications of chemotherapy and radiotherapy exposure are becoming progressively more evident. Cardiovascular diseases represent the leading cause of non-oncological morbidity and mortality in this highly vulnerable population. Therefore, the necessity of reliable, noninvasive screening tools able to early identify cardiac complications early is now pre-eminent in order to implement prevention strategies and mitigate disease progression. Echocardiography, may allow identification of myocardial dysfunction, pericardial complications, and valvular heart diseases. However, additional imaging modalities may be necessary in selected cases. This manuscript provides an in-depth review of noninvasive imaging parameters studied in childhood cancer survivors. Furthermore, we will illustrate brief surveillance recommendations according to available evidence and future perspectives in this expanding field.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology and Oncology, Great North Children's Hospital, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK
| | - Giulia Iannaccone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia La Vecchia
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gaetano Antonio Lanza
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luigi Natale
- Radiological, Radiotherapic and Haematological Sciences, Fondazione Policlinico Universitario Gemelli-IRCCS, Università Cattolica S. Cuore Rome, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Matteo Cameli
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy; Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Minotti
- Department of Medicine, Center for Integrated Research and Unit of Drug Sciences, Campus Bio-Medico University and Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
26
|
Tian Y, Wang T, Tian L, Yang Y, Xue C, Sheng W, Wang C. Early detection and serial monitoring during chemotherapy-radiation therapy: Using T1 and T2 mapping cardiac magnetic resonance imaging. Front Cardiovasc Med 2023; 10:1085737. [PMID: 37063950 PMCID: PMC10090395 DOI: 10.3389/fcvm.2023.1085737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
PurposeTo confirm the ability of native T1 and T2 values in detecting and monitoring early myocardial injuries of chest radiotherapy in neoplasm patients.Materials and methodsFifteen participants received non-anthracycline chemotherapy and chest radiotherapy, and 30 age/gender-matched controls were enrolled in this prospective study. Cardiac magnetic resonance scans were performed within 2 days, 3 months, and 6 months after chest radiotherapy. Myocardial native T1 and T2 values were measured in irradiated and nonirradiated areas. Meanwhile, the parameters of left ventricular function and left ventricular myocardial strain were obtained.ResultsThere were no significant differences in left ventricular function, native T1, T2, and strain between patients and controls before chest radiotherapy. In 15 participants who were followed up for 6 months, there was a significant change only in left ventricular ejection fraction (LVEF) among baseline and the first follow-up (P = 0.021), while the adjusted P-value was higher than 0.05 after Bonferroni correction, as well as other parameters. Native T1 values were elevated at 3 and 6 months in irradiated areas compared with baseline (1,288.72 ± 66.59 ms vs. 1,212.51 ± 45.41 ms; 1,348.01 ± 54.16 ms vs. 1,212.51 ± 45.41 ms; P < 0.001 for both). However, T2 values only changed at 3 months in irradiated areas compared with baseline (44.21 ± 3.35 ms vs. 39.14 ± 1.44 ms; P = 0.006). Neither the native T1 nor T2 values changed in nonirradiated areas during the follow-up period (all P > 0.05). There were no significant differences in strain changes during the follow-up period (all P > 0.05).ConclusionNative T1 and T2 values elevated at 3 months after chest radiotherapy, whereas LVEF showed no significant change during the 6-month follow-up.
Collapse
Affiliation(s)
- Yaotian Tian
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Teng Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Liwen Tian
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yucheng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chen Xue
- Department of Radiology, Shandong Provincial Hospital, Binzhou Medical University, Jinan, China
| | - Wei Sheng
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cuiyan Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Correspondence: Cuiyan Wang
| |
Collapse
|
27
|
Chai Y, Jiang M, Wang Y, Liu Q, Lu Q, Tao Z, Wu Q, Yin W, Lu J, Pu J. Protocol for pyrotinib cardiac safety in patients with HER2-positive early or locally advanced breast cancer-The EARLY-MYO-BC study. Front Cardiovasc Med 2023; 10:1021937. [PMID: 36844736 PMCID: PMC9950570 DOI: 10.3389/fcvm.2023.1021937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Background and aim Cardiotoxicity has become the most common cause of non-cancer death among breast cancer patients. Pyrotinib, a tyrosine kinase inhibitor targeting HER2, has been successfully used to treat breast cancer patients but has also resulted in less well-understood cardiotoxicity. This prospective, controlled, open-label, observational trial was designed to characterize pyrotinib's cardiac impacts in the neoadjuvant setting for patients with HER2-positive early or locally advanced breast cancer. Patients and methods The EARLY-MYO-BC study will prospectively enroll HER2-positive breast cancer patients who are scheduled to receive four cycles of neoadjuvant therapy with pyrotinib or pertuzumab added to trastuzumab before radical breast cancer surgery. Patients will undergo comprehensive cardiac assessment before and after neoadjuvant therapy, including laboratory measures, electrocardiography, transthoracic echocardiography, cardiopulmonary exercise testing (CPET), and cardiac magnetic resonance (CMR). To test the non-inferiority of pyrotinib plus trastuzumab therapy to pertuzumab plus trastuzumab therapy in terms of cardiac safety, the primary endpoint will be assessed by the relative change in global longitudinal strain from baseline to completion of neoadjuvant therapy by echocardiography. The secondary endpoints include myocardial diffuse fibrosis (by T1-derived extracellular volume), myocardial edema (by T2 mapping), cardiac volumetric assessment by CMR, diastolic function (by left ventricular volume, left atrial volume, E/A, and E/E') by echocardiography, and exercise capacity by CPET. Discussion This study will comprehensively assess the impacts of pyrotinib on myocardial structural, function, and tissue characteristics, and, furthermore, will determine whether pyrotinib plus trastuzumab is a reasonable dual HER2 blockade regimen with regard to cardiac safety. Results may provide information in selecting an appropriate anti-HER2 treatment for HER2-positive breast cancer. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04510532.
Collapse
Affiliation(s)
- Yezi Chai
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Meng Jiang,
| | - Yaohui Wang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiming Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qifan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu Tao
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qizhen Wu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China,Wenjin Yin,
| | - Jinsong Lu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China,Jinsong Lu,
| | - Jun Pu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Coronary Heart Disease, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China,Jun Pu,
| |
Collapse
|
28
|
Chiocchi M, Cerocchi M, Di Tosto F, Rosenfeld R, Pasqualetto M, Vanni G, De Stasio V, Pugliese L, Di Donna C, Idone G, Muscoli S, Portarena I, Roselli M, Garaci F, Floris R. Quantification of Extracellular Volume in CT in Neoadjuvant Chemotherapy in Breast Cancer: New Frontiers in Assessing the Cardiotoxicity of Anthracyclines and Trastuzumab. J Pers Med 2023; 13:jpm13020199. [PMID: 36836433 PMCID: PMC9960372 DOI: 10.3390/jpm13020199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer patients undergoing neoadjuvant chemotherapy with anthracyclines or trastuzumab can suffer cardiotoxic issues. Nowadays, the markers of cardiac damage are still not reliable, and extracellular volume (ECV) calculated from CT could be a promising cardiotoxic marker. Eighty-two patients, treated with two different chemotherapy regimens based on doxorubicin (DOX) or epirubicin-trastuzumab (EPI-TRAS), were retrospectively selected and the variations in extracellular volume (ECV) values were measured and analyzed. Whole Body CT (WB-CT) scans were acquired after 1 min, in the portal phase (PP), and after 5 min, in the delayed phases (DP), at the baseline (T0), after one year (T1) and after five years (T5) from the end of chemotherapies. The values measured by two radiologists with different levels of experience were evaluated in order to assess the inter-reader reproducibility assessment (ICC = 0.52 for PP and DP). Further, we performed a population-based analysis and a drug-oriented subgroup analysis in 54 DOX-treated and 28 EPI-TRAS-treated patients. In the general cohort of women treated with any of the two drugs, we observed in the lapse T0-T1 a relative increase (RI) of 25% vs. 20% (PP vs. DP, p < 0.001) as well as in the lapse T0-T5 an RI of 17% vs. 15% (PP vs. DP, p < 0.01). The DOX-treated patients reported in the lapse T0-T1 an RI of 22% (p < 0.0001) in PP and an RI of 16% (p = 0.018) in the DP, with ECV values remaining stably high at T5 both in PP (RI 14.0%, p < 0.0001) and in DP (RI 17%, p = 0.005) highlighting a possible hallmark of a persisting CTX sub-damage. On the other hand, ECV measured in EPI-TRAS-treated women showed an RI in T0-T1 of 18% (p = 0.001) and 29% (p = 0.006) in PP and DP, respectively, but the values returned to basal levels in T5 both in the PP (p = 0.12) and in DP setting (p = 0.13), suggesting damage in the first-year post-treatment and a possible recovery over time. For the 82 patients, an echocardiography was performed at T0, T1= 12 m + 3 m and T5 = 60 m + 6 m with LVEF values at T0 (64% ± 5%), T1 (54% ± 6%) and T5 (53% ± 8%). WB-CT-derived ECV values could provide a valid imaging marker for the early diagnosis of cardiotoxic damage in BC patients undergoing oncological treatments. We detected different patterns during the follow-up, with stably high values for DOX, whereas EPI-TRAS showed a peak within the first year, suggesting different mechanisms of cardiac damage.
Collapse
Affiliation(s)
- Marcello Chiocchi
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Martina Cerocchi
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| | - Federica Di Tosto
- Department of Diagnostic Imaging and Interventional Radiology, Ospedale Fatebenefratelli Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Roberto Rosenfeld
- Medical Oncology Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Monia Pasqualetto
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gianluca Vanni
- Breast Unit, Department of Surgical Science, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Vincenzo De Stasio
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Pugliese
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Carlo Di Donna
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gaetano Idone
- Unit of Cardiology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Saverio Muscoli
- Unit of Cardiology, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ilaria Portarena
- Medical Oncology Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, Division of Diagnostic Imaging, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
29
|
Terui Y, Sugimura K, Ota H, Tada H, Nochioka K, Sato H, Katsuta Y, Fujiwara J, Harada-Shoji N, Sato-Tadano A, Morita Y, Sun W, Higuchi S, Tatebe S, Fukui S, Miyamichi-Yamamoto S, Suzuki H, Yaoita N, Kikuchi N, Sakota M, Miyata S, Sakata Y, Ishida T, Takase K, Yasuda S, Shimokawa H. Usefulness of cardiac magnetic resonance for early detection of cancer therapeutics-related cardiac dysfunction in breast cancer patients. Int J Cardiol 2023; 371:472-479. [PMID: 36115441 DOI: 10.1016/j.ijcard.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Prognosis of breast cancer patients has been improved along with the progress in cancer therapies. However, cancer therapeutics-related cardiac dysfunction (CTRCD) has been an emerging issue. For early detection of CTRCD, we examined whether native T1 mapping and global longitudinal strain (GLS) using cardiac magnetic resonance (CMR) and biomarkers analysis are useful. METHODS We prospectively enrolled 83 consecutive chemotherapy-naïve female patients with breast cancer (mean age, 56 ± 13 yrs.) between 2017 and 2020. CTRCD was defined based on echocardiography as left ventricular ejection fraction (LVEF) below 53% at any follow-up period with LVEF>10% points decrease from baseline after chemotherapy. To evaluate cardiac function, CMR (at baseline and 6 months), 12‑lead ECG, echocardiography, and biomarkers (at baseline and every 3 months) were evaluated. RESULTS A total of 164 CMRs were performed in 83 patients. LVEF and GLS were significantly decreased after chemotherapy (LVEF, from 71.2 ± 4.4 to 67.6 ± 5.8%; GLS, from -27.9 ± 3.9 to -24.7 ± 3.5%, respectively, both P < 0.01). Native T1 value also significantly elevated after chemotherapy (from 1283 ± 36 to 1308 ± 39 msec, P < 0.01). Among the 83 patients, 7 (8.4%) developed CTRCD. Of note, native T1 value before chemotherapy was significantly higher in patients with CTRCD than in those without it (1352 ± 29 vs. 1278 ± 30 msec, P < 0.01). The multivariable logistic regression analysis revealed that native T1 value was an independent predictive factor for the development of CTRCD [OR 2.33; 95%CI 1.15-4.75, P = 0.02]. CONCLUSIONS These results indicate that CMR is useful to detect chemotherapy-related myocardial damage and predict for the development of CTRCD in breast cancer patients.
Collapse
Affiliation(s)
- Yosuke Terui
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koichiro Sugimura
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Cardiology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Hideki Ota
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Tada
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotaro Nochioka
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuko Katsuta
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Fujiwara
- Clinical Physiological Laboratory Center, Tohoku University Hospital, Sendai, Japan
| | - Narumi Harada-Shoji
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Sato-Tadano
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiaki Morita
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Wenyu Sun
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Higuchi
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Tatebe
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shigefumi Fukui
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Miyamichi-Yamamoto
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideaki Suzuki
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Yaoita
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuhiro Kikuchi
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miku Sakota
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; Teikyo University Graduate School of Public Health, Tokyo, Japan
| | - Yasuhiko Sakata
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Ishida
- Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takase
- Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Yasuda
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Departments of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; International University of Health and Welfare, Graduate School, Narita, Japan.
| |
Collapse
|
30
|
Harries I, Biglino G, Ford K, Nelson M, Rego G, Srivastava P, Williams M, Berlot B, De Garate E, Baritussio A, Liang K, Baquedano M, Chavda N, Lawton C, Shearn A, Otton S, Lowry L, Nightingale AK, Carlos Plana J, Marks D, Emanueli C, Bucciarelli-Ducci C. Prospective multiparametric CMR characterization and MicroRNA profiling of anthracycline cardiotoxicity: A pilot translational study. IJC HEART & VASCULATURE 2022; 43:101134. [PMID: 36389268 PMCID: PMC9647504 DOI: 10.1016/j.ijcha.2022.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022]
Abstract
Background Anthracycline cardiotoxicity is a significant clinical challenge. Biomarkers to improve risk stratification and identify early cardiac injury are required. Objectives The purpose of this pilot study was to prospectively characterize anthracycline cardiotoxicity using cardiovascular magnetic resonance (CMR), echocardiography and MicroRNAs (MiRNAs), and identify baseline predictors of LVEF recovery. Methods Twenty-four patients (age 56 range 18-75 years; 42 % female) with haematological malignancy scheduled to receive anthracycline chemotherapy (median dose 272 mg/m2 doxorubicin equivalent) were recruited and evaluated at three timepoints (baseline, completion of chemotherapy, and 6 months after completion of chemotherapy) with multiparametric 1.5 T CMR, echocardiography and circulating miRNAs sequencing. Results Seventeen complete datasets were obtained. CMR left ventricular ejection fraction (LVEF) fell significantly between baseline and completion of chemotherapy (61 ± 3 vs 53 ± 3 %, p < 0.001), before recovering significantly at 6-month follow-up (55 ± 3 %, p = 0.018). Similar results were observed for 3D echocardiography-derived LVEF and CMR-derived longitudinal, circumferential and radial feature-tracking strain. Patients were divided into tertiles according to LVEF recovery (poor recovery, partial recovery, good recovery). CMR-derived mitral annular plane systolic excursion (MAPSE) was significantly different at baseline in patients exhibiting poor LVEF recovery (11.7 ± 1.5 mm) in comparison to partial recovery (13.7 ± 2.7 mm), and good recovery (15.7 ± 3.1 mm; p = 0.028). Furthermore, baseline miRNA-181-5p and miRNA-221-3p expression were significantly higher in this group. T2 mapping increased significantly on completion of chemotherapy compared to baseline (54.0 ± 4.6 to 57.8 ± 4.9 ms, p = 0.001), but was not predictive of LVEF recovery. No changes to LV mass, extracellular volume fraction, T1 mapping or late gadolinium enhancement were observed. Conclusions Baseline CMR-derived MAPSE, circulating miRNA-181-5p, and miRNA-221-3p were associated with poor recovery of LVEF 6 months after completion of anthracycline chemotherapy, suggesting their potential predictive role in this context. T2 mapping increased significantly on completion of chemotherapy but was not predictive of LVEF recovery.
Collapse
Key Words
- CMR, cardiovascular magnetic resonance
- Cancer therapeutics-related cardiac dysfunction
- Cardio-oncology
- Cardiovascular magnetic resonance
- ECV, extracellular volume
- LAVi, left atrial volume indexed
- LGE, late gadolinium enhancement
- LV, left ventricle
- LVEF, left ventricular ejection fraction
- MAPSE, mitral annular plane systolic excursion
- MiRNAs, MicroRNAs
- iLVEDV, left ventricular end-diastolic volume indexed
- iLVESV, indexed left ventricular end-systolic volume indexed
Collapse
Affiliation(s)
- Iwan Harries
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Kerrie Ford
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Martin Nelson
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Gui Rego
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Prashant Srivastava
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
| | - Matthew Williams
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Bostjan Berlot
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Estefania De Garate
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Anna Baritussio
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Kate Liang
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Mai Baquedano
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Nikesh Chavda
- Bristol Heamatology and Oncology Centre, University Hospitals Bristol NHS Trust, Bristol United Kingdom, UK
| | - Christopher Lawton
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | - Andrew Shearn
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | | | | | - Angus K. Nightingale
- Bristol Heart Institute, Bristol Medical School, University Hospitals Bristol, Bristol, UK
| | | | - David Marks
- Bristol Heamatology and Oncology Centre, University Hospitals Bristol NHS Trust, Bristol United Kingdom, UK
| | - Costanza Emanueli
- Myocardial Function – National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Bristol Biomedical Research Centre, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Chiara Bucciarelli-Ducci
- Royal Brompton and Harefield Hospitals, Guys’ and St Thomas NHS Foundation Trust, London
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College, London
| |
Collapse
|
31
|
Mikail N, Rossi A, Bengs S, Haider A, Stähli BE, Portmann A, Imperiale A, Treyer V, Meisel A, Pazhenkottil AP, Messerli M, Regitz-Zagrosek V, Kaufmann PA, Buechel RR, Gebhard C. Imaging of heart disease in women: review and case presentation. Eur J Nucl Med Mol Imaging 2022; 50:130-159. [PMID: 35974185 PMCID: PMC9668806 DOI: 10.1007/s00259-022-05914-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeutic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful consideration, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve management and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stähli
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), University of Strasbourg, Strasbourg, France
- Molecular Imaging - DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin, Berlin, Berlin, Germany
- University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Cardiac fibrosis in oncologic therapies. CURRENT OPINION IN PHYSIOLOGY 2022; 29. [DOI: 10.1016/j.cophys.2022.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Mabudian L, Jordan JH, Bottinor W, Hundley WG. Cardiac MRI assessment of anthracycline-induced cardiotoxicity. Front Cardiovasc Med 2022; 9:903719. [PMID: 36237899 PMCID: PMC9551168 DOI: 10.3389/fcvm.2022.903719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this review article is to discuss how cardiovascular magnetic resonance (CMR) imaging measures left ventricular (LV) function, characterizes tissue, and identifies myocardial fibrosis in patients receiving anthracycline-based chemotherapy (Anth-bC). Specifically, CMR can measure LV ejection fraction (EF), volumes at end-diastole (LVEDV), and end-systole (LVESV), LV strain, and LV mass. Tissue characterization is accomplished through T1/T2-mapping, late gadolinium enhancement (LGE), and CMR perfusion imaging. Despite CMR’s accuracy and efficiency in collecting data about the myocardium, there are challenges that persist while monitoring a cardio-oncology patient undergoing Anth-bC, such as the presence of other cardiovascular risk factors and utility controversies. Furthermore, CMR can be a useful adjunct during cardiopulmonary exercise testing to pinpoint cardiovascular mediated exercise limitations, as well as to assess myocardial microcirculatory damage in patients undergoing Anth-bC.
Collapse
Affiliation(s)
- Leila Mabudian
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - Jennifer H. Jordan
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Wendy Bottinor
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - W. Gregory Hundley
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- *Correspondence: W. Gregory Hundley,
| |
Collapse
|
34
|
New advances in medical imaging technology for the evaluation of anthracycline-induced cardiotoxicity. Chin Med J (Engl) 2022; 135:1883-1885. [PMID: 36195994 PMCID: PMC9521788 DOI: 10.1097/cm9.0000000000002123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
35
|
Wei X, Lin L, Zhang G, Zhou X. Cardiovascular Magnetic Resonance Imaging in the Early Detection of Cardiotoxicity Induced by Cancer Therapies. Diagnostics (Basel) 2022; 12:1846. [PMID: 36010197 PMCID: PMC9406931 DOI: 10.3390/diagnostics12081846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The significant progress in cancer treatment, including chemotherapy, immunotherapy, radiotherapy, and combination therapies, has led to higher long-term survival rates in cancer patients, while the cardiotoxicity caused by cancer treatment has become increasingly prominent. Cardiovascular magnetic resonance (CMR) is a non-invasive comprehensive imaging modality that provides not only anatomical information, but also tissue characteristics and cardiometabolic and energetic assessment, leading to its increased use in the early identification of cardiotoxicity, and is of major importance in improving the survival rate of cancer patients. This review focused on CMR techniques, including myocardial strain analysis, T1 mapping, T2 mapping, and extracellular volume fraction (ECV) calculation in the detection of early myocardial injury induced by cancer therapies. We summarized the existing studies and ongoing clinical trials using CMR for the assessment of subclinical ventricular dysfunction and myocardial changes at the tissue level. The main focus was to explore the potential of clinical and preclinical CMR techniques for continuous non-invasive monitoring of myocardial toxicity associated with cancer therapy.
Collapse
Affiliation(s)
| | | | - Guizhi Zhang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| |
Collapse
|
36
|
Gambril JA, Chum A, Goyal A, Ruz P, Mikrut K, Simonetti O, Dholiya H, Patel B, Addison D. Cardiovascular Imaging in Cardio-Oncology: The Role of Echocardiography and Cardiac MRI in Modern Cardio-Oncology. Heart Fail Clin 2022; 18:455-478. [PMID: 35718419 PMCID: PMC9280694 DOI: 10.1016/j.hfc.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular (CV) events are an increasingly common limitation of effective anticancer therapy. Over the last decade imaging has become essential to patients receiving contemporary cancer therapy. Herein we discuss the current state of CV imaging in cardio-oncology. We also provide a practical apparatus for the use of imaging in everyday cardiovascular care of oncology patients to improve outcomes for those at risk for cardiotoxicity, or with established cardiovascular disease. Finally, we consider future directions in the field given the wave of new anticancer therapies.
Collapse
Affiliation(s)
- John Alan Gambril
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA; Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/GambrilAlan
| | - Aaron Chum
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Akash Goyal
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/agoyalMD
| | - Patrick Ruz
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA
| | - Katarzyna Mikrut
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA. https://twitter.com/KatieMikrut
| | - Orlando Simonetti
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH, USA; Department of Radiology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Hardeep Dholiya
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA. https://twitter.com/Hardeep_10
| | - Brijesh Patel
- Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, 473 West 12th Avenue, Suite 200, Columbus, OH 43210, USA; Cardio-Oncology Program, Heart and Vascular Institute, West Virginia University, Morgantown, WV, USA
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, The Ohio State University Medical Center, Columbus, OH, USA; Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Vallabhaneni S, Wang Y, Zhang Y, Smith A, Zou W, Feigenberg S, Plastaras J, Freedman G, Witschey WRT, Ky B, Han Y. Cardiovascular Magnetic Resonance in Early Detection of Radiation Associated Cardiotoxicity With Chest Radiation. Front Cardiovasc Med 2022; 9:867479. [PMID: 35711358 PMCID: PMC9192956 DOI: 10.3389/fcvm.2022.867479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Chest radiation therapy (RT) is known to be associated with cardiotoxicity. However, the changes in myocardial tissue characterization with radiation-induced cardiotoxicity are not well-understood. Objectives This study sought to assess the changes in left ventricular function and tissue characterization using cardiovascular magnetic resonance (CMR) in patients receiving RT. Materials and Methods Between June 2015 and July 2018, we enrolled patients with breast, lung cancer, or lymphoma with plan to receive chest radiation after chemotherapy. CMR was performed using a 1.5T scanner at baseline and 6 months after RT. Myocardial volume, function, strain analysis using feature tracking, and tissue characterization including late gadolinium enhancement (LGE), T1, T2, T1ρ (rho), and extracellular volume fraction (ECV) were measured and compared using non-parametric methods. Results The final cohort consisted of 16 patients, 11 of whom completed both baseline and follow-up CMRs. Patients were matched to 10 healthy controls. At baseline prior to RT, compared to controls, patients had lower global circumferential strain (GCS) (15.3 ± 2.2% vs.18.4 ± 2.1%, p = 0.004), and elevated T2 (47.9 ± 4.8 ms vs. 45.0 ± 1.5 ms, p = 0.04) and T1ρ values (78.4 ± 5.9 vs. 66.9 ± 4.6 ms, p < 0.001). Two patients had LGE. There was no significant difference in the average T1 values or ECV. There was a trend toward lower LV ejection fraction and global longitudinal strain (GLS). At 6-month follow-up after RT, there were no significant changes in all the CMR parameters. Conclusion At 6-month following chest radiation therapy, there was no change in LV and RV EF, LV and RV GLS, LV GCS, and myocardial tissue characterization using LGE, T1, ECV, T2, and T1ρ in a small cohort of patients. However, the baseline T2 and T1ρ were elevated and LV GCS was reduced compared to controls indicating ongoing myocardial edema and subclinical dysfunction post-chemotherapy.
Collapse
Affiliation(s)
- Srilakshmi Vallabhaneni
- Cardiovascular Division, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States,Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Yue Wang
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States,Department of Cardiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Zhang
- Department of Cardiology, People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Amanda Smith
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Wei Zou
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Feigenberg
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - John Plastaras
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Gary Freedman
- Department of Radiation Oncology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Walter R. T. Witschey
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Bonnie Ky
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States,Cardiovascular Division, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Yuchi Han,
| |
Collapse
|
38
|
Tu C, Shen H, Liu R, Wang X, Li X, Yuan X, Chen Q, Wang Y, Ran Z, Lan X, Zhang X, Lin M, Zhang J. Myocardial extracellular volume derived from contrast-enhanced chest computed tomography for longitudinal evaluation of cardiotoxicity in patients with breast cancer treated with anthracyclines. Insights Imaging 2022; 13:85. [PMID: 35507098 PMCID: PMC9068848 DOI: 10.1186/s13244-022-01224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives To assess the value of myocardial extracellular volume (ECV) derived from contrast-enhanced chest computed tomography (CT) for longitudinal evaluation of cardiotoxicity in patients with breast cancer (BC) treated with anthracycline (AC). Materials and methods A total of 1151 patients with BC treated with anthracyclines, who underwent at least baseline, and first follow-up contrast-enhanced chest CT were evaluated. ECV and left ventricular ejection fraction (LVEF) were measured before (ECV0, LVEF0), during ((ECV1, LVEF1) and (ECV2, LVEF2)), and after (ECV3, LVEF3) AC treatment. ECV values were evaluated at the middle of left ventricular septum on venous phase images. Cancer therapy-related cardiac dysfunction (CTRCD) was recorded. Results Mean baseline LVEF values were 65.85% ± 2.72% and 102 patients developed CTRCD. The mean ECV0 was 26.76% ± 3.03% (N0 = 1151). ECV1, ECV2, and ECV3 (median interval: 61 (IQR, 46–75), 180 (IQR, 170–190), 350 (IQR, 341–360) days from baseline) were 31.32% ± 3.10%, 29.60% ± 3.24%, and 32.05% ± 3.58% (N1 = 1151, N2 = 841, N3 = 511). ECV1, ECV2, and ECV3 were significantly higher than ECV0 (p < 0.001). ECV0 and ECV1 showed no difference between CTRCD (+) and CTRCD (−) group (p1 = 0.150; p2 = 0.216). However, ECV2 and ECV3 showed significant differences between the two groups (p3 < 0.001; p4 < 0.001). Conclusion CT-derived ECV is a potential biomarker for dynamic monitoring AC cardiotoxicity in patients with BC.
Collapse
Affiliation(s)
- Chunrong Tu
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Hesong Shen
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Renwei Liu
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Xing Wang
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Xiaoqin Li
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Xiaoqian Yuan
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Qiuzhi Chen
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Zijuan Ran
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | - Xiaosong Lan
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China
| | | | - Meng Lin
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China.
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, 181 Hanyu Road, Chonqing, 400030, China.
| |
Collapse
|
39
|
Feher A, Baldassarre LA, Sinusas AJ. Novel Cardiac Computed Tomography Methods for the Assessment of Anthracycline Induced Cardiotoxicity. Front Cardiovasc Med 2022; 9:875150. [PMID: 35571206 PMCID: PMC9094702 DOI: 10.3389/fcvm.2022.875150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Anthracyclines are among the most frequently utilized anti-cancer therapies; however, their use is frequently associated with off-target cardiotoxic effects. Cardiac computed tomography (CCT) is a validated and rapidly evolving technology for the evaluation of cardiac structures, coronary anatomy and plaque, cardiac function and preprocedural planning. However, with emerging new techniques, CCT is rapidly evolving to offer information beyond the evaluation of cardiac structure and epicardial coronary arteries to provide details on myocardial deformation, extracellular volume, and coronary vasoreactivity. The potential for molecular imaging in CCT is also growing. In the current manuscript we review these emerging computed tomography techniques and their potential role in the evaluation of anthracycline-induced cardiotoxicity.
Collapse
Affiliation(s)
- Attila Feher
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Attila Feher,
| | - Lauren A. Baldassarre
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Albert J. Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
40
|
Sozzi FB, Iacuzio L, Belmonte M, Schiavone M, Bursi F, Gherbesi E, Levy F, Canetta C, Carugo S. Early diagnosis of cardiomyopathies by cardiac magnetic resonance. Overview of the main criteria. Monaldi Arch Chest Dis 2022; 92. [PMID: 35416001 DOI: 10.4081/monaldi.2022.2151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiomyopathies (CMPs) are diseases of the heart muscle. They include a variety of myocardial disorders that manifest with various structural and functional phenotypes and are frequently genetic. Myocardial disease caused by known cardiovascular causes (such as hypertension, ischemic heart disease, or valvular disease) should be distinguished from CMPs for classification and management purposes. Identification of various CMP phenotypes relies primarily upon echocardiographic evaluation. In selected cases, cardiac magnetic resonance imaging (CMR) or computed tomography may be useful to identify and localize fatty infiltration, inflammation, scar/fibrosis, focal hypertrophy, and better visualize the left ventricular apex and right ventricle. CMR imaging has emerged as a comprehensive tool for the diagnosis and follow-up of patients with CMPs. The accuracy and reproducibility in evaluating cardiac structures, the unique ability of non-invasive tissue characterization and the lack of ionizing radiation, make CMR very attractive as a potential "all-in-one technique". Indeed, it provides valuable data to confirm or establish the diagnosis, screen subclinical cases, identify aetiology, establish the prognosis. Additionally, it provides information for setting a risk stratification (based on evaluation of proved independent prognostic factors as ejection fraction, end-systolic-volume, myocardial fibrosis) and follow-up. Last, it helps to monitor the response to the therapy. In this review, the pivotal role of CMR in the comprehensive evaluation of patients with CMP is discussed, highlighting the key features guiding differential diagnosis and the assessment of prognosis.
Collapse
Affiliation(s)
- Fabiola B Sozzi
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan.
| | | | - Marta Belmonte
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan.
| | | | - Francesca Bursi
- Division of Cardiology, Department of Health Sciences, San Paolo Hospital, University of Milan.
| | - Elisa Gherbesi
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan.
| | | | - Ciro Canetta
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan.
| | - Stefano Carugo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan.
| |
Collapse
|
41
|
Aissiou M, Curnier D, Caru M, Hafyane T, Leleu L, Krajinovic M, Laverdière C, Sinnett D, Andelfinger G, Cheriet F, Périé D. Detection of doxorubicin-induced cardiotoxicity using myocardial T1 and T2 relaxation times in childhood acute lymphoblastic leukemia survivors. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2022; 38:873-882. [PMID: 34821983 DOI: 10.1007/s10554-021-02472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Doxorubicin leads to dose-dependent cardiotoxicity in childhood acute lymphoblastic leukemia (ALL) survivors. The first aim was to propose a contour-based estimation of T1 and T2 relaxation times based on the myocardial area, while our second aim was to evaluate native T1, post-gadolinium T1 and T2 relaxation time sensitivity to detect myocardial changes. A total of 84 childhood ALL survivors were stratified in regard to their prognostic risk groups: standard risk (SR), n = 20), high-risk with and without dexrazoxane (HR + DEX, n = 39 and HR, n = 25). Survivors' mean age was of 22.0 ± 6.9 years, with a mean age at cancer diagnosis of 8.0 ± 5.2 years. CMR acquisitions were performed on a 3 T MRI system and included an ECG-gated 3(3)3(3)5 MOLLI sequence for T1 mapping and an ECG-gated T2-prepared TrueFISP sequence for T2 mapping. Myocardial contours were semi-automatically segmented using an interactive implementation of cubic Bezier curves. We found excellent repeatability between operators for native T1 (ICC = 0.91), and good repeatability between operators for post-gadolinium T1 (ICC = 0.84) and T2 (ICC = 0.79). Bland and Altman tests demonstrated a strong agreement between our contour-based method and images analyzed using the CVI42 software on the measure of native T1, post-gadolinium T1, and T2. No significant differences between survivors' prognostic risk groups in native T1 were reported, while we observed significant differences between survivors' prognostic risk groups in post-gadolinium T1 and T2. Significant differences were observed between male and female survivors. Differences between groups were also observed in partition coefficients, but no significant differences were observed between male and female survivors. The use of CMR parameters with native T1, post-gadolinium T1, and T2 allowed to show that survivors at a high-risk prognostic were more exposed to doxorubicin-related cardiotoxicity than those who were at a standard risk prognostic or who received dexrazoxane treatments.
Collapse
Affiliation(s)
- Mohamed Aissiou
- Department of Mechanical Engineering, Polytechnique Montreal, Station Centre-Ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
| | - Daniel Curnier
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Maxime Caru
- Department of Mechanical Engineering, Polytechnique Montreal, Station Centre-Ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
| | - Tarik Hafyane
- Montreal Heart Institute, Research Center, Montreal, Canada
| | - Louise Leleu
- Department of Mechanical Engineering, Polytechnique Montreal, Station Centre-Ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Maja Krajinovic
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Caroline Laverdière
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Daniel Sinnett
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Gregor Andelfinger
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- Department of Pediatrics, University of Montreal, Montreal, Canada
| | - Farida Cheriet
- Sainte-Justine University Health Center, Research Center, Montreal, Canada
- Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Canada
| | - Delphine Périé
- Department of Mechanical Engineering, Polytechnique Montreal, Station Centre-Ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada.
- Sainte-Justine University Health Center, Research Center, Montreal, Canada.
| |
Collapse
|
42
|
Kwan JM, Oikonomou EK, Henry ML, Sinusas AJ. Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. Front Cardiovasc Med 2022; 9:829553. [PMID: 35369354 PMCID: PMC8964995 DOI: 10.3389/fcvm.2022.829553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer mortality has improved due to earlier detection via screening, as well as due to novel cancer therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitions. However, similarly to older cancer therapies such as anthracyclines, these therapies have also been documented to cause cardiotoxic events including cardiomyopathy, myocardial infarction, myocarditis, arrhythmia, hypertension, and thrombosis. Imaging modalities such as echocardiography and magnetic resonance imaging (MRI) are critical in monitoring and evaluating for cardiotoxicity from these treatments, as well as in providing information for the assessment of function and wall motion abnormalities. MRI also allows for additional tissue characterization using T1, T2, extracellular volume (ECV), and delayed gadolinium enhancement (DGE) assessment. Furthermore, emerging technologies may be able to assist with these efforts. Nuclear imaging using targeted radiotracers, some of which are already clinically used, may have more specificity and help provide information on the mechanisms of cardiotoxicity, including in anthracycline mediated cardiomyopathy and checkpoint inhibitor myocarditis. Hyperpolarized MRI may be used to evaluate the effects of oncologic therapy on cardiac metabolism. Lastly, artificial intelligence and big data of imaging modalities may help predict and detect early signs of cardiotoxicity and response to cardioprotective medications as well as provide insights on the added value of molecular imaging and correlations with cardiovascular outcomes. In this review, the current imaging modalities used to assess for cardiotoxicity from cancer treatments are discussed, in addition to ongoing research on targeted molecular radiotracers, hyperpolarized MRI, as well as the role of artificial intelligence (AI) and big data in imaging that would help improve the detection and prognostication of cancer-treatment cardiotoxicity.
Collapse
Affiliation(s)
- Jennifer M. Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Evangelos K. Oikonomou
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Mariana L. Henry
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
43
|
Myocardial tissue imaging with cardiovascular magnetic resonance. J Cardiol 2022; 80:377-385. [PMID: 35246367 DOI: 10.1016/j.jjcc.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Alteration in myocardial tissue, such as myocardial fibrosis, edema, inflammation, or accumulation with amyloid, lipids, or iron, has an important role in the cardiac remodeling that leads to diastolic and/or systolic dysfunction and the development of chronic heart failure, increasing the risk of adverse cardiovascular events. Thus, the early detection of changes at myocardial tissue level has great diagnostic and prognostic potential. The gold standard technique to assess these myocardial alterations is endomyocardial biopsy. However, this has been limited to a few patients due to the invasive nature, sampling errors, and its inability to assess the entire myocardium. Cardiovascular magnetic resonance (CMR) has emerged as the gold standard imaging not only for assessing cardiac volume, function quantification, and viability but also for noninvasive myocardial tissue characterization over the past decade. Its ability to characterize myocardial tissue composition is unique among noninvasive imaging modalities in cardiovascular disease. Currently, multi-parametric myocardial characterization with T1, T2, and extracellular volume has the potential to identify and track diffuse pathology in various diseases. In this review article, we present the role of established and emerging CMR techniques in myocardial tissue characterization, with an emphasis on T1 and T2 mapping, in clinical practice.
Collapse
|
44
|
Menon D, Kadiu G, Sanil Y, Aggarwal S. Anthracycline Treatment and Left Atrial Function in Children: A Real-Time 3-Dimensional Echocardiographic Study. Pediatr Cardiol 2022; 43:645-654. [PMID: 34787697 DOI: 10.1007/s00246-021-02769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Anthracycline (AC) therapy is associated with left ventricular (LV) dysfunction. Left atrial (LA) size and function are used to assess LV diastolic function in heart failure in adults. Data on LA size and function following AC therapy in children is limited. We hypothesized that LA size and function will be abnormal in children following AC chemotherapy. This retrospective review included patients who received AC for pediatric cancers. Controls had normal echocardiograms performed for evaluation of chest pain, murmur, or syncope. Real-time three-dimensional echocardiography was performed to evaluate LA reservoir, conduit, and booster pump function parameters. In addition to LA volume data, LV shortening fraction, spectral and tissue Doppler variables assessing diastolic function as well as myocardial performance index was obtained. Groups with and without AC therapy were compared by student t-test and chi-square test. We evaluated 136 patients, 55 (40.4%) had received AC. There was no significant difference between the groups in LV shortening fraction, diastolic as well as global function indices. LA reservoir and conduit function parameters were significantly lower in AC group compared to controls. The booster function parameters showed variable results. It is intriguing that AC-treated children have smaller LA reservoir and abnormal booster function. We speculate that these findings may reflect early changes in LA compliance associated with AC exposure. Assessment of LA volumes and function as prognostic markers of AC-induced cardiotoxicity in children is warranted.
Collapse
Affiliation(s)
- Dipika Menon
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Gilda Kadiu
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yamuna Sanil
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanjeev Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Jiang J, Liu B, Hothi SS. Herceptin-Mediated Cardiotoxicity: Assessment by Cardiovascular Magnetic Resonance. Cardiol Res Pract 2022; 2022:1910841. [PMID: 35265371 PMCID: PMC8898877 DOI: 10.1155/2022/1910841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/12/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Herceptin (trastuzumab) is a recombinant, humanized, monoclonal antibody that targets the human epidermal growth factor receptor 2 (HER2) and is used in the treatment of HER2-positive breast and gastric cancers. However, it carries a risk of cardiotoxicity, manifesting as left ventricular (LV) systolic dysfunction, conventionally assessed for by transthoracic echocardiography. Clinical surveillance of cardiac function and discontinuation of trastuzumab at an early stage of LV systolic dysfunction allow for the timely initiation of heart failure drug therapies that can result in the rapid recovery of cardiac function in most patients. Often considered the reference standard for the noninvasive assessment of cardiac volume and function, cardiac magnetic resonance (CMR) imaging has superior reproducibility and accuracy compared to other noninvasive imaging modalities. However, due to limited availability, it is not routinely used in the serial assessment of cardiac function in patients receiving trastuzumab. In this article, we review the diagnostic and prognostic role of CMR in trastuzumab-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Jin Jiang
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
| | - Boyang Liu
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sandeep S Hothi
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
46
|
Cadour F, Thuny F, Sourdon J. New Insights in Early Detection of Anticancer Drug-Related Cardiotoxicity Using Perfusion and Metabolic Imaging. Front Cardiovasc Med 2022; 9:813883. [PMID: 35198613 PMCID: PMC8858802 DOI: 10.3389/fcvm.2022.813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs, their mechanisms, and their diagnosis for better management. Anthracyclines, anti-vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi) are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of microvascular and metabolic dysfunction allows for better imaging assessment before overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would therefore advance the prevention and patient care. In this review, we provide a comprehensive overview of the cardiotoxic effects of anticancer drugs and describe myocardial perfusion, metabolic, and mitochondrial function imaging approaches to detect them before over LVEF impairment.
Collapse
Affiliation(s)
- Farah Cadour
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, North Hospital, Assistance Publique - Hôpitaux de Marseille, Centre for CardioVascular and Nutrition Research (C2VN), Inserm 1263, Inrae 1260, Marseille, France
| | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- *Correspondence: Joevin Sourdon
| |
Collapse
|
47
|
Identifying early stages of doxorubicin-induced cardiotoxicity in rat model by 7.0 tesla cardiovascular magnetic resonance combining hematological and pathological parameters. Magn Reson Imaging 2022; 90:17-25. [DOI: 10.1016/j.mri.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022]
|
48
|
Kar J, Cohen MV, McQuiston SA, Poorsala T, Malozzi CM. Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. J Biomech 2022; 130:110878. [PMID: 34871894 PMCID: PMC8896910 DOI: 10.1016/j.jbiomech.2021.110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
This study's purpose was to develop a direct MRI-based, deep-learning semantic segmentation approach for computing global longitudinal strain (GLS), a known metric for detecting left-ventricular (LV) cardiotoxicity in breast cancer. Displacement Encoding with Stimulated Echoes cardiac image phases acquired from 30 breast cancer patients and 30 healthy females were unwrapped via a DeepLabV3 + fully convolutional network (FCN). Myocardial strains were directly computed from the unwrapped phases with the Radial Point Interpolation Method. FCN-unwrapped phases of a phantom's rotating gel were validated against quality-guided phase-unwrapping (QGPU) and robust transport of intensity equation (RTIE) phase-unwrapping. FCN performance on unwrapping human LV data was measured with F1 and Dice scores versus QGPU ground-truth. The reliability of FCN-based strains was assessed against RTIE-based strains with Cronbach's alpha (C-α) intraclass correlation coefficient. Mean squared error (MSE) of unwrapping the phantom experiment data at 0 dB signal-to-noise ratio were 1.6, 2.7 and 6.1 with FCN, QGPU and RTIE techniques. Human data classification accuracies were F1 = 0.95 (Dice = 0.96) with FCN and F1 = 0.94 (Dice = 0.95) with RTIE. GLS results from FCN and RTIE were -16 ± 3% vs. -16 ± 3% (C-α = 0.9) for patients and -20 ± 3% vs. -20 ± 3% (C-α = 0.9) for healthy subjects. The low MSE from the phantom validation demonstrates accuracy of phase-unwrapping with the FCN and comparable human subject results versus RTIE demonstrate GLS analysis accuracy. A deep-learning methodology for phase-unwrapping in medical images and GLS computation was developed and validated in a heterogeneous cohort.
Collapse
Affiliation(s)
- Julia Kar
- Departments of Mechanical Engineering and Pharmacology, University of South Alabama, 150 Jaguar Drive, Mobile, AL 36688, United States.
| | - Michael V Cohen
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States
| | - Samuel A McQuiston
- Department of Radiology, University of South Alabama, 2451 USA Medical Center Drive, Mobile, AL 36617, United States
| | - Teja Poorsala
- Departments of Oncology and Hematology, University of South Alabama, 101 Memorial Hospital Drive, Building 3, Mobile, AL 36608, United States
| | - Christopher M Malozzi
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States
| |
Collapse
|
49
|
Leo I, Nakou E, de Marvao A, Wong J, Bucciarelli-Ducci C. Imaging in Women with Heart Failure: Sex-specific Characteristics and Current Challenges. Card Fail Rev 2022; 8:e29. [PMID: 36303591 PMCID: PMC9585642 DOI: 10.15420/cfr.2022.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular disease (CVD) represents a significant threat to women's health. Heart failure (HF) is one CVD that still has an increasing incidence and about half of all cases involve women. HF is characterised by strong sex-specific features in aetiology, clinical manifestation and outcomes. Women are more likely to have hypertensive heart disease and HF with preserved ejection fraction, they experience worse quality of life but have a better overall survival rate. Women's hearts also have unique morphological characteristics that should be considered during cardiovascular assessment. It is important to understand and highlight these sex-specific features to be able to provide a tailored diagnostic approach and therapeutic management. The aim of this article is to review these aspects together with the challenges and the unique characteristics of different imaging modalities used for the diagnosis and follow-up of women with HF.
Collapse
Affiliation(s)
- Isabella Leo
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
- Department of Medical and Surgical Sciences, Magna Graecia UniversityCatanzaro, Italy
| | - Eleni Nakou
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
| | - Antonio de Marvao
- Medical Research Council, London Institute of Medical Sciences, Imperial College LondonLondon, UK
| | - Joyce Wong
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation TrustLondon, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College LondonLondon, UK
| |
Collapse
|
50
|
Alhumaid W, Small SD, Kirkham AA, Becher H, Pituskin E, Prado CM, Thompson RB, Haykowsky MJ, Paterson DI. A Contemporary Review of the Effects of Exercise Training on Cardiac Structure and Function and Cardiovascular Risk Profile: Insights From Imaging. Front Cardiovasc Med 2022; 9:753652. [PMID: 35265675 PMCID: PMC8898950 DOI: 10.3389/fcvm.2022.753652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Exercise is a commonly prescribed therapy for patients with established cardiovascular disease or those at high risk for de novo disease. Exercise-based, multidisciplinary programs have been associated with improved clinical outcomes post myocardial infarction and is now recommended for patients with cancer at elevated risk for cardiovascular complications. Imaging studies have documented numerous beneficial effects of exercise on cardiac structure and function, vascular function and more recently on the cardiovascular risk profile. In this contemporary review, we will discuss the effects of exercise training on imaging-derived cardiovascular outcomes. For cardiac imaging via echocardiography or magnetic resonance, we will review the effects of exercise on left ventricular function and remodeling in patients with established or at risk for cardiac disease (myocardial infarction, heart failure, cancer survivors), and the potential utility of exercise stress to assess cardiac reserve. Exercise training also has salient effects on vascular function and health including the attenuation of age-associated arterial stiffness and thickening as assessed by Doppler ultrasound. Finally, we will review recent data on the relationship between exercise training and regional adipose tissue deposition, an emerging marker of cardiovascular risk. Imaging provides comprehensive and accurate quantification of cardiac, vascular and cardiometabolic health, and may allow refinement of risk stratification in select patient populations. Future studies are needed to evaluate the clinical utility of novel imaging metrics following exercise training.
Collapse
Affiliation(s)
- Waleed Alhumaid
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Amy A. Kirkham
- Faculty of Kinesiology, University of Toronto, Toronto, ON, Canada
| | - Harald Becher
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Edith Pituskin
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Carla M. Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Richard B. Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mark J. Haykowsky
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - D. Ian Paterson
- Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: D. Ian Paterson
| |
Collapse
|