1
|
Han X, Jiang Z, Hou Y, Zhou X, Hu B. Myocardial ischemia-reperfusion injury upregulates nucleostemin expression via HIF-1α and c-Jun pathways and alleviates apoptosis by promoting autophagy. Cell Death Discov 2024; 10:461. [PMID: 39477962 PMCID: PMC11525682 DOI: 10.1038/s41420-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury, often arising from interventional therapy for acute myocardial infarction, leads to irreversible myocardial cell death. While previous studies indicate that nucleostemin (NS) is induced by myocardial I/R injury and mitigates myocardial cell apoptosis, the underlying mechanisms are poorly understood. Here, our study reveals that NS upregulation is critical for preventing cardiomyocyte death following myocardial I/R injury. Elevated NS protein levels were observed in myocardial I/R injury mouse and rat models, as well as Hypoxia/reoxygenation (H/R) cardiac cell lines (H9C2 cells). We identified binding sites for c-Jun and HIF-1α in the NS promoter region. Inhibition of JNK and HIF-1α led to a significant decrease in NS transcription and protein expression. Furthermore, inhibition of autophagy and NS expression promoted myocardial cell apoptosis in H/R. Notably, the cell model showed reduced LC3I transformation to LC3II, downregulated Beclin1, upregulated p62, and altered expression of autophagy-related proteins upon NS interference in H/R cells. These findings suggest that NS expression, driven by c-Jun and HIF-1α pathways, facilitates autophagy, providing protection against both myocardial I/R injury and H/R-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Zhicheng Jiang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Yufeng Hou
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaorong Zhou
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Baoying Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University & Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Immunology, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
2
|
Liu X, Wang J, Li F, Timchenko N, Tsai RYL. Transcriptional control of a stem cell factor nucleostemin in liver regeneration and aging. PLoS One 2024; 19:e0310219. [PMID: 39259742 PMCID: PMC11389944 DOI: 10.1371/journal.pone.0310219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Nucleostemin (NS) plays a role in liver regeneration, and aging reduces its expression in the baseline and regenerating livers following 70% partial hepatectomy (PHx). Here we interrogate the mechanism controlling NS expression during liver regeneration and aging. The NS promoter was analyzed by TRANSFAC. Functional studies were performed using cell-based luciferase assay, endogenous NS expression in Hep3B cells, mouse livers with a gain-of-function mutation of C/EBPα (S193D), and mouse livers with C/EBPα knockdown. We found a CAAT box with four C/EBPα binding sites (-1216 to -735) and a GC box with consensus binding sites for c-Myc, E2F1, and p300-associated protein complex (-633 to -1). Age-related changes in NS expression correlated positively with the expression of c-Myc, E2F1, and p300, and negatively with that of C/EBPα and C/EBPβ. PHx upregulated NS expression at 1d, coinciding with an increase in E2F1 and a decrease in C/EBPα. C/EBPα bound to the consensus sequences found in the NS promoter in vitro and in vivo, inhibited its transactivational activity in a binding site-dependent manner, and decreased the expression of endogenous NS in Hep3B cells. In vivo activation of C/EBPα by the S193D mutation resulted in a 4th-day post-PHx reduction of NS, a feature shared by 16-m/o livers. Finally, C/EBPα knockdown increased its expression in aged (24-m/o) livers under both baseline and regeneration conditions. This study reports the C/EBPα suppression of NS expression in aged livers, providing a new perspective on the mechanistic orchestration of tissue homeostasis in aging.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Fang Li
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
| | - Nikolai Timchenko
- Department of Surgery, Cincinnati Children Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States of America
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX, United States of America
- Department of Translational Medical Sciences, Texas A&M University School of Medicine, Bryan, TX, United States of America
| |
Collapse
|
3
|
Sengar AS, Kumar M, Rai C, Chakraborti S, Kumar D, Kumar P, Mukherjee S, Mondal K, Stewart A, Maity B. RGS6 drives cardiomyocyte death following nucleolar stress by suppressing Nucleolin/miRNA-21. J Transl Med 2024; 22:204. [PMID: 38409136 PMCID: PMC10895901 DOI: 10.1186/s12967-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Prior evidence demonstrated that Regulator of G protein Signaling 6 (RGS6) translocates to the nucleolus in response to cytotoxic stress though the functional significance of this phenomenon remains unknown. METHODS Utilizing in vivo gene manipulations in mice, primary murine cardiac cells, human cell lines and human patient samples we dissect the participation of a RGS6-nucleolin complex in chemotherapy-dependent cardiotoxicity. RESULTS Here we demonstrate that RGS6 binds to a key nucleolar protein, Nucleolin, and controls its expression and activity in cardiomyocytes. In the human myocyte AC-16 cell line, induced pluripotent stem cell derived cardiomyocytes, primary murine cardiomyocytes, and the intact murine myocardium tuning RGS6 levels via overexpression or knockdown resulted in diametrically opposed impacts on Nucleolin mRNA, protein, and phosphorylation.RGS6 depletion provided marked protection against nucleolar stress-mediated cell death in vitro, and, conversely, RGS6 overexpression suppressed ribosomal RNA production, a key output of the nucleolus, and triggered death of myocytes. Importantly, overexpression of either Nucleolin or Nucleolin effector miRNA-21 counteracted the pro-apoptotic effects of RGS6. In both human and murine heart tissue, exposure to the genotoxic stressor doxorubicin was associated with an increase in the ratio of RGS6/Nucleolin. Preventing RGS6 induction via introduction of RGS6-directed shRNA via intracardiac injection proved cardioprotective in mice and was accompanied by restored Nucleolin/miRNA-21 expression, decreased nucleolar stress, and decreased expression of pro-apoptotic, hypertrophy, and oxidative stress markers in heart. CONCLUSION Together, these data implicate RGS6 as a driver of nucleolar stress-dependent cell death in cardiomyocytes via its ability to modulate Nucleolin. This work represents the first demonstration of a functional role for an RGS protein in the nucleolus and identifies the RGS6/Nucleolin interaction as a possible new therapeutic target in the prevention of cardiotoxicity.
Collapse
Affiliation(s)
- Abhishek Singh Sengar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Manish Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Chetna Rai
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Sreemoyee Chakraborti
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
- Forensic Science Laboratory, Department of Home and Hill Affairs, Kolkata, West Bengal, 700037, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India
| | - Pranesh Kumar
- Institute of Pharmaceutical Science, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Sukhes Mukherjee
- Biochemistry, AIIMS Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462026, India
| | - Kausik Mondal
- Zoology, University of Kalyani, Nadia, West Bengal, 741235, India
| | - Adele Stewart
- Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
4
|
Siu WS, Ma H, Ko CH, Shiu HT, Cheng W, Lee YW, Kot CH, Leung PC, Lui PPY. Rat Plantar Fascia Stem/Progenitor Cells Showed Lower Expression of Ligament Markers and Higher Pro-Inflammatory Cytokines after Intensive Mechanical Loading or Interleukin-1β Treatment In Vitro. Cells 2023; 12:2222. [PMID: 37759446 PMCID: PMC10526819 DOI: 10.3390/cells12182222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The pathogenesis of plantar fasciitis is unclear, which hampers the development of an effective treatment. The altered fate of plantar fascia stem/progenitor cells (PFSCs) under overuse-induced inflammation might contribute to the pathogenesis. This study aimed to isolate rat PFSCs and compared their stem cell-related properties with bone marrow stromal cells (BMSCs). The effects of inflammation and intensive mechanical loading on PFSCs' functions were also examined. We showed that plantar fascia-derived cells (PFCs) expressed common MSC surface markers and embryonic stemness markers. They expressed lower Nanog but higher Oct4 and Sox2, proliferated faster and formed more colonies compared to BMSCs. Although PFCs showed higher chondrogenic differentiation potential, they showed low osteogenic and adipogenic differentiation potential upon induction compared to BMSCs. The expression of ligament markers was higher in PFCs than in BMSCs. The isolated PFCs were hence PFSCs. Both IL-1β and intensive mechanical loading suppressed the mRNA expression of ligament markers but increased the expression of inflammatory cytokines and matrix-degrading enzymes in PFSCs. In summary, rat PFSCs were successfully isolated. They had poor multi-lineage differentiation potential compared to BMSCs. Inflammation after overuse altered the fate and inflammatory status of PFSCs, which might lead to poor ligament differentiation of PFSCs and extracellular matrix degeneration. Rat PFSCs can be used as an in vitro model for studying the effects of intensive mechanical loading-induced inflammation on matrix degeneration and erroneous stem/progenitor cell differentiation in plantar fasciitis.
Collapse
Affiliation(s)
- Wing Sum Siu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Hay Ko
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi Ting Shiu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wen Cheng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Wa Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Cheuk Hin Kot
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
5
|
Yan D, Hua L. Nucleolar stress: Friend or foe in cardiac function? Front Cardiovasc Med 2022; 9:1045455. [PMID: 36386352 PMCID: PMC9659567 DOI: 10.3389/fcvm.2022.1045455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 03/14/2024] Open
Abstract
Studies in the past decades have uncovered an emerging role of the nucleolus in stress response and human disease progression. The disruption of ribosome biogenesis in the nucleolus causes aberrant nucleolar architecture and function, termed nucleolar stress, to initiate stress-responsive pathways via nucleolar release sequestration of various proteins. While data obtained from both clinical and basic investigations have faithfully demonstrated an involvement of nucleolar stress in the pathogenesis of cardiomyopathy, much remains unclear regarding its precise role in the progression of cardiac diseases. On the one hand, the initiation of nucleolar stress following acute myocardial damage leads to the upregulation of various cardioprotective nucleolar proteins, including nucleostemin (NS), nucleophosmin (NPM) and nucleolin (NCL). As a result, nucleolar stress plays an important role in facilitating the survival and repair of cardiomyocytes. On the other hand, abnormalities in nucleolar architecture and function are correlated with the deterioration of cardiac diseases. Notably, the cardiomyocytes of advanced ischemic and dilated cardiomyopathy display impaired silver-stained nucleolar organiser regions (AgNORs) and enlarged nucleoli, resembling the characteristics of tissue aging. Collectively, nucleolar abnormalities are critically involved in the development of cardiac diseases.
Collapse
Affiliation(s)
- Daliang Yan
- Department of Cardiovascular Surgery, Taizhou People’s Hospital, Taizhou, China
| | - Lu Hua
- Department of Oncology, Taizhou People’s Hospital, Taizhou, China
| |
Collapse
|
6
|
Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 2019; 76:4511-4524. [PMID: 31338556 PMCID: PMC6841648 DOI: 10.1007/s00018-019-03231-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023]
Abstract
The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
8
|
Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells Int 2017; 2017:5785436. [PMID: 29163642 PMCID: PMC5662033 DOI: 10.1155/2017/5785436] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.
Collapse
|
9
|
Zhao S, Xia Y, Zhang F, Xiong Z, Li Y, Yan W, Chen X, Wang W, Wang H, Gao E, Lee Y, Li C, Wang S, Zhang L, Tao L. Nucleostemin dysregulation contributes to ischemic vulnerability of diabetic hearts: Role of ribosomal biogenesis. J Mol Cell Cardiol 2017; 108:106-113. [PMID: 28549781 DOI: 10.1016/j.yjmcc.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/20/2023]
Abstract
Diabetes is a major health problem worldwide. As well-known, diabetes greatly increases cardiac vulnerability to ischemia/reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Nucleostemin (NS) is a nucleolar protein that controls ribosomal biogenesis and exerts cardioprotective effects against I/R injury. However, whether NS-mediated ribosomal biogenesis regulates ischemic vulnerability of diabetic hearts remains unanswered. Utilizing myocardial I/R mouse models, we found that cardiac NS expression significantly increased in response to I/R in normal diet (ND)-fed mice. Surprisingly, cardiac NS failed to be upregulated in high fat diet (HFD)-induced diabetic mice, accompanied by obvious ribosomal dysfunction. Compared with ND group, cardiac specific overexpression of NS by adenovirus (AV) injection significantly restored I/R-induced ribosomal function enhancement, reduced cardiomyocyte apoptosis, improved cardiac function, and decreased infarct sizes in diabetic mice. Notably, co-treatment of homoharringtonine (HHT), a selective inhibitor of ribosomal function, totally blocked NS-mediated cardioprotective effects against I/R injury. Furthermore, in cultured cardiomyocytes, saturated fatty acids treatment, but not high glucose exposure, significantly inhibited simulated I/R-induced NS upregulation and ribosomal function improvement. In conclusion, these data for the first time demonstrate that NS dysregulation induced by saturated fatty acids exposure might be an important cause of increased ischemic vulnerability to I/R injury in diabetic hearts. Targeting NS dysregulation and subsequent ribosomal dysfunction could be a promising therapeutic strategy for diabetic I/R injury management.
Collapse
Affiliation(s)
- Shihao Zhao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China; Department of Physiology, the Fourth Military Medical University, China; Department of Cardiology, the 201st Hospital of People's Liberation Army, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Yueyang Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Xiyao Chen
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, China
| | - Wei Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Helin Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, United States
| | - Yan Lee
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, China.
| |
Collapse
|
10
|
Chen R, Yu YH. Induced pluripotent stem (iPS) cells and somatic cardiac regeneration — An exploratory bioinformatic analysis. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e8801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
11
|
Runesson E, Ackermann P, Karlsson J, Eriksson BI. Nucleostemin- and Oct 3/4-positive stem/progenitor cells exhibit disparate anatomical and temporal expression during rat Achilles tendon healing. BMC Musculoskelet Disord 2015; 16:212. [PMID: 26290425 PMCID: PMC4545962 DOI: 10.1186/s12891-015-0658-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/31/2015] [Indexed: 01/24/2023] Open
Abstract
Background The recent discovery of residing tendon stem/progenitor cells has triggered a growing interest in stem cells as a useful tool in tendon repair. Our knowledge of their involvement in naturally healing tendons is, however, sparse. The aim of this study was to identify and determine stem/progenitor cells in relation to different healing phases and regions in a rat model of Achilles tendon rupture. Methods Surgery was performed to create a mid-tendon rupture on the right Achilles tendon of 24 rats, whereas the left tendon was used as a control. Tendons were harvested at one, two, eight and 17 weeks post-rupture and stained with antibodies specific to stem/progenitor cells (Octamer-binding transcription factor 3/4 (Oct 3/4) and nucleostemin), migrating cells (Dynamin 2 (Dyn 2)) and leukocytes (CD45). A histological examination was performed on sections stained with Alcian blue. Results At one and two weeks post-rupture, a large number of stem/progenitor cells were discovered throughout the tendon. Most of these cells were nucleostemin positive, whereas only a few Oct 3/4-positive cells were found, mainly situated inside the injury region (I region). At eight and 17 weeks, the increment in stem/progenitor cells had diminished to equal that in the control tendons. At all time points, Oct 3/4-positive cells were also found in the connective tissue surrounding the tendon and at the muscle-tendon junction in both ruptured and control tendons and were often seen at the same location as the migration marker, Dyn 2. Conclusions The whole length of the Achilles tendon is infiltrated by stem/progenitor cells at early time points after a mid-tendon rupture. However, different stem/progenitor cell populations exhibit varying anatomical and temporal expressions during Achilles tendon healing, suggesting distinct reparative implications. Oct 3/4 may thus act as a more local, migrating stem/progenitor cell involved in injury-site-specific regenerative effects, as compared to the more general proliferative role of nucleostemin-positive stem/progenitor cells.
Collapse
Affiliation(s)
- Eva Runesson
- Department of Orthopaedics, Lundberg Laboratory for Orthopaedic Research, Institute of Clinical Sciences, University of Gothenburg, Gröna Stråket 12, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Paul Ackermann
- Integrative Orthopaedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| | - Jón Karlsson
- Department of Orthopaedics, Lundberg Laboratory for Orthopaedic Research, Institute of Clinical Sciences, University of Gothenburg, Gröna Stråket 12, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| | - Bengt I Eriksson
- Department of Orthopaedics, Lundberg Laboratory for Orthopaedic Research, Institute of Clinical Sciences, University of Gothenburg, Gröna Stråket 12, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
12
|
Abstract
Despite the increasing use of stem cells for regenerative-based cardiac therapy, the optimal stem cell population(s) remains in a cloud of uncertainty. In the past decade, the field has witnessed a surge of researchers discovering stem cell populations reported to directly and/or indirectly contribute to cardiac regeneration through processes of cardiomyogenic commitment and/or release of cardioprotective paracrine factors. This review centers upon defining basic biological characteristics of stem cells used for sustaining cardiac integrity during disease and maintenance of communication between the cardiac environment and stem cells. Given the limited successes achieved so far in regenerative therapy, the future requires development of unprecedented concepts involving combinatorial approaches to create and deliver the optimal stem cell(s) that will enhance myocardial healing.
Collapse
Affiliation(s)
- Pearl Quijada
- Integrated Regenerative Research Institute, Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | |
Collapse
|
13
|
Zhang C, Shi J, Qian L, Zhang C, Wu K, Yang C, Yan D, Wu X, Liu X. Nucleostemin exerts anti-apoptotic function via p53 signaling pathway in cardiomyocytes. In Vitro Cell Dev Biol Anim 2015; 51:1064-71. [DOI: 10.1007/s11626-015-9934-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/14/2015] [Indexed: 12/15/2022]
|
14
|
Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VNS, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R. Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 2015; 117:52-64. [PMID: 25904597 DOI: 10.1161/circresaha.117.305990] [Citation(s) in RCA: 570] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Embryonic stem cells (ESCs) hold great promise for cardiac regeneration but are susceptible to various concerns. Recently, salutary effects of stem cells have been connected to exosome secretion. ESCs have the ability to produce exosomes, however, their effect in the context of the heart is unknown. OBJECTIVE Determine the effect of ESC-derived exosome for the repair of ischemic myocardium and whether c-kit(+) cardiac progenitor cells (CPCs) function can be enhanced with ESC exosomes. METHODS AND RESULTS This study demonstrates that mouse ESC-derived exosomes (mES Ex) possess ability to augment function in infarcted hearts. mES Ex enhanced neovascularization, cardiomyocyte survival, and reduced fibrosis post infarction consistent with resurgence of cardiac proliferative response. Importantly, mES Ex augmented CPC survival, proliferation, and cardiac commitment concurrent with increased c-kit(+) CPCs in vivo 8 weeks after in vivo transfer along with formation of bonafide new cardiomyocytes in the ischemic heart. miRNA array revealed significant enrichment of miR290-295 cluster and particularly miR-294 in ESC exosomes. The underlying basis for the beneficial effect of mES Ex was tied to delivery of ESC specific miR-294 to CPCs promoting increased survival, cell cycle progression, and proliferation. CONCLUSIONS mES Ex provide a novel cell-free system that uses the immense regenerative power of ES cells while avoiding the risks associated with direct ES or ES-derived cell transplantation and risk of teratomas. ESC exosomes possess cardiac regeneration ability and modulate both cardiomyocyte and CPC-based repair programs in the heart.
Collapse
Affiliation(s)
- Mohsin Khan
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Emily Nickoloff
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Tatiana Abramova
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Jennifer Johnson
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Suresh Kumar Verma
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Prasanna Krishnamurthy
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Alexander Roy Mackie
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Erin Vaughan
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Venkata Naga Srikanth Garikipati
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Cynthia Benedict
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Veronica Ramirez
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Erin Lambers
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Aiko Ito
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Erhe Gao
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Sol Misener
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Timothy Luongo
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - John Elrod
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Gangjian Qin
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Steven R Houser
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Walter J Koch
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.)
| | - Raj Kishore
- From the Center for Translational Medicine (M.K., E.N., J.J., S.K.V., P.K., E.V., V.N.S.G., C.B., E.G., T.L., J.E., W.J.K.), Cardiovascular Research Center (S.R.H.), Department of Physiology (S.R.H.), and Department of Pharmacology (T.L., W.J.K., R.K.), Temple University School of Medicine, Philadelphia, PA; and Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL (T.A., A.R.M., E.V., V.R., E.L., A.I., S.M., G.Q., R.K.).
| |
Collapse
|
15
|
Hariharan N, Quijada P, Mohsin S, Joyo A, Samse K, Monsanto M, De La Torre A, Avitabile D, Ormachea L, McGregor MJ, Tsai EJ, Sussman MA. Nucleostemin rejuvenates cardiac progenitor cells and antagonizes myocardial aging. J Am Coll Cardiol 2015; 65:133-47. [PMID: 25593054 DOI: 10.1016/j.jacc.2014.09.086] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Functional decline in stem cell-mediated regeneration contributes to aging associated with cellular senescence in c-kit+ cardiac progenitor cells (CPCs). Clinical implementation of CPC-based therapy in elderly patients would benefit tremendously from understanding molecular characteristics of senescence to antagonize aging. Nucleostemin (NS) is a nucleolar protein regulating stem cell proliferation and pluripotency. OBJECTIVES This study sought to demonstrate that NS preserves characteristics associated with "stemness" in CPCs and antagonizes myocardial senescence and aging. METHODS CPCs isolated from human fetal (fetal human cardiac progenitor cell [FhCPC]) and adult failing (adult human cardiac progenitor cell [AhCPC]) hearts, as well as young (young cardiac progenitor cell [YCPC]) and old mice (old cardiac progenitor cell [OCPC]), were studied for senescence characteristics and NS expression. Heterozygous knockout mice with 1 functional allele of NS (NS+/-) were used to demonstrate that NS preserves myocardial structure and function and slows characteristics of aging. RESULTS NS expression is decreased in AhCPCs relative to FhCPCs, correlating with lowered proliferation potential and shortened telomere length. AhCPC characteristics resemble those of OCPCs, which have a phenotype induced by NS silencing, resulting in cell flattening, senescence, multinucleated cells, decreased S-phase progression, diminished expression of stemness markers, and up-regulation of p53 and p16. CPC senescence resulting from NS loss is partially p53 dependent and is rescued by concurrent silencing of p53. Mechanistically, NS induction correlates with Pim-1 kinase-mediated stabilization of c-Myc. Engineering OCPCs and AhCPCs to overexpress NS decreases senescent and multinucleated cells, restores morphology, and antagonizes senescence, thereby preserving phenotypic properties of "stemness." Early cardiac aging with a decline in cardiac function, an increase in senescence markers p53 and p16, telomere attrition, and accompanied CPC exhaustion is evident in NS+/- mice. CONCLUSIONS Youthful properties and antagonism of senescence in CPCs and the myocardium are consistent with a role for NS downstream from Pim-1 signaling that enhances cardiac regeneration.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Pearl Quijada
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Sadia Mohsin
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Anya Joyo
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Kaitlen Samse
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Megan Monsanto
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Andrea De La Torre
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Daniele Avitabile
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California; Department of Clinical and Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Lucia Ormachea
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Michael J McGregor
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California
| | - Emily J Tsai
- Section in Cardiology and Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, California.
| |
Collapse
|
16
|
Abstract
A quintessential trait of stem cells is embedded in their ability to self-renew without incurring DNA damage as a result of genome replication. One key self-renewal factor is the nucleolar GTP-binding protein nucleostemin (also known as guanine-nucleotide-binding protein-like 3, GNL3, in invertebrate species). Several studies have recently pointed to an unexpected role of nucleostemin in safeguarding the genome integrity of stem and cancer cells. Since its discovery, the predominant presence of nucleostemin in the nucleolus has led to the notion that it might function in the card-carrying event of the nucleolus--the biogenesis of ribosomes. As tantalizing as this might be, a ribosomal role of nucleostemin is refuted by evidence from recent studies, which argues that nucleostemin depletion triggers a primary event of DNA damage in S phase cells that then leads to ribosomal perturbation. Furthermore, there have been conflicting reports regarding the p53 dependency of nucleostemin activity and the cell cycle arrest profile of nucleostemin-depleted cells. In this Commentary, I propose a model that explains how the many contradictory observations surrounding nucleostemin can be reconciled and suggest that this protein might not be as multi-tasking as has been previously perceived. The story of nucleostemin highlights the complexity of the underlying molecular events associated with the appearance of any cell biological phenotype and also signifies a new understanding of the genome maintenance program in stem cells.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Hariharan N, Sussman MA. Stressing on the nucleolus in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:798-801. [PMID: 24514103 PMCID: PMC3972279 DOI: 10.1016/j.bbadis.2013.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022]
Abstract
The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Nirmala Hariharan
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mark A Sussman
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
18
|
Lin T, Ibrahim W, Peng CY, Finegold MJ, Tsai RY. A novel role of nucleostemin in maintaining the genome integrity of dividing hepatocytes during mouse liver development and regeneration. Hepatology 2013; 58:2176-87. [PMID: 23813570 PMCID: PMC3844114 DOI: 10.1002/hep.26600] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/17/2013] [Indexed: 01/04/2023]
Abstract
UNLABELLED During liver development and regeneration, hepatocytes undergo rapid cell division and face an increased risk of DNA damage associated with active DNA replication. The mechanism that protects proliferating hepatocytes from replication-induced DNA damage remains unclear. Nucleostemin (NS) is known to be up-regulated during liver regeneration, and loss of NS is associated with increased DNA damage in cancer cells. To determine whether NS is involved in protecting the genome integrity of proliferating hepatocytes, we created an albumin promoter-driven NS conditional-null (albNS(cko) ) mouse model. Livers of albNS(cko) mice begin to show loss of NS in developing hepatocytes from the first postnatal week and increased DNA damage and hepatocellular injury at 1-2 weeks of age. At 3-4 weeks, albNS(cko) livers develop bile duct hyperplasia and show increased apoptotic cells, necrosis, regenerative nodules, and evidence suggestive of hepatic stem/progenitor cell activation. CCl4 treatment enhances degeneration and DNA damage in NS-deleted hepatocytes and increases biliary hyperplasia and A6(+) cells in albNS(cko) livers. After 70% partial hepatectomy, albNS(cko) livers show increased DNA damage in parallel with a blunted and prolonged regenerative response. The DNA damage in NS-depleted hepatocytes is explained by the impaired recruitment of a core DNA repair enzyme, RAD51, to replication-induced DNA damage foci. CONCLUSION This work reveals a novel genome-protective role of NS in developing and regenerating hepatocytes.
Collapse
Affiliation(s)
- Tao Lin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| | - Wessam Ibrahim
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| | - Cheng-Yuan Peng
- School of Medicine, China Medical University, Taichung, 40402, Taiwan, Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Milton J Finegold
- Gastrointestinal & Hepatobiliary Pathology, Texas Children's Hospital Houston, Texas 77030 USA, Department of Pathology & Immunology, Baylor College of Medicine, Texas 77030 USA
| | - Robert Y.L. Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030 USA
| |
Collapse
|
19
|
De Nevi E, Marco-Salazar P, Fondevila D, Blasco E, Pérez L, Pumarola M. Immunohistochemical study of doublecortin and nucleostemin in canine brain. Eur J Histochem 2013; 57:e9. [PMID: 23549468 PMCID: PMC3683616 DOI: 10.4081/ejh.2013.e9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 01/05/2023] Open
Abstract
Finding a marker of neural stem cells remains a medical research priority. It was reported that the proteins doublecortin and nucleostemin were related with stem/progenitor cells in central nervous system. The aim of the present immunohistochemical study was to evaluate the expression of these proteins and their pattern of distribution in canine brain, including age-related changes, and in non-nervous tissues. We found that doublecortin had a more specific expression pattern, related with neurogenesis and neuronal migration, while nucleostemin was expressed in most cells of almost every tissue studied. The immunolabeling of both proteins decreased with age. We may conclude that nucleostemin is not a specific marker of stem/progenitor cells in the dog. Doublecortin, however, is not an exclusive marker of neural stem cells, but also of neuronal precursors.
Collapse
Affiliation(s)
- E De Nevi
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Markitantova YV, Zinovieva RD. Expression of nucleostemin in proliferating and differentiating cells of the human retina during prenatal development. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 445:244-6. [PMID: 22945526 DOI: 10.1134/s0012496612040084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 11/23/2022]
Affiliation(s)
- Yu V Markitantova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
21
|
Lo D, Dai MS, Sun XX, Zeng SX, Lu H. Ubiquitin- and MDM2 E3 ligase-independent proteasomal turnover of nucleostemin in response to GTP depletion. J Biol Chem 2012; 287:10013-10020. [PMID: 22318725 DOI: 10.1074/jbc.m111.335141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein essential for ribosomal biogenesis, proliferation, and animal embryogenesis. It remains largely unclear how this protein is regulated. While working on its role in suppression of MDM2 and activation of p53, we observed that NS protein (but not mRNA) levels decreased drastically in response to GTP depletion. When trying to further elucidate the molecular mechanism(s) underlying this unusual phenomenon, we found that NS was degraded independently of ubiquitin and MDM2 upon GTP depletion. First, depletion of GTP by treating cells with mycophenolic acid decreased the level of NS without apparently affecting the levels of other nucleolar proteins. Second, mutant NS defective in GTP binding and exported to the nucleoplasm was much less stable than wild-type NS. Although NS was ubiquitinated in cells, its polyubiquitination was independent of Lys-48 or Lys-63 in the ubiquitin molecule. Inactivation of E1 in E1 temperature-sensitive mouse embryonic fibroblast (MEF) cells failed to prevent the proteasomal degradation of NS. The proteasomal turnover of NS was also MDM2-independent, as its half-life in p53/MDM2 double knock-out MEF cells was the same as that in wild-type MEF cells. Moreover, NS ubiquitination was MDM2-independent. Mycophenolic acid or doxorubicin induced NS degradation in various human cancerous cells regardless of the status of MDM2. Hence, these results indicate that NS undergoes a ubiquitin- and MDM2-independent proteasomal degradation when intracellular GTP levels are markedly reduced and also suggest that ubiquitination of NS may be involved in regulation of its function rather than stability.
Collapse
Affiliation(s)
- Dorothy Lo
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon 97239
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana 70112 and.
| |
Collapse
|
22
|
Mohsin S, Siddiqi S, Collins B, Sussman MA. Empowering adult stem cells for myocardial regeneration. Circ Res 2012; 109:1415-28. [PMID: 22158649 DOI: 10.1161/circresaha.111.243071] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment, and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches must be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review highlights biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long-lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells before reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease, or aging.
Collapse
|
23
|
Zhang GW, Wen T, Gu TX, Li-Ling J, Wang C, Zhao Y, Liu J, Wang Y, Liu TJ, Lü F. Transmyocardial drilling revascularization combined with heparinized bFGF-incorporating stent activates resident cardiac stem cells via SDF-1/CXCR4 axis. Exp Cell Res 2011; 318:391-9. [PMID: 22146760 DOI: 10.1016/j.yexcr.2011.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/06/2011] [Accepted: 11/16/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether transmyocardial drilling revascularization combined with heparinized basic fibroblast growth factor (bFGF)-incorporating degradable stent implantation (TMDRSI) can promote myocardial regeneration after acute myocardial infarction (AMI). METHODS A model of AMI was generated by ligating the mid-third of left anterior descending artery (LAD) of miniswine. After 6 h, the animals were divided into none-treatment (control) group (n=6) and TMDRSI group (n=6). For TMDRSI group, two channels with 3.5 mm in diameter were established by a self-made drill in the AMI region, into which a stent was implanted. Expression of stromal cell-derived factor-1(α) (SDF-1(α)) and CXC chemokine receptor 4 (CXCR4), cardiac stem cell (CSC)-mediated myocardial regeneration, myocardial apoptosis, myocardial viability, and cardiac function were assessed at various time-points. RESULTS Six weeks after the operation, CSCs were found to have differentiated into cardiomyocytes to repair the infarcted myocardium, and all above indices showed much improvement in the TMDRSI group compared with the control group (P<0.001). CONCLUSIONS The new method has shown to be capable of promoting CSCs proliferation and differentiation into cardiomyocytes through activating the SDF-1/CXCR4 axis, while inhibiting myocardial apoptosis, thereby enhancing myocardial regeneration following AMI and improving cardiac function. This may provide a new strategy for myocardial regeneration following AMI.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Cardiac Surgery and Neurology, The First Hospital of China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Meng L, Hsu JK, Zhu Q, Lin T, Tsai RYL. Nucleostemin inhibits TRF1 dimerization and shortens its dynamic association with the telomere. J Cell Sci 2011; 124:3706-14. [PMID: 22045740 DOI: 10.1242/jcs.089672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
TRF1 is a key component of the telomere-capping complex and binds double-strand telomeric DNA as homodimers. So far, it is not clear whether TRF1 dimerization coincides with its telomere binding or is actively controlled before it binds the telomere, and in the latter case, how this event might affect its telomere association. We previously found that TRF1 dimerization and its telomere binding can be increased by GNL3L, which is the vertebrate paralogue of nucleostemin (NS). Here, we show that NS and GNL3L bind TRF1 directly but competitively through two separate domains of TRF1. In contrast to GNL3L, NS prevents TRF1 dimerization through a mechanism not determined by its ability to displace TRF1-bound GNL3L. Furthermore, NS is capable of shortening the dynamic association of TRF1 with the telomere in normal and TRF2(ΔBΔM)-induced telomere-damaged cells without affecting the amount of telomere-bound TRF1 proteins in vivo. Importantly, NS displays a protective function against the formation of telomere-dysfunction-induced foci. This work demonstrates that TRF1 dimerization is actively and oppositely regulated by NS and GNL3L extrachromosomally. Changing the relative amount of TRF1 monomers versus dimers in the nucleoplasm might affect the dynamic association of TRF1 with the telomere and the repair of damaged telomeres.
Collapse
Affiliation(s)
- Lingjun Meng
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Oktar PA, Yildirim S, Balci D, Can A. Continual expression throughout the cell cycle and downregulation upon adipogenic differentiation makes nucleostemin a vital human MSC proliferation marker. Stem Cell Rev Rep 2011; 7:413-24. [PMID: 21063916 DOI: 10.1007/s12015-010-9201-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nucleostemin (NS) is a nucleolar protein expressed in stem and cancer cells. In combination with nuclear/nucleolar proteins, NS has been demonstrated to be involved in cell-cycle regulation and telomere maintenance. NS expression reflects the cell's proliferation state indicating that the cell is active in the cell cycle, whereas NS signals disappear upon differentiation. This study analyzes the spatio-temporal (nucleolar/nuclear localization during interphase and M-phase) NS remodeling in two distinct human mesenchymal stem cell (MSC) populations to discriminate the NS differences, if any, throughout their stem cell and differentiation states. Beside its prominent multilobular nucleolar localization in interphase cells, coexistence of NS with chromosome arms during mitosis was also observed. Disruption of mitotic microtubules induced dissociation of NS from the chromosome arms and scattered it into the cytoplasm. Compared to deciduous dental pulp MSCs, NS mRNA expression gradually decreased upon aging in umbilical cord stroma-derived MSCs as culture time increased. Following adipogenic differentiation of the latter, NS signals gradually disappeared in both dividing and non-dividing cells, even before the morphological and functional signs of adipogenic transformation appeared. Quantitative NS mRNA measurements showed that MSCs from two sources exhibit a strong nucleostemin expression similar to embryonic stem cells. In conclusion, apart from its novel chromosomal localization shown in this study, nucleolar NS can be considered as a marker that indicates the proliferation/differentiation states in human MSCs. Moreover, differences in the relative NS protein and mRNA levels may reflect the degree of proliferation and can be used to characterize in vitro expansion capabilities.
Collapse
Affiliation(s)
- Pinar Akpinar Oktar
- Department of Histology and Embryology, Ankara University School of Medicine, Sihhiye, 06100, Ankara, Turkey
| | | | | | | |
Collapse
|
26
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshida R, Fujimoto T, Kudoh S, Nagata M, Nakayama H, Shinohara M, Ito T. Nucleostemin affects the proliferation but not differentiation of oral squamous cell carcinoma cells. Cancer Sci 2011; 102:1418-23. [PMID: 21443540 DOI: 10.1111/j.1349-7006.2011.01935.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nucleostemin (NS) has been reported as essential for stem and cancer cell proliferation. To investigate the significance of NS in oral squamous cell carcinomas (OSCCs), we examined NS expression in neoplastic tissue of the tongue and in OSCC cell lines. Nucleostemin expression in the histological samples showed positive correlation with Ki-67 expression. Furthermore, NS expression was associated with cellular proliferation in OSCC cell lines using siRNA, which upregulated p27, a cyclin-dependent kinase inhibitor. Regarding OSCC differentiation, NS expression did not influence cornification or oral epithelial differentiation markers such as involucrin and cytokeratin19. Thus, NS is widely expressed in normal and neoplastic oral epithelial tissues, and is likely a marker of proliferation.
Collapse
Affiliation(s)
- Ryoji Yoshida
- Department of Pathology and Experimental Medicine, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Nucleolar stress is an early response to myocardial damage involving nucleolar proteins nucleostemin and nucleophosmin. Proc Natl Acad Sci U S A 2011; 108:6145-50. [PMID: 21444791 DOI: 10.1073/pnas.1017935108] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nucleolar stress, characterized by loss of nucleolar integrity, has not been described in the cardiac context. In addition to ribosome biogenesis, nucleoli are critical for control of cell proliferation and stress responses. Our group previously demonstrated induction of the nucleolar protein nucleostemin (NS) in response to cardiac pathological insult. NS interacts with nucleophosmin (NPM), a marker of nucleolar stress with cytoprotective properties. The dynamic behavior of NS and NPM reveal that nucleolar disruption is an early event associated with stress response in cardiac cells. Rapid translocation of NS and NPM to the nucleoplasm and suppression of new preribosomal RNA synthesis occurs in both neonatal rat cardiomyocytes (NRCM) and cardiac progenitor cells (CPC) upon exposure to doxorubicin or actinomycin D. Silencing of NS significantly increases cell death resulting from doxorubicin treatment in CPC, whereas NPM knockdown alone induces cell death. Overexpression of either NS or NPM significantly decreases caspase 8 activity in cultured cardiomyocytes challenged with doxorubicin. The presence of altered nucleolar structures resulting from myocardial infarction in mice supports the model of nucleolar stress as a general response to pathological injury. Collectively, these findings serve as the initial description of myocardial nucleolar stress and establish the postulate that nucleoli acts as sensors of stress, regulating the cellular response to pathological insults.
Collapse
|
29
|
Fischer KM, Din S, Gude N, Konstandin MH, Wu W, Quijada P, Sussman MA. Cardiac progenitor cell commitment is inhibited by nuclear Akt expression. Circ Res 2011; 108:960-70. [PMID: 21350213 DOI: 10.1161/circresaha.110.237156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. OBJECTIVE To determine whether injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. METHODS AND RESULTS CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared with CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared with CPCs, but neither population provides long-term functional and structural improvements compared with saline-injected controls. Pharmacological inhibition of Akt alleviated blockade of lineage commitment in CPCeA. CONCLUSIONS Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA-treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Because CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches.
Collapse
|
30
|
Abstract
Guanine nucleotide binding protein-like 3-like (GNL3L) is a nucleolar protein and the vertebrate paralogue of nucleostemin (NS). We previously reported that nucleoplasmic mobilization of NS stabilizes MDM2 (mouse double minute 2). Here, we investigated the role of GNL3L as a novel MDM2 regulator. We found that GNL3L binds MDM2 in vivo and displays the same function as NS in stabilizing MDM2 protein and preventing its ubiquitylation. The interaction between GNL3L and MDM2 also takes place in the nucleoplasm. However, the MDM2 regulatory activity of GNL3L occurs constitutively and does not so much depend on the nucleolar release mechanism as NS does. GNL3L depletion triggers G2/M arrest in the p53-wild-type HCT116 cells more than in the p53-null cells, and upregulates specific p53 targets (that is, Bax, 14-3-3σ and p21) without affecting the ubiquitylation or stability of p53 proteins. The inhibitory activity of GNL3L on p53-mediated transcription correlates with the increased expression of GNL3L and reduced expression of 14-3-3σ and p21 in human gastrointestinal tumors. This work shows that in contrast to most nucleolar proteins that negatively control MDM2, GNL3L and NS are the only two that are designed to stabilize MDM2 protein under basal or induced condition, respectively, and may act as tumor-promoting genes.
Collapse
Affiliation(s)
- L Meng
- Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A and M Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
31
|
Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 2010; 107:913-22. [PMID: 20671238 DOI: 10.1161/circresaha.110.222703] [Citation(s) in RCA: 533] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes. OBJECTIVE Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire. METHODS AND RESULTS Female Yorkshire pigs (n=31) underwent experimental myocardial infarction (MI), and 3 days later, received transendocardial injections of allogeneic male bone marrow-derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit(+) CSCs increased 20-fold in MSC-treated animals versus controls (P<0.001), there was a 6-fold increase in GATA-4(+) CSCs in MSC versus control (P<0.001), and mitotic myocytes increased 4-fold (P=0.005). Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit(+) CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2-5 and troponin I. CONCLUSIONS MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics.
Collapse
|
32
|
Zhang H, Liu Z, Li R, Wang D, Liu W, Li J, Yu H, Zhang F, Dou K. Transplantation of embryonic small hepatocytes induces regeneration of injured liver in adult rat. Transplant Proc 2010; 41:3887-92. [PMID: 19917406 DOI: 10.1016/j.transproceed.2009.06.205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/01/2009] [Accepted: 06/01/2009] [Indexed: 01/11/2023]
Abstract
Small hepatocytes as hepatic stem cells or progenitors may be transplanted to treat several end-stage liver diseases. To identify the characteristics of epithelial cells enriched from fetal liver, we used immunocytochemistry and electron micrography. All cells in the colonies were immunocytochemically positive for alpha fetoprotein and cytokeratins (CK) 7, CK8, and CK18, which are markers of hepatic progenitor. Under transmission electron microscopy, we observed the cultured cells to show naive characteristics of stem cells and to be significantly distinct from mature hepatocytes. To identity whether these small hepatocytes were able to proliferate and differentiate into mature hepatocytes, we cultured them in vitro, and, through the portal vein, and transplanted elements whose membrane were stained with red fluorescence using PKH26 linker dye, into the livers of CCl(4)-treated rats that had been subjected to two-thirds partial hepatectomy. Significant liver regeneration was observed 30 days later in rats that did or did not receive the cells. The livers of hepatocytes recipients showed sharper edges and smoother surfaces than the control group. Diffused cells labeled with red fluorescence were observed in the portal area, with branch-like red fluorescence in regions near portal areas of some lobules, suggesting that these elements were involved in the repair of liver lobules and differentiation into mature hepatocytes. Our results revealed that small hepatocytes not only have characteristics of hepatic stem cells, but also may be a source of cellular transplantation to treat liver diseases.
Collapse
Affiliation(s)
- H Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hirai H, Romanova L, Kellner S, Verma M, Rayner S, Asakura A, Kikyo N. Post-mitotic role of nucleostemin as a promoter of skeletal muscle cell differentiation. Biochem Biophys Res Commun 2009; 391:299-304. [PMID: 19914205 DOI: 10.1016/j.bbrc.2009.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 11/09/2009] [Indexed: 01/18/2023]
Abstract
Nucleostemin (NS) is a nucleolar protein abundantly expressed in a variety of proliferating cells and undifferentiated cells. Its known functions include cell cycle regulation and the control of pre-rRNA processing. It also has been proposed that NS has an additional role in undifferentiated cells due to its downregulation during stem cell differentiation and its upregulation during tissue regeneration. Here, however, we demonstrate that skeletal muscle cell differentiation has a unique expression profile of NS in that it is continuously expressed during differentiation. NS was expressed at similar levels in non-proliferating muscle stem cells (satellite cells), rapidly proliferating precursor cells (myoblasts) and post-mitotic terminally differentiated cells (myotubes and myofibers). The sustained expression of NS during terminal differentiation is necessary to support increased protein synthesis during this process. Downregulation of NS inhibited differentiation of myoblasts to myotubes, accompanied by striking downregulation of key myogenic transcription factors, such as myogenin and MyoD. In contrast, upregulation of NS inhibited proliferation and promoted muscle differentiation in a p53-dependent manner. Our findings provide evidence that NS has an unexpected role in post-mitotic terminal differentiation. Importantly, these findings also indicate that, contrary to suggestions in the literature, the expression of NS cannot always be used as a reliable indicator for undifferentiated cells or proliferating cells.
Collapse
Affiliation(s)
- Hiroyuki Hirai
- Stem Cell Institute, University of Minnesota, Room 2-216, MTRF, 2001 6th St SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Schäfer R, Dominici M, Müller I, Horwitz E, Asahara T, Bulte JWM, Bieback K, Le Blanc K, Bühring HJ, Capogrossi MC, Dazzi F, Gorodetsky R, Henschler R, Handgretinger R, Kajstura J, Kluger PJ, Lange C, Luettichau IV, Mertsching H, Schrezenmeier H, Sievert KD, Strunk D, Verfaillie C, Northoff H. Basic research and clinical applications of non-hematopoietic stem cells, 4-5 April 2008, Tubingen, Germany. Cytotherapy 2009; 11:245-55. [PMID: 19152153 DOI: 10.1080/14653240802582117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
From 4 to 5 April 2008, international experts met for the second time in Tubingen, Germany, to present and discuss the latest proceedings in research on non-hematopoietic stem cells (NHSC). This report presents issues of basic research including characterization, isolation, good manufacturing practice (GMP)-like production and imaging as well as clinical applications focusing on the regenerative and immunomodulatory capacities of NHSC.
Collapse
Affiliation(s)
- R Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tubingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 2009; 120:2077-87. [PMID: 19901187 DOI: 10.1161/circulationaha.109.884403] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Despite numerous studies demonstrating the efficacy of cellular adoptive transfer for therapeutic myocardial regeneration, problems remain for donated cells with regard to survival, persistence, engraftment, and long-term benefits. This study redresses these concerns by enhancing the regenerative potential of adoptively transferred cardiac progenitor cells (CPCs) via genetic engineering to overexpress Pim-1, a cardioprotective kinase that enhances cell survival and proliferation. METHODS AND RESULTS Intramyocardial injections of CPCs overexpressing Pim-1 were given to infarcted female mice. Animals were monitored over 4, 12, and 32 weeks to assess cardiac function and engraftment of Pim-1 CPCs with echocardiography, in vivo hemodynamics, and confocal imagery. CPCs overexpressing Pim-1 showed increased proliferation and expression of markers consistent with cardiogenic lineage commitment after dexamethasone exposure in vitro. Animals that received CPCs overexpressing Pim-1 also produced greater levels of cellular engraftment, persistence, and functional improvement relative to control CPCs up to 32 weeks after delivery. Salutary effects include reduction of infarct size, greater number of c-kit(+) cells, and increased vasculature in the damaged region. CONCLUSIONS Myocardial repair is significantly enhanced by genetic engineering of CPCs with Pim-1 kinase. Ex vivo gene delivery to enhance cellular survival, proliferation, and regeneration may overcome current limitations of stem cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Kimberlee M Fischer
- San Diego State Heart Institute, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nikpour P, Mowla SJ, Jafarnejad SM, Fischer U, Schulz WA. Differential effects of Nucleostemin suppression on cell cycle arrest and apoptosis in the bladder cancer cell lines 5637 and SW1710. Cell Prolif 2009; 42:762-9. [PMID: 19706044 DOI: 10.1111/j.1365-2184.2009.00635.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES The Nucleostemin (NS) gene encodes a nucleolar protein enriched in adult and embryonic stem cells. NS is thought to regulate cancer cell proliferation, but the mechanisms involved are poorly understood. In this study, we have investigated the role of NS in bladder cancer. MATERIALS AND METHODS Expression of NS was determined by quantitative reverse transcription-polymerase chain reaction in bladder carcinoma cell lines and in normal uro-epithelial cell cultures. We used an RNAi strategy to investigate the function of NS in two selected carcinoma cell lines. RESULTS High NS expression was found in most bladder carcinoma cell lines and normal uro-epithelial cells. Knockdown of NS expression induced a severe decline in cell proliferation in 5637 and SW1710 cell lines, both with mutant p53. Apoptosis was more strongly enhanced in 5637 cells lacking RB1 than in SW1710 cells lacking p16(INK4A). Moreover, NS-siRNA-treated 5637 cells accumulated mainly in G(2)/M, whereas SW1710 cells arrested in G(0)/G(1). CONCLUSION Our data indicate that NS expression is necessary for cell proliferation and evasion of apoptosis in bladder cancer cells, independent of its effect on p53. Also, we speculate that the precise effect of NS on cell cycle regulation may relate to functional status of RB1 and CDKN2A/p16(INK4A).
Collapse
Affiliation(s)
- P Nikpour
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
37
|
Tsai RYL, Meng L. Nucleostemin: a latecomer with new tricks. Int J Biochem Cell Biol 2009; 41:2122-4. [PMID: 19501670 DOI: 10.1016/j.biocel.2009.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 02/01/2023]
Abstract
Nucleostemin was first identified in neural stem cells and has become a focus of research in cell cycle control, tumorigenesis and cellular senescence. As the biology of nucleostemin begins to be unveiled in multiple species, an ensuing task is to resolve the apparent differences between the functions of mammalian and invertebrate nucleostemin and its homologues, an issue of pressing interest given the role of nucleostemin in stem cell self-renewal and tissue regeneration. A genome-wide search reveals that nucleostemin and its closest homologue, GNL3L, only emerge as separate genes in vertebrates and possess conserved protein sequences as evolution proceeded to the Mammalia. The invertebrate orthologue of nucleostemin and GNL3L resembles GNL3L more than it does nucleostemin in function, raising the idea that nucleostemin acquires new properties while GNL3L inherits an evolutionarily fixed role, and that the birth of nucleostemin may signify the appearance of new functional features in the vertebrate lineage.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030, USA.
| | | |
Collapse
|
38
|
Tjwa M, Dimmeler S. A nucleolar weapon in our fight for regenerating adult hearts: nucleostemin and cardiac stem cells. Circ Res 2008; 103:4-6. [PMID: 18596260 DOI: 10.1161/circresaha.108.179994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|