1
|
Shanmuganathan M, Nikolaidou C, Burrage MK, Borlotti A, Kotronias R, Scarsini R, Banerjee A, Terentes-Printzios D, Pitcher A, Gara E, Langrish J, Lucking A, Choudhury R, De Maria GL, Banning A, Piechnik SK, Channon KM, Ferreira VM. Cardiovascular Magnetic Resonance Before Invasive Coronary Angiography in Suspected Non-ST-Segment Elevation Myocardial Infarction. JACC Cardiovasc Imaging 2024; 17:1044-1058. [PMID: 38970595 PMCID: PMC11512682 DOI: 10.1016/j.jcmg.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND In suspected non-ST-segment elevation myocardial infarction (NSTEMI), this presumed diagnosis may not hold true in all cases, particularly in patients with nonobstructive coronary arteries (NOCA). Additionally, in multivessel coronary artery disease, the presumed infarct-related artery may be incorrect. OBJECTIVES This study sought to assess the diagnostic utility of cardiac magnetic resonance (CMR) before invasive coronary angiogram (ICA) in suspected NSTEMI. METHODS A total of 100 consecutive stable patients with suspected acute NSTEMI (70% male, age 62 ± 11 years) prospectively underwent CMR pre-ICA to assess cardiac function (cine), edema (T2-weighted imaging, T1 mapping), and necrosis/scar (late gadolinium enhancement). CMR images were interpreted blinded to ICA findings. The clinical care and ICA teams were blinded to CMR findings until post-ICA. RESULTS Early CMR (median 33 hours postadmission and 4 hours pre-ICA) confirmed only 52% (52 of 100) of patients had subendocardial infarction, 15% transmural infarction, 18% nonischemic pathologies (myocarditis, takotsubo, and other forms of cardiomyopathies), and 11% normal CMR; 4% were nondiagnostic. Subanalyses according to ICA findings showed that, in patients with obstructive coronary artery disease (73 of 100), CMR confirmed only 84% (61 of 73) had MI, 10% (7 of 73) nonischemic pathologies, and 5% (4 of 73) normal. In patients with NOCA (27 of 100), CMR found MI in only 22% (6 of 27 true MI with NOCA), and reclassified the presumed diagnosis of NSTEMI in 67% (18 of 27: 11 nonischemic pathologies, 7 normal). In patients with CMR-MI and obstructive coronary artery disease (61 of 100), CMR identified a different infarct-related artery in 11% (7 of 61). CONCLUSIONS In patients presenting with suspected NSTEMI, a CMR-first strategy identified MI in 67%, nonischemic pathologies in 18%, and normal findings in 11%. Accordingly, CMR has the potential to affect at least 50% of all patients by reclassifying their diagnosis or altering their potential management.
Collapse
Affiliation(s)
- Mayooran Shanmuganathan
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Chrysovalantou Nikolaidou
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew K Burrage
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alessandra Borlotti
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rafail Kotronias
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roberto Scarsini
- Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abhirup Banerjee
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Dimitrios Terentes-Printzios
- Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alex Pitcher
- Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Edit Gara
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Jeremy Langrish
- Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew Lucking
- Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin Choudhury
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanni Luigi De Maria
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian Banning
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan K Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vanessa M Ferreira
- Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals National Health Service Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
2
|
Aromiwura AA, Cavalcante JL, Kwong RY, Ghazipour A, Amini A, Bax J, Raman S, Pontone G, Kalra DK. The role of artificial intelligence in cardiovascular magnetic resonance imaging. Prog Cardiovasc Dis 2024; 86:13-25. [PMID: 38925255 DOI: 10.1016/j.pcad.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Cardiovascular magnetic resonance (CMR) imaging is the gold standard test for myocardial tissue characterization and chamber volumetric and functional evaluation. However, manual CMR analysis can be time-consuming and is subject to intra- and inter-observer variability. Artificial intelligence (AI) is a field that permits automated task performance through the identification of high-level and complex data relationships. In this review, we review the rapidly growing role of AI in CMR, including image acquisition, sequence prescription, artifact detection, reconstruction, segmentation, and data reporting and analysis including quantification of volumes, function, myocardial infarction (MI) and scar detection, and prediction of outcomes. We conclude with a discussion of the emerging challenges to widespread adoption and solutions that will allow for successful, broader uptake of this powerful technology.
Collapse
Affiliation(s)
| | | | - Raymond Y Kwong
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aryan Ghazipour
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Amir Amini
- Medical Imaging Laboratory, Department of Electrical and Computer Engineering, University of Louisville, Louisville, KY, USA
| | - Jeroen Bax
- Department of Cardiology, Leiden University, Leiden, the Netherlands
| | - Subha Raman
- Division of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianluca Pontone
- Department of Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, University of Milan, Milan, Italy
| | - Dinesh K Kalra
- Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA; Center for Artificial Intelligence in Radiological Sciences (CAIRS), Department of Radiology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
3
|
Muser D, Chahal AA, Selvanayagam JB, Nucifora G. Clinical Applications of Cardiac Magnetic Resonance Parametric Mapping. Diagnostics (Basel) 2024; 14:1816. [PMID: 39202304 PMCID: PMC11353869 DOI: 10.3390/diagnostics14161816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is widely regarded as the gold-standard technique for myocardial tissue characterization, allowing for the detection of structural abnormalities such as myocardial fatty replacement, myocardial edema, myocardial necrosis, and/or fibrosis. Historically, the identification of abnormal myocardial regions relied on variations in tissue signal intensity, often necessitating the use of exogenous contrast agents. However, over the past two decades, innovative parametric mapping techniques have emerged, enabling the direct quantitative assessment of tissue magnetic resonance (MR) properties on a voxel-by-voxel basis. These mapping techniques offer significant advantages by providing comprehensive and precise information that can be translated into color-coded maps, facilitating the identification of subtle or diffuse myocardial abnormalities. As unlikely conventional methods, these techniques do not require a substantial amount of structurally altered tissue to be visually identifiable as an area of abnormal signal intensity, eliminating the reliance on contrast agents. Moreover, these parametric mapping techniques, such as T1, T2, and T2* mapping, have transitioned from being primarily research tools to becoming valuable assets in the clinical diagnosis and risk stratification of various cardiac disorders. In this review, we aim to elucidate the underlying physical principles of CMR parametric mapping, explore its current clinical applications, address potential pitfalls, and outline future directions for research and development in this field.
Collapse
Affiliation(s)
- Daniele Muser
- Cardiac Electrophysiology Unit, Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy;
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA 17601, USA;
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, London E1 1BB, UK
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph B. Selvanayagam
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA 5042, Australia;
| | - Gaetano Nucifora
- Cardiac Imaging Unit, NorthWest Heart Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Zuccarelli V, Andreaggi S, Walsh JL, Kotronias RA, Chu M, Vibhishanan J, Banning AP, De Maria GL. Treatment and Care of Patients with ST-Segment Elevation Myocardial Infarction-What Challenges Remain after Three Decades of Primary Percutaneous Coronary Intervention? J Clin Med 2024; 13:2923. [PMID: 38792463 PMCID: PMC11122374 DOI: 10.3390/jcm13102923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Primary percutaneous coronary intervention (pPCI) has revolutionized the prognosis of ST-segment elevation myocardial infarction (STEMI) and is the gold standard treatment. As a result of its success, the number of pPCI centres has expanded worldwide. Despite decades of advancements, clinical outcomes in STEMI patients have plateaued. Out-of-hospital cardiac arrest and cardiogenic shock remain a major cause of high in-hospital mortality, whilst the growing burden of heart failure in long-term STEMI survivors presents a growing problem. Many elements aiming to optimize STEMI treatment are still subject to debate or lack sufficient evidence. This review provides an overview of the most contentious current issues in pPCI in STEMI patients, with an emphasis on unresolved questions and persistent challenges.
Collapse
Affiliation(s)
- Vittorio Zuccarelli
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
| | - Stefano Andreaggi
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiology, Department of Medicine, University of Verona, 37129 Verona, Italy
| | - Jason L. Walsh
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Rafail A. Kotronias
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Miao Chu
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Jonathan Vibhishanan
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Adrian P. Banning
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
- National Institute for Health Research (NIHR), Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Giovanni Luigi De Maria
- Oxford Heart Centre, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (V.Z.); (S.A.); (J.L.W.); (R.A.K.); (M.C.); (J.V.); (A.P.B.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
- National Institute for Health Research (NIHR), Oxford Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Cronin M, Lowery A, Kerin M, Wijns W, Soliman O. Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview. Cancers (Basel) 2024; 16:1845. [PMID: 38791923 PMCID: PMC11120055 DOI: 10.3390/cancers16101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is amongst the most common invasive cancers in adults. There are established relationships between anti-cancer treatments for breast cancer and cardiovascular side effects. In recent years, novel anti-cancer treatments have been established, as well as the availability of multi-modal cardiac imaging and the sophistication of treatment for cardiac disease. This review provides an in-depth overview regarding the interface of breast cancer and cancer therapy-related cardiovascular toxicity. Specifically, it reviews the pathophysiology of breast cancer, the method of action in therapy-related cardiovascular toxicity from anti-cancer treatment, the use of echocardiography, cardiac CT, MRI, or nuclear medicine as diagnostics, and the current evidence-based treatments available. It is intended to be an all-encompassing review for clinicians caring for patients in this situation.
Collapse
Affiliation(s)
- Michael Cronin
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland
| | - Aoife Lowery
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Michael Kerin
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
| | - William Wijns
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
| | - Osama Soliman
- School of Medicine, University of Galway, H91 V4AY Galway, Ireland
- Precision Cardio-Oncology Research Enterprise (P-CORE), H91 TK33 Galway, Ireland
- CURAM Centre for Medical Devices, H91 TK33 Galway, Ireland
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 V4AY Galway, Ireland
| |
Collapse
|
6
|
Shen L, Lu X, Wang H, Wu G, Guo Y, Zheng S, Ren L, Zhang H, Huang L, Ren B, Zhu J, Xia S. Impaired T1 mapping and Tmax during the first 7 days after ischemic stroke. A retrospective observational study. J Stroke Cerebrovasc Dis 2023; 32:107383. [PMID: 37844455 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE To measure the relative T1 (rT1) value in different hypo-perfused regions after ischemic stroke using T1 mapping derived by Strategically Acquired Gradient Echo (STAGE) and assess its relationship with onset time and severity of ischemia. MATERIALS AND METHODS Sixty-three patients with acute anterior circulation ischemic stroke from 2017 to 2022 who underwent STAGE, diffusion weighted imaging (DWI) and dynamic susceptibility contrast perfusion weighted imaging (DSC-PWI) within 7 days were retrospectively enrolled. The areas with reduced diffusion and hypo-perfusion were segmented based on apparent diffusion coefficient (ADC) value < 0.62 × 10-3mm2/s and time-to-maximum (Tmax) thresholds (4, 6, 8, and 10 seconds). We measured the T1 value in the diffusion reduced and every 2 s Tmax strata regions and calculated rT1 (T1ipsi/T1contra) to explore the relationship between rT1 value, Tmax, and onset time. RESULTS rT1 value was increased in diffusion reduced (1.42) and hypo-perfused regions (1.02, 1.06, 1.12, 1.27, Tmax 4-6 s, 6-8 s, 8-10 s, > 10 s, respectively; all different from 1, P < 0.001). rT1 value was positively correlated with Tmax (rs = 0.61, P < 0.001) and onset time in area with reduced diffusion (rs = 0.39, P = 0.014). CONCLUSIONS Increased rT1 value in different hypo-perfused brain regions using T1 mapping derived by STAGE may reflect the edema; it was associated with the severity of Tmax and showed a weak correlation with the onset time in diffusion reduced areas.
Collapse
Affiliation(s)
- Lianfang Shen
- Department of Radiology, The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Xiudi Lu
- Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huiying Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Gemuer Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yu Guo
- Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shaowei Zheng
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lei Ren
- Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Huanlei Zhang
- Department of Radiology, Yidu Central Hospital of Weifang, Qingzhou City, Shandong, China
| | - Lixiang Huang
- Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Bo Ren
- College of Computer Science, Nankai University, Tianjin, China
| | - Jinxia Zhu
- MR Collaboration, Siemens Healthcare Ltd, Beijing, China
| | - Shuang Xia
- Department of Radiology, Medical Imaging Institute of Tianjin, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Wang J, Meng Y, Han S, Hu C, Lu Y, Wu P, Han L, Xu Y, Xu K. Predictive value of total ischaemic time and T1 mapping after emergency percutaneous coronary intervention in acute ST-segment elevation myocardial infarction. Clin Radiol 2023; 78:e724-e731. [PMID: 37460337 DOI: 10.1016/j.crad.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 09/03/2023]
Abstract
AIM To investigate the predictive value of ischaemic time and cardiac magnetic resonance imaging (CMRI) T1 mapping in acute ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PCI). MATERIALS AND METHODS A total of 127 patients with STEMI treated by primary PCI were studied. All patients underwent CMRI with native T1 and extracellular volume (ECV) measurement, 61 of whom also had 4-month follow-up data. The total ischaemic (symptom onset to balloon, S2B) time expressed in minutes was recorded. CMRI cine, T1 mapping, and late gadolinium enhancement (LGE) images were analysed to evaluate left ventricular (LV) function, T1 value, ECV, and myocardial infract (MI) scar characteristics, respectively. The correlation between S2B time and T1 mapping was evaluated. The predictive values of S2B time and T1 mapping for large final infarct size were estimated. RESULTS The incidence of microvascular obstruction (MVO) increased with the prolongation of ischaemia time. Regardless of MVO or not, ECV in myocardial infarction (ECVMI) was significantly correlated with S2B time (r=0.61, p<0.001), while native T1 in MI (T1MI) was not (r=-0.19, p=0.029). In the 4-month follow-up, native T1MI was improved (1385.1 ± 90.4 versus 1288.6 ± 74 ms, p<0.001). Furthermore, ECVMI was independently associated with final larger infarct size (AUC = 0.89, 95% confidence interval [CI] = 0.81-0.98, p<0.001) in multivariable regression analysis. CONCLUSION ECVMI was correlated with total ischaemic time and was an independent predictor of final larger infarct size.
Collapse
Affiliation(s)
- J Wang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Meng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - S Han
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - C Hu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Lu
- Department of Cardiac Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - P Wu
- Philips Healthcare, Shanghai, China
| | - L Han
- Philips Healthcare, Shanghai, China
| | - Y Xu
- Philips Healthcare, Guangzhou, China
| | - K Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
A X, Liu M, Chen T, Chen F, Qian G, Zhang Y, Chen Y. Non-Contrast Cine Cardiac Magnetic Resonance Derived-Radiomics for the Prediction of Left Ventricular Adverse Remodeling in Patients With ST-Segment Elevation Myocardial Infarction. Korean J Radiol 2023; 24:827-837. [PMID: 37634638 PMCID: PMC10462896 DOI: 10.3348/kjr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE To investigate the predictive value of radiomics features based on cardiac magnetic resonance (CMR) cine images for left ventricular adverse remodeling (LVAR) after acute ST-segment elevation myocardial infarction (STEMI). MATERIALS AND METHODS We conducted a retrospective, single-center, cohort study involving 244 patients (random-split into 170 and 74 for training and testing, respectively) having an acute STEMI (88.5% males, 57.0 ± 10.3 years of age) who underwent CMR examination at one week and six months after percutaneous coronary intervention. LVAR was defined as a 20% increase in left ventricular end-diastolic volume 6 months after acute STEMI. Radiomics features were extracted from the one-week CMR cine images using the least absolute shrinkage and selection operator regression (LASSO) analysis. The predictive performance of the selected features was evaluated using receiver operating characteristic curve analysis and the area under the curve (AUC). RESULTS Nine radiomics features with non-zero coefficients were included in the LASSO regression of the radiomics score (RAD score). Infarct size (odds ratio [OR]: 1.04 (1.00-1.07); P = 0.031) and RAD score (OR: 3.43 (2.34-5.28); P < 0.001) were independent predictors of LVAR. The RAD score predicted LVAR, with an AUC (95% confidence interval [CI]) of 0.82 (0.75-0.89) in the training set and 0.75 (0.62-0.89) in the testing set. Combining the RAD score with infarct size yielded favorable performance in predicting LVAR, with an AUC of 0.84 (0.72-0.95). Moreover, the addition of the RAD score to the left ventricular ejection fraction (LVEF) significantly increased the AUC from 0.68 (0.52-0.84) to 0.82 (0.70-0.93) (P = 0.018), which was also comparable to the prediction provided by the combined microvascular obstruction, infarct size, and LVEF with an AUC of 0.79 (0.65-0.94) (P = 0.727). CONCLUSION Radiomics analysis using non-contrast cine CMR can predict LVAR after STEMI independently and incrementally to LVEF and may provide an alternative to traditional CMR parameters.
Collapse
Affiliation(s)
- Xin A
- Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School, Beijing, China
- The Senior Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Mingliang Liu
- Nankai University, School of Medicine, Tianjin, Nankai, China
| | - Tong Chen
- Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School, Beijing, China
- The Senior Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Feng Chen
- Department of Computer Science, the University of Adelaide, Adelaide, Australia
| | - Geng Qian
- Chinese People's Liberation Army General Hospital, Chinese People's Liberation Army Medical School, Beijing, China
- The Senior Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ying Zhang
- The Senior Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yundai Chen
- The Senior Department of Cardiology, the Sixth Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
9
|
Alkhalil M, De Maria GL, Akbar N, Ruparelia N, Choudhury RP. Prospects for Precision Medicine in Acute Myocardial Infarction: Patient-Level Insights into Myocardial Injury and Repair. J Clin Med 2023; 12:4668. [PMID: 37510783 PMCID: PMC10380764 DOI: 10.3390/jcm12144668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The past decade has seen a marked expansion in the understanding of the pathobiology of acute myocardial infarction and the systemic inflammatory response that it elicits. At the same time, a portfolio of tools has emerged to characterise some of these processes in vivo. However, in clinical practice, key decision making still largely relies on assessment built around the timing of the onset of chest pain, features on electrocardiograms and measurements of plasma troponin. Better understanding the heterogeneity of myocardial injury and patient-level responses should provide new opportunities for diagnostic stratification to enable the delivery of more rational therapies. Characterisation of the myocardium using emerging imaging techniques such as the T1, T2 and T2* mapping techniques can provide enhanced assessments of myocardial statuses. Physiological measures, which include microcirculatory resistance and coronary flow reserve, have been shown to predict outcomes in AMI and can be used to inform treatment selection. Functionally informative blood biomarkers, including cellular transcriptomics; microRNAs; extracellular vesicle analyses and soluble markers, all give insights into the nature and timing of the innate immune response and its regulation in acute MI. The integration of these and other emerging tools will be key to developing a fuller understanding of the patient-level processes of myocardial injury and repair and should fuel new possibilities for rational therapeutic intervention.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Cardiothoracic Centre, Freeman Hospital, Newcastle-upon-Tyne NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | | | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Neil Ruparelia
- Cardiology Department, Hammersmith Hospital, Imperial College London, London W12 0HS, UK
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
10
|
Sun W, Wang C, Cui S, Wang Y, Zhao S, Lu M, Yang F, Dong S, Chu Y. Association of GSDMD with microvascular-ischemia reperfusion injury after ST-elevation myocardial infarction. Front Cardiovasc Med 2023; 10:1138352. [PMID: 37424923 PMCID: PMC10325858 DOI: 10.3389/fcvm.2023.1138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives Little is known about the clinical prognosis of gasdermin D (GSDMD) in patients with ST-elevation myocardial infarction (STEMI). The purpose of this study was to investigate the association of GSDMD with microvascular injury, infarction size (IS), left ventricular ejection fraction (LVEF), and major adverse cardiac events (MACEs), in STEMI patients with primary percutaneous coronary intervention (pPCI). Methods We retrospectively analyzed 120 prospectively enrolled STEMI patients (median age 53 years, 80% men) treated with pPCI between 2020 and 2021 who underwent serum GSDMD assessment and cardiac magnetic resonance (CMR) within 48 h post-reperfusion; CMR was also performed at one year follow-up. Results Microvascular obstruction was observed in 37 patients (31%). GSDMD concentrations ≧ median (13 ng/L) in patients were associated with a higher risk of microvascular obstruction and IMH (46% vs. 19%, P = 0.003; 31% vs. 13%, P = 0.02, respectively), as well as with a lower LVEF both in the acute phase after infarction (35% vs. 54%, P < 0.001) and in the chronic phase (42% vs. 56%, P < 0.001), larger IS in the acute (32% vs. 15%, P < 0.001) and in the chronic phases (26% vs. 11%, P < 0.001), and larger left ventricular volumes (119 ± 20 vs. 98 ± 14, P = 0.003) by CMR. Univariable and multivariable Cox regression analysis results showed that patients with GSDMD concentrations ≧ median (13 ng/L) had a higher incidence of MACE (P < 0.05). Conclusions High GSDMD concentrations in STEMI patients are associated with microvascular injury (including MVO and IMH), which is a powerful MACE predictor. Nevertheless, the therapeutic implications of this relation need further research.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunqiu Wang
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shihua Cui
- Department of Cardiology, Dalian Medical University, Dalian, China
| | - Yan Wang
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenghui Zhao
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lu
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Yang
- Department of Cardiology, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shujuan Dong
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjie Chu
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Pambianchi G, Giannetti M, Marchitelli L, Cundari G, Maestrini V, Mancone M, Francone M, Catalano C, Galea N. Papillary Muscle Involvement during Acute Myocardial Infarction: Detection by Cardiovascular Magnetic Resonance Using T1 Mapping Technique and Papillary Longitudinal Strain. J Clin Med 2023; 12:jcm12041497. [PMID: 36836032 PMCID: PMC9963367 DOI: 10.3390/jcm12041497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Papillary muscle (PPM) involvement in myocardial infarction (MI) increases the risk of secondary mitral valve regurgitation or PPM rupture and may be diagnosed using late gadolinium enhancement (LGE) imaging. The native T1-mapping (nT1) technique and PPM longitudinal strain (PPM-ls) have been used to identify PPM infarction (iPPM) without the use of the contrast agent. This study aimed to assess the diagnostic performance of nT1 and PPM-ls in the identification of iPPM. Forty-six patients, who performed CMR within 14-30 days after MI, were retrospectively enrolled: sixteen showed signs of iPPM on LGE images. nT1 values were measured within the infarcted area (IA), remote myocardium (RM), blood pool (BP), and anterolateral and posteromedial PPMs and compared using ANOVA. PPM-ls values have been assessed on cineMR images as the percentage of shortening between end-diastolic and end-systolic phases. Higher nT1 values and lower PPM-ls were found in infarcted compared to non-infarcted PPMs (nT1: 1219.3 ± 102.5 ms vs. 1052.2 ± 80.5 ms and 17.6 ± 6.3% vs. 21.6 ± 4.3%; p-value < 0.001 for both), with no significant differences between the nT1 of infarcted PPMs and IA and between the non-infarcted PPMs and RM. ROC analysis demonstrated an excellent discriminatory power for nT1 in detecting the iPPM (AUC = 0.874; 95% CI: 0.784-0.963; p < 0.001). nT1 and PPM-ls are valid tools in assessing iPPM with the advantage of avoiding contrast media administration.
Collapse
Affiliation(s)
- Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Martina Giannetti
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Livia Marchitelli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, “Policlinico Umberto I” Hospital, 00161 Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, “Policlinico Umberto I” Hospital, 00161 Rome, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Shanmuganathan M, Masi A, Burrage MK, Kotronias RA, Borlotti A, Scarsini R, Banerjee A, Terentes-Printzios D, Zhang Q, Hann E, Tunnicliffe E, Lucking A, Langrish J, Kharbanda R, De Maria GL, Banning AP, Choudhury RP, Channon KM, Piechnik SK, Ferreira VM. Acute Response in the Noninfarcted Myocardium Predicts Long-Term Major Adverse Cardiac Events After STEMI. JACC Cardiovasc Imaging 2023; 16:46-59. [PMID: 36599569 PMCID: PMC9834063 DOI: 10.1016/j.jcmg.2022.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute ST-segment elevation myocardial infarction (STEMI) has effects on the myocardium beyond the immediate infarcted territory. However, pathophysiologic changes in the noninfarcted myocardium and their prognostic implications remain unclear. OBJECTIVES The purpose of this study was to evaluate the long-term prognostic value of acute changes in both infarcted and noninfarcted myocardium post-STEMI. METHODS Patients with acute STEMI undergoing primary percutaneous coronary intervention underwent evaluation with blood biomarkers and cardiac magnetic resonance (CMR) at 2 days and 6 months, with long-term follow-up for major adverse cardiac events (MACE). A comprehensive CMR protocol included cine, T2-weighted, T2∗, T1-mapping, and late gadolinium enhancement (LGE) imaging. Areas without LGE were defined as noninfarcted myocardium. MACE was a composite of cardiac death, sustained ventricular arrhythmia, and new-onset heart failure. RESULTS Twenty-two of 219 patients (10%) experienced an MACE at a median of 4 years (IQR: 2.5-6.0 years); 152 patients returned for the 6-month visit. High T1 (>1250 ms) in the noninfarcted myocardium was associated with lower left ventricular ejection fraction (LVEF) (51% ± 8% vs 55% ± 9%; P = 0.002) and higher NT-pro-BNP levels (290 pg/L [IQR: 103-523 pg/L] vs 170 pg/L [IQR: 61-312 pg/L]; P = 0.008) at 6 months and a 2.5-fold (IQR: 1.03-6.20) increased risk of MACE (2.53 [IQR: 1.03-6.22]), compared with patients with normal T1 in the noninfarcted myocardium (P = 0.042). A lower T1 (<1,300 ms) in the infarcted myocardium was associated with increased MACE (3.11 [IQR: 1.19-8.13]; P = 0.020). Both noninfarct and infarct T1 were independent predictors of MACE (both P = 0.001) and significantly improved risk prediction beyond LVEF, infarct size, and microvascular obstruction (C-statistic: 0.67 ± 0.07 vs 0.76 ± 0.06, net-reclassification index: 40% [IQR: 12%-64%]; P = 0.007). CONCLUSIONS The acute responses post-STEMI in both infarcted and noninfarcted myocardium are independent incremental predictors of long-term MACE. These insights may provide new opportunities for treatment and risk stratification in STEMI.
Collapse
Affiliation(s)
- Mayooran Shanmuganathan
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ambra Masi
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Matthew K. Burrage
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rafail A. Kotronias
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alessandra Borlotti
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roberto Scarsini
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abhirup Banerjee
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dimitrios Terentes-Printzios
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Evan Hann
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Andrew Lucking
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy Langrish
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajesh Kharbanda
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanni Luigi De Maria
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian P. Banning
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P. Choudhury
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Keith M. Channon
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom,Address for correspondence: Prof Keith Channon, Level 2–Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - Stefan K. Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Vanessa M. Ferreira
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Franssen WMJ, Treibel TA, Seraphim A, Weingärtner S, Terenzi C. Model-free phasor image analysis of quantitative myocardial T 1 mapping. Sci Rep 2022; 12:19840. [PMID: 36400794 PMCID: PMC9674690 DOI: 10.1038/s41598-022-23872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Model-free phasor image analysis, well established in fluorescence lifetime imaging and only recently applied to qMRI [Formula: see text] data processing, is here adapted and validated for myocardial qMRI [Formula: see text] mapping. Contrarily to routine mono-exponential fitting procedures, phasor enables mapping the lifetime information from all image voxels to a single plot, without resorting to any regression fitting analysis, and describing multi-exponential qMRI decays without biases due to violated modelling assumptions. In this feasibility study, we test the performance of our recently developed full-harmonics phasor method for unravelling partial-volume effects, motion or pathological tissue alteration, respectively on a numerically-simulated dataset, a healthy subject scan, and two pilot patient datasets. Our results show that phasor analysis can be used, as alternative method to fitting analysis or other model-free approaches, to identify motion artifacts or partial-volume effects at the myocardium-blood interface as characteristic deviations, or delineations of scar and remote myocardial tissue in patient data.
Collapse
Affiliation(s)
- Wouter M. J. Franssen
- grid.4818.50000 0001 0791 5666Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands
| | - Thomas A. Treibel
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | - Andreas Seraphim
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, St Bartholomew’s Hospital, Barts Health NHS Trust, London, UK
| | - Sebastian Weingärtner
- grid.5292.c0000 0001 2097 4740Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Camilla Terenzi
- grid.4818.50000 0001 0791 5666Laboratory of Biophysics, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Myocardial tissue imaging with cardiovascular magnetic resonance. J Cardiol 2022; 80:377-385. [PMID: 35246367 DOI: 10.1016/j.jjcc.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Alteration in myocardial tissue, such as myocardial fibrosis, edema, inflammation, or accumulation with amyloid, lipids, or iron, has an important role in the cardiac remodeling that leads to diastolic and/or systolic dysfunction and the development of chronic heart failure, increasing the risk of adverse cardiovascular events. Thus, the early detection of changes at myocardial tissue level has great diagnostic and prognostic potential. The gold standard technique to assess these myocardial alterations is endomyocardial biopsy. However, this has been limited to a few patients due to the invasive nature, sampling errors, and its inability to assess the entire myocardium. Cardiovascular magnetic resonance (CMR) has emerged as the gold standard imaging not only for assessing cardiac volume, function quantification, and viability but also for noninvasive myocardial tissue characterization over the past decade. Its ability to characterize myocardial tissue composition is unique among noninvasive imaging modalities in cardiovascular disease. Currently, multi-parametric myocardial characterization with T1, T2, and extracellular volume has the potential to identify and track diffuse pathology in various diseases. In this review article, we present the role of established and emerging CMR techniques in myocardial tissue characterization, with an emphasis on T1 and T2 mapping, in clinical practice.
Collapse
|
15
|
Alkhalil M. Novel Applications for Invasive and Non-invasive Tools in the Era of Contemporary Percutaneous Coronary Revascularisation. Curr Cardiol Rev 2022; 18:e190122191004. [PMID: 33530910 PMCID: PMC9241120 DOI: 10.2174/1573403x17666210202102549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is an expanding treatment option for patients with coronary artery disease (CAD). It is considered the default strategy for the unstable presentation of CAD. PCI techniques have evolved over the last 4 decades with significant improvements in stent design, an increase in functional assessment of coronary lesions, and the use of intra-vascular imaging. Nonetheless, the morbidity and mortality related to CAD remain significant. Advances in technology have allowed a better understanding of the nature and progression of CAD. New tools are now available that reflect the pathophysiological changes at the level of the myocardium and coronary atherosclerotic plaque. Certain changes within the plaque would render it more prone to rupture leading to acute vascular events. These changes are potentially detected using novel tools invasively, such as near infra-red spectroscopy, or non-invasively using T2 mapping cardiovascular magnetic resonance imaging (CMR) and 18F-Sodium Fluoride positron emission tomography/ computed tomography. Similarly, changes at the level of the injured myocardium are feasibly assessed invasively using index microcirculatory resistance or non-invasively using T1 mapping CMR. Importantly, these changes could be detected immediately with the opportunity to tailor treatment to those considered at high risk. Concurrently, novel therapeutic options have demonstrated promising results in reducing future cardiovascular risks in patients with CAD. This Review article will discuss the role of these novel tools and their applicability in employing a mechanical and pharmacological treatment to mitigate cardiovascular risk in patients with CAD.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Department of Cardiothoracic Services, Freeman hospital, Newcastle-upon-Tyne UK.,Department of Cardiology, Toronto General Hospital, Toronto Canada
| |
Collapse
|
16
|
Rankin AJ, Mangion K, Lees JS, Rutherford E, Gillis KA, Edy E, Dymock L, Treibel TA, Radjenovic A, Patel RK, Berry C, Roditi G, Mark PB. Myocardial changes on 3T cardiovascular magnetic resonance imaging in response to haemodialysis with fluid removal. J Cardiovasc Magn Reson 2021; 23:125. [PMID: 34758850 PMCID: PMC8580743 DOI: 10.1186/s12968-021-00822-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mapping of left ventricular (LV) native T1 is a promising non-invasive, non-contrast imaging biomarker. Native myocardial T1 times are prolonged in patients requiring dialysis, but there are concerns that the dialysis process and fluctuating fluid status may confound results in this population. We aimed to assess the changes in cardiac parameters on 3T cardiovascular magnetic resonance (CMR) before and after haemodialysis, with a specific focus on native T1 mapping. METHODS This is a single centre, prospective observational study in which maintenance haemodialysis patients underwent CMR before and after dialysis (both scans within 24 h). Weight measurement, bio-impedance body composition monitoring, haemodialysis details and fluid intake were recorded. CMR protocol included cine imaging and mapping native T1 and T2. RESULTS Twenty-six participants (16 male, 65 ± 9 years) were included in the analysis. The median net ultrafiltration volume on dialysis was 2.3 L (IQR 1.8, 2.5), resulting in a median weight reduction at post-dialysis scan of 1.35 kg (IQR 1.0, 1.9), with a median reduction in over-hydration (as measured by bioimpedance) of 0.75 L (IQR 0.5, 1.4). Significant reductions were observed in LV end-diastolic volume (- 25 ml, p = 0.002), LV stroke volume (- 13 ml, p = 0.007), global T1 (21 ms, p = 0.02), global T2 (- 1.2 ms, p = 0.02) following dialysis. There was no change in LV mass (p = 0.35), LV ejection fraction (p = 0.13) or global longitudinal strain (p = 0.22). On linear regression there was no association between baseline over-hydration (as defined by bioimpedance) and global native T1 or global T2, nor was there an association between the change in over-hydration and the change in these parameters. CONCLUSIONS Acute changes in cardiac volumes and myocardial native T1 are detectable on 3T CMR following haemodialysis with fluid removal. The reduction in global T1 suggests that the abnormal native T1 observed in patients on haemodialysis is not entirely due to myocardial fibrosis.
Collapse
Affiliation(s)
- Alastair J Rankin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Jennifer S Lees
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Elaine Rutherford
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Keith A Gillis
- Renal and Transplant Unit, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Elbert Edy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Laura Dymock
- Clinical Research Imaging, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Thomas A Treibel
- Institute for Cardiovascular Sciences and Barts Heart Centre, University College London, London, UK
| | - Aleksandra Radjenovic
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rajan K Patel
- Renal and Transplant Unit, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Giles Roditi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
- Department of Radiology, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
17
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Shi K, Ma M, Yang MX, Xia CC, Peng WL, He Y, Li ZL, Guo YK, Yang ZG. Increased oxygenation is associated with myocardial inflammation and adverse regional remodeling after acute ST-segment elevation myocardial infarction. Eur Radiol 2021; 31:8956-8966. [PMID: 34003352 DOI: 10.1007/s00330-021-08032-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To explore the relationships between oxygenation signal intensity (SI) with myocardial inflammation and regional left ventricular (LV) remodeling in reperfused acute ST-segment elevation myocardial infarction (STEMI) using oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR). METHODS Thirty-three STEMI patients and 22 age- and sex-matched healthy volunteers underwent CMR. The protocol included cine function, OS imaging, precontrast T1 mapping, T2 mapping, and late gadolinium enhancement (LGE) imaging. A total of 880 LV segments were included for analysis based on the American Heart Association 16-segment model. For validation, 15 pigs (10 myocardial infarction (MI) model animals and 5 controls) received CMR and were sacrificed for immunohistochemical analysis. RESULTS In the patient study, the acute oxygenation SI showed a stepwise rise among remote, salvaged, and infarcted segments compared with healthy myocardium. At convalescence, all oxygenation SI values besides those in infarcted segments with microvascular obstruction decreased to similar levels. Acute oxygenation SI was associated with early myocardial injury (T1: r = 0.38; T2: r = 0.41; all p < 0.05). Segments with higher acute oxygenation SI values exhibited thinner diastolic walls and decreased wall thickening during follow-up. Multivariable regression modeling indicated that acute oxygenation SI (β = 2.66; p < 0.05) independently predicted convalescent segment adverse remodeling (LV wall thinning). In the animal study, alterations in oxygenation SI were correlated with histological inflammatory infiltrates (r = 0.59; p < 0.001). CONCLUSIONS Myocardial oxygenation by OS-CMR could be used as a quantitative imaging biomarker to assess myocardial inflammation and predict convalescent segment adverse remodeling after STEMI. KEY POINTS • Oxygenation signal intensity (SI) may be an imaging biomarker of inflammatory infiltration that could be used to assess the response to anti-inflammatory therapies in the future. • Oxygenation SI early after myocardial infarction (MI) was associated with left ventricular segment injury at acute phase and could predict regional functional recovery and adverse remodeling late after acute MI. • Oxygenation SI demonstrated a stepwise increase among remote, salvaged, and infarcted segments. Infarcted zones with microvascular obstruction demonstrated a higher oxygenation SI than those without. However, the former showed less pronounced changes over time.
Collapse
Affiliation(s)
- Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Ma
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng-Xi Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Chao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wan-Lin Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Philip C, Seifried R, Peterson PG, Liotta R, Steel K, Bittencourt MS, Hulten EA. Cardiac MRI for Patients with Increased Cardiometabolic Risk. Radiol Cardiothorac Imaging 2021; 3:e200575. [PMID: 33969314 DOI: 10.1148/ryct.2021200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 11/11/2022]
Abstract
Cardiac MRI (CMR) has rich potential for future cardiovascular screening even though not approved clinically for routine screening for cardiovascular disease among patients with increased cardiometabolic risk. Patients with increased cardiometabolic risk include those with abnormal blood pressure, body mass, cholesterol level, or fasting glucose level, which may be related to dietary and exercise habits. However, CMR does accurately evaluate cardiac structure and function. CMR allows for effective tissue characterization with a variety of sequences that provide unique insights as to fibrosis, infiltration, inflammation, edema, presence of fat, strain, and other potential pathologic features that influence future cardiovascular risk. Ongoing epidemiologic and clinical research may demonstrate clinical benefit leading to increased future use. © RSNA, 2021.
Collapse
Affiliation(s)
- Cynthia Philip
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - Rebecca Seifried
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - P Gabriel Peterson
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - Robert Liotta
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - Kevin Steel
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - Marcio S Bittencourt
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| | - Edward A Hulten
- Department of Medicine, Cardiology Service (C.P., R.S., E.A.H.) and Department of Radiology (P.G.P., R.L.), Walter Reed National Military Medical Center, Bethesda, Md; Department of Radiology and Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Md (C.P., R.S., P.G.P., R.L., E.A.H.); PeaceHealth Medical Group, Bellingham, Wash (K.S.); University Hospital, University of São Paulo School of Medicine, São Paulo, Brazil (M.S.B.); Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil (M.S.B.); and DASA São Paulo, São Paulo, Brazil (M.S.B.)
| |
Collapse
|
20
|
Mancio J, Pashakhanloo F, El-Rewaidy H, Jang J, Joshi G, Csecs I, Ngo L, Rowin E, Manning W, Maron M, Nezafat R. Machine learning phenotyping of scarred myocardium from cine in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2021; 23:532-542. [PMID: 33779725 DOI: 10.1093/ehjci/jeab056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Cardiovascular magnetic resonance (CMR) with late-gadolinium enhancement (LGE) is increasingly being used in hypertrophic cardiomyopathy (HCM) for diagnosis, risk stratification, and monitoring. However, recent data demonstrating brain gadolinium deposits have raised safety concerns. We developed and validated a machine-learning (ML) method that incorporates features extracted from cine to identify HCM patients without fibrosis in whom gadolinium can be avoided. METHODS AND RESULTS An XGBoost ML model was developed using regional wall thickness and thickening, and radiomic features of myocardial signal intensity, texture, size, and shape from cine. A CMR dataset containing 1099 HCM patients collected using 1.5T CMR scanners from different vendors and centres was used for model development (n=882) and validation (n=217). Among the 2613 radiomic features, we identified 7 features that provided best discrimination between +LGE and -LGE using 10-fold stratified cross-validation in the development cohort. Subsequently, an XGBoost model was developed using these radiomic features, regional wall thickness and thickening. In the independent validation cohort, the ML model yielded an area under the curve of 0.83 (95% CI: 0.77-0.89), sensitivity of 91%, specificity of 62%, F1-score of 77%, true negatives rate (TNR) of 34%, and negative predictive value (NPV) of 89%. Optimization for sensitivity provided sensitivity of 96%, F2-score of 83%, TNR of 19% and NPV of 91%; false negatives halved from 4% to 2%. CONCLUSION An ML model incorporating novel radiomic markers of myocardium from cine can rule-out myocardial fibrosis in one-third of HCM patients referred for CMR reducing unnecessary gadolinium administration.
Collapse
Affiliation(s)
- Jennifer Mancio
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Farhad Pashakhanloo
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Hossam El-Rewaidy
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Computer Science, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Jihye Jang
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Computer Science, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Gargi Joshi
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ibolya Csecs
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Ethan Rowin
- HCM Institute, Division of Cardiology, Tufts Medical Centre, 860 Washington St Building, 6th Floor, Boston, MA 02111, USA
| | - Warren Manning
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Radiology, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Martin Maron
- HCM Institute, Division of Cardiology, Tufts Medical Centre, 860 Washington St Building, 6th Floor, Boston, MA 02111, USA
| | - Reza Nezafat
- Department of Medicine, Beth Israel Deaconess Medical Centre and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
21
|
Abstract
Purpose of Review The purpose of this review is to summarize the application of cardiac magnetic resonance (CMR) in the diagnostic and prognostic evaluation of patients with heart failure (HF). Recent Findings CMR is an important non-invasive imaging modality in the assessment of ventricular volumes and function and in the analysis of myocardial tissue characteristics. The information derived from CMR provides a comprehensive evaluation of HF. Its unique ability of tissue characterization not only helps to reveal the underlying etiologies of HF but also offers incremental prognostic information. Summary CMR is a useful non-invasive tool for the diagnosis and assessment of prognosis in patients suffering from heart failure.
Collapse
Affiliation(s)
- Chuanfen Liu
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
- Department of Cardiology, Peking University People’s Hospital, Beijing, China
| | - Victor A. Ferrari
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| | - Yuchi Han
- Cardiovascular Division, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
22
|
Yang MX, He Y, Ma M, Zhao Q, Xu HY, Xia CC, Peng WL, Li ZL, Li H, Guo YK, Yang ZG. Characterization of infarcted myocardium by T1-mapping and its association with left ventricular remodeling. Eur J Radiol 2021; 137:109590. [PMID: 33607372 DOI: 10.1016/j.ejrad.2021.109590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Acutely infarcted native T1 (native T1AI) and extracellular volume (ECVAI) could quantify myocardial injury after acute myocardial infarction (AMI). Therefore, we sought to further explore their association with left ventricular (LV) remodeling during follow-up. METHODS 56 ST-segment-elevation MI patients were prospectively recruited and completed acute and 3-month cardiac magnetic resonance scans. T1 mapping, late gadolinium enhancement and cine imaging were performed to measure native T1AI, ECVAI, infarct size and LV global function, respectively. LV remodeling was evaluated as the change in LV end-diastolic volume index (△EDV) at follow-up scan compared with baseline. RESULTS In acute scan, 37 patients (66.07 %) had microvascular obstruction (MVO). The native T1AI did not significantly differ between patients with or without MVO (1482.0 ± 80.6 ms vs. 1469.0 ± 71.6 ms, P = 0.541). However, ECVAI in patients without MVO was lower than that in patients with MVO (49.60 ± 8.57 % vs. 58.53 ± 8.62 %, P = 0.001). The native T1AI only correlated with △EDV in patients without MVO (rmvo- = 0.495, P = 0.031); while ECVAI was associated with △EDV in all patients (rmvo- = 0.665, P = 0.002; rmvo+ = 0.506, P = 0.001; rall patients = 0.570, P < 0.001). Furthermore, ECVAI was independently associated with LV remodeling in multivariable linear regression analysis (β = 0.490, P = 0.002). CONCLUSION As a promising parameter for early risk stratification after AMI, ECVAI is associated with LV remodeling during follow-up; while native T1AI may be feasible when MVO is absent.
Collapse
Affiliation(s)
- Meng-Xi Yang
- Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China.
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, China.
| | - Min Ma
- Department of Cardiology, West China Hospital, Sichuan University, China; Department of Cardiology, The Sixth People's Hospital of Chengdu, Chengdu, China.
| | - Qin Zhao
- Department of Radiology, West China Hospital, Sichuan University, China.
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China.
| | - Chun-Chao Xia
- Department of Radiology, West China Hospital, Sichuan University, China.
| | - Wan-Lin Peng
- Department of Radiology, West China Hospital, Sichuan University, China.
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, China.
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital, Sichuan University, China.
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China.
| | - Zhi-Gang Yang
- Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, China; Department of Radiology, West China Hospital, Sichuan University, China.
| |
Collapse
|
23
|
Shi K, Yang MX, Xia CC, Peng WL, Zhang K, Li ZL, Guo YK, Yang ZG. Noninvasive oxygenation assessment after acute myocardial infarction with breathing maneuvers-induced oxygenation-sensitive magnetic resonance imaging. J Magn Reson Imaging 2021; 54:284-289. [PMID: 33433045 DOI: 10.1002/jmri.27509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
The safety profiles when performing stress oxygenation-sensitive magnetic resonance imaging (OS-MRI) have raised concerns in clinical practice. Adenosine infusion can cause side effects such as chest pain, dyspnea, arrhythmia, and even cardiac death. The aim of this study was to investigate the feasibility of breathing maneuvers-induced OS-MRI in acute myocardial infarction (MI). This was a prospective study, which included 14 healthy rabbits and nine MI rabbit models. This study used 3 T MRI/modified Look-Locker inversion recovery sequence for native T1 mapping, balanced steady-state free precession sequence for OS imaging, and phase-sensitive inversion recovery sequence for late gadolinium enhancement. The changes in myocardial oxygenation (ΔSI) were assessed under two breathing maneuvers protocols in healthy rabbits: a series of extended breath-holding (BH), and a combined maneuver of hyperventilation followed by the extended BH (HVBH). Subsequently, OS-MRI with HVBH in acute MI rabbits was performed, and the ΔSI was compared with that of adenosine stress protocol. Student's t-test, Wilcoxon rank test, and Friedman test were used to compare ΔSI in different subgroups. Pearson and Spearman correlation was used to obtain the association of ΔSI between breathing maneuvers and adenosine stress. Bland-Altman analysis was used to assess the bias of ΔSI between HVBH and adenosine stress. In healthy rabbits, BH maneuvers from 30 to 50 s induced significant increase in SI compared with the baseline (all p < 0.05). By contrast, hyperventilation for 60 s followed by 10 s-BH (HVBH 10 s) exhibited a comparable ΔSI to that of stress test (p = 0.07). In acute MI rabbits, HVBH 10 s-induced ΔSIs among infarcted, salvaged, and the remote myocardial area were no less effectiveness than adenosine stress when performing OS-MRI (r = 0.84; p < 0.05). Combined breathing maneuvers with OS-MRI have the potential to be used as a nonpharmacological alternative for assessing myocardial oxygenation in patients with acute MI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng-Xi Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chun-Chao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wan-Lin Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Zhang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
24
|
Zhang L, Yang ZG, Xu H, Yang MX, Xu R, Chen L, Sun R, Miao T, Zhao J, Zhou X, Fu C, Guo Y. Histological Validation of Cardiovascular Magnetic Resonance T1 Mapping for Assessing the Evolution of Myocardial Injury in Myocardial Infarction: An Experimental Study. Korean J Radiol 2020; 21:1294-1304. [PMID: 32783415 PMCID: PMC7689143 DOI: 10.3348/kjr.2020.0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To determine whether T1 mapping could monitor the dynamic changes of injury in myocardial infarction (MI) and be histologically validated. MATERIALS AND METHODS In 22 pigs, MI was induced by ligating the left anterior descending artery and they underwent serial cardiovascular magnetic resonance examinations with modified Look-Locker inversion T1 mapping and extracellular volume (ECV) computation in acute (within 24 hours, n = 22), subacute (7 days, n = 13), and chronic (3 months, n = 7) phases of MI. Masson's trichrome staining was performed for histological ECV calculation. Myocardial native T1 and ECV were obtained by region of interest measurement in infarcted, peri-infarct, and remote myocardium. RESULTS Native T1 and ECV in peri-infarct myocardium differed from remote myocardium in acute (1181 ± 62 ms vs. 1113 ± 64 ms, p = 0.002; 24 ± 4% vs. 19 ± 4%, p = 0.031) and subacute phases (1264 ± 41 ms vs. 1171 ± 56 ms, p < 0.001; 27 ± 4% vs. 22 ± 2%, p = 0.009) but not in chronic phase (1157 ± 57 ms vs. 1120 ± 54 ms, p = 0.934; 23 ± 2% vs. 20 ± 1%, p = 0.109). From acute to chronic MI, infarcted native T1 peaked in subacute phase (1275 ± 63 ms vs. 1637 ± 123 ms vs. 1471 ± 98 ms, p < 0.001), while ECV progressively increased with time (35 ± 7% vs. 46 ± 6% vs. 52 ± 4%, p < 0.001). Native T1 correlated well with histological findings (R² = 0.65 to 0.89, all p < 0.001) so did ECV (R² = 0.73 to 0.94, all p < 0.001). CONCLUSION T1 mapping allows the quantitative assessment of injury in MI and the noninvasive monitoring of tissue injury evolution, which correlates well with histological findings.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Meng Xi Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Chen
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ran Sun
- Key Laboratory of Obstetrics & Gynecology and Pediatric Disease and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tianyu Miao
- Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Vascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | - Chuan Fu
- Department of Radiology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Ma Q, Ma Y, Yu T, Sun Z, Hou Y. Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction. Korean J Radiol 2020; 22:535-546. [PMID: 33289360 DOI: 10.3348/kjr.2019.0969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/15/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). MATERIALS AND METHODS This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. RESULTS A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). CONCLUSION The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.
Collapse
Affiliation(s)
- Quanmei Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Shin JM, Choi EY, Park CH, Han K, Kim TH. Quantitative T1 Mapping for Detecting Microvascular Obstruction in Reperfused Acute Myocardial Infarction: Comparison with Late Gadolinium Enhancement Imaging. Korean J Radiol 2020; 21:978-986. [PMID: 32677382 PMCID: PMC7369203 DOI: 10.3348/kjr.2019.0736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/15/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To compare native and post-contrast T1 mapping with late gadolinium enhancement (LGE) imaging for detecting and measuring the microvascular obstruction (MVO) area in reperfused acute myocardial infarction (MI). Materials and Methods This study included 20 patients with acute MI who had undergone 1.5T cardiovascular magnetic resonance imaging (CMR) after reperfusion therapy. CMR included cine imaging, LGE, and T1 mapping (modified look-locker inversion recovery). MI size was calculated from LGE by full-width at half-maximum technique. MVO was defined as an area with low signal intensity (LGE) or as a region of visually distinguishable T1 values (T1 maps) within infarcted myocardium. Regional T1 values were measured in MVO, infarcted, and remote myocardium on T1 maps. MVO area was measured on and compared among LGE, native, and post-contrast T1 maps. Results The mean MI size was 27.1 ± 9.7% of the left ventricular mass. Of the 20 identified MVOs, 18 (90%) were detected on native T1 maps, while 10 (50%) were recognized on post-contrast T1 maps. The mean native T1 values of MVO, infarcted, and remote myocardium were 1013.5 ± 58.5, 1240.9 ± 55.8 (p < 0.001), and 1062.2 ± 55.8 ms (p = 0.169), respectively, while the mean post-contrast T1 values were 466.7 ± 26.8, 399.1 ± 21.3, and 585.2 ± 21.3 ms, respectively (p < 0.001). The mean MVO areas on LGE, native, and post-contrast T1 maps were 134.1 ± 81.2, 133.7 ± 80.4, and 117.1 ± 53.3 mm2, respectively. The median (interquartile range) MVO areas on LGE, native, and post-contrast T1 maps were 128.0 (58.1–215.4), 110.5 (67.7–227.9), and 143.0 (76.7–155.3) mm2, respectively (p = 0.002). Concordance correlation coefficients for the MVO area between LGE and native T1 maps, LGE and post-contrast T1 maps, and native and post-contrast T1 maps were 0.770, 0.375, and 0.565, respectively. Conclusion MVO areas were accurately delineated on native T1 maps and showed high concordance with the areas measured on LGE. However, post-contrast T1 maps had low detection rates and underestimated MVO areas. Collectively, native T1 mapping is a useful tool for detecting MVO within the infarcted myocardium.
Collapse
Affiliation(s)
- Jae Min Shin
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Young Choi
- Division of Cardiology, Heart Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Hwan Park
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and the Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Radiology and the Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Yang MX, Xu HY, Zhang L, Chen L, Xu R, Fu H, Liu H, Li XS, Fu C, Liu KL, Li H, Zhou XY, Guo YK, Yang ZG. Myocardial perfusion assessment in the infarct core and penumbra zones in an in-vivo porcine model of the acute, sub-acute, and chronic infarction. Eur Radiol 2020; 31:2798-2808. [PMID: 33156386 DOI: 10.1007/s00330-020-07220-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To assess the longitudinal changes of microvascular function in different myocardial regions after myocardial infarction (MI) using myocardial blood flow derived by dynamic CT perfusion (CTP-MBF), and compare CTP-MBF with the results of cardiac magnetic resonance (CMR) and histopathology. METHODS The CTP scanning was performed in a MI porcine model 1 day (n = 15), 7 days (n = 10), and 3 months (n = 5) following induction surgery. CTP-MBF was measured in the infarcted myocardium, penumbra, and remote myocardium, respectively. CMR perfusion and histopathology were performed for validation. RESULTS From baseline to follow-up scans, CTP-MBF presented a stepwise increase in the infarcted myocardium (68.51 ± 11.04 vs. 86.73 ± 13.32 vs. 109.53 ± 26.64 ml/100 ml/min, p = 0.001) and the penumbra (104.92 ± 29.29 vs. 120.32 ± 24.74 vs. 183.01 ± 57.98 ml/100 ml/min, p = 0.008), but not in the remote myocardium (150.05 ± 35.70 vs. 166.66 ± 38.17 vs. 195.36 ± 49.64 ml/100 ml/min, p = 0.120). The CTP-MBF correlated with max slope (r = 0.584, p < 0.001), max signal intensity (r = 0.357, p < 0.001), and time to max (r = - 0.378, p < 0.001) by CMR perfusion. Moreover, CTP-MBF defined the infarcted myocardium on triphenyl tetrazolium chloride staining (AUC: 0.810, p < 0.001) and correlated with microvascular density on CD31 staining (r = 0.561, p = 0.002). CONCLUSION CTP-MBF could quantify the longitudinal changes of microvascular function in different regions of the post-MI myocardium, which demonstrates good agreement with contemporary CMR and histopathological findings. KEY POINTS • The CT perfusion-based myocardial blood flow (CTP-MBF) could quantify the microvascular impairment in different myocardial regions after myocardial infarction (MI) and track its recovery over time. • The assessment of CTP-MBF is in good agreement with contemporary cardiac MRI and histopathological findings, which potentially facilitates a rapid approach for pathophysiological insights following MI.
Collapse
Affiliation(s)
- Meng-Xi Yang
- Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Lin Chen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hui Liu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xue-Sheng Li
- Department of Radiology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuan Fu
- Department of Radiology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ke-Ling Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthcare Ltd, Shanghai, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China. .,Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Demirkiran A, Everaars H, Amier RP, Beijnink C, Bom MJ, Götte MJW, van Loon RB, Selder JL, van Rossum AC, Nijveldt R. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur Heart J Cardiovasc Imaging 2020; 20:723-734. [PMID: 31131401 DOI: 10.1093/ehjci/jez094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
The annual incidence of hospital admission for acute myocardial infarction lies between 90 and 312 per 100 000 inhabitants in Europe. Despite advances in patient care 1 year mortality after ST-segment elevation myocardial infarction (STEMI) remains around 10%. Cardiovascular magnetic resonance imaging (CMR) has emerged as a robust imaging modality for assessing patients after acute myocardial injury. In addition to accurate assessment of left ventricular ejection fraction and volumes, CMR offers the unique ability of visualization of myocardial injury through a variety of imaging techniques such as late gadolinium enhancement and T2-weighted imaging. Furthermore, new parametric mapping techniques allow accurate quantification of myocardial injury and are currently being exploited in large trials aiming to augment risk management and treatment of STEMI patients. Of interest, CMR enables the detection of microvascular injury (MVI) which occurs in approximately 40% of STEMI patients and is a major independent predictor of mortality and heart failure. In this article, we review traditional and novel CMR techniques used for myocardial tissue characterization after acute myocardial injury, including the detection and quantification of MVI. Moreover, we discuss clinical scenarios of acute myocardial injury in which the tissue characterization techniques can be applied and we provide proposed imaging protocols tailored to each scenario.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Henk Everaars
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Raquel P Amier
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Casper Beijnink
- Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Ramon B van Loon
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Jasper L Selder
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands.,Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| |
Collapse
|
29
|
Kendziora B, Stier H, Schlattmann P, Dewey M. MRI for measuring therapy efficiency after revascularisation in ST-segment elevation myocardial infarction: a systematic review and meta-regression analysis. BMJ Open 2020; 10:e034359. [PMID: 32988935 PMCID: PMC7523216 DOI: 10.1136/bmjopen-2019-034359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE To summarise existing data on the relation between the time from symptom onset until revascularisation (time to reperfusion) and the myocardial salvage index (MSI) calculated as proportion of non-necrotic myocardium inside oedematous myocardium on T2-weighted and T1-weighted late gadolinium enhancement MRI after ST-segment elevation myocardial infarction (STEMI). METHODS Studies including patients with revascularised STEMI and stating both the time to reperfusion and the MSI measured by T2-weighted and T1-weighted late gadolinium enhancement MRI were searched in MEDLINE, EMBASE and ISI Web of Science until 16 May 2020. A mixed effects model was used to evaluate the relation between the time to reperfusion and the MSI. The gender distribution and mean age in included patient groups, the timing of MRI, used MRI sequences and image interpretation methodology were included in the mixed effects model to explore between-study heterogeneity. RESULTS We included 38 studies with 5106 patients. The pooled MSI was 42.6% (95% CI: 38.1 to 47.1). The pooled time to reperfusion was 3.8 hours (95% CI: 3.5 to 4.0). Every hour of delay in reperfusion was associated with an absolute decrease of 13.1% (95% CI: 11.5 to 14.6; p<0.001) in the MSI. Between-study heterogeneity was considerable (σ2=167.8). Differences in the gender distribution, timing of MRI and image interpretation among studies explained 45.2% of the between-study heterogeneity. CONCLUSIONS The MSI on T2-weighted and T1-weighted late gadolinium enhancement MRI correlates inversely with the time to reperfusion, which indicates that cardioprotection achieved by minimising the time to reperfusion leads to a higher MSI. The analysis revealed considerable heterogeneity between studies. The heterogeneity could partly be explained by differences in the gender distribution, timing and interpretation of MRI suggesting that the MRI-assessed MSI is not only influenced by cardioprotective therapy but also by patient characteristics and MRI parameters.
Collapse
Affiliation(s)
- Benjamin Kendziora
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität and Freie Universität, Berlin, Germany
| | - Heli Stier
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität and Freie Universität, Berlin, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Universitätsklinikum Jena, Friedrich-Schiller-Universität, Jena, Germany
| | - Marc Dewey
- Institute of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität and Freie Universität, Berlin, Germany
| |
Collapse
|
30
|
Clinical assessment of adenosine stress and rest cardiac magnetic resonance T1 mapping for detecting ischemic and infarcted myocardium. Sci Rep 2020; 10:14727. [PMID: 32895408 PMCID: PMC7477195 DOI: 10.1038/s41598-020-71722-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/31/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiac magnetic resonance (CMR) spin-lattice relaxation time (T1) may be influenced by pathologic conditions due to changes in myocardial water content. We aimed to validate the principle and investigate T1 mapping at rest and adenosine stress to differentiate ischemic and infarcted myocardium from controls. Patients with suspected coronary artery disease who underwent CMR were prospectively recruited. Native rest and adenosine stress T1 maps were obtained using standard modified Look-Locker Inversion-Recovery technique. Among 181 patients included, T1 values were measured from three groups. In the control group, 72 patients showed myocardium with a T1 profile of 1,039 ± 75 ms at rest and a significant increase during stress (4.79 ± 3.14%, p < 0.001). While the ischemic (51 patients) and infarcted (58 patients) groups showed elevated resting T1 compared to controls (1,040 ± 90 ms for ischemic; 1,239 ± 121 ms for infarcted, p < 0.001), neither of which presented significant T1 reactivity (1.38 ± 3.02% for ischemic; 1.55 ± 5.25% for infarcted). We concluded that adenosine stress and rest T1 mapping may be useful to differentiate normal, ischemic and infarcted myocardium.
Collapse
|
31
|
Sun JP, Liang Y, Zhang F, Chen X, Yuan W, Xu L, Bahler RC, Yan J. Serial assessment of focal myocardial function after percutaneous coronary intervention for ST-elevation myocardial infarction: Value of layer-specific speckle tracking echocardiography. Echocardiography 2020; 37:1413-1421. [PMID: 32777137 DOI: 10.1111/echo.14772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) frequently follows successful PCI for STEMI and is recognized by multiple modalities. Multilayer speckle tracking echocardiography (STE) has the potential of detecting myocardial dysfunction in different myocardial layers. Our objective was to describe the changes in layer-specific myocardial function over the 24 hours after successful PCI for ST-elevation myocardial infarction (STEMI). METHODS Patients (n = 120) with STEMI and no prior myocardial infarction underwent echocardiography prior to PCI, immediately after and at 3- and 24-hours post-PCI. Worsening focal dysfunction (WFD) was defined as an immediate reduction, compared to the pre-PCI value, in the amplitude of endo-myocardial longitudinal strain (endo-MLS) within the infarction territory. RESULTS Patients with WFD (52%) had further reductions in endo-MLS, mid-MLS, and epi-MLS in the infarction region immediately post-PCI; at 3 hours strain began to improve and continued to improve at 24 hours. Reductions of endo-MLS strain were more evident than those of global, mid-MLS, and epi-MLS. This same pattern was seen in each of the ischemic territories of the anterior descending, circumflex, and right coronary arteries. Immediate improvement in endo-MLS following PCI was seen in 48% of patients. The time from symptom onset to balloon time was markedly longer in those with WFD (P < .0001). CONCLUSIONS Multilayer SPE is a sensitive method that identifies serial alterations in focal myocardial function following successful PCI for STEMI. Layer-specific reductions in endo-MLS appeared more evident than decreases in global LV strain. Prolonged total ischemic time prior to PCI was directly related to the incidence of WFD.
Collapse
Affiliation(s)
- Jing Ping Sun
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liang
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Zhang
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xinxin Chen
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Yuan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liangjie Xu
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Robert C Bahler
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinchuan Yan
- Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Hassan S, Barrett CJ, Crossman DJ. Imaging tools for assessment of myocardial fibrosis in humans: the need for greater detail. Biophys Rev 2020; 12:969-987. [PMID: 32705483 PMCID: PMC7429810 DOI: 10.1007/s12551-020-00738-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial fibrosis is recognized as a key pathological process in the development of cardiac disease and a target for future therapeutics. Despite this recognition, the assessment of fibrosis is not a part of routine clinical practice. This is primarily due to the difficulties in obtaining an accurate assessment of fibrosis non-invasively. Moreover, there is a clear discrepancy between the understandings of myocardial fibrosis clinically where fibrosis is predominately studied with comparatively low-resolution medical imaging technologies like MRI compared with the basic science laboratories where fibrosis can be visualized invasively with high resolution using molecularly specific fluorescence microscopes at the microscopic and nanoscopic scales. In this article, we will first review current medical imaging technologies for assessing fibrosis including echo and MRI. We will then highlight the need for greater microscopic and nanoscopic analysis of human tissue and how this can be addressed through greater utilization of human tissue available through endomyocardial biopsies and cardiac surgeries. We will then describe the relatively new field of molecular imaging that promises to translate research findings to the clinical practice by non-invasively monitoring the molecular signature of fibrosis in patients.
Collapse
Affiliation(s)
- Summer Hassan
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
33
|
Goedemans L, Bax JJ, Delgado V. COPD and acute myocardial infarction. Eur Respir Rev 2020; 29:29/156/190139. [PMID: 32581139 DOI: 10.1183/16000617.0139-2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/06/2019] [Indexed: 12/31/2022] Open
Abstract
COPD is strongly associated with cardiovascular disease, in particular acute myocardial infarction (AMI). Besides shared risk factors, COPD-related factors, such as systemic inflammation and hypoxia, underlie the pathophysiological interaction between COPD and AMI. The prevalence of COPD amongst AMI populations ranges from 7% to 30%, which is possibly even an underestimation due to underdiagnoses of COPD in general. Following the acute event, patients with COPD have an increased risk of mortality, heart failure and arrhythmias during follow-up. Adequate risk stratification can be performed using various imaging techniques, evaluating cardiac size and function after AMI. Conventional imaging techniques such as echocardiography and cardiac magnetic resonance imaging have already indicated impaired cardiac function in patients with COPD without known cardiovascular disease. Advanced imaging techniques such as speckle-tracking echocardiography and T1 mapping could provide more insight into cardiac structure and function after AMI and have proven to be of prognostic value. Future research is required to better understand the impact of AMI on patients with COPD in order to provide effective secondary prevention. The present article summarises the current knowledge on the pathophysiologic factors involved in the interaction between COPD and AMI, the prevalence and outcomes of AMI in patients with COPD and the role of imaging in the acute phase and risk stratification after AMI in patients with COPD.
Collapse
Affiliation(s)
- Laurien Goedemans
- Dept of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jeroen J Bax
- Dept of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Victoria Delgado
- Dept of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
34
|
De Maria GL, Lee R, Alkhalil M, Borlotti A, Kotronias R, Langrish J, Lucking A, Dawkins S, Choudhury RP, Kharbanda R, Banning AP, Vallance C, Channon KM. Reflectance spectral analysis for novel characterization and clinical assessment of aspirated coronary thrombi in patients with ST elevation myocardial infarction. Physiol Meas 2020; 41:045001. [PMID: 32197256 DOI: 10.1088/1361-6579/ab81de] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The visual appearance of coronary thrombi may be clinically informative in ST elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (pPCI). However, subjective assessment is poorly reproducible and cannot provide an objective basis for treatment decisions or patient stratification. We have assessed the feasibility of a novel reflectance spectroscopy technique to systematically characterize coronary artery thrombi retrieved by aspiration during pPCI in patients with STEMI, and the clinical utility for predicting distal microvascular obstruction. APPROACH Patients with STEMI treated with pPCI and thrombus aspiration (n = 288) were recruited from the Oxford Acute Myocardial Infarction (OxAMI) Study. Of these, 158 patients underwent cardiac magnetic resonance imaging within 48 h for assessment of microvascular obstruction (MVO). Coronary thrombi were imaged by reflectance spectroscopy across wavelengths 500-800 nm. MAIN RESULTS Spectral data were analysed using function fitting and multivariate models. The coefficient 'c red' determined from the fitting procedure correlated with the visually-assessed colour of thrombi ('red' or 'white') and with MVO. When applied to a reduced data set, consisting of spectra from 20 patients with the largest MVO and from 20 propensity-score-matched patients with no MVO, three multivariate analysis methods were able to discriminate spectra of thrombi from patients without MVO and with the largest MVO. SIGNIFICANCE Reflectance spectral analysis of coronary thrombus provides new insights into the pathology of STEMI, with potential clinical implications for emergency patient care. Further studies are warranted for validation as a point-of-care stratification tool in predicting the degree of microvascular injury and clinical outcomes in STEMI.
Collapse
Affiliation(s)
- Giovanni Luigi De Maria
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reindl M, Eitel I, Reinstadler SJ. Role of Cardiac Magnetic Resonance to Improve Risk Prediction Following Acute ST-Elevation Myocardial Infarction. J Clin Med 2020; 9:E1041. [PMID: 32272692 PMCID: PMC7231095 DOI: 10.3390/jcm9041041] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac magnetic resonance (CMR) imaging allows comprehensive assessment of myocardial function and tissue characterization in a single examination after acute ST-elevation myocardial infarction. Markers of myocardial infarct severity determined by CMR imaging, especially infarct size and microvascular obstruction, strongly predict recurrent cardiovascular events and mortality. The prognostic information provided by a comprehensive CMR analysis is incremental to conventional risk factors including left ventricular ejection fraction. As such, CMR parameters of myocardial tissue damage are increasingly recognized for optimized risk stratification to further ameliorate the burden of recurrent cardiovascular events in this population. In this review, we provide an overview of the current impact of CMR imaging on optimized risk assessment soon after acute ST-elevation myocardial infarction.
Collapse
Affiliation(s)
- Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria;
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Ratzeburger Allee 160, D-23538 Lübeck, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, D-23538 Lübeck, Germany
| | - Sebastian Johannes Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria;
| |
Collapse
|
36
|
Intracoronary compared with intravenous bolus tirofiban on the microvascular obstruction in patients with STEMI undergoing PCI: a cardiac MR study. Int J Cardiovasc Imaging 2020; 36:1121-1132. [PMID: 32078096 DOI: 10.1007/s10554-020-01800-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
To investigate the potential effect of intracoronary administration of the glycoprotein IIb/IIIa inhibitor tirofiban on the microvascular obstruction (MVO) assessed by cardiac magnetic resonance (CMR) imaging compared to the intravenous route in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention (PCI). Two hundred eight patients were randomized into two groups (tirofiban i.v. and tirofiban i.c.). CMR was completed within 3-7 days after ST-segment-elevation myocardial infarction. One hundred thirty-two patients had a follow-up CMR at 6 months after discharge. The primary end point was the CMR measurements including myocardium strain, myocardial perfusion index, final infarct size, prevalence and extent of MVO, and the change of left ventricular end-diastolic volume (LVEDV) at six months follow-up. The second endpoint was major adverse cardiovascular events (composite of all-cause death, nonfatal reinfarction and congestive heart failure) in one year. The MVO prevalence and extent [56% versus 36%, p = 0.004; 2.08 (IQR: 1.18-5.07) g versus 1.68 (IQR: 0.30-3.28) g, p = 0.041] showed a significant difference between the intravenous and intracoronary groups. Global left ventricular peak longitudinal strain was significantly different in intracoronary groups compared to intravenous groups, - 12.5 [IQR: - 13.4 to - 10.9] versus - 12.3 [IQR: - 13.4 to - 10.4], respectively (P = 0.042). Infarcted myocardial perfusion index was significantly different in intracoronary groups compared to intravenous groups, 0.11 [IQR: 0.08 to 0.15] versus 0.09 [IQR: 0.07 to 0.14], respectively (P = 0.026). Intracoronary tirofiban was associated with a higher change in LVEDV compared with intravenous group (- 10.2% [IQR: - 13.7% to - 2.6%] versus 1.3% [IQR: - 5.6% to 6.1%], p < 0.001). Intracoronary tirofiban application showed no benefit on the occurrence of major adverse cardiovascular events during follow-up compared to intravenous administration. This CMR study in ST-segment-elevation myocardial infarction patients showed a benefit in MVO and left ventricular remodeling for intracoronary tirofiban administration compared to intravenous administration in patients undergoing PCI.
Collapse
|
37
|
Han Y, Chen Y, Ferrari VA. Contemporary Application of Cardiovascular Magnetic Resonance Imaging. Annu Rev Med 2020; 71:221-234. [PMID: 31986088 DOI: 10.1146/annurev-med-041818-015923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiovascular magnetic resonance imaging (CMR) is a comprehensive and versatile diagnostic and prognostic imaging modality that plays an increasingly important role in management of patients with cardiovascular disease. In this review, we discuss CMR applications in nonischemic cardiomyopathy, ischemic heart disease, arrhythmias, right ventricular diseases, and valvular heart disease. We emphasize the quantitative nature of CMR in current practice, from volumes, function, myocardial strain analysis, and late gadolinium enhancement to parametric mapping, including T1, T2, and T2* relaxation times and extracellular volume fraction assessment.
Collapse
Affiliation(s)
- Yuchi Han
- Departments of Medicine (Cardiovascular Division) and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yucheng Chen
- Departments of Cardiology and Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Victor A. Ferrari
- Departments of Medicine (Cardiovascular Division) and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Chen BH, An DA, He J, Xu JR, Wu LM, Pu J. Myocardial Extracellular Volume Fraction Allows Differentiation of Reversible Versus Irreversible Myocardial Damage and Prediction of Adverse Left Ventricular Remodeling of ST-Elevation Myocardial Infarction. J Magn Reson Imaging 2020; 52:476-487. [PMID: 31943526 DOI: 10.1002/jmri.27047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The relationship between dynamic changes of myocardial injury in ST-elevation myocardial infarction (STEMI) patients and long-term prognosis is still unclear. PURPOSE To evaluate the extracellular volume fraction (ECV) in the differentiation of reversible from irreversible myocardial injury and the prediction value of left ventricular adverse remodeling in patients with STEMI after reperfusion. STUDY TYPE Prospective. POPULATION Twenty-four STEMI patients after reperfusion were included FIELD STRENGTH/SEQUENCE: 3.0 T, T1 mapping, ECV, T2 -STIR, and late gadolinium enhancement (LGE). ASSESSMENT All the patients underwent cardiac MRI at four timepoints (days 1, 3, and 7, and at 6 months). The regions of interest (ROIs) were selected at the infarcted myocardium (with/without intramyocardial hemorrhage [IMH] and microvascular obstruction [MVO]). STATISTICAL TESTS One-way analysis of variance and the Kruskal-Wallis test were used for the statistical analysis. RESULTS Native T1 of MI (without MVO/IMH) gradually decreased after reperfusion (P < 0.05). The ECV of MI increased during the first 3 days and then slowly declined. Native T1 of MI with MVO/IMH was the lowest (1184 msec; 1108.5-1266), while ECV (78%; 65.5-87%) was the highest, P < 0.001. Native T1 and ECV of salvageable myocardium were higher than those of the remote myocardium but lower than those of the MI without MVO or IMH (P < 0.001). ROC analysis revealed an area under the curve (AUC) of ECV (0.85, P < 0.001) for differentiating infarcted and salvageable myocardium was higher than that of native T1 mapping (AUC: 0.63, P < 0.001) in the first week after STEMI (P < 0.0001). T1 and ECV differed significantly between patients with and without left ventricle adverse remodeling (P < 0.05). DATA CONCLUSION Dynamic temporal changes in reversibly and irreversibly damaged myocardia were differentiated via native T1 and ECV mapping after primary percutaneous coronary intervention in STEMI patients. ECV may better reflect microvascular injury severity and myocardial viability. MI with higher native T1 and ECV or with severe microvascular injury (MVO and IMH) was correlated with adverse LV remodeling. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020. J. Magn. Reson. Imaging 2020;52:476-487.
Collapse
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
39
|
Alkhalil M, Borlotti A, De Maria GL, Wolfrum M, Dawkins S, Fahrni G, Gaughran L, Langrish JP, Lucking A, Ferreira VM, Kharbanda RK, Banning AP, Dall'Armellina E, Channon KM, Choudhury RP. Hyper-acute cardiovascular magnetic resonance T1 mapping predicts infarct characteristics in patients with ST elevation myocardial infarction. J Cardiovasc Magn Reson 2020; 22:3. [PMID: 31915031 PMCID: PMC6951001 DOI: 10.1186/s12968-019-0593-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/13/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Myocardial recovery after primary percutaneous coronary intervention in acute myocardial infarction is variable and the extent and severity of injury are difficult to predict. We sought to investigate the role of cardiovascular magnetic resonance T1 mapping in the determination of myocardial injury very early after treatment of ST-segment elevation myocardial infarction (STEMI). METHODS STEMI patients underwent 3 T cardiovascular magnetic resonance (CMR), within 3 h of primary percutaneous intervention (PPCI). T1 mapping determined the extent (area-at-risk as %left ventricle, AAR) and severity (average T1 values of AAR) of acute myocardial injury, and related these to late gadolinium enhancement (LGE), and microvascular obstruction (MVO). The characteristics of myocardial injury within 3 h was compared with changes at 24-h to predict final infarct size. RESULTS Forty patients were included in this study. Patients with average T1 values of AAR ≥1400 ms within 3 h of PPCI had larger LGE at 24-h (33% ±14 vs. 18% ±10, P = 0.003) and at 6-months (27% ±9 vs. 12% ±9; P < 0.001), higher incidence and larger extent of MVO (85% vs. 40%, P = 0.016) & [4.0 (0.5-9.5)% vs. 0 (0-3.0)%, P = 0.025]. The average T1 value was an independent predictor of acute LGE (β 0.61, 95%CI 0.13 to 1.09; P = 0.015), extent of MVO (β 0.22, 95%CI 0.03 to 0.41, P = 0.028) and final infarct size (β 0.63, 95%CI 0.21 to 1.05; P = 0.005). Receiver-operating-characteristic analysis showed that T1 value of AAR obtained within 3-h, but not at 24-h, predicted large infarct size (LGE > 9.5%) with 100% positive predictive value at the optimal cut-off of 1400 ms (area-under-the-curve, AUC 0.88, P = 0.006). CONCLUSION Hyper-acute T1 values of the AAR (within 3 h post PPCI, but not 24 h) predict a larger extent of MVO and infarct size at both 24 h and 6 months follow-up. Delayed CMR scanning for 24 h could not substitute the significant value of hyper-acute average T1 in determining infarct characteristics.
Collapse
Affiliation(s)
- Mohammad Alkhalil
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandra Borlotti
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Luigi De Maria
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Mathias Wolfrum
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Sam Dawkins
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Gregor Fahrni
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Lisa Gaughran
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jeremy P Langrish
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Andrew Lucking
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Vanessa M Ferreira
- Division of Cardiovascular Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, UK
| | - Rajesh K Kharbanda
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Adrian P Banning
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Erica Dall'Armellina
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Keith M Channon
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Robin P Choudhury
- Oxford Heart Centre, NIHR Biomedical Research Centre, Oxford University Hospitals, Oxford, UK.
- Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
40
|
Ferreira VM, Piechnik SK. CMR Parametric Mapping as a Tool for Myocardial Tissue Characterization. Korean Circ J 2020; 50:658-676. [PMID: 32725975 PMCID: PMC7390720 DOI: 10.4070/kcj.2020.0157] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) is the current gold standard for imaging cardiac anatomy, function, and advanced myocardial tissue characterization. After cine, late gadolinium enhancement (LGE), and perfusion imaging, parametric mapping is widely regarded as the 4th era of myocardial CMR development. In contrast to conventional CMR tissue characterization techniques, which rely on relative variations in image intensities to highlight abnormal tissues, parametric mapping provides direct visualization of tissue MR properties such as T1, T2 and T2* in absolute denominations (e.g. in milliseconds). Presentation as pixel-wise parametric maps adds spatial information for a more complete assessment of the myocardium. Advantages of parametric mapping include direct, quantitative comparisons inter- and within-individuals, as well as detection of diffuse disease not evident on conventional CMR imaging, without the need for contrast agents. CMR parametric mapping methods have matured over the past decade into clinical tools, demonstrating not only clinical utility but added value in a wide range of cardiac diseases. They are particularly useful for the evaluation of acute myocardial injury, suspected infiltration and heart failure of unclear etiology. This review discusses the background of parametric mapping, particularly T1-, T2- and ECV-mapping, general magnetic resonance physics principles, clinical applications (including imaging protocols, image analysis and reporting guidelines), current challenges and future directions. CMR parametric mapping is increasingly available on routine clinical scanners, and promises to deliver advanced myocardial tissue characterization beyond conventional CMR techniques, ultimately helping clinicians to benefit patients in their clinical management.
Collapse
Affiliation(s)
- Vanessa M Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Stefan K Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Affiliation(s)
- Rong Bing
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc Richard Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Reindl M, Tiller C, Holzknecht M, Lechner I, Beck A, Plappert D, Gorzala M, Pamminger M, Mayr A, Klug G, Bauer A, Metzler B, Reinstadler SJ. Prognostic Implications of Global Longitudinal Strain by Feature-Tracking Cardiac Magnetic Resonance in ST-Elevation Myocardial Infarction. Circ Cardiovasc Imaging 2019; 12:e009404. [DOI: 10.1161/circimaging.119.009404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background:
The high accuracy of feature-tracking cardiac magnetic resonance (CMR) imaging qualifies this novel modality as potential gold standard for myocardial strain analyses in ST-elevation myocardial infarction patients; however, the incremental prognostic validity of feature-tracking-CMR over left ventricular ejection fraction (LVEF) and myocardial damage remains unclear. This study therefore aimed to determine the value of myocardial strain measured by feature-tracking-CMR for the prediction of clinical outcome following ST-elevation myocardial infarction.
Methods:
This prospective observational study enrolled 451 revascularized ST-elevation myocardial infarction patients. Comprehensive CMR investigations were performed 3 (interquartile range, 2–4) days after infarction to determine LVEF, global longitudinal strain (GLS), global radial strain, and global circumferential strain as well as myocardial damage. Primary end point was a composite of death, re-infarction, and congestive heart failure (major adverse cardiac events [MACE]).
Results:
During a follow-up of 24 (interquartile range, 11–48) months, 46 patients (10%) experienced a MACE event. All 3 strain indices were impaired in patients with MACE (all
P
<0.001). However, GLS emerged as the strongest MACE prognosticator among strain parameters (area under the curve, 0.73 [95% CI, 0.69–0.77]) and was significantly better (
P
=0.005) than LVEF (area under the curve, 0.64 [95% CI, 0.59–0.68]). The association between GLS and MACE remained significant (
P
<0.001) after adjustment for global radial strain, global circumferential strain, and LVEF as well as for infarct size and microvascular obstruction. The addition of GLS to a risk model comprising LVEF, infarct size, and microvascular obstruction led to a net reclassification improvement (0.35 [95% CI, 0.14–0.55];
P
<0.001).
Conclusions:
GLS by feature-tracking-CMR strongly and independently predicted the occurrence of medium-term MACE in contemporary revascularized ST-elevation myocardial infarction patients. Importantly, the prognostic value of GLS was superior and incremental to LVEF and CMR markers of infarct severity.
Collapse
Affiliation(s)
- Martin Reindl
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Christina Tiller
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Magdalena Holzknecht
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Ivan Lechner
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Alexander Beck
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - David Plappert
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Michelle Gorzala
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Mathias Pamminger
- Department of Radiology (M.P., A.M.), Medical University of Innsbruck, Austria
| | - Agnes Mayr
- Department of Radiology (M.P., A.M.), Medical University of Innsbruck, Austria
| | - Gert Klug
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Axel Bauer
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Bernhard Metzler
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| | - Sebastian J. Reinstadler
- Department of Internal Medicine III, Cardiology and Angiology (M.R., C.T., M.H., I.L., A.B., D.P., M.G., G.K., A.B., B.M., S.J.R.), Medical University of Innsbruck, Austria
| |
Collapse
|
43
|
Ferreira VM, Schulz-Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, Kindermann I, Gutberlet M, Cooper LT, Liu P, Friedrich MG. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol 2019; 72:3158-3176. [PMID: 30545455 DOI: 10.1016/j.jacc.2018.09.072] [Citation(s) in RCA: 1199] [Impact Index Per Article: 239.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
This JACC Scientific Expert Panel provides consensus recommendations for an update of the cardiovascular magnetic resonance (CMR) diagnostic criteria for myocardial inflammation in patients with suspected acute or active myocardial inflammation (Lake Louise Criteria) that include options to use parametric mapping techniques. While each parameter may indicate myocardial inflammation, the authors propose that CMR provides strong evidence for myocardial inflammation, with increasing specificity, if the CMR scan demonstrates the combination of myocardial edema with other CMR markers of inflammatory myocardial injury. This is based on at least one T2-based criterion (global or regional increase of myocardial T2 relaxation time or an increased signal intensity in T2-weighted CMR images), with at least one T1-based criterion (increased myocardial T1, extracellular volume, or late gadolinium enhancement). While having both a positive T2-based marker and a T1-based marker will increase specificity for diagnosing acute myocardial inflammation, having only one (i.e., T2-based OR T1-based) marker may still support a diagnosis of acute myocardial inflammation in an appropriate clinical scenario, albeit with less specificity. The update is expected to improve the diagnostic accuracy of CMR further in detecting myocardial inflammation.
Collapse
Affiliation(s)
- Vanessa M Ferreira
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin, Department of Cardiology and Helios-Klinikum, DZHK-Partnersite-Berlin, Germany
| | - Godtfred Holmvang
- Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Christopher M Kramer
- Departments of Medicine (Cardiology) and Radiology, University of Virginia Health System, Charlottesville, Virginia
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza, University of Rome, Rome, Italy
| | - Udo Sechtem
- Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Ingrid Kindermann
- Department of Internal Medicine III, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias Gutberlet
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Heart Center, Leipzig, Germany
| | | | - Peter Liu
- Ottawa Heart Institute, Ottawa, Canada
| | - Matthias G Friedrich
- Heidelberg University Hospital, Heidelberg, Germany; Department of Cardiology, McGill University Health Centre, Montreal, Canada; Department of Diagnostic Radiology, McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
44
|
Standardized image post-processing of cardiovascular magnetic resonance T1-mapping reduces variability and improves accuracy and consistency in myocardial tissue characterization. Int J Cardiol 2019; 298:128-134. [PMID: 31500864 DOI: 10.1016/j.ijcard.2019.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/26/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Myocardial T1-mapping is increasingly used in multicentre studies and trials. Inconsistent image analysis introduces variability, hinders differentiation of diseases, and results in larger sample sizes. We present a systematic approach to standardize T1-map analysis by human operators to improve accuracy and consistency. METHODS We developed a multi-step training program for T1-map post-processing. The training dataset contained 42 left ventricular (LV) short-axis T1-maps (normal and diseases; 1.5 and 3 Tesla). Contours drawn by two experienced human operators served as reference for myocardial T1 and wall thickness (WT). Trainees (n = 26) underwent training and were evaluated by: (a) qualitative review of contours; (b) quantitative comparison with reference T1 and WT. RESULTS The mean absolute difference between reference operators was 8.4 ± 6.3 ms (T1) and 1.2 ± 0.7 pixels (WT). Trainees' mean discrepancy from reference in T1 improved significantly post-training (from 8.1 ± 2.4 to 6.7 ± 1.4 ms; p < 0.001), with a 43% reduction in standard deviation (SD) (p = 0.035). WT also improved significantly post-training (from 0.9 ± 0.4 to 0.7 ± 0.2 pixels, p = 0.036), with 47% reduction in SD (p = 0.04). These experimentally-derived thresholds served to guide the training process: T1 (±8 ms) and WT (±1 pixel) from reference. CONCLUSION A standardized approach to CMR T1-map image post-processing leads to significant improvements in the accuracy and consistency of LV myocardial T1 values and wall thickness. Improving consistency between operators can translate into 33-72% reduction in clinical trial sample-sizes. This work may: (a) serve as a basis for re-certification for core-lab operators; (b) translate to sample-size reductions for clinical studies; (c) produce better-quality training datasets for machine learning.
Collapse
|
45
|
Affiliation(s)
- Mohammad Alkhalil
- Acute Vascular Imaging Centre (M.A., R.P.C.), Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Royal Victoria Hospital, Belfast Health and Social Care Trust, United Kingdom (M.A.)
| | - Robin P Choudhury
- Acute Vascular Imaging Centre (M.A., R.P.C.), Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Division of Cardiovascular Medicine (R.P.C.), Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
46
|
Hausenloy DJ, Lim MX, Chan MHH, Paradies V, Francis R, Kotecha T, Knight DS, Fontana M, Kellman P, Moon JC, Bulluck H. Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction patients. Sci Rep 2019; 9:9056. [PMID: 31227761 PMCID: PMC6588689 DOI: 10.1038/s41598-019-45449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
We used multi-parametric cardiovascular magnetic resonance (CMR) mapping to interrogate the myocardium following ST-segment elevation myocardial infarction (STEMI). Forty-eight STEMI patients underwent CMR at 4 ± 2 days. One matching short-axis slice of native T1 map, T2 map, late gadolinium enhancement (LGE), and automated extracellular volume fraction (ECV) maps per patient were analyzed. Manual regions-of-interest were drawn within the infarcted, the salvaged and the remote myocardium. A subgroup analysis was performed in those without MVO and with ≤75% transmural extent of infarct. For the whole cohort, T1, T2 and ECV in both the infarcted and the salvaged myocardium were significantly higher than in the remote myocardium. T1 and T2 could not differentiate between the salvaged and the infarcted myocardium, but ECV was significantly higher in the latter. In the subgroup analysis of 15 patients, similar findings were observed for T1 and T2. However, there was only a trend towards ECVsalvage being higher than ECVremote. In the clinical setting, current native T1 and T2 methods with the specific voxel sizes at 1.5 T could not differentiate between the infarcted and salvaged myocardium, whereas ECV could differentiate between the two. ECV was also higher in the salvaged myocardium when compared to the remote myocardium.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Mei Xing Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Mervyn H H Chan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Valeria Paradies
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Rohin Francis
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Tushar Kotecha
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel S Knight
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - James C Moon
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Heerajnarain Bulluck
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom. .,Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom.
| |
Collapse
|
47
|
Greulich S, Mayr A, Gloekler S, Seitz A, Birkmeier S, Schäufele T, Bekeredjian R, Zuern CS, Seizer P, Geisler T, Müller KAL, Krumm P, Nikolaou K, Klug G, Reinstadler S, Pamminger M, Reindl M, Wahl A, Traupe T, Seiler C, Metzler B, Gawaz M, Windecker S, Mahrholdt H. Time-Dependent Myocardial Necrosis in Patients With ST-Segment-Elevation Myocardial Infarction Without Angiographic Collateral Flow Visualized by Cardiac Magnetic Resonance Imaging: Results From the Multicenter STEMI-SCAR Project. J Am Heart Assoc 2019; 8:e012429. [PMID: 31181983 PMCID: PMC6645633 DOI: 10.1161/jaha.119.012429] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Background Acute complete occlusion of a coronary artery results in progressive ischemia, moving from the endocardium to the epicardium (ie, wavefront). Dependent on time to reperfusion and collateral flow, myocardial infarction ( MI ) will manifest, with transmural MI portending poor prognosis. Late gadolinium enhancement cardiac magnetic resonance imaging can detect MI with high diagnostic accuracy. Primary percutaneous coronary intervention is the preferred reperfusion strategy in patients with ST -segment-elevation MI with <12 hours of symptom onset. We sought to visualize time-dependent necrosis in a population with ST -segment-elevation MI by using late gadolinium enhancement cardiac magnetic resonance imaging (STEMI-SCAR project). Methods and Results ST -segment-elevation MI patients with single-vessel disease, complete occlusion with TIMI (Thrombolysis in Myocardial Infarction) score 0, absence of collateral flow (Rentrop score 0), and symptom onset <12 hours were consecutively enrolled. Using late gadolinium enhancement cardiac magnetic resonance imaging, the area at risk and infarct size, myocardial salvage index, transmurality index, and transmurality grade (0-50%, 51-75%, 76-100%) were determined. In total, 164 patients (aged 54±11 years, 80% male) were included. A receiver operating characteristic curve (area under the curve: 0.81) indicating transmural necrosis revealed the best diagnostic cutoff for a symptom-to-balloon time of 121 minutes: patients with >121 minutes demonstrated increased infarct size, transmurality index, and transmurality grade (all P<0.01) and decreased myocardial salvage index ( P<0.001) versus patients with symptom-to-balloon times ≤121 minutes. Conclusions In MI with no residual antegrade and no collateral flow, immediate reperfusion is vital. A symptom-to-balloon time of >121 minutes causes a high grade of transmural necrosis. In this pure ST -segment-elevation MI population, time to reperfusion to salvage myocardium was less than suggested by current guidelines.
Collapse
Affiliation(s)
- Simon Greulich
- Department of Cardiology and Cardiovascular DiseasesUniversity of TübingenGermany
| | - Agnes Mayr
- Department of RadiologyUniversity of InnsbruckAustria
| | - Steffen Gloekler
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department of CardiologySchwarzwald‐Baar KlinikumVillingen‐SchwenningenGermany
| | - Andreas Seitz
- Department of CardiologyRobert Bosch Medical CenterStuttgartGermany
| | - Stefan Birkmeier
- Department of CardiologyRobert Bosch Medical CenterStuttgartGermany
| | - Tim Schäufele
- Department of CardiologyRobert Bosch Medical CenterStuttgartGermany
| | | | | | - Peter Seizer
- Department of Cardiology and Cardiovascular DiseasesUniversity of TübingenGermany
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular DiseasesUniversity of TübingenGermany
| | - Karin A. L. Müller
- Department of Cardiology and Cardiovascular DiseasesUniversity of TübingenGermany
| | - Patrick Krumm
- Department of RadiologyUniversity of TübingenGermany
| | | | - Gert Klug
- Department of CardiologyUniversity of InnsbruckAustria
| | | | | | - Martin Reindl
- Department of CardiologyUniversity of InnsbruckAustria
| | - Andreas Wahl
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Tobias Traupe
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Christian Seiler
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernSwitzerland
| | | | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular DiseasesUniversity of TübingenGermany
| | - Stephan Windecker
- Department of Cardiology, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Heiko Mahrholdt
- Department of CardiologyRobert Bosch Medical CenterStuttgartGermany
| |
Collapse
|
48
|
Bulluck H, Dharmakumar R, Arai AE, Berry C, Hausenloy DJ. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation 2019; 137:1949-1964. [PMID: 29712696 DOI: 10.1161/circulationaha.117.030693] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although mortality after ST-segment elevation myocardial infarction (MI) is on the decline, the number of patients developing heart failure as a result of MI is on the rise. Apart from timely reperfusion by primary percutaneous coronary intervention, there is currently no established therapy for reducing MI size. Thus, new cardioprotective therapies are required to improve clinical outcomes after ST-segment-elevation MI. Cardiovascular magnetic resonance has emerged as an important imaging modality for assessing the efficacy of novel therapies for reducing MI size and preventing subsequent adverse left ventricular remodeling. The recent availability of multiparametric mapping cardiovascular magnetic resonance imaging has provided new insights into the pathophysiology underlying myocardial edema, microvascular obstruction, intramyocardial hemorrhage, and changes in the remote myocardial interstitial space after ST-segment-elevation MI. In this article, we provide an overview of the recent advances in cardiovascular magnetic resonance imaging in reperfused patients with ST-segment-elevation MI, discuss the controversies surrounding its use, and explore future applications of cardiovascular magnetic resonance in this setting.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.).,Royal Papworth Hospital, Cambridge, United Kingdom (H.B.)
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute and Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (R.D.).,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (R.D.)
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD (A.E.A.)
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Center, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.B.)
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.). .,National Institute of Health Research University College London Hospitals Biomedical Research Centre, United Kingdom (D.J.H.).,Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (D.J.H.).,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (D.J.H.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore (D.J.H.).,Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.)
| |
Collapse
|
49
|
De Maria GL, Alkhalil M, Wolfrum M, Fahrni G, Borlotti A, Gaughran L, Dawkins S, Langrish JP, Lucking AJ, Choudhury RP, Porto I, Crea F, Dall'Armellina E, Channon KM, Kharbanda RK, Banning AP. Index of Microcirculatory Resistance as a Tool to Characterize Microvascular Obstruction and to Predict Infarct Size Regression in Patients With STEMI Undergoing Primary PCI. JACC Cardiovasc Imaging 2019; 12:837-848. [PMID: 29680355 DOI: 10.1016/j.jcmg.2018.02.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This study aimed to compare the value of the index of microcirculatory resistance (IMR) and microvascular obstruction (MVO) measured by cardiac magnetic resonance (CMR) in patients treated for and recovering from ST-segment elevation myocardial infarction. BACKGROUND IMR can identify patients with microvascular dysfunction acutely after primary percutaneous coronary intervention (pPCI), and a threshold of >40 has been shown to be associated with an adverse clinical outcome. Similarly, MVO is recognized as an adverse feature in patients with ST-segment elevation myocardial infarction. Even though both IMR and MVO reflect coronary microvascular status, the interaction between these 2 parameters is uncertain. METHODS A total of 110 patients treated with pPCI were included, and IMR was measured immediately at completion of pPCI. Infarct size (IS) as a percentage of left ventricular mass was quantified at 48 h (38.4 ± 12.0 h) and 6 months (194.0 ± 20.0 days) using CMR. MVO was identified and quantified at 48 h by CMR. RESULTS Overall, a discordance between IMR and MVO was observed in 36.7% of cases, with 31 patients having MVO and IMR ≤40. Compared with patients with MVO and IMR ≤40, patients with both MVO and IMR >40 had an 11.9-fold increased risk of final IS >25% at 6 months (p = 0.001). Patients with MVO and IMR ≤40 had a significantly smaller IS at 6 months (p = 0.001), with significant regression in IS over time (34.4% [interquartile range (IQR): 27.3% to 41.0%] vs. 22.3% [IQR: 16.0% to 30.0%]; p = 0.001). CONCLUSIONS Discordant prognostic information was obtained from IMR and MVO in nearly one-third of cases; however, IMR can be helpful in grading the degree and severity of MVO.
Collapse
Affiliation(s)
- Giovanni Luigi De Maria
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom; Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mohammad Alkhalil
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Mathias Wolfrum
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Gregor Fahrni
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Alessandra Borlotti
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom; Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Lisa Gaughran
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Sam Dawkins
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Jeremy P Langrish
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Andrew J Lucking
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; Department of Cardiology, Policlinico A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Italo Porto
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Filippo Crea
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Erica Dall'Armellina
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom; Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Keith M Channon
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Rajesh K Kharbanda
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Adrian P Banning
- Oxford Heart Centre, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom.
| |
Collapse
|
50
|
Tada Y, Heidary S, Tachibana A, Zaman J, Neofytou E, Dash R, Wu JC, Yang PC. Myocardial viability of the peri-infarct region measured by T1 mapping post manganese-enhanced MRI correlates with LV dysfunction. Int J Cardiol 2019; 281:8-14. [PMID: 30739802 DOI: 10.1016/j.ijcard.2019.01.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Manganese-enhanced MRI (MEMRI) detects viable cardiomyocytes based on the intracellular manganese uptake via L-type calcium-channels. This study aimed to quantify myocardial viability based on manganese uptake by viable myocardium in the infarct core (IC), peri-infarct region (PIR) and remote myocardium (RM) using T1 mapping before and after MEMRI and assess their association with cardiac function and arrhythmogenesis. METHODS Fifteen female swine had a 60-minute balloon ischemia-reperfusion injury in the LAD. MRI (Signa 3T, GE Healthcare) and electrophysiological study (EPS) were performed 4 weeks later. MEMRI and delayed gadolinium-enhanced MRI (DEMRI) were acquired on LV short axis. The DEMRI positive total infarct area was subdivided into the regions of MEMRI-negative non-viable IC and MEMRI-positive viable PIR. T1 mapping was performed to evaluate native T1, post-MEMRI T1, and delta R1 (R1post-R1pre, where R1 equals 1/T1) of each territory. Their correlation with LV function and EPS data was assessed. RESULTS PIR was characterized by intermediate native T1 (1530.5 ± 75.2 ms) compared to IC (1634.7 ± 88.4 ms, p = 0.001) and RM (1406.4 ± 37.9 ms, p < 0.0001). Lower post-MEMRI T1 of PIR (1136.3 ± 99.6 ms) than IC (1262.6 ± 126.8 ms, p = 0.005) and higher delta R1 (0.23 ± 0.08 s-1) of PIR than IC (0.18 ± 0.09 s-1, p = 0.04) indicated higher myocardial manganese uptake of PIR compared to IC. Post-MEMRI T1 (r = -0.57, p = 0.02) and delta R1 (r = 0.51, p = 0.04) of PIR correlated significantly with LVEF. CONCLUSIONS PIR is characterized by higher manganese uptake compared to the infarct core. In the subacute phase post-IR, PIR viability measured by post-MEMRI T1 correlates with cardiac function.
Collapse
Affiliation(s)
- Yuko Tada
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Shahriar Heidary
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Atsushi Tachibana
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Junaid Zaman
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Evgenios Neofytou
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Rajesh Dash
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Joseph C Wu
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Phillip C Yang
- Department of Medicine (Cardiovascular Medicine) and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America.
| |
Collapse
|