1
|
Arendt W, Piekarska K, Hałas-Wiśniewska M, Izdebska M, Grzanka A, Gagat M. Downregulation and inhibition of TRPM2 calcium channel prevent oxidative stress-induced endothelial dysfunction in the EA.hy926 endothelial cells model - Preliminary studies. Adv Med Sci 2025; 70:62-78. [PMID: 39778739 DOI: 10.1016/j.advms.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
PURPOSE Proper functioning of the endothelial barrier is crucial for cardiovascular system homeostasis. Oxidative stress can lead to endothelial dysfunction (ED), damaging lipids, proteins, and DNA. Reactive oxygen species also increase cytoplasmic Ca2+ levels, activating transient receptor potential melastatin 2 (TRPM2), a membrane non-selective calcium channel. The study aimed to assess TRPM2's significance in vascular endothelial cells' response to oxidative stress and the potential use of TRPM2 direct and indirect inhibitors in the prevention of oxidative stress-induced ED. MATERIALS AND METHODS EA.hy926 endothelial cells were exposed to hydrogen peroxide for 24 h to mimic oxidative stress conditions. To assess the significance of TRPM2 in the response of EA.hy926 cells to hydrogen peroxide TRPM2 siRNA as well as direct (N-(p-Amylcinnamoyl)anthranilic acid, flufenamic acid) and indirect (3-aminobenzamide, 3,4-dihydro-5[4-(1-piperidinyl)butyl]-1(2H)-isoquinolinone) TRPM2 inhibitors were tested. RESULTS Results showed that hydrogen peroxide-induced ED is alleviated by TRPM2 downregulation. Moreover, preincubation of cells with both direct and indirect TRPM2 inhibitors for 30 min before hydrogen peroxide treatment reduces its negative effects on cell viability, cell migration, and junctional proteins. CONCLUSIONS The obtained results suggest that TRPM2 channel may be a potential target in therapy and prevention of cardiovascular diseases connected with oxidative stress-induced ED. However, further research is needed for clinical applications of direct and indirect TRPM2 inhibitors.
Collapse
Affiliation(s)
- Wioletta Arendt
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| | - Klaudia Piekarska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland; Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, Płock, Poland
| |
Collapse
|
2
|
Li YS, Ren HC, Li H, Xing M, Cao JH. From oxidative stress to metabolic dysfunction: The role of TRPM2. Int J Biol Macromol 2025; 284:138081. [PMID: 39603285 DOI: 10.1016/j.ijbiomac.2024.138081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Metabolic syndromes including atherosclerosis, diabetes, obesity, and hypertension are increasingly prevalent worldwide. The disorders are the primary attributes of oxidative stress and inflammation. The transient receptor potential M2 (TRPM2) channel is a pivotal mediator linking oxidative stress to metabolic dysfunction. TRPM2, a non-selective cation channel activated by reactive oxygen species (ROS) and adenosine diphosphate ribose (ADPR), regulates calcium influx, inflammation, and cell death across various tissues. This review explores the structural and activation mechanisms of TRPM2, emphasizing its significance in metabolic diseases. Elevated levels of TRPM2 play a vital role in the disease progression by influencing physiological and cellular processes such as endothelial dysfunction, immune cell activation, and mitochondrial impairment. In conditions such as atherosclerosis, ischemic stroke, diabetes, obesity, and hypertension; TRPM2 exacerbates oxidative damage, amplifies inflammatory responses, and disrupts metabolic homeostasis. Recent research highlights the potential of TRPM2 as a therapeutic target, developing specified inhibitors. This review underscores the multifaceted role of TRPM2 in metabolic disorders and its promise as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Hui Li
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Man Xing
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, Qingdao Third People's Hospital affiliated with Qingdao University, Qingdao, Shandong 266041, PR China.
| |
Collapse
|
3
|
Lim XR, Willemse L, Harraz OF. Amyloid beta Aβ 1-40 activates Piezo1 channels in brain capillary endothelial cells. Biophys J 2024:S0006-3495(24)04106-7. [PMID: 39722451 DOI: 10.1016/j.bpj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Amyloid beta (Aβ) peptide accumulation on blood vessels in the brain is a hallmark of neurodegeneration. While Aβ peptides constrict cerebral arteries and arterioles, their impact on capillaries is less understood. Aβ was recently shown to constrict brain capillaries through pericyte contraction, but whether-and if so how-Aβ affects endothelial cells (ECs) remains unknown. ECs represent the predominant vascular cell type in the cerebral circulation, and we recently showed that the mechanosensitive ion channel Piezo1 is functionally expressed in the plasma membrane of ECs. Since Aβ disrupts membrane structures, we hypothesized that Aβ1-40, the predominantly deposited isoform in the cerebral circulation, alters endothelial Piezo1 function. Using patch-clamp electrophysiology and freshly isolated capillary ECs, we assessed the impact of the Aβ1-40 peptide on single-channel Piezo1 activity. We show that Aβ1-40 increased Piezo1 open probability and channel open time. Aβ1-40 effects were absent when Piezo1 was genetically deleted or when a superoxide dismutase/catalase mimetic was used. Further, Aβ1-40 enhanced Piezo1 mechanosensitivity and lowered the pressure of half-maximal Piezo1 activation. Our data collectively suggest that Aβ1-40 facilitates higher Piezo1-mediated cation influx in brain ECs. These novel findings have the potential to unravel the possible involvement of Piezo1 modulation in the pathophysiology of neurodegenerative diseases characterized by Aβ accumulation.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Luc Willemse
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont.
| |
Collapse
|
4
|
Chinigò G, Ruffinatti FA, Munaron L. The potential of TRP channels as new prognostic and therapeutic targets against prostate cancer progression. Biochim Biophys Acta Rev Cancer 2024; 1879:189226. [PMID: 39586480 DOI: 10.1016/j.bbcan.2024.189226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/28/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Prostate cancer (PCa) is the second deadliest cancer among men worldwide. Particularly critical is its development towards metastatic androgen-independent forms for which the current therapies are ineffective. Indeed, the 5-year relative survival for PCa drops dramatically to 34 % in the presence of metastases. The superfamily of Transient Receptor Potential (TRP) channels could answer the urgent request to identify new prognostic and therapeutic tools against metastatic PCa. Indeed, this class of ion channels revealed an appealing de-regulation during PCa development and its progression towards aggressive forms. Altered expression and/or functionality of several TRPs have been associated with the PCa metastatic cascade by significantly impacting tumor growth, invasiveness, and angiogenesis. In this review, we will dissect the contribution of TRP channels in such hallmarks of PCa and then discuss their applicability as new prognostic and therapeutic agents in the fight against metastatic PCa. In particular, the great potential of TRPM8, TRPV6, and TRPA1 in opening the way to new treatment perspectives will be highlighted.
Collapse
Affiliation(s)
- Giorgia Chinigò
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| | | | - Luca Munaron
- University of Turin, Department of Life Sciences and Systems Biology, via Accademia Albertina 13, 10123 Turin, Italy.
| |
Collapse
|
5
|
Wolf HN, Guempelein L, Schikora J, Pauly D. Inter-tissue differences in oxidative stress susceptibility reveal a less stable endothelial barrier in the brain than in the retina. Exp Neurol 2024; 380:114919. [PMID: 39142370 DOI: 10.1016/j.expneurol.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.5*104 to 2*105 cells/cm2) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 μM H2O2. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to H2O2. Remarkably, at 100 μM H2O2, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 μM H2O2 exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher H2O2 concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.
Collapse
Affiliation(s)
- Hannah Nora Wolf
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Larissa Guempelein
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Juliane Schikora
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Diana Pauly
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| |
Collapse
|
6
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
8
|
Huang P, Qu C, Rao Z, Wu D, Zhao J. Bidirectional regulation mechanism of TRPM2 channel: role in oxidative stress, inflammation and ischemia-reperfusion injury. Front Immunol 2024; 15:1391355. [PMID: 39007141 PMCID: PMC11239348 DOI: 10.3389/fimmu.2024.1391355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel that exhibits Ca2+ permeability. The TRPM2 channel is expressed in various tissues and cells and can be activated by multiple factors, including endogenous ligands, Ca2+, reactive oxygen species (ROS) and temperature. This article reviews the multiple roles of the TRPM2 channel in physiological and pathological processes, particularly on oxidative stress, inflammation and ischemia-reperfusion (I/R) injury. In oxidative stress, the excessive influx of Ca2+ caused by the activation of the TRPM2 channel may exacerbate cellular damage. However, under specific conditions, activating the TRPM2 channel can have a protective effect on cells. In inflammation, the activation of the TRPM2 channel may not only promote inflammatory response but also inhibit inflammation by regulating ROS production and bactericidal ability of macrophages and neutrophils. In I/R, the activation of the TRPM2 channel may worsen I/R injury to various organs, including the brain, heart, kidney and liver. However, activating the TRPM2 channel may protect the myocardium from I/R injury by regulating calcium influx and phosphorylating proline-rich tyrosine kinase 2 (Pyk2). A thorough investigation of the bidirectional role and regulatory mechanism of the TRPM2 channel in these physiological and pathological processes will aid in identifying new targets and strategies for treatment of related diseases.
Collapse
Affiliation(s)
- Peng Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| | - Chaoyi Qu
- Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Zhijian Rao
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Dongzhe Wu
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jiexiu Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Exercise Biological Center, China Institute of Sport Science, Beijing, China
| |
Collapse
|
9
|
Ta HQ, Kuppusamy M, Sonkusare SK, Roeser ME, Laubach VE. The endothelium: gatekeeper to lung ischemia-reperfusion injury. Respir Res 2024; 25:172. [PMID: 38637760 PMCID: PMC11027545 DOI: 10.1186/s12931-024-02776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.
Collapse
Affiliation(s)
- Huy Q Ta
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mark E Roeser
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA.
| |
Collapse
|
10
|
Zong P, Feng J, Li CX, Jellison ER, Yue Z, Miller B, Yue L. Activation of endothelial TRPM2 exacerbates blood-brain barrier degradation in ischemic stroke. Cardiovasc Res 2024; 120:188-202. [PMID: 37595268 PMCID: PMC10936752 DOI: 10.1093/cvr/cvad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS Damage of the blood-brain barrier (BBB) is a hallmark of brain injury during the early stages of ischemic stroke. The subsequent endothelial hyperpermeability drives the initial pathological changes and aggravates neuronal death. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable nonselective cation channel activated by oxidative stress. However, whether TRPM2 is involved in BBB degradation during ischemic stroke remains unknown. We aimed to investigate the role of TRPM2 in BBB degradation during ischemic stroke and the underlying molecular mechanisms. METHODS AND RESULTS Specific deletion of Trpm2 in endothelial cells using Cdh5 Cre produces a potent protective effect against brain injury in mice subjected to middle cerebral artery occlusion (MCAO), which is characterized by reduced infarction size, mitigated plasma extravasation, suppressed immune cell invasion, and inhibited oxidative stress. In vitro experiments using cultured cerebral endothelial cells (CECs) demonstrated that either Trpm2 deletion or inhibition of TRPM2 activation attenuates oxidative stress, Ca2+ overload, and endothelial hyperpermeability induced by oxygen-glucose deprivation (OGD) and CD36 ligand thrombospondin-1 (TSP1). In transfected HEK293T cells, OGD and TSP1 activate TRPM2 in a CD36-dependent manner. Noticeably, in cultured CECs, deleting Trpm2 or inhibiting TRPM2 activation also suppresses the activation of CD36 and cellular dysfunction induced by OGD or TSP1. CONCLUSIONS In conclusion, our data reveal a novel molecular mechanism in which TRPM2 and CD36 promote the activation of each other, which exacerbates endothelial dysfunction during ischemic stroke. Our study suggests that TRPM2 in endothelial cells is a promising target for developing more effective and safer therapies for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Barbara Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
11
|
Liu X, Zhao L, Wang R, Tang Z. TRPM2 exacerbates airway inflammation by regulating oxidized-CaMKⅡ in allergic asthma. Heliyon 2024; 10:e23634. [PMID: 38187281 PMCID: PMC10767383 DOI: 10.1016/j.heliyon.2023.e23634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Background Airway epithelial cells play important roles in allergic asthma. Transient receptor potential melastatin-related 2 (TRPM2) and oxidized Ca2+/calmodulin-dependent protein kinase Ⅱ (ox-CaMKⅡ) participate in the airway inflammation. This study aimed to analyze the effects of TRPM2 on ox-CaMKⅡ in the airway epithelial cells during allergic asthma. Methods BEAS-2B cells were treated with different dose of IL-13 (0, 5, 10, 20 ng/mL) for 24 h to analyze the changes of TRPM2 and ox-CaMKⅡ protein. Cells expressing different level of TRPM2 were obtained by transfection of TRPM2 siRNA or TRPM2-short cDNA. The transfected cells were treated with 10 ng/mL of IL-13 to analyze the effects of TRPM2 on the ox-CaMKⅡ. A CaMKⅡ inhibitor KN-93 was used to confirm the effects of TRPM2 on levels of ox-CaMKⅡ, p-MEK and p-ERK in the IL-13-treated BEAS-2B cells. Wild-type (WT) mice and TRPM2-knockout (TRPM2-/-) mice were induced by ovalbumin (OVA) to compare the differences of inflammation, levels of ox-CaMKII, p-MEK and p-ERK in airways. Results Cell viability was clearly decreased by the 20 ng/mL of IL-13. The levels of TRPM2 and ox-CaMKII protein in cells were increased with increasing doses of IL-13. Transfection of TRPM2 siRNA or TRPM2-short cDNA respectively decreased or increased the levels of ox-CaMKⅡ in the IL-13-stimulated cells. The results of KN-93 treatment were similar to the results of TRPM2 siRNA transfection, that the levels of ox-CaMKⅡ, p-MEK and p-ERK were significantly decreased in the IL-13-treated cells. Compared with the OVA-induced WT mice, levels of inflammation, ox-CaMKⅡ, p-MEK and p-ERK in the airways were significantly weakened in the OVA-induced TRPM2-/- mice. Conclusions TRPM2 plays a vital role in regulating ox-CaMKⅡ in airway epithelial cells during allergic asthma.
Collapse
Affiliation(s)
- Xueping Liu
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, 264000, China
| | - Lingyan Zhao
- Department of Nursing, Yantai Yuhuangding Hospital, 264000, China
| | - Rui Wang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, 264000, China
| | - Zhaoying Tang
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, 264000, China
| |
Collapse
|
12
|
Chen Z, Cheng Z, Ding C, Cao T, Chen L, Wang H, Li J, Huang X. ROS-Activated TRPM2 Channel: Calcium Homeostasis in Cardiovascular/renal System and Speculation in Cardiorenal Syndrome. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07531-3. [PMID: 38108918 DOI: 10.1007/s10557-023-07531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
The transient receptor potential melastatin 2 (TRPM2) channel is a nonselective calcium channel that is sensitive to oxidative stress (OS), and is widely expressed in multiple organs, such as the heart, kidney, and brain, which is inextricably related to calcium dyshomeostasis and downstream pathological events. Due to the increasing global burden of kidney or cardiovascular diseases (CVDs), safe and efficient drugs specific to novel targets are imperatively needed. Notably, investigation of the possibility to regard the TRPM2 channel as a new therapeutic target in ROS-related CVDs or renal diseases is urgently required because the roles of the TRPM2 channel in heart or kidney diseases have not received enough attention and thus have not been fully elaborated. Therefore, we aimed to review the involvement of the TRPM2 channel in cardiovascular disorders related to kidney or typical renal diseases and attempted to speculate about TRPM2-mediated mechanisms of cardiorenal syndrome (CRS) to provide representative perspectives for future research about novel and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zihan Chen
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Medical Department, Nanchang University, Nanchang, China
| | - Zaihua Cheng
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Congcong Ding
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyu Cao
- Biological anthropology, University of California, Santa Barbara, CA, USA
| | - Ling Chen
- Department of Cardiology, the First People's Hospital of Jiujiang, Jiujiang, China
| | - Hong Wang
- Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Junpei Li
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Xiao Huang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
13
|
Alves-Lopes R, Lacchini S, Neves KB, Harvey A, Montezano AC, Touyz RM. Vasoprotective effects of NOX4 are mediated via polymerase and transient receptor potential melastatin 2 cation channels in endothelial cells. J Hypertens 2023; 41:1389-1400. [PMID: 37272080 PMCID: PMC10399938 DOI: 10.1097/hjh.0000000000003478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND NOX4 activation has been implicated to have vasoprotective and blood pressure (BP)-lowering effects. Molecular mechanisms underlying this are unclear, but NOX4-induced regulation of the redox-sensitive Ca 2+ channel TRPM2 and effects on endothelial nitric oxide synthase (eNOS)-nitric oxide signalling may be important. METHOD Wild-type and LinA3, renin-expressing hypertensive mice, were crossed with NOX4 knockout mice. Vascular function was measured by myography. Generation of superoxide (O 2- ) and hydrogen peroxide (H 2 O 2 ) were assessed by lucigenin and amplex red, respectively, and Ca 2+ influx by Cal-520 fluorescence in rat aortic endothelial cells (RAEC). RESULTS BP was increased in NOX4KO, LinA3 and LinA3/NOX4KO mice. This was associated with endothelial dysfunction and vascular remodelling, with exaggerated effects in NOX4KO groups. The TRPM2 activator, ADPR, improved vascular relaxation in LinA3/NOX4KO mice, an effect recapitulated by H 2 O 2 . Inhibition of PARP and TRPM2 with olaparib and 2-APB, respectively, recapitulated endothelial dysfunction in NOX4KO. In endothelial cells, Ang II increased H 2 O 2 generation and Ca 2+ influx, effects reduced by TRPM2 siRNA, TRPM2 inhibitors (8-br-cADPR, 2-APB), olaparib and GKT137831 (NOX4 inhibitor). Ang II-induced eNOS activation was blocked by NOX4 and TRPM2 siRNA, GKT137831, PEG-catalase and 8-br-cADPR. CONCLUSION Our findings indicate that NOX4-induced H 2 O 2 production activates PARP/TRPM2, Ca 2+ influx, eNOS activation and nitric oxide release in endothelial cells. NOX4 deficiency impairs Ca 2+ homeostasis leading to endothelial dysfunction, an effect exacerbated in hypertension. We define a novel pathway linking endothelial NOX4/H 2 O 2 to eNOS/nitric oxide through PARP/TRPM2/Ca 2+ . This vasoprotective pathway is perturbed when NOX4 is downregulated and may have significance in conditions associated with endothelial dysfunction, including hypertension.
Collapse
Affiliation(s)
- Rheure Alves-Lopes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Silvia Lacchini
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karla B. Neves
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Adam Harvey
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Augusto C. Montezano
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Main EN, Cruz TM, Bowlin GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater 2023; 10:rbad070. [PMID: 37663015 PMCID: PMC10468651 DOI: 10.1093/rb/rbad070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significant obstacle to the restoration of tissue function or integration with any biomaterial. Therefore, it is of paramount importance in tissue engineering and regenerative medicine to emphasize regeneration, the successful recovery of native tissue function, as opposed to repair, the replacement of the native tissue (often with scar tissue). A technique dubbed 'mitochondrial transplantation' is a burgeoning field of research that shows promise in in vitro, in vivo and various clinical applications in preventing cell death, reducing inflammation, restoring cell metabolism and proper oxidative balance, among other reported benefits. However, there is currently a lack of research regarding the potential for mitochondrial therapies within tissue engineering and regenerative biomaterials. Thus, this review explores these promising findings and outlines the potential for mitochondrial transplantation-based therapies as a new frontier of scientific research with respect to driving regeneration in wound healing and host-biomaterial interactions, the current successes of mitochondrial transplantation that warrant this potential and the critical questions and remaining obstacles that remain in the field.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Thaiz M Cruz
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|
15
|
Ali ES, Chakrabarty B, Ramproshad S, Mondal B, Kundu N, Sarkar C, Sharifi-Rad J, Calina D, Cho WC. TRPM2-mediated Ca 2+ signaling as a potential therapeutic target in cancer treatment: an updated review of its role in survival and proliferation of cancer cells. Cell Commun Signal 2023; 21:145. [PMID: 37337283 DOI: 10.1186/s12964-023-01149-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/28/2023] [Indexed: 06/21/2023] Open
Abstract
The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.
Collapse
Affiliation(s)
- Eunus S Ali
- College of Medicine and Public Health, Flinders University, Bedford Park, 5042, Australia
- Gaco Pharmaceuticals, Dhaka, 1000, Bangladesh
- Present Address: Department of Biochemistry and Molecular Genetics, and Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, 303 E Superior St, Chicago, IL, 60611, USA
| | | | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, 1400, Bangladesh
| | - Neloy Kundu
- Pharmacy Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2345279. [PMID: 36860732 PMCID: PMC9970712 DOI: 10.1155/2023/2345279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/22/2023]
Abstract
As a critical member in wound healing, vascular endothelial cells (ECs) impaired under high levels of reactive oxygen species (ROS) would hamper neovascularization. Mitochondria transfer can reduce intracellular ROS damage under pathological condition. Meanwhile, platelets can release mitochondria and alleviate oxidative stress. However, the mechanism by which platelets promote cell survival and reduce oxidative stress damage has not been clarified. Here, first, we selected ultrasound as the best method for subsequent experiments by detecting the growth factors and mitochondria released from manipulation platelet concentrates (PCs), as well as the effect of manipulation PCs on the proliferation and migration of HUVECs. Then, we found that sonicate platelet concentrates (SPC) decreased the level of ROS in HUVECs treated with hydrogen peroxide in advance, increased mitochondrial membrane potential, and reduced apoptosis. By transmission electron microscope, we saw that two kinds of mitochondria, free or wrapped in vesicles, were released by activated platelets. In addition, we explored that platelet-derived mitochondria were transferred to HUVECs partly by means of dynamin-dependent clathrin-mediated endocytosis. Consistently, we determined that platelet-derived mitochondria reduced apoptosis of HUVECs caused by oxidative stress. What is more, we screened survivin as the target of platelet-derived mitochondria via high-throughput sequencing. Finally, we demonstrated that platelet-derived mitochondria promoted wound healing in vivo. Overall, these findings revealed that platelets are important donors of mitochondria, and platelet-derived mitochondria can promote wound healing by reducing apoptosis caused by oxidative stress in vascular endothelial cells. And survivin is a potential target. These results further expand the knowledge of the platelet function and provide new insights into the role of platelet-derived mitochondria in wound healing.
Collapse
|
17
|
Li D, Wang M, Fan R, Song Z, Li Z, Gan H, Fan H. Clusterin regulates TRPM2 to protect against myocardial injury induced by acute myocardial infarction injury. Tissue Cell 2023; 82:102038. [PMID: 36870313 DOI: 10.1016/j.tice.2023.102038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Clusterin and transient receptor potential melastatin 2 (TRPM2) play significant roles in acute myocardial infarction (AMI), but their interactions in AMI are unclear. METHODS Myocardial infarction was induced by ligation of the left anterior descending coronary artery in wild-type C57BL/6J male mice. Infarct size and myocardium pathology were evaluated after 6, 12, and 24 h of ischemia. The expression levels of clusterin and TRPM2 were measured in the myocardium. Furthermore, myocardial infarction was induced in TRPM2 knockout (TRPM2-/-) C57BL/6J male mice to evaluate the expression of clusterin. H9C2 cells with various levels of TRPM2 expression were used to analyze the effects of clusterin under hypoxic conditions. RESULTS Following AMI, myocardial hypertrophy and TRPM2 expression increased in a time-dependent manner. In contrast, the expression of clusterin decreased in an infarct time-dependent manner. Knockout of TRPM2 protected against myocardial injury and resulted in upregulation of clusterin. In the H9C2 cells, cultured under hypoxic conditions treatment with clusterin or silencing of TRPM2 significantly increased cell viability and decreased TRPM2 expression. Treatment with clusterin protected against TRPM2 overexpression-induced damage in hypoxia-treated H9C2 cells. CONCLUSION This study characterized the effects of clusterin on TRPM2 in AMI, which may guide development of new treatment strategies for AMI.
Collapse
Affiliation(s)
- Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Mengying Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Rong Fan
- Yantai Raphael Biotechnology Co., Ltd, Yantai 264005, PR China
| | - Zeyu Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhenyuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hailin Gan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
18
|
Negri S, Sanford M, Shi H, Tarantini S. The role of endothelial TRP channels in age-related vascular cognitive impairment and dementia. Front Aging Neurosci 2023; 15:1149820. [PMID: 37020858 PMCID: PMC10067599 DOI: 10.3389/fnagi.2023.1149820] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
Transient receptor potential (TRP) proteins are part of a superfamily of polymodal cation channels that can be activated by mechanical, physical, and chemical stimuli. In the vascular endothelium, TRP channels regulate two fundamental parameters: the membrane potential and the intracellular Ca2+ concentration [(Ca2+)i]. TRP channels are widely expressed in the cerebrovascular endothelium, and are emerging as important mediators of several brain microvascular functions (e.g., neurovascular coupling, endothelial function, and blood-brain barrier permeability), which become impaired with aging. Aging is the most significant risk factor for vascular cognitive impairment (VCI), and the number of individuals affected by VCI is expected to exponentially increase in the coming decades. Yet, there are currently no preventative or therapeutic treatments available against the development and progression of VCI. In this review, we discuss the involvement of endothelial TRP channels in diverse physiological processes in the brain as well as in the pathogenesis of age-related VCI to explore future potential neuroprotective strategies.
Collapse
Affiliation(s)
- Sharon Negri
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Madison Sanford
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Helen Shi
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Stefano Tarantini,
| |
Collapse
|
19
|
Rosenbaum T, Morales-Lázaro SL. Regulation of ThermoTRP Channels by PIP2 and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:245-277. [PMID: 36988884 DOI: 10.1007/978-3-031-21547-6_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Transient receptor potential (TRP) ion channels are proteins that are expressed by diverse tissues and that play pivotal functions in physiology. These channels are polymodal and are activated by several stimuli. Among TRPs, some members of this family of channels respond to changes in ambient temperature and are known as thermoTRPs. These proteins respond to heat or cold in the noxious range and some of them to temperatures considered innocuous, as well as to mechanical, osmotic, and/or chemical stimuli. In addition to this already complex ability to respond to different signals, the activity of these ion channels can be fine-tuned by lipids. Two lipids well known to modulate ion channel activity are phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol. These lipids can either influence the function of these proteins through direct interaction by binding to a site in the structure of the ion channel or through indirect mechanisms, which can include modifying membrane properties, such as curvature and rigidity, by regulating their expression or by modulating the actions of other molecules or signaling pathways that affect the physiology of ion channels. Here, we summarize the key aspects of the regulation of thermoTRP channels by PIP2 and cholesterol.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
20
|
Niu M, Zhao F, Chen R, Li P, Bi L. The transient receptor potential channels in rheumatoid arthritis: Need to pay more attention. Front Immunol 2023; 14:1127277. [PMID: 36926330 PMCID: PMC10013686 DOI: 10.3389/fimmu.2023.1127277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by the augment of vascular permeability, increased inflammatory cells infiltration, dysregulated immune cells activation, pannus formation and unbearable pain hyperalgesia. Ca2+ affect almost every aspect of cellular functions, involving cell migration, signal transduction, proliferation, and apoptosis. Transient receptor potential channels (TRPs) as a type of non-selective permeable cation channels, can regulate Ca2+ entry and intracellular Ca2+ signal in cells including immune cells and neurons. Researches have demonstrated that TRPs in the mechanisms of inflammatory diseases have achieved rapid progress, while the roles of TRPs in RA pathogenesis and pain hyperalgesia are still not well understood. To solve this problem, this review presents the evidence of TRPs on vascular endothelial cells in joint swelling, neutrophils activation and their trans-endothelial migration, as well as their bridging role in the reactive oxygen species/TRPs/Ca2+/peptidyl arginine deiminases networks in accelerating citrullinated proteins formation. It also points out the distinct functions of TRPs subfamilies expressed in the nervous systems of joints in cold hyperalgesia and neuro-inflammation mutually influenced inflammatory pain in RA. Thus, more attention could be paid on the impact of TRPs in RA and TRPs are useful in researches on the molecular mechanisms of anti-inflammation and analgesic therapeutic strategies.
Collapse
Affiliation(s)
- Mengwen Niu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Feng Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Lin S, Lin R, Zhang H, Xu Q, He Y. Peripheral vascular remodeling during ischemia. Front Pharmacol 2022; 13:1078047. [DOI: 10.3389/fphar.2022.1078047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
About 230 million people worldwide suffer from peripheral arterial disease (PAD), and the prevalence is increasing year by year. Multiple risk factors, including smoking, dyslipidemia, diabetes, and hypertension, can contribute to the development of PAD. PAD is typically characterized by intermittent claudication and resting pain, and there is a risk of severe limb ischemia, leading to major adverse limb events, such as amputation. Currently, a major progress in the research field of the pathogenesis of vascular remodeling, including atherosclerosis and neointima hyperplasia has been made. For example, the molecular mechanisms of endothelial dysfunction and smooth muscle phenotype switching have been described. Interestingly, a series of focused studies on fibroblasts of the vessel wall has demonstrated their impact on smooth muscle proliferation and even endothelial function via cell-cell communications. In this review, we aim to focus on the functional changes of peripheral arterial cells and the mechanisms of the pathogenesis of PAD. At the same time, we summarize the progress of the current clinical treatment and potential therapeutic methods for PAD and shine a light on future perspectives.
Collapse
|
22
|
Li D, Wang T, Lai J, Zeng D, Chen W, Zhang X, Zhu X, Zhang G, Hu Z. Silencing TRPM2 enhanced erastin- and RSL3-induced ferroptosis in gastric cancer cells through destabilizing HIF-1α and Nrf2 proteins. Cytotechnology 2022; 74:559-577. [PMID: 36238268 PMCID: PMC9525503 DOI: 10.1007/s10616-022-00545-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Ferroptosis is a regulated form of cell death driven by small molecules or conditions that induce lipid-based reactive oxygen species (ROS) accumulation. Cation channel transient receptor potential melastatin-2 (TRPM2) is crucial for cancer cell survival. Our bioinformatic analysis revealed that TRPM2 is associated with cellular responses to chemical stimulus and oxidative stress, implying the potential role of TRPM2 in ferroptosis. Gastric cancer cells were treated with the ferroptosis-inducer, Erastin and RSL3. siRNA transfection was used to silence TRPM2. The levels of GSH, Fe2+, ROS and lipid peroxidation, and the activity of GPx activity were evaluated by flow cytometry and spectrophotometer. The effect of TRPM2 on ubiquitination of HIF-1α and Nrf2 were evaluated by co-immunoprecipitation. Erastin and RSL3 induced the up-regulation of TRPM2 in gastric cancer cell lines, especially in SGC7901 and MGC803. These two cells also showed stronger resistance to Erastin and RSL3 than the other cell lines. TRPM2 knockdown reduced the concentration of GSH and GPx activity, but enhanced the concentration of Fe2+, ROS and lipid peroxidation, which are significant indicators of ferroptosis. Importantly, silencing TRPM2 enhanced the inhibitory effects of Erastin and RSL3 on gastric cancer cell viability, migration, and invasion. TRPM2 stabilized and finally elevated the abundance of HIF-1α and Nrf2 in SGC7901 and MGC803 cells upon Erastin and RSL3. Activation of HIF-1α impaired Erastin- and RSL3-induced ferroptosis after TRPM2 knockdown. Collectively, silencing TRPM2 enhanced Erastin- and RSL3-induced ferroptosis in gastric cancer cells through destabilizing HIF-1α and Nrf2 proteins. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-022-00545-z.
Collapse
Affiliation(s)
- Dingyun Li
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Ting Wang
- Department of Physical Diagnosis, Yue Bei People’s Hospital, No. 133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Jiajun Lai
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Deqiang Zeng
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Weijuan Chen
- Clinical Laboratory, Yue Bei People’s Hospital, No. 133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Xiaochong Zhang
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Xiaofeng Zhu
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Guoxiong Zhang
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| | - Zhiwei Hu
- Department of Gastrointestinal Surgery, Yue Bei People’s Hospital, No.133 Huimin South Road, Wujiang District, Shaoguan, 512026 Guangdong China
| |
Collapse
|
23
|
Role of NADPH Oxidases in Blood-Brain Barrier Disruption and Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11101966. [PMID: 36290688 PMCID: PMC9598888 DOI: 10.3390/antiox11101966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
NADPH oxidases (Nox) are one of the main sources of reactive oxygen species (ROS) in the central nervous system (CNS). While these enzymes have been shown to be involved in physiological regulation of cerebral vascular tone, excessive ROS produced by Nox1-5 play a critical role in blood–brain barrier (BBB) dysfunction in numerous neuropathologies. Nox-derived ROS have been implicated in mediating matrix metalloprotease (MMP) activation, downregulation of junctional complexes between adjacent brain endothelial cells and brain endothelial cell apoptosis, leading to brain microvascular endothelial barrier dysfunction and consequently, increases in BBB permeability. In this review, we will highlight recent findings on the role played by these enzymes in BBB disruption induced by ischemic stroke.
Collapse
|
24
|
Müller I, Alt P, Rajan S, Schaller L, Geiger F, Dietrich A. Transient Receptor Potential (TRP) Channels in Airway Toxicity and Disease: An Update. Cells 2022; 11:2907. [PMID: 36139480 PMCID: PMC9497104 DOI: 10.3390/cells11182907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Our respiratory system is exposed to toxicants and pathogens from both sides: the airways and the vasculature. While tracheal, bronchial and alveolar epithelial cells form a natural barrier in the airways, endothelial cells protect the lung from perfused toxic compounds, particulate matter and invading microorganism in the vascular system. Damages induce inflammation by our immune response and wound healing by (myo)fibroblast proliferation. Members of the transient receptor potential (TRP) superfamily of ion channel are expressed in many cells of the respiratory tract and serve multiple functions in physiology and pathophysiology. TRP expression patterns in non-neuronal cells with a focus on TRPA1, TRPC6, TRPM2, TRPM5, TRPM7, TRPV2, TRPV4 and TRPV6 channels are presented, and their roles in barrier function, immune regulation and phagocytosis are summarized. Moreover, TRP channels as future pharmacological targets in chronic obstructive pulmonary disease (COPD), asthma, cystic and pulmonary fibrosis as well as lung edema are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), LMU-Munich, Nussbaumstr. 26, 80336 Munich, Germany
| |
Collapse
|
25
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
26
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
27
|
Yao S, Luo Y, Wang Y. Engineered Microneedles Arrays for Wound Healing. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
29
|
Unraveling the Cardiac Effects Induced by Carvacrol in Spontaneously Hypertensive Rats: Involvement of Transient Receptor Potential Melastatin Subfamily 4 and 7 Channels. J Cardiovasc Pharmacol 2022; 79:206-216. [PMID: 35099165 DOI: 10.1097/fjc.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Accumulating evidence indicates that transient receptor potential (TRP) channels are involved in the pathophysiological process in the heart, and monoterpenes, such as carvacrol, are able to modulate these channels activity. In this article, our purpose was to evaluate the direct cardiac effect of carvacrol on the contractility of cardiomyocytes and isolated right atria from spontaneously hypertensive and Wistar Kyoto rats. In this way, in vitro experiments were used to evaluate the ventricular cardiomyocytes contractility and the Ca2+ transient measuring, in addition to heart rhythm in the right atria. The role of TRPM channels in carvacrol-mediated cardiac activities was also investigated. The results demonstrated that carvacrol induced a significant reduction in ventricular cell contractility, without changes in transient Ca2+. In addition, carvacrol promoted a significant negative chronotropic response in spontaneously hypertensive and Wistar Kyoto rats' atria. Selective blockage of TRPM channels suggests the involvement of TRP melastatin subfamily 2 (TRPM2), TRPM4, and TRPM7 in the carvacrol-mediated cardiac effects. In silico studies were conducted to further investigate the putative role of TRPM4 in carvacrol-mediated cardiac action. FTMap underscores a conserved pocket in both TRPM4 and TRPM7, revealing a potential carvacrol binding site, and morphological similarity analysis demonstrated that carvacrol shares a more than 85% similarity to 9-phenanthrol. Taken together, these results suggest that carvacrol has direct cardiac actions, leading to reduced cellular contractility and inducing a negative chronotropic effect, which may be related to TRPM7 and TRPM4 modulation.
Collapse
|
30
|
Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022; 11:491. [PMID: 35159300 PMCID: PMC8834171 DOI: 10.3390/cells11030491] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA;
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| |
Collapse
|
31
|
Ergun DD, Dursun S, Ozsobaci NP, Naziroglu M, Ozcelik D. Response of TRPM2 Channel to Hypercapnic Acidosis and Role of Zn, Se, and GSH. Biol Trace Elem Res 2022; 200:147-155. [PMID: 33689144 DOI: 10.1007/s12011-021-02652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022]
Abstract
Hypercapnia can increase the production of reactive oxygen species (ROS) by inducing oxidative stress in cells. Transient receptor potential melastatin 2 (TRPM2) channel activation that is realized by ROS plays a critical role in the cellular mechanism. It was shown that antioxidants such as zinc (Zn), selenium (Se), and glutathione (GSH) can partake in the structures of enzymes and create a protective effect against oxidative stress. This study revealed the relationship between TRPM2 channel and hypercapnia, and the interaction of zinc, selenium, and glutathione. In our study, normoxia, hypercapnia, hypercapnia + Zn, hypercapnia + Se, and hypercapnia + GSH were created, in transfected HEK293 cells. The cells were exposed to normoxia or hypercapnia gasses in two different times (30 min and 60 min), while Zn, Se, and GSH were applied to the cells in the other groups before being exposed to the gas mixtures. The statistical evaluation showed a significant increase in lipid peroxidation (LPO) level and lactate dehydrogenase (LDH)% in the hypercapnia 30 min and 60 min groups, compared to the normoxia 30 min and 60 min groups, and an increase in LPO level and LDH% in the hypercapnia groups that Zn, Se, and GSH were applied. It was determined that in comparison with the normoxia 30 min and 60 min groups, the amount of inward Ca+2 current across TRPM2 channels and mean current density increased in the groups that were exposed to hypercapnia for 30 min and 60 min, while the same values significantly decreased in the hypercapnia groups that Zn, Se, and GSH were applied. Also, it was shown that oxidative stress rose as the duration of hypercapnia exposure increased. It was concluded that hypercapnia increased oxidative stress and caused cellular membrane damage, while the addition of Zn, Se, and GSH could protect the cell membrane from these damaging effects.
Collapse
Affiliation(s)
- D Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - S Dursun
- Department of Biophysics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - N Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - M Naziroglu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
- Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry LTD. Inc., Göller Bölgesi Teknokenti, Isparta, Turkey
| | - D Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
32
|
Negri S, Faris P, Moccia F. Reactive Oxygen Species and Endothelial Ca 2+ Signaling: Brothers in Arms or Partners in Crime? Int J Mol Sci 2021; 22:ijms22189821. [PMID: 34575985 PMCID: PMC8465413 DOI: 10.3390/ijms22189821] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) controls virtually all endothelial cell functions and is, therefore, crucial to maintain cardiovascular homeostasis. An aberrant elevation in endothelial can indeed lead to severe cardiovascular disorders. Likewise, moderate amounts of reactive oxygen species (ROS) induce intracellular Ca2+ signals to regulate vascular functions, while excessive ROS production may exploit dysregulated Ca2+ dynamics to induce endothelial injury. Herein, we survey how ROS induce endothelial Ca2+ signals to regulate vascular functions and, vice versa, how aberrant ROS generation may exploit the Ca2+ handling machinery to promote endothelial dysfunction. ROS elicit endothelial Ca2+ signals by regulating inositol-1,4,5-trisphosphate receptors, sarco-endoplasmic reticulum Ca2+-ATPase 2B, two-pore channels, store-operated Ca2+ entry (SOCE), and multiple isoforms of transient receptor potential (TRP) channels. ROS-induced endothelial Ca2+ signals regulate endothelial permeability, angiogenesis, and generation of vasorelaxing mediators and can be exploited to induce therapeutic angiogenesis, rescue neurovascular coupling, and induce cancer regression. However, an increase in endothelial [Ca2+]i induced by aberrant ROS formation may result in endothelial dysfunction, inflammatory diseases, metabolic disorders, and pulmonary artery hypertension. This information could pave the way to design alternative treatments to interfere with the life-threatening interconnection between endothelial ROS and Ca2+ signaling under multiple pathological conditions.
Collapse
|
33
|
The Role of TRPM2 in Endothelial Function and Dysfunction. Int J Mol Sci 2021; 22:ijms22147635. [PMID: 34299254 PMCID: PMC8307439 DOI: 10.3390/ijms22147635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The transient receptor potential (TRP) melastatin-like subfamily member 2 (TRPM2) is a non-selective calcium-permeable cation channel. It is expressed by many mammalian tissues, including bone marrow, spleen, lungs, heart, liver, neutrophils, and endothelial cells. The best-known mechanism of TRPM2 activation is related to the binding of ADP-ribose to the nudix-box sequence motif (NUDT9-H) in the C-terminal domain of the channel. In cells, the production of ADP-ribose is a result of increased oxidative stress. In the context of endothelial function, TRPM2-dependent calcium influx seems to be particularly interesting as it participates in the regulation of barrier function, cell death, cell migration, and angiogenesis. Any impairments of these functions may result in endothelial dysfunction observed in such conditions as atherosclerosis or hypertension. Thus, TRPM2 seems to be an attractive therapeutic target for the conditions connected with the increased production of reactive oxygen species. However, before the application of TRPM2 inhibitors will be possible, some issues need to be resolved. The main issues are the lack of specificity, poor membrane permeabilization, and low stability in in vivo conditions. The article aims to summarize the latest findings on a role of TRPM2 in endothelial cells. We also show some future perspectives for the application of TRPM2 inhibitors in cardiovascular system diseases.
Collapse
|
34
|
Ding R, Yin YL, Jiang LH. Reactive Oxygen Species-Induced TRPM2-Mediated Ca 2+ Signalling in Endothelial Cells. Antioxidants (Basel) 2021; 10:antiox10050718. [PMID: 34063677 PMCID: PMC8147627 DOI: 10.3390/antiox10050718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial cells form the innermost layer of blood vessels with a fundamental role as the physical barrier. While regulation of endothelial cell function by reactive oxygen species (ROS) is critical in physiological processes such as angiogenesis, endothelial function is a major target for interruption by oxidative stress resulting from generation of high levels of ROS in endothelial cells by various pathological factors and also release of ROS by neutrophils. TRPM2 is a ROS-sensitive Ca2+-permeable channel expressed in endothelial cells of various vascular beds. In this review, we provide an overview of the TRPM2 channel and its role in mediating ROS-induced Ca2+ signaling in endothelial cells. We discuss the TRPM2-mediated Ca2+ signaling in vascular endothelial growth factor-induced angiogenesis and in post-ischemic neovascularization. In particular, we examine the accumulative evidence that supports the role of TRPM2-mediated Ca2+ signaling in endothelial cell dysfunction caused by various oxidative stress-inducing factors that are associated with tissue inflammation, obesity and diabetes, as well as air pollution. These findings provide new, mechanistic insights into ROS-mediated regulation of endothelial cells in physiology and diseases.
Collapse
Affiliation(s)
- Ran Ding
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
| | - Ya-Ling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang 453003, China; (R.D.); (Y.-L.Y.)
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: ; Tel.: +44-113-3434-231
| |
Collapse
|
35
|
Ranzato E, Bonsignore G, Patrone M, Martinotti S. Endothelial and Vascular Health: A Tale of Honey, H 2O 2 and Calcium. Cells 2021; 10:cells10051071. [PMID: 33946572 PMCID: PMC8147193 DOI: 10.3390/cells10051071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular Ca2+ regulation plays a pivotal role in endothelial biology as well as during endothelial restoration processes. Interest in honey utilization in wound approaches is rising in recent years. In order to evaluate the positive effects of buckwheat honey on endothelial responses, we utilized an immortalized endothelial cell line to evaluate cellular responses upon honey exposure, with particular interest in Ca2+ signaling involvement. The results highlight the positive effects of buckwheat honey on endothelial cells’ responses and the central role played by Ca2+ signaling as an encouraging target for more efficacious clinical treatments.
Collapse
Affiliation(s)
- Elia Ranzato
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (E.R.); (G.B.); (M.P.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Gregorio Bonsignore
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (E.R.); (G.B.); (M.P.)
| | - Mauro Patrone
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (E.R.); (G.B.); (M.P.)
| | - Simona Martinotti
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (E.R.); (G.B.); (M.P.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
- Correspondence: ; Tel.: +39-0131-360260
| |
Collapse
|
36
|
Şanlı C, Atılgan R, Kuloğlu T, Pala Ş, Aydın Türk B, Keser HB, İlhan N. Transient receptor potential melastatin 2 ion channel activity in ovarian hyperstimulation syndrome physiopathology. Turk J Med Sci 2021; 51:787-795. [PMID: 33237659 PMCID: PMC8203159 DOI: 10.3906/sag-2005-297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Background/aim Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with increased vascular endothelial growth factor (VEGF) and vascular permeability in the ovarian tissue. Transient receptor potential melastatin 2 (TRPM2) is known to be associated with angiogenesis and vascular permeability. In this experimental study, we aimed to investigate the activity of TRPM2 in the development of OHSS. Materials and methods Fourteen immature female rats were divided into two groups. Group 1 was the control group, and Group 2 was the OHSS group that was exposed to 10 IU of subcutaneous application of FSH for four days and 30 IU of human chorionic gonadotropin (hCG) on the 5th day. At the end of the experiment, the ovaries were removed. The right ovarian tissues were stored in 10% formol for histopathological and immunohistochemical examination. The left ovarian tissues were stored at –80 °C for biochemical examinations. VEGF, tumor necrosis factor-alpha (TNF‐α) and malondialdehyde (MDA) levels were measured in the ovarian tissue. Congestion, edema, apoptosis and TRPM2 immunoreactivity were evaluated. Results There was a significant increase in ovarian weight in the OHSS group compared to the control group. There was a significant increase in congestion, edema, apoptosis and TRPM2 immunoreactivity in the OHSS group. A significant increase in tissue levels of VEGF, TNF‐α and MDA was also found in the OHSS group compared to the control group. Conclusion As a result of our experiment, it was found that increased TRPM2 immunoreactivity on hyperstimulated rat ovary may be the reason or result of edema and congestion. Further studies are needed to discuss our results.
Collapse
Affiliation(s)
- Cengiz Şanlı
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Remzi Atılgan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Şehmus Pala
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Bilge Aydın Türk
- Department of Pathology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Hasan Burak Keser
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Nevin İlhan
- Department of Biochemistry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
37
|
Mraheil MA, Toque HA, La Pietra L, Hamacher J, Phanthok T, Verin A, Gonzales J, Su Y, Fulton D, Eaton DC, Chakraborty T, Lucas R. Dual Role of Hydrogen Peroxide as an Oxidant in Pneumococcal Pneumonia. Antioxid Redox Signal 2021; 34:962-978. [PMID: 32283950 PMCID: PMC8035917 DOI: 10.1089/ars.2019.7964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance:Streptococcus pneumoniae (Spn), a facultative anaerobic Gram-positive human pathogen with increasing rates of penicillin and macrolide resistance, is a major cause of lower respiratory tract infections worldwide. Pneumococci are a primary agent of severe pneumonia in children younger than 5 years and of community-acquired pneumonia in adults. A major defense mechanism toward Spn is the generation of reactive oxygen species, including hydrogen peroxide (H2O2), during the oxidative burst of neutrophils and macrophages. Paradoxically, Spn produces high endogenous levels of H2O2 as a strategy to promote colonization. Recent Advances: Pneumococci, which express neither catalase nor common regulators of peroxide stress resistance, have developed unique mechanisms to protect themselves from H2O2. Spn generates high levels of H2O2 as a strategy to promote colonization. Production of H2O2 moreover constitutes an important virulence phenotype and its cellular activities overlap and complement those of other virulence factors, such as pneumolysin, in modulating host immune responses and promoting organ injury. Critical Issues: This review examines the dual role of H2O2 in pneumococcal pneumonia, from the viewpoint of both the pathogen (defense mechanisms, lytic activity toward competing pathogens, and virulence) and the resulting host-response (inflammasome activation, endoplasmic reticulum stress, and damage to the alveolar-capillary barrier in the lungs). Future Directions: An understanding of the complexity of H2O2-mediated host-pathogen interactions is necessary to develop novel strategies that target these processes to enhance lung function during severe pneumonia.
Collapse
Affiliation(s)
- Mobarak Abu Mraheil
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Haroldo A Toque
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Luigi La Pietra
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Juerg Hamacher
- Internal Medicine and Pneumology, Lindenhofspital, Bern, Switzerland.,Lungen- und Atmungsstiftung Bern, Bern, Switzerland.,Internal Medicine V-Pneumology, Allergology, Respiratory and Environmental Medicine, Faculty of Medicine, Saarland University, Saarbrücken, Germany
| | - Tenzing Phanthok
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Alexander Verin
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Joyce Gonzales
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David Fulton
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Douglas C Eaton
- Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center and Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
38
|
Wang M, Liu Y, Liang Y, Naruse K, Takahashi K. Systematic Understanding of Pathophysiological Mechanisms of Oxidative Stress-Related Conditions-Diabetes Mellitus, Cardiovascular Diseases, and Ischemia-Reperfusion Injury. Front Cardiovasc Med 2021; 8:649785. [PMID: 33928135 PMCID: PMC8076504 DOI: 10.3389/fcvm.2021.649785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) plays a role in intracellular signal transduction under physiological conditions while also playing an essential role in diseases such as hypertension, ischemic heart disease, and diabetes, as well as in the process of aging. The influence of ROS has some influence on the frequent occurrence of cardiovascular diseases (CVD) in diabetic patients. In this review, we considered the pathophysiological relationship between diabetes and CVD from the perspective of ROS. In addition, considering organ damage due to ROS elevation during ischemia-reperfusion, we discussed heart and lung injuries. Furthermore, we have focused on the transient receptor potential (TRP) channels and L-type calcium channels as molecular targets for ROS in ROS-induced tissue damages and have discussed about the pathophysiological mechanism of the injury.
Collapse
Affiliation(s)
| | | | | | | | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
39
|
Huang J, Zhang R, Wang S, Zhang D, Leung CK, Yang G, Li Y, Liu L, Xu Y, Lin S, Wang C, Zeng X, Li J. Methamphetamine and HIV-Tat Protein Synergistically Induce Oxidative Stress and Blood-Brain Barrier Damage via Transient Receptor Potential Melastatin 2 Channel. Front Pharmacol 2021; 12:619436. [PMID: 33815104 PMCID: PMC8010131 DOI: 10.3389/fphar.2021.619436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Synergistic impairment of the blood-brain barrier (BBB) induced by methamphetamine (METH) and HIV-Tat protein increases the risk of HIV-associated neurocognitive disorders (HAND) in HIV-positive METH abusers. Studies have shown that oxidative stress plays a vital role in METH- and HIV-Tat-induced damage to the BBB but have not clarified the mechanism. This study uses the human brain microvascular endothelial cell line hCMEC/D3 and tree shrews to investigate whether the transient receptor potential melastatin 2 (TRPM2) channel, a cellular effector of the oxidative stress, might regulate synergistic damage to the BBB caused by METH and HIV-Tat. We showed that METH and HIV-Tat damaged the BBB in vitro, producing abnormal cell morphology, increased apoptosis, reduced protein expression of the tight junctions (TJ) including Junctional adhesion molecule A (JAMA) and Occludin, and a junctional associated protein Zonula occludens 1 (ZO1), and increased the flux of sodium fluorescein (NaF) across the hCMEC/D3 cells monolayer. METH and HIV-Tat co-induced the oxidative stress response, reducing catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) activity, as well as increased reactive oxygen species (ROS) and malonaldehyde (MDA) level. Pretreatment with n-acetylcysteine amide (NACA) alleviated the oxidative stress response and BBB damage characterized by improving cell morphology, viability, apoptosis levels, TJ protein expression levels, and NaF flux. METH and HIV-Tat co-induced the activation and high protein expression of the TRPM2 channel, however, early intervention using 8-Bromoadenosine-5′-O-diphosphoribose (8-Br-ADPR), an inhibitor of TPRM2 channel, or TRPM2 gene knockdown attenuated the BBB damage. Oxidative stress inhibition reduced the activation and high protein expression of the TRPM2 channel in the in vitro model, which in turn reduced the oxidative stress response. Further, 8-Br-ADPR attenuated the effects of METH and HIV-Tat on the BBB in tree shrews—namely, down-regulated TJ protein expression and increased BBB permeability to Evans blue (EB) and NaF. In summary, the TRPM2 channel can regulate METH- and HIV-Tat-induced oxidative stress and BBB injury, giving the channel potential for developing drug interventions to reduce BBB injury and neuropsychiatric symptoms in HIV-infected METH abusers.
Collapse
Affiliation(s)
- Jian Huang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Ruilin Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shangwen Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Dongxian Zhang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yuanyuan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Liu Liu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yue Xu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Shucheng Lin
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.,School of Basic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
40
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
41
|
Yildirim C, Özkaya B, Bal R. KATP and TRPM2-like channels couple metabolic status to resting membrane potential of octopus neurons in the mouse ventral cochlear nucleus. Brain Res Bull 2021; 170:115-128. [PMID: 33581312 DOI: 10.1016/j.brainresbull.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/29/2022]
Abstract
ATP-sensitive potassium (KATP) channels and transient receptor potential melastatin 2 (TRPM2) channels are commonly expressed both pre- and postsynaptically in the central nervous system (CNS). We hypothesized that KATP and TRPM2 may couple metabolic status to the resting membrane potential of octopus neurons of the mouse ventral cochlear nucleus (VCN). Therefore, we studied the expression of KATP channels and TRPM2 channels in octopus cells by immunohistochemical techniques and their contribution to neuronal electrical properties by the electrophysiological patch clamp technique. In immunohistochemical staining of octopus cells, labelling with Kir6.2 and SUR1 antibodies was strong, and labelling with the SUR2 antibody was moderate, but labelling with Kir6.1 was very weak. Octopus cells had intense staining with TRPM2 antibodies. In patch clamp recordings, bath application of KATP channel agonists H2O2 (880 μM), ATZ (1 mM), cromakalim (50 μM), diazoxide (200 μM), NNC 55-0118 and NN 414 separately resulted in hyperpolarizations of resting potential to different extents. Application of 8-Bro-cADPR (50 μM), a specific antagonist of TRPM2 channels, in the presence of H2O2 (880 μM) resulted in further hyperpolarization by approximately 1 mV. The amplitudes of H2O2-induced outward KATP currents and ADPR-induced inward currents were 206.1 ± 31.5 pA (n = 4) and 136.8 ± 22.4 pA, respectively, at rest. Their respective reversal potentials were -77 ± 2.6 mV (n = 3) and -6.3 ± 2.9 (n = 3) and -6.3 ± 2.9 (n = 3). In conclusion, octopus cells appear to possess both KATP channels and TRPM2-like channels. KATP might largely be constituted by SUR1-Kir6.2 subunits and SUR2-Kir6.2 subunits. Both KATP and TRPM2-like channels might have a modulatory action in setting the membrane potential.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Beytullah Özkaya
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| |
Collapse
|
42
|
Steinman J, Sun HS, Feng ZP. Microvascular Alterations in Alzheimer's Disease. Front Cell Neurosci 2021; 14:618986. [PMID: 33536876 PMCID: PMC7849053 DOI: 10.3389/fncel.2020.618986] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with continual decline in cognition and ability to perform routine functions such as remembering familiar places or understanding speech. For decades, amyloid beta (Aβ) was viewed as the driver of AD, triggering neurodegenerative processes such as inflammation and formation of neurofibrillary tangles (NFTs). This approach has not yielded therapeutics that cure the disease or significant improvements in long-term cognition through removal of plaques and Aβ oligomers. Some researchers propose alternate mechanisms that drive AD or act in conjunction with amyloid to promote neurodegeneration. This review summarizes the status of AD research and examines research directions including and beyond Aβ, such as tau, inflammation, and protein clearance mechanisms. The effect of aging on microvasculature is highlighted, including its contribution to reduced blood flow that impairs cognition. Microvascular alterations observed in AD are outlined, emphasizing imaging studies of capillary malfunction. The review concludes with a discussion of two therapies to protect tissue without directly targeting Aβ for removal: (1) administration of growth factors to promote vascular recovery in AD; (2) inhibiting activity of a calcium-permeable ion channels to reduce microglial activation and restore cerebral vascular function.
Collapse
Affiliation(s)
- Joe Steinman
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
TRPM2 promotes autophagic degradation in vascular smooth muscle cells. Sci Rep 2020; 10:20719. [PMID: 33244095 PMCID: PMC7693237 DOI: 10.1038/s41598-020-77620-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023] Open
Abstract
Transient receptor potential channel M2 (TRPM2) is a Ca2+-permeable channel that is activated by reactive oxygen species (ROS). In many cell types, ROS activate TRPM2 to induce excessive Ca2+ influx, resulting in Ca2+ overload and consequent cell death. Recent studies suggest that TRPM2 may also regulate autophagy in pericytes and cancer cells by acting on the early step of autophagy, i.e. autophagic induction. However, there is no report on the role of TRPM2 in autophagic degradation, which is the late stage of autophagy. In the present study, we found abundant TRPM2 expression in lysosomes/autolysosomes in the primary cultured mouse aortic smooth muscle cells (mASMCs). Nutrient starvation stimulated autophagic flux in mASMCs mainly by promoting autophagic degradation. This starvation-induced autophagic degradation was reduced by TRPM2 knockout. Importantly, starvation-induced lysosomal/autolysosomal acidification and cell death were also substantially reduced by TRPM2 knockout. Taken together, the present study uncovered a novel mechanism that lysosomal TRPM2 facilitates lysosomal acidification to stimulate excessive autolysosome degradation and consequent cell death.
Collapse
|
44
|
Malko P, Jiang LH. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol 2020; 37:101755. [PMID: 33130440 PMCID: PMC7600390 DOI: 10.1016/j.redox.2020.101755] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province and Department of Physiology and Pathophysiology, Xinxiang Medical University, PR China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK.
| |
Collapse
|
45
|
Aroke EN, Powell-Roach KL, Jaime-Lara RB, Tesfaye M, Roy A, Jackson P, Joseph PV. Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 2020; 21:E5929. [PMID: 32824721 PMCID: PMC7460556 DOI: 10.3390/ijms21165929] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste-pain sensorial experiences are not fully understood. This article provides a narrative review of literature examining the role of TRP channels on taste and pain perception. Genomic variability in the TRPV1 gene has been associated with alterations in various pain conditions. Moreover, polymorphisms of the TRPV1 gene have been associated with alterations in salty taste sensitivity and salt preference. Studies of genetic variations in TRP genes or modulation of TRP pathways may increase our understanding of the shared biological mediators of pain and taste, leading to therapeutic interventions to treat many diseases.
Collapse
Affiliation(s)
- Edwin N. Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | | | - Rosario B. Jaime-Lara
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Markos Tesfaye
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Abhrabrup Roy
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | - Paule V. Joseph
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| |
Collapse
|
46
|
Wang S, Liang T, Luo Q, Li P, Zhang R, Xu M, Su J, Xu T, Wu Q. H9N2 swine influenza virus infection-induced damage is mediated by TRPM2 channels in mouse pulmonary microvascular endothelial cells. Microb Pathog 2020; 148:104408. [PMID: 32707310 DOI: 10.1016/j.micpath.2020.104408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/10/2023]
Abstract
Oxidative stress is implicated in the pathogenesis of influenza virus infection. Increasing evidences show that transient receptor potential melastatin 2 (TRPM2), a Ca2+-permeable non-selective cation channel, plays an important role in the pathomechanism of reactive oxygen species (ROS)-coupled diseases. The present study investigated the role of TRPM2 in pulmonary microvascular endothelial cells (PMVECs) during H9N2 influenza virus infection. We knocked down TRPM2 in PMVECs using TRPM2 shRNA lentiviral particles. Subsequently, we utilized enzyme-linked immunosorbent assay and flow cytometry to compare ROS levels, DNA damage, mitochondrial integrity, apoptosis, and inflammatory factors between control and TRPM2-knockdown PMVECs following H9N2 influenza virus infection. Inhibition of TRPM2 channels reduced H9N2 virus-induced intracellular ROS production, decreased DNA damage, and inhibited H9N2-induced cellular apoptosis. This study shows that the inhibition of TRPM2 channels may protect PMVECs from the damage caused by H9N2 virus infection. Our results highlight the importance of TRPM2 in modulating ROS production, apoptosis, mitochondrial dysfunction, cytokine expression, and DNA damage in H9N2 virus-infected PMVECs, and suggest that TRPM2 may be a potential antiviral target.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Ting Liang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Qiang Luo
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Peiyao Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Mingju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, PR China.
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
47
|
He P, Talukder MAH, Gao F. Oxidative Stress and Microvessel Barrier Dysfunction. Front Physiol 2020; 11:472. [PMID: 32536875 PMCID: PMC7268512 DOI: 10.3389/fphys.2020.00472] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical and experimental evidence indicate that increased vascular permeability contributes to many disease-associated vascular complications. Oxidative stress with increased production of reactive oxygen species (ROS) has been implicated in a wide variety of pathological conditions, including inflammation and many cardiovascular diseases. It is thus important to identify the role of ROS and their mechanistic significance in microvessel barrier dysfunction under pathological conditions. The role of specific ROS and their cross talk in pathological processes is complex. The mechanisms of ROS-induced increases in vascular permeability remain poorly understood. The sources of ROS in diseases have been extensively reviewed at enzyme levels. This review will instead focus on the underlying mechanisms of ROS release by leukocytes, the differentiate effects and signaling mechanisms of individual ROS on endothelial cells, pericytes and microvessel barrier function, as well as the interplay of reactive oxygen species, nitric oxide, and nitrogen species in ROS-mediated vascular barrier dysfunction. As a counter balance of excessive ROS, nuclear factor erythroid 2 related factor 2 (Nrf2), a redox-sensitive cell-protective transcription factor, will be highlighted as a potential therapeutic target for antioxidant defenses. The advantages and limitations of different experimental approaches used for the study of ROS-induced endothelial barrier function are also discussed. This article will outline the advances emerged mainly from in vivo and ex vivo studies and attempt to consolidate some of the opposing views in the field, and hence provide a better understanding of ROS-mediated microvessel barrier dysfunction and benefit the development of therapeutic strategies.
Collapse
Affiliation(s)
- Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - M A Hassan Talukder
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Feng Gao
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
48
|
Liu S, Pan X, Cheng W, Deng B, He Y, Zhang L, Ning Y, Li J. Tubeimoside I Antagonizes Yoda1-Evoked Piezo1 Channel Activation. Front Pharmacol 2020; 11:768. [PMID: 32523536 PMCID: PMC7261832 DOI: 10.3389/fphar.2020.00768] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
Piezo1, a mechanosensitive Ca2+-permeable non-selective cationic ion channel protein, is involved in a wide range of biological processes and plays crucial roles in vascular development. However, the pharmacology of this protein is in its infancy. Yoda1, the first specific chemical activator of Piezo1 channels, can activate Piezo1 in absence of mechanical stimulation. Hence, we sought to identify inhibitors of Yoda1 from Traditional Chinese Medicine (TCM). Intracellular Ca2+ measurements were conducted in human umbilical vein endothelial cells (HUVECs), HEK 293T cells overexpressing TRPC5 and TRPM2 channels, as well as in CHO K1 cells overexpressing TRPV4 channels. We identified tubeimoside I (TBMS1) as a strong inhibitor of the Yoda1 response and demonstrated its selectivity for the Piezo1 channels. Similarly, Yoda1-induced inhibitory results were obtained in Piezo1 wild-type overexpressed cells, murine liver endothelial cells (MLECs), and macrophages. The physiological responses of TBMS1 were identified by isometric tension, which can inhibit Yoda1 relaxation of aortic rings. Our results demonstrated that TBMS1 can effectively antagonize Yoda1 induced Piezo1 channel activation. This study sheds light on the existence of Yoda1 inhibitors and improves the understanding of vascular pharmacology through Piezo1 channels.
Collapse
Affiliation(s)
- Silin Liu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianmei Pan
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Cheng
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Deng
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu He
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yile Ning
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
49
|
Duzgun Ergun D, Dursun S, Pastaci Ozsobaci N, Hatırnaz Ng O, Naziroglu M, Ozcelik D. The potential protective roles of zinc, selenium and glutathione on hypoxia-induced TRPM2 channel activation in transfected HEK293 cells. J Recept Signal Transduct Res 2020; 40:521-530. [PMID: 32354246 DOI: 10.1080/10799893.2020.1759093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hypoxia induces cell death through excessive production of reactive oxygen species (ROS) and calcium (Ca2+) influx in cells and TRPM2 cation channel is activated by oxidative stress. Zinc (Zn), selenium (Se), and glutathione (GSH) have antioxidant properties in several cells and hypoxia-induced TRPM2 channel activity, ROS and cell death may be inhibited by the Zn, Se, and GSH treatments. We investigated effects of Zn, Se, and GSH on lipid peroxidation (LPO), cell cytotoxicity and death through inhibition of TRPM2 channel activity in transfected HEK293 cells exposed to hypoxia defined as oxygen deficiency.We induced four groups as normoxia 30 and 60 min evaluated as control groups, hypoxia 30 and 60 min in the HEK293 cells. The cells were separately pre-incubated with extracellular Zn (100 µM), Se (150 nM) and GSH (5 mM). Cytotoxicity was evaluated by lactate dehydrogenase (LDH) release and the LDH and LPO levels were significantly higher in the hypoxia-30 and 60 min-exposed cells according to normoxia 30 and 60 min groups. Furthermore, we found that the LPO and LDH were decreased in the hypoxia-exposed cells after being treated with Zn, Se, and GSH according to the hypoxia groups. Compared to the normoxia groups, the current densities of TRPM2 channel were increased in the hypoxia-exposed cells by the hypoxia applications, while the same values were decreased in the treatment of Zn, Se, and GSH according to hypoxia group. In conclusion, hypoxia-induced TRPM2 channel activity, ROS and cell death were recovered by the Se, Zn and GSH treatments.
Collapse
Affiliation(s)
- Dilek Duzgun Ergun
- Department of Biophysics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.,Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sefik Dursun
- Department of Biophysics, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Nural Pastaci Ozsobaci
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozden Hatırnaz Ng
- Department of Medical Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Naziroglu
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.,Drug Discovery Unit, BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, Industry LTD. Inc, Göller Bölgesi Teknokenti, Isparta, Turkey
| | - Dervis Ozcelik
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
50
|
Martinotti S, Patrone M, Balbo V, Mazzucco L, Ranzato E. Endothelial response boosted by platelet lysate: the involvement of calcium toolkit. Int J Mol Sci 2020; 21:ijms21030808. [PMID: 31991927 PMCID: PMC7036775 DOI: 10.3390/ijms21030808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Wound repair is a dynamic process during which crucial signaling pathways are regulated by growth factors and cytokines released by several kinds of cells directly involved in the healing process. However, the limited applications and heterogeneous clinical results of single growth factors in wound healing encouraged the use of a mixture of bioactive molecules such as platelet derivatives for best results in wound repair. An interesting platelet derivative, obtained from blood samples, is platelet lysate (PL), which has shown potential clinical application. PL is obtained from freezing and thawing of platelet-enriched blood samples. Intracellular calcium (Ca2+) signals play a central role in the control of endothelial cell survival, proliferation, motility, and differentiation. We investigated the role of Ca2+ signaling in the PL-driven endothelial healing process. In our experiments, the functional significance of Ca2+ signaling machinery was highlighted performing the scratch wound assay in presence of different inhibitors or specific RNAi. We also pointed out that the PL-induced generation of intracellular ROS (reactive oxygen species) via NOX4 (NADPH oxidase 4) is necessary for the activation of TRPM2 and the resulting Ca2+ entry from the extracellular space. This is the first report of the mechanism of wound repair in an endothelial cell model boosted by the PL-induced regulation of [Ca2+]i.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
- Correspondence: ; Tel.: +39-0131-360260; Fax: +39-0131-360243
| | - Mauro Patrone
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
| | - Valeria Balbo
- Laboratorio Produzione Emocomponenti e Medicina Rigenerativa, SIMT—AO “SS Antonio e Biagio”, 15121 Alessandria, Italy; (V.B.); (L.M.)
| | - Laura Mazzucco
- Laboratorio Produzione Emocomponenti e Medicina Rigenerativa, SIMT—AO “SS Antonio e Biagio”, 15121 Alessandria, Italy; (V.B.); (L.M.)
| | - Elia Ranzato
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- DiSIT—Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|